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Abstract

Classic and modern theories of rebel warfare emphasize the role of unexpected attacks
against better equipped government forces. We test implications of a simple model
of combat and information-gathering using highly detailed data about Afghan rebel
attacks, insurgent-led spy networks, and counterinsurgent operations. Timing of rebel
operations responds to changes in the group’s access to resources. Results are sup-
plemented with numerous robustness checks as well as a novel IV approach that uses
machine learning and high frequency data on local agronomic inputs. Main effects
are significantly enhanced in areas where rebels have the capacity to spy on and infil-
trate military installations. Consistent with the model, shocks to labor scarcity and
government surveillance operations have the opposite effect on attack timing.
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1 Introduction

Intrastate conflicts have replaced interstate wars as the main source of human loss and

population displacement. Generally, it is well understood that resource endowments shape

how rebels recruit, retain, and deploy their fighters (Weinstein, 2007). Fluctuations in rebel-

held economic resources affect the scale of insurgent activity (Dube and Vargas, 2013),

their control of strategic territory (Kalyvas, 2006), and how they treat civilians (Wood,

2014). These factors, in turn, impact whether civilians cooperate with rebels or collude with

government forces (Condra and Shapiro, 2012) and the ability of the government to engage

in development and reconstruction (Sexton, 2016). Shocks to rebel capacity impact even the

finest aspects of internal warfare.

One central question that remains largely unexplored is whether rebel capacity influences

actual military tactics, i.e., how rebels fight. In particular, classic theories of insurgency

note that the rebel’s main advantage in an asymmetric conflict is the ‘element of surprise’

(Galula, 1964). If guerrillas aim to undermine their more powerful rivals, their attacks

must be unpredictable and, as such, difficult for government forces to anticipate and thwart

(Thompson, 1966; Powell, 2007a,b). Yet the strategic value of random combat may diminish

as rebels accumulate resources. As their capacity grows, rebels may shift from guerrilla

tactics to conventional warfare, where frontal assaults are less random and more costly to

the rebel forces (Bueno de Mesquita, 2013; Wright, 2016). Additional resources might also

allow rebels to gather precise information about defensive weaknesses, including when troops

and military installations are vulnerable to attack.

In our model of irregular warfare, rebels allocate scarce resources to gather information

about vulnerability of the targets and conduct attacks based to this information. As gov-

ernment defensive resources are scarce as well, information about the presence of protection

at one point in time is simultaneously information about (the absence of) protection during

other periods of the day.1 With higher quality information, rebels concentrate their attacks

during time periods when targets are unprotected. This suggests a simple theoretical mech-

anism linking rebel capacity and patterns of attack timing. Positive economic shocks enable

1For example, following the Afghan surge in 2010, insurgents in Uruzgan province were able to monitor
and assess weaknesses at one of the Coalition’s forward operating bases. Rebels had amassed an arsenal of
rockets, which they deployed strategically at particular times during the day. Despite rapid responses and a
technological advantage, Coalition forces were unable to neutralize the insurgent threat and carefully timed
attacks continued during the subsequent fighting season. See “Despite drones and blimps, rocket attacks
in Afghanistan prove hard to stop”, The Christian Science Monitor, 8/21/2012, https://tinyurl.com/

y8e5x466.
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rebels to acquire relatively high quality intelligence and their attacks become clustered in

particular windows of time, i.e., exhibit low entropy. Empirically assessing the theoretical

model requires unusually rich data on when attacks occur as well as largely unobservable de-

tails about rebel spy operations. We use newly declassified military records provided by the

United States government, which document hundreds of thousands of combat engagements

in Afghanistan during Operation Enduring Freedom, including 28,678 instances of indirect

fire attacks (typically, rocket or mortar fire). The data include within-day timestamps, often

to the minute, which we collapse to the hour. This allows us to study temporal clustering

in attack patterns, consistent with a deviation from random attack timing. We quantify

the randomness of combat timing by developing an extension of bootstrapping methods in

statistics applied to the canonical Kolmogorov-Smirnov test (Abadie, 2002). We then study

the association between attack clustering and rebel capacity using granular data on opium

revenue (Peters, 2009).

We find consistent evidence that positive shocks to rebel capacity decrease randomness

in the timing of violent attacks. As predicted by the model, rebel attacks become clustered

during particular time windows following opium windfalls. In other words, insurgents begin

to concentrate their combat operations during specific periods of the day as they accumulate

resources. This finding survives a battery of robustness checks, including when we account

for trends in violence during the fighting, harvest, and planting seasons, implement alter-

native fixed effects approaches, account for regional variation in crop yield and farmgate

prices, exclude late-harvesting districts, and introduce a number of alternative measures

of state capacity such as close air support missions, bomb neutralization, counterinsurgent

surveillance activity, and safe house raids. The rich nature of our conflict microdata allow us

to rule out other potential identification concerns, including rarely documented coercive tac-

tics used by insurgents which may influence opium production. Spatial correlation-corrected

randomization inference and coefficient stability tests confirm these benchmark results as

well.

We also introduce results from a novel set of instrumental variables approaches. These

approaches employ non-parametric estimation and machine learning techniques to identify

agronomic factors which reliably predict opium productivity. Our IV approach flexibly

leverages daily data on precipitation and temperature fluctuation by district as well as soil

quality characteristics. These factors allow us to study variation in opium revenue that is

driven by factors outside of combatant control and, because we use only weather conditions

during the growing season months before fighting actually occurs, we sidestep potential
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concerns about violations of the exclusion restriction. We use supplemental data on pre-

invasion irrigation networks, newly released data on military reconstruction projects, and

sample randomization tests to rule out other potential concerns about instrument validity.

Overall, our IV results yield strong evidence consistent with our main result: positive revenue

shocks lead to more temporal clustering in rebel attack patterns.

The model emphasizes the critical role of the quality of information that insurgents gather

about troop and facility weakness. As insurgents gather enough sufficiently precise informa-

tion about target vulnerabilities, their attack patterns shift as they optimally calibrate the

timing of their attacks. Our military records include previously unreleased information about

rebel spy operations—surveillance of troop movement and base activity—observed by mili-

tary forces. Our data suggests that insurgents were able to conduct surveillance operations

in 70 of Afghanistan’s 398 districts in 2006 (see Figure 1). These records enable us to test

whether the ability to surveil, breach, or infiltrate targets significantly enhances the overall

impact of revenue shocks in a manner consistent with our theoretical model. Ultimately,

we find strong evidence that the baseline effect we observe is substantially greater in areas

where the Taliban have the capability to acquire actionable intelligence about when troops,

convoys, and bases are susceptible to attack. Additional data on rebel battlefield casualties

and government-led surveillance operations allow us to assess the impact of policy interven-

tions relevant to our theoretical model. We find robust evidence that labor scarcity (due to

battlefield losses) and increasing costs of attack clustering (due to government surveillance)

lead rebels to randomize the timing of their attacks more, yielding less temporal clustering.

The richness of our data finally enable us to further explore when and how economic

shocks impact the production of violence. Opportunity costs, outside options, and reserva-

tion wages are central to most economic theories of political violence (Berman et al., 2011;

Dal Bo and Dal Bo, 2011). Unique features of the Afghanistan case enable us to identify

areas where reservation wages grow relatively faster due to the presence of bureaucratic

corruption. To assess the extent of local administrative corruption, we rely on proprietary

surveys conducted for the North Atlantic Treaty Organization by a local Afghan firm. Con-

sistent with the theoretical models in Berman et al. (2011) and Dal Bo and Dal Bo (2011),

our results suggest revenue shocks from opium production have a larger impact on rebel

tactics in places where reservation wages are relatively lower. Savings technologies in rebel

organizations may enable insurgents to anticipate and account for revenue volatility in their

expenditures during the fighting season after particularly profitable harvests. We find no

evidence, however, that rebels engage in consumption smoothing.
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This paper contributes to the political economy of conflict. Prior work provides com-

pelling evidence that insurgents respond strategically to local economic shocks (Dube and

Vargas, 2013; Berman et al., 2017; Vanden Eynde, 2018), form alliances during war (Konig

et al., 2017), and calibrate their use of violence against civilian populations (Condra and

Shapiro, 2012; Condra et al., 2018). Recent work also links exogenous economic shocks

to terrorism financing and recruitment activity on the dark net (Limodio, 2019). Our ev-

idence highlights how sophisticated institutions commonly associated with states and gov-

ernment forces—structured tax collection schemes, combat coordination, and surveillance

operations—influence the timing of insurgent violence.

Understanding how economic shocks and government countermeasures impact rebel tac-

tics remains an important policy issue. The United States alone has spent more than two

trillion dollars on combat operations in Afghanistan. Trebbi et al. (2017) present evidence

that government counter-IED measures may have been quickly thwarted by rebels. Our

evidence, on the other hand, suggests labor constraints and government surveillance may

meaningfully impact how rebels fight.

The rest of the paper is organized as follows. Section 2 provides a brief overview of

the related literature. Section 3 introduces our theoretical model. Section 4 details the

empirical strategy. Section 5 presents the main results and robustness checks. The final

section concludes.

2 Economics of Political Violence

Quantitative work on the economics of conflict has largely focused on the conditions that

trigger warfare. Fearon and Laitin (2003), Collier and Hoeffler (2004), Miguel et al. (2004),

and Bazzi and Blattman (2014) study the proximate causes of conflict. Related work explores

incentives to use violence as a means to predate or capture economic resources (Le Billon,

2001; Ross, 2004; Hidalgo et al., 2010). Others have focused on the link between income

shocks and levels of political violence at a subnational level (Dube and Vargas, 2013; Jia,

2014; Wright, 2016; Vanden Eynde, 2018; Gehring et al., 2019). A meaningful gap exists, as

Berman and Matanock (2015) point out, between our understanding of when and how rebels

engage in armed combat. We advance this agenda by examining the relationship between

economic shocks to rebel capacity and the ways in which insurgents fight.

Violence is economically and politically costly. Gould and Klor (2010) find that terror

attacks harden in-group biases and cause Israelis to adopt less accommodating political po-
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sitions.2 Those affected by these attacks are also more likely to vote for right-wing parties.

Similarly, Condra et al. (2018) find that insurgent attacks around elections in Afghanistan

are calibrated to avoid civilian casualties and substantially reduce voter turnout. Violence

may be triggered by and reinforce ethnic divisions (Esteban and Ray, 2011; Esteban et al.,

2012), even in institutions designed to maintain impartiality (Shayo and Zussman, 2017).

Insecurity might also undermine political instability through a realignment between interna-

tional actors and domestic power brokers (Padro i Miquel and Yared, 2012). Civil conflict is

also economically disruptive (Abadie and Gardeazabal, 2003), even at the microlevel (Besley

and Mueller, 2012). Our results help us better understand how insurgents respond to rent

shocks and may enable governments to better anticipate and defend against attacks.

More generally, our paper provides insights into the working mechanism of insurgency.

State capacity is central to economic theories of conflict (Besley and Persson, 2011; Gennaioli

and Voth, 2015; Besley and Persson, 2010; Powell, 2013; Carter, 2015; Esteban et al., 2015).

Yet the resources available to the state’s competitors also influence when conflicts emerge

(Dube and Vargas, 2013), how internal wars are fought, and whether they end in withdrawal.

Recognizing this gap, Bueno de Mesquita (2013) theorizes that the relative strength of the

rebellion influences leaders’ choice to adopt irregular tactics. We advance this literature by

developing a microlevel theory of the relationship between resource endowments and combat

tactics.

Technology of conflict has long been an active area of theoretical modelling (Kress, 2012).

Optimal allocation of attacking and defensive resources have been studied in the Colonel

Blotto-type games starting with Borel (1953). Our game is not a “Blotto game” in the

sense of Roberson (2006), which assumes that the side that allocates more resources to one

battlefield wins for sure, yet is “Blotto” in the sense of Blackett (1958) and Powell (2007b),

which allow for the probability of success to depend on allocated resources more generally.3

A contribution of our model is the signal about the relative vulnerability of different targets

that rebels receive before launching attacks: it allows to analyze comparative statics with

respect to the quality of information.

In a setting in which the maximand is the sum of harm to individual sites, Powell (2007a)

demonstrates that in the unique equilibrium, the defender minimaxes the attacker regardless

of whether or not the attacker can observe the defender’s allocation before choosing where to

launch the attack. In Powell (2007a), the defense has private information about the relative

2See also Berrebi and Klor (2008) and Getmansky and Zeitzoff (2014).
3See Golman and Page (2009), Roberson and Kvasov (2012) and Konrad and Kovenock (2009) for recent

advances and Kovenock and Roberson (2012) for an excellent survey.

5



vulnerability of two sites, and allocated protection is public information, which creates the

secrecy vs. vulnerability trade off. Goyal and Vigier (2014) consider a zero-sum Tullock-type

conflict, in which the defense chooses a network to protect and the attacker chooses where

to launch an attack. In particular, they show that a star network with all defence resources

allocated to the central node is optimal in many circumstances. In Konig et al. (2017),

the network is given; the data on the Second Congo War is used to estimate the impact of

selective dismantling of fighting groups and weapons embargoes on conflict intensity. We

estimate the potential effects of abnormal battlefield losses (a negative shock during the

fighting season partially offsets revenue windfalls), which is close to selective dismantling in

Konig et al. (2017).

3 Theory

In our model, a rebel group chooses the number of attacks and the precision of information

about targets’ vulnerability, and then allocates attacks basing on this information. This is the

simplest possible model consistent with our empirical approach that utilizes randomization

inference and the bootstrap Kolmogorov-Smirnov method developed by Abadie (2002).

3.1 Setup

Consider a rebel group that attacks the government facilities using a certain technology

(e.g., mortars). The group uses information of the quality θ ∈
[

1
2
, 1
]

to allocate the total of

a attacks across the targets. The government allocates resources to defeat attacks.

There are n time slots to protect.4 The government has resources to defend r < n time

slots. Formally, the government strategy is a probability distribution G (·) over n-tuples

(g1, ..., gn) such that
∑

i∈n gi = r and gi ∈ {0, 1} for each i ∈ n. If an attack happens during

the period when the target is defended, it does not succeed; if an attack is in an unprotected

time slot, it succeeds with probability p ∈ (0, 1) . Since any deterministic choice of protec-

tion will result in rebels attacking outside of the time slots when the targets is defended,

any reasonable placement of protection should be randomized. After the government allo-

cates protection, rebels gather intelligence about the targets’ vulnerability during different

4We consider targets to be “time slots” rather than space objects as this corresponds with our empirical
data. Therefore, it is natural for rebels to maximize the probability of at least one successful attack, rather
than the expected number of destroyed targets, which would be natural if targets were space objects. Our
formal results extend to this alternative setting as well.
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time-periods. Specifically, rebels receive noisy signals (si)i∈n ∈ {0, 1}
n that are determined

according to

P (si = 0|gi = 0) = P (si = 1|gi = 1) = θ.

Then the rebels strategy is a mapping F (a1, ..., an; ·) from the n-tuples of signals about peri-

ods’ vulnerability into a probability distribution on n-tuples (a1, ..., an) such that
∑

i∈n ai = a

and ai is a non-negative integer for each i ∈ n.

The rebel group maximizes the probability of at least one successful attack net of the

cost of attacks and information gathering. As gathering intelligence requires resources, we

assume that the quality of information θ is a function of revenues in rebels’ disposal. 5 Thus,

the periods of low rents correspond to lower quality of information available to rebels. The

government is interested in minimizing the probability of at least one successful attack.

Timing

1. The government chooses allocation of resources across n time slots.

2. Rebels receive information (si)i∈n ∈ {1, 0}
n and choose the distribution of attacks

across slots.

3. Pay-offs are received.

Definition 1 Given the resources available to rebels, an equilibrium is rebels’ choice of a

c.d.f. F ∗(s1, ..., sn; ·), which is a function of signals about each time slot, into a probability

distribution over a attacks on each of the n time slots, and the government’s choice of a

c.d.f. G∗ over r−combinations of n time slots. Given G∗, F ∗ maximizes the probability of

at least one successful attack net of the cost of attacks and information gathering; given F ∗,

G∗ minimizes it.

3.2 The Attack Timing Game

We start backwards. It is straightforward to establish that the government allocates resources

into r time slots chosen randomly and uniformly across all possible combinations. The rebels’

optimal strategy depends on the signals that they observe. Information gathering results in

x “vulnerable” (si = 0) and n − x “defended” (si = 1) time slots. Let q(x) denote the ex

5In the working paper version, we explicitly model the allocation of resources between additional number
of attacks and information precision, taking into account the marginal costs of these activities.
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post probability that time i with si = 0 is vulnerable when the total number of vulnerable

signals is x :

q(x) = P (gi = 0|si = 0,#{sj = 0} = x).

Importantly, although signals are conditionally independent, when resources are scarce, a

signal about vulnerability of one period is informative about the vulnerability of other peri-

ods. Indeed, if one time slot is more likely to be vulnerable, other time slots are less likely to

be vulnerable as probability of being one of r−1 protected time slots among n−1 periods is

smaller than to be one of r among n. It is of course possible that the number of “vulnerable”

signals x is not equal to the total number of attacks a; in fact, x can be any integer between

0 and n with a non-zero probability. In the two extreme cases, x = 0 (there are no time

slots that are more likely to be vulnerable) and x = n (all potential times an attack could

occur are equally vulnerable), there is no information to update upon. In all other cases,

1 ≤ x ≤ n− 1, signals are informative:

P (gi = 0|si = 0) > P (gi = 0|si = 1).

The number of “vulnerable” signals is a random variable, the sum of two binomial dis-

tributions with different probabilities of success: n− r vulnerable time slots produce signal

0 with probability θ, while r defended time slots produce signal 0 with probability 1− θ.6

Proposition 1 There exists a unique equilibrium in the attack timing game. The govern-

ment protects r time slots chosen randomly and uniformly across all possible combinations

and rebels follow the signals that they receive. If a ≤ x = # {si = 0} , then a attacks are

distributed uniformly over x “vulnerable” time slots. If a > x, there is an optimal number of

attacks a(x) such that min {a, xa(x)} attacks are distributed uniformly over x “vulnerable”

time slots. The remaining a−min {a, xa(x)} attacks are distributed uniformly across n− x
“defended”time slots.

Critically, with time slots labeled “vulnerable” and “defended” after the informative

signals are received, the rebels’ optimal strategy is a function of the probability q(x) that a

given time period that is signaled to be vulnerable is indeed vulnerable. The intuition is as

follows. Consider the rebels’ choice of one attack across two time slots with probabilities of

being vulnerable q1 and q2, respectively, with q1 > q2. If there are no attacks already planned

6The probability distribution of a sum of two or more binomial random variables, i.e. sums of independent
Bernoulli trials, with different success probabilities is sometimes called Poisson binomial distribution (Hillion
and Johnson, 2017).
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on during these times, then an attack timed during the first period provides a higher marginal

probability of success (see also Powell (2007b)).

The fact that the vulnerable time slot has a higher probability of success does not mean

that all attacks should be concentrated during times when the target is vulnerable. Suppose

that there are already m attacks planned during the first time period, m ≥ 1, and no attacks

planned on the second time slot. One more attack during the first time slot results in

q1 (1− p)m of marginal probability of success as with probability 1− (1− p)m one of the m

attacks that are already planned succeeds. An attack that occurs during the second time

window contributes q2p. This explains why, given some sufficient capacity, rebels will launch

some attacks during the second, less likely to be vulnerable, period regardless of the initial

distribution of probabilities q1 and q2.

The term min {a, xa(x)} appears in the statement of Proposition 1 because it is possible

that the threshold a(x) is such that xa(x), the desired number of attacks during vulnerable

time slots, does not exceed the capacity a. For example, if n = 5, a = 3, and intelligence

about defensive weaknesses suggests two specific time windows are likely to be vulnerable,

the optimal strategy might call for a(2) = 2, i.e. two attacks should be launched during

each of the two vulnerable time slots. With the capacity of launching only three attacks,

the rebels would have to choose the period for the double attack randomly over the two

vulnerable time windows.

3.3 The Rebel’s Demand for Precise Information

The rebels’ equilibrium strategy described in Proposition 1 depends on the quality of in-

formation θ. A higher precision of information leads to a higher temporal concentration of

attacks: more attacks are launched during time periods that intelligence gathering indicated

as “vulnerable”. For any number of “vulnerable” signals x, the optimal strategy requires to

launch (weakly) more attacks during the vulnerable time windows. This, in turn, leads to a

decrease in the natural measure of randomness of attacks, the entropy
∑n

i=1
ai
a

ln ai
a
, which

is maximized when attacks are distributed uniformly across time intervals.

Proposition 2 For any number of attacks a, the higher is the precision of information that

rebels receive, θ, the higher is the temporal clustering (concentration) of attacks, i.e., the

lower is the expected number of unique periods attacked and the larger is the expected number

of attacks (both successful and total) per time slot attacked.

The critical element of Proposition 2 is that for any number x of time slots that are
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signaled to be vulnerable after the information is collected, the probability q(x) that a

time window marked vulnerable is indeed vulnerable is (weakly) increasing in the precision

of information θ, and thus the threshold a(x) is (weakly) increasing in θ for any x. As

a consequence, more precise information leads to a higher concentration of attacks: more

attacks are launched during a smaller number of time slots. In the extreme case of perfect

information (θ = 1), attacks are uniformly randomized over all n− r vulnerable time slots.

In the opposite extreme, when the signals are completely uninformative (θ = 1
2
), all time

windows are equally likely to be vulnerable. In this case, the optimal strategy for rebels is

to launch a attacks chosen randomly and uniformly across all time slots.

In equilibrium, the optimal choice of rebels depends, in addition to precision of infor-

mation θ, which in turn is a function of the rebels’ resources, on the number of potential

time slots for attacks n, the resources in the disposal of the government r, and the efficiency

of weapons p. Proposition 2 establishes that a lower precision of information, a result of a

fall in revenues, leads to attacks becoming less temporally concentrated. This increase in

entropy as a result of decrease in resources is the central empirical implication of our model

which is tested, using the technique suggested in Abadie (2002), in Sections 4-5. (See Sub-

section 4.4 for the methodology of detecting temporal patterns of combat.) Proposition 3

formally states the comparative statics results with respect to the government’s resources

and efficiency of rebels’ weapons, which we evaluate empirically in Section 6.

Proposition 3 More resources in the government’s disposal (a higher r) and less efficient

weapons, i.e., a lower p, result in a higher temporal concentration of attacks (lower entropy).

Proposition 3 states that an increase in government resources has the same effect as a

fall in rebels’ resources, but the mechanism is slightly different. A higher r, the amount of

protection at the government disposal, decreases the probability of rebels’ success as the ex

ante probability that each time window is protected increases. This has the same effect as

the fall in rebels’ revenues, which results in less information gathering and, therefore, less

temporally concentrated attacks.

4 Empirical Design

In this section, we discuss the setting of our investigation, review our microdata, and intro-

duce our identification strategy.
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4.1 Context

We study the relationship between combat activity and rebel capacity in Afghanistan. We

focus specifically on the well-documented link between opium production and Taliban tax

extraction. In the primary opium producing regions, seeds are planted in late fall and early

winter. The growing season ranges from February through April, with most opium latex

harvested and packaged in May and June. Taliban commanders and veteran fighters return

from Pakistan in June to collect taxes from opium farmers (ushr, typically a flat 10% fee

mandated by the Quran).7 Taxes can be paid in currency, opium blocks, or other goods, such

as motorcycles, offroad vehicles, and weaponry. The Taliban also benefits from protection

fees levied on opium traffickers as they pass through rebel-held territories.8

Taxes are collected by fighters and receipts are distributed to farmers to prevent double

taxation. Fighters pass their collections to district-level commanders (equivalent in scale to

US counties). Taxes are subsequently passed upward to provincial and regional comman-

ders, who keep ledgers of their annual revenue and are subject to audit by the Taliban’s

Central Finance Committee, based out of southwestern Pakistan. Most proceeds remain

with the district commander, for conducting operations in the subsequent fighting season

which typically lasts until September. These funds can be used to purchase weapons and

ammunition, as well as covering the salaries of fighters and rebel informants. The Central

Finance Committee (CFC) retains the authority to demote or relocate field commanders

to less desirable fronts if audit irregularities are found. The remaining revenue is split be-

tween supporting operations conducted in resource-poor districts where local taxes alone are

insufficient for supporting rebel attacks and developing Taliban infrastructure in Pakistan

(including small-scale hospitals for wounded fighters).9

We focus primarily on the period from 2006 to 2014. The industrial organization of the

insurgency, most notably the taxation and command structures oriented around administra-

tive districts, emerged in 2006. These institutions are central to our argument that revenue

influences combat tactics. Our military records track insurgent operations until the end of

7For a detailed account of the industrial organization of the Taliban, see Peters (2009).
8It is worth noting, as highlighted by Mansfield (2016), taxation by the Taliban is not perfectly uniform.

In areas where the Taliban are not sufficiently powerful, the amount collected may be reduced (reflecting a
local-level bargain with tribal leaders). Microlevel data on tax collection does not exist. Given the approach
we detail later, we anticipate that this concern would bias our estimated effects downward. In Table A-6,
we use historical territorial control (from the height of the Taliban) to evaluate this conjecture. Indeed, we
find that our main effect is attenuated downward in places the Taliban could not have taxed fully prior to
the US-led invasion.

9We observe variation in the opium tax base of each district, not receipts from the CFC. This type of
redistribution will bias our point estimates towards zero.

11



2014, when the NATO Operation Enduring Freedom was transitioned to Mission Resolute

Support.

4.2 Conflict Microdata

Our investigation exploits newly declassified military records which catalogue combat engage-

ments and counterinsurgent operations during Operation Enduring Freedom in Afghanistan.

These data were maintained by and retrieved through proper declassification channels from

the U.S. Department of Defense. The data platform was populated using highly detailed

combat reports logged by NATO-affiliated troops as well as host nation forces (Afghan mili-

tary and police forces). Data of this type differ substantially in coverage and precision from

media-based collection efforts (Weidmann, 2016). As Weidmann (2016) points out, these

tactical reports represent the most complete record of the war in Afghanistan. Additional

details on data collection are discussed in Shaver and Wright (2017).10

The detailed nature of our conflict microdata allows us to track insurgent activity by

the hour. Although this data tracks dozens of types of violence, the majority of enemy

action events are characterized as indirect fire, direct fire, and IED explosions. Indirect

fire consists of mortars and other weapons that can be deployed without close contact with

military forces. Direct fire attacks are primarily line-of-sight, close combat events. IEDs

consist of explosives that have been emplaced and are detonated through a variety of trigger

mechanisms (pressure plate, cable-to-battery, radio signal, laser beam, etc.). Subsets of these

data are also studied in Callen et al. (2014), Beath et al. (2013), and Condra et al. (2018),

and are highly comparable to tactical data collected in Iraq (Berman et al., 2011).11

Our military records include information about counterinsurgent operations, including

find and clear missions that neutralized emplaced IEDs, discoveries of weapon caches, such

as small arms, ammunition, and bomb making materials, and provision of close air support,

10These data are similar to the War Logs released by WikiLeaks in 2010. The most important differences
are that the data we study here are more complete (2009 versus 2014) and have been formally declassified.

11It is important to note that insurgents have differential control over the exact timing of each of these
types of combat. Indirect fire events can be initiated at any time against stationary targets. For example,
a large number of mortar fire attacks were launched from hillsides and targeted military outposts. As such,
insurgents maintained a high level of control over when these events occurred. Direct fire attacks are typically
frontal assaults on convoys or forward deployed troops conducting combing operations in remote villages.
Although insurgents decide if to attack, conditional on having the opportunity, the timing of these attacks is
partially determined by the movement of troops, the timing of which may be determined by a non-stochastic
process. Similarly, roadside bombs may be planted hours or days before they are triggered. Some of these
bombs may also be detonated by unintended targets, which further reduces insurgent control over the timing
of these attacks. For these reasons, we focus our main analysis exclusively on the timing of indirect fire
attacks. We discuss this in more detail in the Online Appendix.
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which was used primarily to harden mobile targets and extract coalition forces that were

pinned down at a fixed location by insurgents. We supplement this information with mea-

sures of insurgent capture and detention, counterinsurgent surveillance operations, and safe

house raids yielding actionable intelligence about rebel operations. This information enables

to address operational factors that may confound the relationship we are trying to estimate.

In particular, it might be the case that counterinsurgents strategically assign additional

fighting capacity to districts with a substantial rebel presence and where opium production

is high. Shifts in government resources, like the ability to identify and neutralize weapon

caches or to use aerial bombardment to assist troops engaged by insurgents, might also in-

fluence the temporal patterns of insurgent attacks. These operations also lead to battlefield

losses for insurgents (in the form of fighter casualties), which we utilize to study the impact

of labor scarcity on combat tactics.

Opium production may be influenced by combat operations and more direct attempts by

insurgents to coerce the local population (Lind et al., 2014). In particular, insurgents may

use violent and non-violent tactics to intimidate civilians, such as killings of government col-

laborators and the posting of ‘night letters’ and other non-lethal shows of force. Fortunately,

our military records include information about these tactics as well, enabling us to address

potential concerns about residual endogeneity in estimated levels of opium production.

Another unique feature of our conflict data is information on rebel surveillance operations,

military installation breaches, and insider attacks. Enemy surveillance operations are logged

whenever security forces become aware of attempts by insurgents to track troop and vehicle

movement and day-to-day activities on military bases. This kind of insurgent spy activity

can be, and likely is, used to identify troop and infrastructure vulnerabilities. We illustrate

the location of these spy operations in Figure 1. In addition to surveying force activity

from outside of military compounds, insurgents can infiltrate these installations and monitor

activity from within. These security breaches might also result in direct confrontations

between insurgent and counterinsurgent forces. Records of insider attacks also reveal Taliban

attempts to ‘turn’ Afghan security forces, and launch deadly attacks from within operational

units. We use these unique pieces of information to more explicitly test the observable

implications of our model regarding intelligence gathering and the quality (precision) of

information about government vulnerabilities.
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Figure 1: Military records indicate the location of rebel surveillance operations conducted
in Afghanistan (2006).

Notes: Data on insurgent spy operations drawn from SIGACTS military records. Cross hatch pattern
indicates insurgents conducted at least one detected surveillance operations during 2006, the first year of our
sample. District boundaries are drawn from the ESOC Afghanistan map (398 districts).

4.3 Opium Cultivation and Prices

We supplement our military records with data on opium production and prices. Opium

production estimates are derived from ground-validated remote sensing techniques, which

use high resolution satellite imagery to track changes in vegetation during the spring har-

vest. UNODC-Afghanistan randomly spatially samples potential agricultural zones within

provinces and acquires pre-harvest and post-harvest imagery (see Figure 2, panel (a)). These

images are then examined for changes in vegetative signatures consistent with the volatile

wetness of opium plants after lancing. From this sampling technique, officers estimate the

spatial risk of opium production. This enables them to calculate granular estimates of opium

production (see Figure 2, panel (b)). These gridded estimates are then compiled as the an-

nual amount of opium production (in hectares) for each district. We correct for changes in

the administrative boundaries of districts over time using the Empirical Studies of Conflict
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(ESOC) administrative shapefile. To translate production into yields, we compile additional

details about annual yield (kilograms per hectare) from UNODC-Afghanistan annual reports.

These figures are available at the national level as well as by region.

Opium price data is compiled at national and regional levels. These prices are tracked

monthly at various locations across the country via a farmer and market spot price survey

system. In Figure 3, panel (a), we introduce the monthly time series for the two price-

making regions, Kandahar and Nangahar. Our main specification utilizes the simple average

between these prices in June, when taxes are collected (vertical lines added for clarity). In

supplemental results, we study the regional price time series in Figure 3, panel (b). We rely

on UNODC-Afghanistan documentation to assign districts to price zones. We extract exact

prices using WebPlotDigitzer software.

Figure 2: UNODC Methodology for Estimating Annual District Drug Production.

(a) Sampling Satellite Imagery (b) Impute Production from Imagery/Field Obs.

Notes: Methodological figures and details drawn from the 2016 UNODC-Afghanistan Drug Report. Panel
(a) demonstrates the sampling design used when acquiring high resolution satellite imagery (location: Kan-
dahar). Panel (b) illustrates the subsequent production estimation, which combines low and high resolution
imagery (location: Nangahar).

4.4 Detecting Temporal Patterns of Combat

We now introduce a method for detecting temporal clustering of attack patterns. We focus

on timing rather than spatial allocation of attacks due to the tractability of estimation.

Most importantly, while we know time windows when attacks do not occur, it is much more

difficult to identify counterfactual targets that were not attacked since there exists no publicly
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Figure 3: Time series data on opium prices collected at national (a) and regional (b) levels.

(a) National price time series (b) Regional prices time series

Notes: Figures on national and regional price time series drawn from the 2016 UNODC-Afghanistan Drug
Report. Underlying data compiled from farmer and market spot price surveys conducted throughout the
year. In Panel (a), the simple average is calculated (Nangahar, Kandahar). In Panel (b), we assign districts
to regions according the UNODC documentation. Prices were precisely extracted using WebPlotDigitzer.

available comprehensive data on the spatial allocation of military assets across time (e.g.,

bases, patrol movement, unmanned infrastructure). Conceptualizing these counterfactuals

is central to our measurement strategy. Our approach to quantifying patterns of combat

timing employs randomization inference and the bootstrap Kolmogorov-Smirnov method

developed by Abadie (2002). The central intuition of this approach is to use randomization

inference to better understand the degree of temporal clustering we observe in insurgent

combat operations (by hour). The method is executed in several steps.

1. Fit a local polynomial regression to the observed distribution of violence by hour. We

specify a conservative bandwidth of 1. This empirical distribution of fitted values is

stored.12

2. Identify the sequence of district-hours during which indirect fire engagements occur.

For each district-hour, we know the sum of the number of attacks.

3. Randomly shuffle the sequence above. This is equivalent to a randomization or per-

mutation test.

12Some conflict events lack a time stamp (∼3%). Because we cannot assign these events an hour, they are
excluded from the calculation of the empirical distribution.
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4. Fit a local polynomial regression to the randomly shuffled distribution of violence by

hour. The simulated distribution of fitted values is stored.

5. Execute the bootstrap Kolmogorov-Smirnov test. This test is composed of four ele-

ments.

(a) Compute the TKSdfi for the fitted values of the empirical and simulated distribu-

tions, where:

TKSdfi =

(
n1n0

n

) 1
2

supy∈R
∣∣F1,n1(y)− F0,n1(y)

∣∣.
(b) Resample observations with replacement from observed and simulated distribu-

tions. Split the resampled set into two distributions and calculate TKSdfi,b. Store

TKSdfi,b.

(c) Repeat prior two steps 1,000 times.

(d) Calculate and store the likelihood parameter of the tests as
∑1000

b=1

1{TKS
dfi,b>T

KS
dfi }

1,000
,

where the numerator is an indicator function.

6. Repeat steps 2 through 5 10,000 times. Evaluate the central tendency (mean) of the

likelihood parameters.

7. Replace zero values with the minimum observed non-zero rank value and calculate the

log.

To clarify, we identify the hour of each attack within a given district-year (fighting season).

We then reshuffle the hour vector and compare the empirical distribution to the randomly

reshuffled vector. This process is repeated many times per district-year. The result of

the technique is a single likelihood parameter, which we call a p-value, for each unit of

observation. We estimate these parameters for district-years with a minimum of five conflict

events.13 Higher p-values indicate that the distribution of rebel attacks by hour cannot be

distinguished from randomness. Lower p-values reveal attack patterns that are more easily

differentiated from randomness; i.e., they are more predictable.

It is important to note here that this parameter does not clarify what exact time windows

experience differential attack intensity. One benefit of our approach is that we do not need to

13We set the lower threshold at five events to ensure convergence of the simulations. A conflict vector that
is too short (i.e., fewer than five) does not permit sufficient randomization when the hour vector is reshuffled.
Our results are highly consistent if we raise this threshold upward.
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make additional assumptions about potential temporal weaknesses of military installations

across seasons in the same district or across districts in the same season (e.g., dawn or dusk

hours). Instead, the parameter flexibly captures a uniform measure of temporal clustering

even when the underlying distributions differ across locations or periods.

Estimation of our likelihood parameters using this technique requires tens of billions

of simulations, so we use several supercomputers. In Figure 4, we plot the calculated p-

value (log) distribution for indirect fire attacks. Most district-year p-values above -10. This

distribution is characterized by a long left-side tail. This suggests that specific district-

fighting seasons exhibit very clear evidence of temporal clustering (i.e., non-randomness).

Figure 4: Distribution of p-values from randomization test of combat in Afghanistan
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4.5 Empirical Strategy

We study the relationship between rebel capacity and randomized combat by examining

whether the within-day distribution of violence for each district’s fighting season is associated

with rent extraction from opium. If the results follow our expectations, rebel capacity and

the likelihood parameter of our simulation test above should be negatively correlated.

To test the relationship between randomization of attack timing and insurgent capacity,

we estimate the following ordinary least squares regression:

log(pvald,y) = α + β1log(productiond,y + 1)× log(pricey) + Fy + ΛXV
d,y + ε (1)

18



Where pvald,y is the p-value for a given district, d, and fighting season, y (year). Fy cap-

tures fighting season fixed effects (equivalent of year in the study sample) and XV
d,y captures

a vector of additional covariates, which we incorporate to address potential concerns about

omitted variables. These covariates include the intensive margin of insurgent operations

during the fighting, harvest, and planting seasons as well as supplemental measures of state

capacity and insurgent intimidation and alternative fixed effects specifications. We expect

the first coefficient β1 to be negative.

5 Results

We begin by visualizing the data. In Figure 5, we plot the p-value distributions for indirect

fire attacks against the corresponding opium revenue of each district-year (fighting season).

Confidence regions (95%) are shaded in blue. Notice the consistently negative relationship

between revenue and randomness of combat. This non-parametric correlation is consistent

with our intuition that high capacity rebels produce patterns of violence that are less random

and exhibit temporal clustering.

Figure 5: Bivariate relationship between opium revenue and p-value of randomization test
of combat (indirect fire attacks) in Afghanistan
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5.1 Baseline Results

We next turn to our regression-based evidence. In Table 1, we estimate Equation 1. Column

1 is a sparse model that demeans our bivariate correlation by fighting season. We find that

a strong negative relationship between opium revenue and combat randomness, confirming

our visual evidence. In Columns 2 through 4 we sequentially add controls for the intensive

margin of fighting during the fighting, harvest, and planting seasons respectively. We do this

to address potential concerns that our bivariate result is driven by a strong relationship be-

tween opium revenue and the intensity of violence during the fighting season (which covaries

negatively with our randomness parameter). Wright (2016) finds evidence of this type of

positive level shift in violence in Colombia.14 It is also possible that there is a mechanical

correlation between the intensity of combat activity and the test statistic if, for example,

it is easier to detect clustering in the presence of a large number of events. Accounting for

these channels leaves our results are largely unaffected, although our point estimate becomes

marginally more precise in Column 2. In Column 3, we attempt to rule out concerns that our

estimates are substantially biased by the endogenous relationship between opium production

and insurgent violence during the harvest season, which might influence subsequent conflict

during the later fighting months (Lind et al., 2014). It might also be the case that farmers are

coerced into planting opium through violence exposure. We account for this potential source

of bias by including a planting season violence trend in Column 4. This baseline evidence

suggests a precise, consistent link between rebel capacity and randomization of indirect fire

attacks.

Robustness Checks We conduct several other baseline robustness checks in Table 2. In

Column 2, we introduce a province × fighting season fixed effect, which soaks up any residual

mechanism design effects due the spatial sampling procedure utilized by the UNODC to es-

timate local opium production. This fixed effect also absorbs troop rotation schedules which

coincide with the province-year, which includes force movement into and out of regional com-

mand posts. Although the magnitude and precision of our main effect declines marginally,

the negative relationship persists even in this very demanding specification. Another poten-

tial concern one might have is that the strategy we use to account for the intensive margin of

14Theoretically, it is also possible that revenue shocks via the opium channel increase opportunity costs,
which would cause a level reduction in violence. Gehring et al. (2019) present evidence consistent with
this pattern, though the authors focus on violence in the subsequent calendar year rather than the fighting
season that immediately follows post-harvest tax collection. We repeat this analysis, focusing on the fighting
season, and find a large positive reduced form (Table A-7) and second stage result (Table A-8).
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Table 1: Impact of rebel capacity on within-day randomization of indirect fire attacks

(1) (2) (3) (4)
Opium Revenue -0.0581∗∗∗ -0.0588∗∗∗ -0.0549∗∗∗ -0.0549∗∗∗

(0.0137) (0.0135) (0.0125) (0.0125)

Model Parameters
Fighting Season Fixed Effect Yes Yes Yes Yes
Fighting Season Activity (levels) No Yes Yes Yes
Growing Season Activity (levels) No No Yes Yes
Planting Season Activity (levels) No No No Yes
Model Statistics
No. of Observations 600 600 600 600
No. of Clusters 154 154 154 154
R2 0.154 0.171 0.187 0.187

Notes: Outcome of interest is the (log) p-value of the randomness test. The quantity
of interest is opium revenue for a given district-year. All regressions include fighting
season fixed effects. Column 2-4 add controls for the intensive margin of fighting
during the fighting, harvest, and planting seasons respectively. Heteroskedasticity
robust standard errors clustered by district are reported in parentheses. Stars indi-
cate *** p < 0.01, ** p < 0.05, * p < 0.1.

violence during the fighting season (i.e., partialling out the violence in levels) is incomplete.

Another solution is to inversely weight our model along this margin. This implies that our

corresponding estimate is less vulnerable to vertical (conflict) outliers. We present this result

in Column 3, which is highly consistent with our baseline result.

In our baseline specification, we rely on a national time series in prices and year-by-year

variation in opium yields (kilograms per hectare). Yet the interaction of weather conditions

and soil suitability may lead to heterogeneous crop yields by region and year. Regional prices

might also differ substantially. These two concerns represent classical error-in-variables,

which we can correct with regional price and yield data compiled from UNODC records.

In Column 4, we replicate our baseline specification in Column 1 using opium revenues

calculated using regional yield rates and regional price data. It is also the case that some

provinces have later harvests which occur after fighting has begun in other parts of the

country. In Column 5, we use crop calendar maps produced by the UNODC to classify late

harvest districts and exclude them from our sample in Column 1. Again, our results are

highly consistent in both model specifications. In Column 6, we add a district fixed effect,

to absorb in time-invariant district-specific unobservable characteristics that may influence

opium production and combat tactics. In the main specification, we omit unit fixed effects

because our main analysis is an unbalanced panel. Because of this structure our estimating

sample is slightly reduced because we exclude singletons from the analysis. The main effect
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remains substantively large and precise. In Figure 6, we address potential concerns about

spatial correlation in opium production. To do this, we introduce two spatial correlation-

adjusted randomization inference tests, where randomization is stratified by province (A)

and district (B). In each case, values are randomly drawn within each spatial strata across

years and strata fixed effects are added to the model specification. Again, our benchmark

effect is in the tail of each zero-centered distribution, suggesting that our main effects are

unlikely to have occurred by random chance even in the presence of spatial correlation.

Table 2: Impact of rebel capacity on within-day randomization of indirect fire attacks,
robustness checks

(1) (2) (3) (4) (5) (6)
Opium Revenue -0.0549∗∗∗ -0.0450∗∗ -0.0531∗∗∗ -0.0543∗∗∗ -0.0381∗∗

(0.0125) (0.0220) (0.0116) (0.0126) (0.0166)
Opium Revenue (Regional) -0.0555∗∗∗

(0.0128)

Model Parameters
Fighting Season Fixed Effect Yes Yes Yes Yes Yes Yes
Fighting Season Activity (levels) Yes Yes Yes Yes Yes Yes
Growing Season Activity (levels) Yes Yes Yes Yes Yes Yes
Planting Season Activity (levels) Yes Yes Yes Yes Yes Yes
Additional Parameters
Province × Fighting Season FE No Yes No No No No
Weighted Least Squares No No Yes No No No
Regional Yield Adjust. No No No Yes No No
Early Harvest Only No No No No Yes No
District Fixed Effect No No No No No Yes
Model Statistics
No. of Observations 600 600 600 600 588 563
No. of Clusters 154 154 154 154 150 117
R2 0.187 0.379 0.188 0.184 0.184 0.503

Notes: Outcome of interest is the (log) p-value of the randomness test. The quantity of interest is opium
revenue for a given district-year. All regressions include fighting season fixed effects as well as controls for
the intensive margin of fighting during the fighting, harvest, and planting seasons respectively. Additional
parameters are noted in the table footer. Heteroskedasticity robust standard errors clustered by district are
reported in parentheses. Stars indicate *** p < 0.01, ** p < 0.05, * p < 0.1.

Additional Potential Threats to Identification In the online appendix, we address

several other potential threats to identification. First, in Tables A-2 and A-3, we address

potential concerns that the accumulation of rebel capacity which is observable to counterin-

surgents may induce a strategic response during the subsequent fighting season. Heterogene-

ity in counterinsurgent investments correlated with our measure of revenue may complicate

estimation. In principle, these factors may be bad controls due to their simultaneous or post
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Figure 6: Randomization Inference to Evaluate Robustness of Benchmark Effect Adjusting
for Spatial Correlation
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(a) Full Panel Reshuffling, Province Strata
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(b) Full Panel Reshuffling, District Strata

Notes: We randomly reshuffle the opium revenue vector in our data using two approaches (× 1000). We
utilize observed opium revenue for the full panel of district-years and vary the spatial strata used for spatially
constrained randomization ((a) province, (b) district). The model specification is equivalent to Table 1,
Column 4, with strata fixed effects.

treatment allocation. Nonetheless, we confirm that our results remain robust if we account

for six measures of counterinsurgent capacity: close air support missions, cache discoveries,

IED neutralizations, detention of insurgent forces, counterinsurgent surveillance operations,

and safe house raids yielding actionable intelligence assets (salary and recruitment logs, hard

drives, forensic materials, etc.).15 Second, opium production might also be influenced by co-

ercive tactics used by the Taliban to intimidate civilians. This is problematic for estimation

if coercion and combat tactics are correlated. In typical settings, these coercive tactics are

unobserved or unrecorded. In our context, the military records we study track attempts to

intimidate the civilian population, using methods like ‘night letters’ and shows of non-lethal

force as well as deliberate killings of government collaborators (like informants and secu-

rity force recruits). We present these results in Table A-4, which confirm the robustness of

our main results.16 Finally, to evaluate the cultivation component of revenue, we add one

15Another potentially relevant type of state capacity is opium eradication. Although government in-
vestments in eradication vary across years, UNODC reports suggest that verified opium eradication reduces
national output by roughly 1 to 3% annually. Due to the small scale of these operations, we do not anticipate
eradication meaningfully impacts Taliban revenue or tactics.

16In the online appendix, we present results from a Oster (2017) coefficient stability test, using the addi-
tional observables introduced in Tables A-2 through A-4. These results are introduced in Table A-5. Using
the empirically-grounded specification suggested in Oster (2017), we set the δ parameter to 1 and Rmax equal
to 1.3× the R2 observed in the fully controlled specification. Notice that the test produces two solutions,
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hectare to non-producing districts before we evaluate the logarithm. It is possible that our

core results are sensitive to this choice. Relatedly, districts that do not produce opium (zero

revenue) may have an outsize influence on our estimated effects and statistical precision. We

rule out these concerns in Tables A-9 and A-10, where we first exclude non-producing dis-

tricts from our estimating sample and, conditional on excluding non-producers, replicate the

Table 1 without adding a hectare.17 The estimated effect of opium revenue once we exclude

non-producers and/or adjust the measure of cultivation is larger than the main estimate

and remains statistically precise. These results suggest our core estimates are unlikely to be

driven by measurement of revenue or inclusion of district-years where no opium production

takes place.

5.2 Instrumental Variables Approach

We next introduce an instrumental variables approach. We begin by estimating opium suit-

ability using a combination of degree-day, precipitation-day, and soil quality characteristics.

This approach treats production across the full district-year panel of available data as an

outcome of interest and uses these agronomic characteristics to produce fitted values of ex-

pected productivity given observed district-year input availability. We then standardize these

predictions based on exogenous agronomic conditions and weight these values by aggregate

production in the prior year, which is correlated with present year prices.

5.2.1 Agronomic Suitability for Opium Production

We leverage data high resolution data on temperature, rainfall, and soil quality to construct

a measure of opium suitability.

We gather daily, district-level temperature (Kelvin) and precipitation (mm) measures

from reanalysis data. Our climatic data are drawn from the National Centers for Envi-

ronmental Prediction (NCEP) and the Department of Energy, which prepared the baseline

climate reanalysis by using state-of-the-art assimilation techniques. These data are derived

from reanalysis (climate modeling) of underlying meteorological data. These techniques and

the data generation processes are fully described in Saha et al. (2010), to which we direct

interested readers. We then construct parameters capturing the number of days within each

growing season these data fall within a particular set of binned ranges. Using this tech-

both of which are below zero, consistent with our main specification.
17Results in these two tables are highly consistent (though not exactly the same) because the constant

term in Table A-9 absorbs nearly all of the level shift before the logarithm is evaluated.
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nique enables us to flexibly account for non-linear relationships between weather conditions

and agricultural productivity. We supplement this data with information from Food and

Agriculture Organization’s Harmonized World Soil Database, which we extract using the

district-level cross section. We include nutrient availability, nutrient retention, rooting con-

ditions, oxygen availability, excess soil salts, toxicity, and packedness and workability (which

impacts the ability to manage fields). For each district, we calculate the percentage of land

mass where these soil features present no or slight limitations to productivity (Class 1 under

the FAO guidelines). Because various combinations of weather and soil conditions may pro-

duce high and low productivity zones in a complex system, we interact these measures with

our degree-day and precipitation-day measures. We merge these data with our panel data

on opium production and produce a standardized fitted value of opium productivity given

these exogenous parameters. We use the least squares estimation equation below.

log(productiond,y + 1) = α +
7∑
i=1

(ϑiPrecip−Dayd,y) +
7∑
i=1

(ζiPrecip−Day2
d,y)

+
10∑
i=1

(ηiTemp−Dayd,y) +
10∑
i=1

(ρiTemp−Day2
d,y) +

7∑
i=1

(µiSoilQuald)

+ τij

7∑
i=1

(Precipd,y)×
7∑
j=1

(SoilQuald) + υij

7∑
i=1

(Precip2
d,y)×

7∑
j=1

(SoilQuald)

+ φij

10∑
i=1

(Temp−Dayd,y)×
7∑
j=1

(SoilQuald) + ψij

10∑
i=1

(Temp−Day2
d,y)×

7∑
j=1

(SoilQuald)

+ γXy + εd
(2)

Where log(productiond,y + 1) is the production (log) for a given district, d, and grow-

ing season, y (year). Xy captures growing season fixed effects. Precip − Dayd,y and

Temp − Dayd,y capture the effect of our precipitation-day and degree-day (temperature-

day) parameters. See Figure A-1 for the binned ranges used in the analysis. We also include

the square of this counts. SoilQuald captures the soil quality features noted above. We then

fully interact these base terms. From this regression, we produce ̂log(productiond,y + 1),

which is our unstandardized fitted value. Denote this value as Λd,y. We standardize this

value using the following expression:

suitabilityd,y =
Λd,y − Λ̄d,y

var(Λy)−1
(3)

suitabilityd,y is demeaned and standardized with respect to the standard deviation of
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the fitted values. This approach is most similar to Mej́ıa and Restrepo (2014), who use

land features and soil characteristics to predict coca production in Colombia. The primary

difference between our two methods is the use of high frequency climatic inputs as well as

the use of interactions to capture heterogeneous climatic effects via soil quality conditions.

In supplemental results, we use machine learning for vector reduction, in line with Rozenas

and Zhukov (Forthcoming). National price variation is not driven by any single district,

which means that all districts are effectively price-takers. Although not strictly necessary

in our case for identification, UNODC reports suggest the primary driver of current prices

is aggregate (national-level) production in the prior year. Naturally, increased aggregate

production from the prior year drives down national prices in the subsequent year. This

gives us an opportunity to instrument for the price component of revenue (once we invert

the value), which we implement below.18

5.2.2 Plausibility of Identifying Assumptions

We anticipate the exclusion restriction is plausibly satisfied for several reasons. First, we

use growing season agronomic conditions, which are observed months ahead of the beginning

of the fighting season. Given our non-parametric specification, which uses degree-day and

precipitation-day measures and soil suitability, it would be difficult to articulate a clear

pathway through which our measures of weather conditions directly impact combat timing.

Second, even if such a violation was econometrically plausible and induced non-trivial bias,

we expect this bias would be largely absorbed by accounting for variation in the levels

of combat activity during the fighting season, which is one of our benchmark parameters.

For a violation of the exclusion restriction to significantly bias our results, our growing

season agronomic inputs would have to have a persistent effect, that passes through our

non-parametric specification and subsequent dimensionality reduction, and is not absorbed

by our included covariates. We believe this is unlikely to be a substantial source of bias.

One plausible channel through which the independence assumption might be violated is

if, conditional on observing fluctuations in agronomic suitability, government forces strate-

gically reallocate aid projects. If these aid projects effectively reduce opium production (via

‘alternative livelihoods’ programming) and enhance local employment, our second stage ef-

fects are biased towards zero due to increasing reservation wages. It is also possible, however,

that rebels are able to capture some of the rents associated with aid projects. This could bias

our estimates upward, since the instrument potentially captures variation in opium revenue

18The base term of aggregate production is absorbed in our fixed effects.
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correlated with both revenue channels. We address these concerns in the Online Appendix

using declassified data from the Commander’s Emergency Response Program (CERP). In

Table A-11, we replicate the benchmark model and include measures of aid intensity overall

and with respect to agricultural and irrigation projects only (dollars of aid delivered during

the growing season, ln). The main effects are slightly larger when incorporating overall aid

and slightly attenuated when limiting our focus to agricultural aid, neither of which are

statistically different from our benchmark result.

In Table A-12, we find strong evidence of a positive correlation between our suitability

index and annual revenue from the opium trade. Because we are accounting for potential

heteroskedasticity by district, we produce Kleibergen-Paap F statistic for our excluded in-

strument, which is well above 10. This suggests our instrument is relevant and strong. In

Table A-15, we investigate whether the monotonicity assumption is plausible with respect

to irrigation. This channel is relevant since our instrument captures exogenous variation

in suitability. How revenue responds (via production) to suitability may be a function of

technologies used to enhance productivity under otherwise poor agronomic conditions. For

example, it is possible that districts with varying levels of irrigation access (via canals and

other technology) will comply with the instrument at different rates. To assess monotonicity,

we gather data collected by FAO prior to the US invasion documenting irrigated sites. We

use this data to classify districts along the 75, 90, and 95 percentiles for the main estimating

sample and full panel. We find no clear evidence of weakened compliance with the instrument

via the irrigation mechanism.19

5.2.3 IV Results

We next turn to our main IV results. We report our second stage estimates in Table 3.

These results suggest the effect of revenue on temporal clustering of combat operations

is substantially larger than our least squares estimates. One potential explanation for the

increasing magnitude of the effect relative to the baseline OLS specification is the presence of

cross-cutting dynamics with respect to counterinsurgent operations that we do not observe.

If counterinsurgents observe variation in opium production (or some endogenous subset),

they may strategically reallocate their forces or adjust their combat strategies. If these

changes in government activity also make it more difficult to acquire intelligence or mobilize

fighters, the per-unit change in rebel tactics due to opium revenue will be lower (i.e., biased

19The corresponding second stage estimates are also statistically indistinguishable across these model
specifications (relative the benchmark).
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towards zero). While we observe some types of military operations, others that are perhaps

more relevant to rebel attack timing are unobserved (e.g., secret or top secret missions to

eliminate leaders). Our instrument may capture the subset of variation in opium production

that counterinsurgents find most difficult to anticipate, since it is unrelated to more readily

available information about rebel activity. Stated differently, our instrument perhaps helps

us identify opium production that is least predictable from a tactical military perspective.

Exploiting variation in revenue that is exogenous to government countermeasures therefore

increases the magnitude of the estimated effect of revenue on tactics.20

Table 3: Impact of rebel capacity on within-day randomization of indirect fire attacks,
instrumental variables approach (second stage)

(1) (2) (3) (4)
Opium Revenue -0.0793∗∗∗ -0.0787∗∗∗ -0.0741∗∗∗ -0.0741∗∗∗

(0.0271) (0.0268) (0.0247) (0.0247)

Model Parameters
Fighting Season Fixed Effect Yes Yes Yes Yes
Fighting Season Activity (levels) No Yes Yes Yes
Growing Season Activity (levels) No No Yes Yes
Planting Season Activity (levels) No No No Yes
Model Statistics
No. of Observations 600 600 600 600
No. of Clusters 154 154 154 154
R2 0.136 0.155 0.173 0.173
IV Specification
IV Type Benchmark Benchmark Benchmark Benchmark
Kleibergen-Paap F Statistic 190.9 188.4 188.9 187.4

Notes: Outcome of interest is the (log) p-value of the randomness test. The quantity of
interest is opium revenue for a given district-year instrumented using an opium suitability
index interacted with the prior year’s national-level production (inverted). All regressions
include fighting season fixed effects as well as controls for the intensive margin of fighting
during the fighting, harvest, and planting seasons respectively. Additional parameters are
noted in the table footer. Heteroskedasticity robust standard errors clustered by district
are reported in parentheses. Stars indicate *** p < 0.01, ** p < 0.05, * p < 0.1.

We next address three potential concerns about our IV approach. First, it is possible

that our estimation of opium suitability is overly saturated by a large number of agronomic

inputs. We do not anticipate that this represents an inferential concern. We allow for a

large number of input parameters because it enables our model of opium productivity to

be flexibly non-linear. This approach is common precisely because it limits the number of

20Naturally, we do not have data on unobserved missions, which could be used to further evaluate this
potential mechanism for the shift in our estimated coefficients.
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functional form assumptions needed when predicting output at a granular level. This is also

ideal since we lack a well-developed agricultural model of poppy plants that is specific to

the context we study. That said, one alternative to our baseline approach is to use LASSO

estimation to reduce the number of input parameters in our model. By design, this limits

against oversaturation of the suitability model by eliminating a large number of potentially

irrelevant agronomic inputs. We reproduce our second stage results using LASSO-based

instrument in Table 4. Our F statistics suggest the IV remains strong. Compared with our

benchmark IV results, the main effect is slightly attenuated, though the two point estimates

are statistically indistinguishable.

Table 4: Impact of rebel capacity on within-day randomization of indirect fire attacks,
instrumental variables approach (second stage) using LASSO selection in suitability index
estimation

(1) (2) (3) (4)
Opium Revenue -0.0759∗∗∗ -0.0757∗∗∗ -0.0701∗∗∗ -0.0701∗∗∗

(0.0270) (0.0266) (0.0248) (0.0248)

Model Parameters
Fighting Season Fixed Effect Yes Yes Yes Yes
Fighting Season Activity (levels) No Yes Yes Yes
Growing Season Activity (levels) No No Yes Yes
Planting Season Activity (levels) No No No Yes
Model Statistics
No. of Observations 600 600 600 600
No. of Clusters 154 154 154 154
R2 0.142 0.160 0.178 0.178
IV Specification
IV Type Lasso Lasso Lasso Lasso
Kleibergen-Paap F Statistic 114.7 113.2 117.9 118.2

Notes: Outcome of interest is the (log) p-value of the randomness test. The quan-
tity of interest is opium revenue for a given district-year instrumented using an
opium suitability index interacted with the prior year’s national-level production
(inverted). All regressions include fighting season fixed effects as well as controls for
the intensive margin of fighting during the fighting, harvest, and planting seasons
respectively. Additional parameters are noted in the table footer. Heteroskedastic-
ity robust standard errors clustered by district are reported in parentheses. Stars
indicate *** p < 0.01, ** p < 0.05, * p < 0.1.

A second potential concern is that our suitability model uses all available data on opium

production. Put differently, we have not withheld any elements of the raw data when con-

structing our index. Without holding some of our sample back, it is difficult to assess whether

some subset of the full panel is driving our estimated productivity. To address this concern,

we repeatedly estimate suitability (100 times), randomly holding back a subset (75%) of the
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full panel. We then reproduce our second stage estimates. These results are visualized in

Figure 7. Notice that the second stage coefficient of our benchmark IV approach, noted as a

vertical line, is the median estimate of the full distribution of coefficients from the resampling

technique. Indeed, all second stage estimates based on sufficiently strong first stages (where

the F statistic is at least 10) are within .025 of the main coefficient. This suggests that our

main result is representative of the range of results that could be estimated given a large

number of arbitrary samples used to produce our suitability measure.

Figure 7: Distribution of second stage IV estimates using random resampling technique to
produce alternate suitability instruments. Main effect noted with vertical line.
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Yet a third possibility is that we could simply use the raw inputs for our suitability index

to instrument for opium revenue. This would effectively bypass the intermediate step where

we use raw productivity and agronomic inputs to estimate the district-season production

frontier (opium suitability). The central motivation for our main specification, which uses

a single estimate of opium suitability as an instrument for revenue, is to avoid the use of

many, potentially weak instruments. Alternatively, we could limit our first stage to the

baseline degree-day and precipitation-day agronomic inputs as instruments, and reestimate

our second stage results. We do this in Table 5. This approach allows us to address potential

concerns about misspecified standard errors in the first stage of the benchmark model, which

uses an estimated quantity as one component of the instrument,21 and enables us to explore

the plausibility of the estimated effects of agronomic conditions on opium production (via

revenue). In Table 5, notice that our point estimates, while slightly attenuated relative

21We thank Yuri Zhukov for suggesting this clarification.
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our benchmark IV specification, are statistically indistinguishable from the baseline results.

The relevant F statistics are above 40, suggesting that our first stage is sufficiently strong

to estimate meaningful second stage effects. In the Online Appendix, we report the first

stage effects of agronomic inputs on opium revenue. These results (see Figure A-1 below)

are highly consistent with qualitative evidence from the UNODC, which suggests opium in

Afghanistan grows optimally in the presence of water access and warm conditions. Freezing

conditions during the growing season, associated with ground frost and snow cover, also

negatively impact productivity (see coefficient estimated for degree-days below 275 Kelvin

(equivalent to approximately 35 degrees Fahrenheit or 1 degree Celsius).22

Table 5: Impact of rebel capacity on within-day randomization of indirect fire attacks, instru-
mental variables approach (second stage) using agronomic inputs as instrumental variables

(1) (2) (3) (4)
Opium Revenue -0.0681∗∗∗ -0.0679∗∗∗ -0.0617∗∗∗ -0.0617∗∗∗

(0.0203) (0.0197) (0.0188) (0.0188)

Model Parameters
Fighting Season Fixed Effect Yes Yes Yes Yes
Fighting Season Activity (levels) No Yes Yes Yes
Growing Season Activity (levels) No No Yes Yes
Planting Season Activity (levels) No No No Yes
Model Statistics
No. of Observations 600 600 600 600
No. of Clusters 154 154 154 154
R2 0.150 0.168 0.185 0.185
IV Specification
IV Type Agronomic Agronomic Agronomic Agronomic
Kleibergen-Paap F Statistic 44.56 42.48 44.48 44.43

Notes: Outcome of interest is the (log) p-value of the randomness test. The quantity
of interest is opium revenue for a given district-year instrumented using degree-day
(temperature-day) and precipitation-day instruments. All regressions include fighting
season fixed effects as well as controls for the intensive margin of fighting during the
fighting, harvest, and planting seasons respectively. Additional parameters are noted
in the table footer. Heteroskedasticity robust standard errors clustered by district are
reported in parentheses. Stars indicate *** p < 0.01, ** p < 0.05, * p < 0.1.

By leveraging ‘as if’ random variation in high frequency, microlevel opium suitability,

the battery of instrumental variable approaches above give us more confidence that opium

revenue influences temporal clustering in rebel attacks. Our IV estimates help us sidestep po-

tential concerns about endogenous variation in revenue driven by the production of violence

prior to the beginning of the fighting season.

22See Kienberger et al. (2017) and the 2014 UNODC annual Opium Survey for more details regarding
suitable agronomic conditions for opium production in Afghanistan.
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6 Mechanisms

Having addressed numerous potential threats to identification, we now turn our attention

to a more direct test of our model’s empirical implications. Our results could be working

through at least two plausible mechanisms. First, revenue from the opium trade could give

field commanders more flexibility to recruit and arm fighters. This would enable them to

engage in combat operations where the timing of attacks is less random and, therefore,

easier for state rivals to anticipate and engage in strategic adjustment. As such, battlefield

losses are likely. These losses are more easily absorbed if a given rebel division has more,

better armed combatants. Second, increasing capacity could make it easier for insurgents to

deploy spies or buy information about troop movement patterns from civilians. Responding

strategically to intelligence reports about time windows within which troops and bases are

vulnerable could lead to temporal clustering. Importantly, these are not rival mechanisms.

They can operate simultaneously.

6.1 Intelligence Gathering by Rebels

Our data provides us with a unique opportunity to investigate the second mechanism more

precisely. In particular, we expect that conditions that make intelligence gathering easier

(i.e., reduced frictions) should enhance the negative effect of opium revenue on randomness

of combat. That is, in places where rebels have the ability to gather information about

troop and base vulnerabilities, temporal clustering should be even more responsive to rents

extracted from the opium trade.

We begin with the simplest test of this mechanism. We gather administrative data on

the distribution of ethnic groups across districts. We identify districts where 95% or more

of population settlements are classified as Pashto speaking. Pashtuns are Taliban coethnics

and form the primary base of civilian support for the insurgency. In principle, we expect

it will be easier for insurgents to acquire information about government activity in districts

dominated by their coethnics. We present these results in Table 6. Notice that the additive

effect of opium revenue in coethnic zones is much larger (roughly 80%) than non-coethnic

districts. This is evidence consistent with our story, but relying on coethnicity as a test of

our argument may conflate intelligence frictions with a range of other factors as well.

We overcome this concern by turning to more sophisticated tests of our argument. In

particular, our military records include previously unreleased information about rebel surveil-
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Table 6: Heterogeneous effects of rebel capacity on within-day randomization of indirect fire
attacks with respect to potential intelligence gathering via coethnics

(1) (2) (3) (4) (5)
Opium Revenue -0.0581∗∗∗ -0.0150∗∗ -0.0178∗∗ -0.0146∗ -0.0146∗

(0.0137) (0.00717) (0.00757) (0.00766) (0.00766)
Coethnicity 0.246 0.288 0.378 0.378

(0.333) (0.329) (0.351) (0.352)
Coethnicity × Revenue -0.0582∗∗∗ -0.0554∗∗∗ -0.0552∗∗∗ -0.0552∗∗∗

(0.0175) (0.0170) (0.0168) (0.0168)

Model Parameters
Fighting Season Fixed Effect Yes Yes Yes Yes Yes
Fighting Season Activity (levels) No No Yes Yes Yes
Growing Season Activity (levels) No No No Yes Yes
Planting Season Activity (levels) No No No No Yes
Model Statistics
No. of Observations 600 600 600 600 600
No. of Clusters 154 154 154 154 154
R2 0.154 0.193 0.204 0.218 0.218

Notes: Outcome of interest is the (log) p-value of the randomness test. The quantity of interest is
opium revenue for a given district-year. All regressions include fighting season fixed effects as well
as controls for the intensive margin of fighting during the fighting, harvest, and planting seasons
respectively. Additional parameters are noted in the table footer. Heteroskedasticity robust
standard errors clustered by district are reported in parentheses. Stars indicate *** p < 0.01, **
p < 0.05, * p < 0.1.

lance of troop movement and base activity as well as data on security breaches, which occur

when insurgents are able to effectively infiltrate the outer perimeter of targets and observe

activity from within bases and outposts. These yield another potential test of our informa-

tion mechanism by tracking incidents where the Taliban are able to ‘turn’ security recruits

and use them to launch attacks from within army units. In each of these cases, we are

able to employ much more direct evidence of the ability of the insurgency to gather precise

information about target defenses. We test our mechanism using these data in Columns

2 through 5 in Table 7. In Column 2, we interact our measure of the spy network opera-

tions with revenue.23 In the Online Appendix, we repeat this specification with measures of

infiltration and insider attacks (see Tables A-23 and A-24). We find strong evidence that

our main effect is enhanced in districts where the insurgents have a demonstrated capability

to conduct surveillance, infiltrate security installations, and launch insider attacks. These

findings yield evidence consistent with the mechanism implied by our theoretical argument

and suggest that intelligence gathering may be a primary pathway through which shocks to

23To avoid potential concerns about the endogeneity of intelligence gathering, we identify the cross section
of districts with these characteristics using only the first year of our sample, 2006.
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rebel capacity influence the timing of violent attacks.

Table 7: Heterogeneous effects of rebel capacity on within-day randomization of indirect fire
attacks with respect to potential intelligence gathering by spies

(1) (2) (3) (4) (5)
Opium Revenue -0.0581∗∗∗ -0.0207∗∗∗ -0.0224∗∗∗ -0.0194∗∗∗ -0.0194∗∗∗

(0.0137) (0.00669) (0.00661) (0.00663) (0.00664)
Surveillance 0.605∗ 0.758∗∗ 0.952∗∗ 0.953∗∗

(0.320) (0.337) (0.405) (0.400)
Surveillance × Revenue -0.0671∗∗∗ -0.0669∗∗∗ -0.0678∗∗∗ -0.0678∗∗∗

(0.0193) (0.0191) (0.0190) (0.0191)

Model Parameters
Fighting Season Fixed Effect Yes Yes Yes Yes Yes
Fighting Season Activity (levels) No No Yes Yes Yes
Growing Season Activity (levels) No No No Yes Yes
Planting Season Activity (levels) No No No No Yes
Model Statistics
No. of Observations 600 600 600 600 600
No. of Clusters 154 154 154 154 154
R2 0.154 0.206 0.219 0.233 0.233

Notes: Outcome of interest is the (log) p-value of the randomness test. The quantity of interest is
opium revenue for a given district-year. All regressions include fighting season fixed effects as well
as controls for the intensive margin of fighting during the fighting, harvest, and planting seasons
respectively. Additional parameters are noted in the table footer. Heteroskedasticity robust
standard errors clustered by district are reported in parentheses. Stars indicate *** p < 0.01, **
p < 0.05, * p < 0.1.

6.2 Labor Scarcity

We suggest that revenue shocks may impact combat tactic through the ability to mobilize

fighters. Unfortunately, we lack sufficiently granular census data on the size of Taliban sub-

units to fully assess the direct effects of budget constraints on recruitment and deployment.

However, we can investigate this mechanism through an alternative approach: battlefield

losses experienced during combat operations. The intuition of this test is in line with the

mechanism we theorize. As insurgents accumulate resources, they can mobilize more fighters,

enabling them to adopt tactics that would otherwise be too costly from a human capital per-

spective. If attacks are predictably launched, government forces can deploy relatively more

effective countermeasures, potentially neutralizing some subset of fighters through casual-

ties. For relatively weak insurgents, these costs may be too great, leading them to conduct

attacks that are randomized and more difficult to thwart.
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Although we cannot directly examine whether revenue shocks lead to expansion of rebel

forces, we can study whether labor constraints (via lost fighters) lead to a change in tac-

tics. The intensity of potential battlefield losses is increasing in combat activity, which our

model accounts for in levels via fighting season activity for indirect fire attacks. However,

because battlefield losses are most common in direct combat (when rebels are engaged in

close combat with military units), we introduce an additional parameter to our benchmark

model capturing the overall intensity of combat activity across the three primary categories

of combat. Adding this parameter allows us to partial out any variation in labor scarcity

(casualties) due to the intensity of combat operations, yielding plausibly abnormal variation

in battlefield losses. We present these results in Table 8. Notice that battlefield losses (posi-

tive coefficient) lead to an increase in randomization. The estimated effect on labor scarcity

suggests a one standard deviation increase in losses leads to a .12 standard deviation increase

in randomization.

Table 8: Effects of rebel capacity and battlefield losses on within-day randomization of
indirect fire attacks

(1) (2) (3) (4) (5)
Opium Revenue -0.0191∗∗∗ -0.0222∗∗∗ -0.0209∗∗∗ -0.0201∗∗∗ -0.0200∗∗∗

(0.00574) (0.00660) (0.00686) (0.00700) (0.00698)
Battlefield Losses 0.0456∗∗ 0.0486∗∗ 0.0485∗∗ 0.0486∗∗

(0.0230) (0.0211) (0.0207) (0.0207)

Model Parameters
Fighting Season (FS) Fixed Effect Yes Yes Yes Yes Yes
FS Activity (levels) No No Yes Yes Yes
Growing Season Activity (levels) No No No Yes Yes
Planting Season Activity (levels) No No No No Yes
FS Combat Operations (all, levels) Yes Yes Yes Yes Yes
Model Statistics
No. of Observations 600 600 600 600 600
No. of Clusters 154 154 154 154 154
R2 0.496 0.501 0.504 0.506 0.506

Notes: Outcome of interest is the (log) p-value of the randomness test. The quantity of interest is
opium revenue for a given district-year. All regressions include fighting season fixed effects as well
as controls for the intensive margin of fighting during the fighting, harvest, and planting seasons
respectively. Additional parameters are noted in the table footer. Fighting season parameters
are notated with the abbreviation FS. Battlefield losses in our sample have a mean of 4.605 and
standard deviation of 10.547. Heteroskedasticity robust standard errors clustered by district are
reported in parentheses. Stars indicate *** p < 0.01, ** p < 0.05, * p < 0.1.

A natural concern is that battlefield losses, even after conditioning on combat activity

(in levels), are not sufficiently ‘as if’ random to draw causal inferences. We attempt to
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address this concern in the online appendix, where we add our measures of counterinsurgent

operations (from Tables A-2 and A-3), which are the most plausible omitted variables in this

regression. We introduce these results in Table A-25. Once we account for these omitted

factors, our results get larger in magnitude, giving us more confidence in the main results in

Table 8.

6.3 Government Surveillance

We conclude the discussion of the mechanisms by returning to the role of surveillance. We

argue that revenue generation by insurgents eases constraints on intelligence gathering, mak-

ing it easier for rebels to identify time periods during which government forces are vulnerable.

If, on the other hand, government forces are capable of and conduct operations to monitor

rebel activity, they may be more likely to identify patterns in rebel attacks. Information

about when insurgents are likely to launch attacks as well as other features of militia opera-

tions enables government forces to directly thwart rebel operations and disrupt their combat

planning. Our data gives us another unique opportunity to explore this channel: we observe

where and how frequently government forces are actively monitoring insurgent tactics and

procedures during the fighting season. We replicate the model above, accounting for the

confounding correlation between combat activity and the allocation of surveillance assets.

These results are presented in Table 9. Notice that, as our theoretical model anticipates, in-

creased government monitoring is associated with more attack randomization (less temporal

clustering).

7 Extensions

In this section, we study several extensions which clarify the industrial organization of re-

bellion and yield potentially actionable insights about insurgent operations.

7.1 Reservation Wages

To study the relative impact of reservation wages, we take advantage of an important feature

of the context of our study: differential taxation. At baseline, we anticipate Taliban fighters

collect a flat (typically 10%) tax on opium proceeds. Qualitative documents suggest the

bureaucracy established to manage these transactions is sophisticated and repeated taxation

(‘double taxation’) and excessive taxation are prohibited. However, the Taliban cannot fully
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Table 9: Effects of rebel capacity and government surveillance missions on within-day ran-
domization of indirect fire attacks

(1) (2) (3) (4) (5)
Opium Revenue -0.0191∗∗∗ -0.0203∗∗∗ -0.0190∗∗∗ -0.0181∗∗∗ -0.0181∗∗∗

(0.00574) (0.00601) (0.00623) (0.00646) (0.00644)
Government Surveillance Operations 0.0916∗∗∗ 0.0917∗∗∗ 0.0932∗∗∗ 0.0930∗∗∗

(0.0209) (0.0215) (0.0210) (0.0211)

Model Parameters
Fighting Season Fixed Effect Yes Yes Yes Yes Yes
Fighting Season Activity (levels) No No Yes Yes Yes
Growing Season Activity (levels) No No No Yes Yes
Planting Season Activity (levels) No No No No Yes
FS Combat Operations (all, levels) Yes Yes Yes Yes Yes
Model Statistics
No. of Observations 600 600 600 600 600
No. of Clusters 154 154 154 154 154
R2 0.496 0.501 0.504 0.506 0.506

Notes: Outcome of interest is the (log) p-value of the randomness test. The quantity of interest is
opium revenue for a given district-year. All regressions include fighting season fixed effects as well
as controls for the intensive margin of fighting during the fighting, harvest, and planting seasons
respectively. Additional parameters are noted in the table footer. Fighting season parameters are
notated with the abbreviation FS. Government Surveillance in our sample have a mean of .425
and standard deviation of 3.22. Heteroskedasticity robust standard errors clustered by district are
reported in parentheses. Stars indicate *** p < 0.01, ** p < 0.05, * p < 0.1.

control how much local politicians—agents of the formal government—extract as informal

taxes (Giustozzi, 2009; Mansfield, 2016). In the absence of these secondary taxes, gains from

the opium trade translate into simultaneous growth in rebel capacity and growth in the local

economy. As such, resources available to compensate fighters and spies and local reservation

wages may be increasing in revenue. This will lead to a cross-cutting effect that biases

our estimate towards zero, since increasing reservation wages offset some of the impact of

revenue growth on mobilization, recruitment, and, by extension, combat tactics. To better

disentangle these effects, we need to identify locations where informal taxes absorb some of

the growth in the local economy which influences reservation wages.

We do this by taking advantage of proprietary military surveys provided to the authors

by the North Atlantic Treaty Organization (NATO).24 These surveys enable us to quantify

24We utilize the Afghanistan Nationwide Quarterly Research (ANQAR) survey. ACSOR, an Afghan sub-
sidiary of the international firm D3, was contracted to design and field the survey. ACSOR hired and trained
local enumerators in household and respondent selection, how to correctly record answers to questions, cul-
turally sensitive interview methods, and secure storage of contact information. The administrative district
(the cross section unit in this study) is the primary sampling unit. These sampling units are selected via
probability proportional to size systematic sampling approach. After districts have been sampled, secondary
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the level of corruption present in local administrative agencies across Afghanistan.25

We anticipate that revenue growth will have larger effects in places with more severe cor-

ruption, where reservation wages grow at a slower rate due to informal taxation. We present

these results in Table 10. Consistent with our expectations, in districts with corruptible

politicians where reservation wages remain relatively lower, we see larger marginal effects

over the baseline condition (with relatively less informal taxation).

Table 10: Heterogeneous effects of rebel capacity on within-day randomization of indirect
fire attacks with respect to variation in reservation wages (via informal taxation by corrupt
officials)

(1) (2) (3) (4) (5)
Opium Revenue -0.0581∗∗∗ -0.0177∗∗ -0.0269∗∗∗ -0.0268∗∗∗ -0.0270∗∗∗

(0.0137) (0.00688) (0.00745) (0.00750) (0.00740)
Corruptible Officials -0.215 -0.676∗ -0.669 -0.681∗

(0.358) (0.390) (0.405) (0.405)
Corruptible × Revenue -0.0430∗∗∗ -0.0329∗∗ -0.0291∗∗ -0.0288∗∗

(0.0152) (0.0133) (0.0125) (0.0124)

Model Parameters
Fighting Season Fixed Effect Yes Yes Yes Yes Yes
Fighting Season Activity (levels) No No Yes Yes Yes
Growing Season Activity (levels) No No No Yes Yes
Planting Season Activity (levels) No No No No Yes
Model Statistics
No. of Observations 600 600 600 600 600
No. of Clusters 154 154 154 154 154
R2 0.154 0.164 0.182 0.196 0.196

Notes: Outcome of interest is the (log) p-value of the randomness test. The quantity of interest is
opium revenue for a given district-year. All regressions include fighting season fixed effects as well
as controls for the intensive margin of fighting during the fighting, harvest, and planting seasons
respectively. Additional parameters are noted in the table footer. Heteroskedasticity robust
standard errors clustered by district are reported in parentheses. Stars indicate *** p < 0.01, **
p < 0.05, * p < 0.1.

sampling units composed of villages and settlements are randomly selected. A random walk method is used
to identify target households and a Kish grid is used to randomize the respondent within each selected
household. After the sampling set has been identified and before fielding a survey wave, ACSOR engages
with local elders to secure permission for enumerators to enter sample villages. See Condra and Wright
(Forthcoming) for more details and diagnostics.

25We split districts into low versus high corruption categories based on the percentage of respondents
across all available waves which describe corruption in government as a very serious problem. If more than
one third report corruption as very serious, we classify the district as corrupt (and local administrators as
corruptible). This equates to the tenth percentile of the overall distribution. Results are consistent if we use
a lower threshold.
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7.2 Savings Technologies

We next consider whether local rebel units utilize savings technologies to engage in consump-

tion smoothing. Revenue from the opium trade can be volatile, with droughts, crop diseases,

and other unpredictable factors negatively impacting productivity from season to season.

In response, units within the Taliban may engage in consumption smoothing, holding back

some of their fighting capacity for the next season in expectation of uncertainty regarding

future revenue. To assess this dynamic, we use our full panel data on revenue to calcu-

late income volatility for each district. We then split districts into high and low volatility

clusters.26 If rebels engage in consumption smoothing, we would expect combat tactics to

be less responsive per unit of income growth in high volatility districts. We estimate these

heterogeneous effects in Table 11. Notice that the high income volatility does not lead to

a marginally smaller effect on combat. This suggests that rebels do not actively engage in

smoothing across seasons; rebels likely exhaust available resources during the fighting season

immediately following tax collection.

8 Conclusion

Rebel tactics are an overlooked feature of internal warfare. Understanding how these con-

flicts are fought and the strategic responses of armed actors to revenue shocks is on equal

footing with thoroughly examined questions about the causes of civil war and the factors

that influence when hostilities end.

We argue that shocks to rebel capacity influence the timing of attacks. We develop a

simple model of combat during an irregular insurgency. Rebels optimize when they conduct

attacks after observing imperfect signals of government defensive maneuvers. As insur-

gents accumulate resources through taxation, their budget constraint is relaxed and they

can recruit more fighters, acquire more armaments, and gather more intelligence about the

vulnerability of troops and bases. The labor supply of fighters, coupled with surplus capi-

tal, allows rebels to conduct more attacks. Infiltrating military installations and conducting

surveillance of troop movement enhances the quality of information rebels have about spe-

cific times when attacks will yield the highest probability of success. Thus, revenue shocks

will lead to clustering in the temporal distribution of violence. Our model also suggests that

26We classify districts into these categories using the median level of volatility observed among opium
producing districts in the full panel.
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Table 11: Heterogeneous effects of rebel capacity on within-day randomization of indirect
fire attacks with respect to variation in income volatility

(1) (2) (3) (4) (5)
Opium Revenue -0.0581∗∗∗ -0.0583∗∗∗ -0.0588∗∗∗ -0.0550∗∗∗ -0.0551∗∗∗

(0.0137) (0.0146) (0.0143) (0.0121) (0.0121)
High Revenue Volatility -0.890∗ -0.851∗ -0.864∗ -0.866∗

(0.495) (0.477) (0.489) (0.488)
High Revenue Volatility × Revenue -0.00215 -0.00253 -0.00210 -0.00198

(0.0336) (0.0324) (0.0340) (0.0343)

Model Parameters
Fighting Season Fixed Effect Yes Yes Yes Yes Yes
Fighting Season Activity (levels) No No Yes Yes Yes
Growing Season Activity (levels) No No No Yes Yes
Planting Season Activity (levels) No No No No Yes
Model Statistics
No. of Observations 600 600 600 600 600
No. of Clusters 154 154 154 154 154
R2 0.154 0.164 0.180 0.196 0.196

Notes: Outcome of interest is the (log) p-value of the randomness test. The quantity of interest is
opium revenue for a given district-year. All regressions include fighting season fixed effects as well
as controls for the intensive margin of fighting during the fighting, harvest, and planting seasons re-
spectively. Additional parameters are noted in the table footer. Heteroskedasticity robust standard
errors clustered by district are reported in parentheses. Stars indicate *** p < 0.01, ** p < 0.05, *
p < 0.1.

these tactical shifts will be greatest when armed actors have the institutional capacity to

pin-point when such attacks are least likely to be neutralized by government defenses.

We test the empirical implications of our theoretical model using data collected during

Operational Enduring Freedom in Afghanistan. The temporal precision of our military

records enable us to develop a sophisticated methodology for differentiating the within-day

timing of rebel operations from randomized combat. This method produces a likelihood

parameter that quantifies the degree of temporal clustering present in the allocation of

insurgent attacks at the district level, broken down by fighting season. We couple this novel

approach with high resolution estimates of opium production and market prices. We leverage

the industrial organization of the Taliban, including their highly institutionalized taxation

system, to estimate the impact of local revenue from the drug trade on combat tactics in

the subsequent fighting season.

Our evidence suggests that the randomness of attacks significantly decreases as rebels

accumulate more resources from the opium trade. As rebels accumulate fighting capacity,

their attacks become temporally clustered around particular time windows in the day. This

core result survives a number of robustness checks, including accounting for trends in rebel
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violence during the fighting, harvest, and planting seasons, which may influence the intensity

of opium cultivation from year to year. The richness of our microdata also enables us to rule

out additional concerns about the positive covariance between rebel capacity and strategic

reallocation of government forces.

Our data also yields a unique opportunity to assess the underlying mechanism suggested

by our model: intelligence gathering. Temporal clustering occurs because rebels use their

resources to improve the quality and precision of their information about target vulnerability.

This type of mechanism is largely unobserved and difficult to disentangle from alternative

explanations. Our military records, however, include detailed information about where rebels

were observed conducting surveillance operations as well as instances where insurgents were

able to infiltrate government installations and conduct insider attacks. The capacity to

gather intelligence substantially enhances the baseline effect of revenue shocks on combat

operations.
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A1 Theory

Proof of Proposition 1

For event H, the complement is denoted H ′. We introduce auxiliary random variables Ti, Si
taking two values 0 and 1; Ti = 1 means that i-th time slot is defended, Ti = 0 means that
there is no defense at time i; Si = 1 means that the test of time slot i shows it as defended,
and Si = 0 means that the slot i tests as vulnerable. In the absense of index i, S and T
correspond to any time slot.

Recall that P (S|T ) = P (S ′|T ′) = θ.27 Finally, let C denote the event that attack is
successful during a time slot with an attack. We assume that P (C|T ′) = p and P (C|T ) = 0.

Recall that, the parameters are: n is the number of time slots, r is the number of defenses
allocated by the government, and a is the number of attacks. The optimal strategy for the
government is to allocate r defenses uniformly over n time windows. Then for each window
t(r) = P (time slot is protected)= r

n
.

We will show that for rebels the optimal strategy looks as follows. If a < x, the attacks
are allocated uniformly at random among the vulnerable time slots. If a > x then there is
a threshold value, a function of parameters of the model and x, that determines how many
more put in the vulnerable time windows; above that, they start to put into the windows
that tested “defended”, again uniformly.

First, observe that cases x = 0 and x = n are trivial: there is no information to infer, so
the optimal strategy for rebels is to allocate attacks uniformly across n time slots. In what
follows, we will assume that 0 < x < n.

After n slots are tested, a (vector) signal s = (s1, .., sn) is obtained and value N = x, the
number of slots that tested vulnerable is produced. In other words, a (random) partition of
a set J into two sets, J−(x) - slots tested vulnerable, and its complement J+(x), is obtained.
Define N1 = |J−(x)∩L|, the number of defended sites that tested vulnerable, i.e., the number
of “false positives”; and N2 = |J−(x) ∩ U |, the number of correct vulnerable signals. The
total number of sites that tested vulnerable is N ≡ Nn,r = N1 +N2.

N1 and N2 are independent binomial random variables. Denote pi(j) the p.m.f. of
Ni, i = 1, 2, and p(j|l, p), j = 0, 1, ..., l – the p.m.f. of a binomial random variable with l
trials and probability of success p. Then p1(j) = p(j|r, 1− θ) and p2(j) = p(j|n− r, θ).

Now the p.m.f. of N , gn,r(x), 0 ≤ x ≤ n, can be calculated by the standard discrete
convolution formula.

gn,r(x) =
∑

0≤j≤r, 0≤x−j≤n−r

p1(j)p2(x− j).

27All the results go through with the arbitrary parameters α = P (S|T ), β = P (S′|T ′) subject to α+β > 1,
i.e., that the test is informative. A standard interpretation for α and β as α = P (positive test|disease) =
sensitivity; and β = P (negative test|no disease)= specificity, two important characteristics of any statistical
test.
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We start with the following basic equations:

P (Ci = 1|Ti = 1) = 0,

P (Ci = 1|Ti = 0, ui) = p(ui),

where ui is the number of attacks launched against target i, and p(u) is the success function,
the probability of at least one successful attack on a target which faces u attacks.

As we assumed that the success is independent across attacks, p(u) = 1− (1− p)u. The
function p(u) is increasing and upward concave, and the function ∆p(u) ≡ p(u + 1) − p(u)
is decreasing. The diminishing effect of each extra attack will play an important role in
determing the optimal strategy.

We start with a straightforward lemma.

Lemma A1 The posterior probability of signal distribution is uniform conditional on the
number of signals “vulnerable” x :

P (s1, ..., sn) = P (N = x)/

(
n

x

)
. (A1)

The posterior probability that target i is vulnerable conditional on the full vector signal
(s1, ..., sn) is equal to the conditional probability that target i is vulnerable conditional only
on the individual signal si and the total number of “vulnerable” signals x.

P (Ti = 0|s1, ..., sn) = P (Ti = 0|si, N = x). (A2)

Proof. (A1) is straightforward. The left side of formula (A2) can be written as

P (Ti = 0)P (s|Ti = 0)/P (s) = P (si|Ti = 0)P (s−i|Ti = 0)/P (s),

where s−i is vector s without coordinate si. Using (A1), we can replace P (s) = P (N =
x)/
(
n
x

)
. The right side of formula (A2) can be written as

P (Ti = 0, si, N = x)

P (si, N = x)
=
P (Ti = 0)P (si|Ti = 0)P (N = x|si, Ti = 0)

P (N = x)P (si|N = x)
.

Let si = 0. Then, on the left-hand side, using (A1) for a problem with n− 1 targets and
k attacks, we have

P (s−i|Ti = 0) = Pn−1,k(N = x− 1)/

(
n− 1

x− 1

)
.

In the right-hand side we have P (si|N = x) = x/n and

P (N = x|si = 0, Ti = 0) = Pn−1,k(N = x− 1).

Finally, since
(
n
x

)
=
(
n−1
x−1

)
n/x, we obtain that after all reductions the left and the right sides

of formula (A2) coincide. The proof for the case si = 1 is similar.
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The formula (A2) is at the heart of the intuition behind our main results. The optimal
strategy π(·|x) of the attacker depends on function p(u) and on the ratio ρ(x|θ), reflecting
the relative vulnerability of targets with s = 0 and s = 1, which, in turns, depends on
parameters n, r and θ.

The next Lemma critical ratio that determines the threshold a(x) for each x is defined
by the following equation:

ρn,r(x) = ρn,r(x|θ) ≡
p−(x)

p+(x)
=
P (C|V N(x))

P (C|DN(x))
.

Our next goal is to establish that ρn,r(x) ≥ 1.

Lemma A2 (a) The probabilities p−(x) ≡ P (T ′|S ′, x) and p+(x) ≡ P (T ′|S, x)) for 0 < x <
n are given by formulas

p−(x) =
r

x
∗ θ ∗ gn−1,r(x− 1)

gn,r(x)
,

p+(x) =
r

n− x
∗ (1− θ) ∗ gn−1,r(x)

gn,r(x)
.

(b) The ratio ρn,r(x|θ), 0 < x < n, is given by the formula

ρn,r(x|θ) =
θ

1− θ
n− x
x

gn−1,r(x− 1)

gn−1,r(x)
. (A3)

Proof. (a) For the sake of brevity, we denote P (·|N = x) ≡ P (·|x) and event D(x) = (N =
x) = D. By definition p−(x) ≡ P (T ′|S ′, x) = P (T ′S ′, x)/P (S ′, x), and p+(x) ≡ P (T ′|S, x) =
P (T ′S, x)/P (S, x). We have

P (T ′S ′D) = P (T ′)P (S ′D|T ′) = P (T ′)P (S ′|T ′)P (D|T ′S ′),
P (T ′SD) = P (T ′)P (SD|T ′) = P (T ′)P (S|T ′)P (D|T ′S). (A4)

We also have P (T ′) = r
n
, P (S ′|T ′) = θ, and P (S|T ′) = 1− θ. Therefore, to prove the result,

it is sufficient to show that

P (D|T ′S ′) = gn−1,r(x− 1),

P (D|T ′S) = gn−1,r(x),

P (S ′D) = gn,r(x) ∗ x
n
,

P (SD) = gn,r(x) ∗ n− x
n

.

To show that P (D|T ′S ′) = gn−1,r(x − 1), observe that if N = x, and a particular slot has
no defense, T ′, and produced vulnerable signal, S ′, then in the remaining n − 1 slots there
are r defenses with x− 1 vulnerable signals. Similarly, to show that P (D|T ′S) = gn−1,r(x),
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observe that if N = x, and a particular slot has no defense, T ′, and produced “defended”
signal, S, then in the remaining n−1 slots there are r defenses with x vulnerable signals. To
demonstrate that P (S ′D) = gn,r(x) ∗ x

n
, note that P (S ′D) = P (D)P (S ′|D), P (D) = gn,r(x)

and P (S ′|D) = x
n
, the probability for one vulnerable signal among x to be in a particular

slot. Similarly, P (SD) = P (D)P (S|D), and P (S|D) = n−x
n

, the probability for one defended
signal among n− x to be in a particular slot.

(b) is a straightforward corollary to (a).

Lemma A3 28

(a) ρ(x) > 1.
(b) Functions ρn,n−1(x) = θ2

1−θ2 for all x, while functions ρn,r(x|θ) for r < n − 1 are
monotonically increasing in x for 0 < x < n.

(c) Functions ρn,r(x|θ) are monotonically decreasing for all fixed r, 0 < x < n when n is
increasing.

Proof. (a) Let Dn,r be a sum of n Bernoulli random variables, r of which have parameter
1− θ, and n− r of which have parameter θ > 1− θ, 0 ≤ r ≤ n. Let

gn,r(x) = P (Dn,r = x), 0 ≤ x ≤ n;

fn,r(x) =
gn,r(x− 1)

gn,r(x)
, 1 ≤ x ≤ n;

ρn,r(x) =
n+ 1− x

x

θ

1− θ
fn,r(x), 1 ≤ x ≤ n.

We assume also that fn,r(0) = ρn,r(0) = 0.

Denote c = θ2

1−θ2 . Then θ > 1
2

implies c > 1.
It is easy to check that

ρn,0(x) = 1, for 1 ≤ x ≤ n ;

ρn,n(x) = c, for 1 ≤ x ≤ n ; (A5)

ρn,r(n) =
rc+ n− r

n
= 1 +

r

n
(c− 1) for 0 ≤ r ≤ n .

Using the total probability formula, we obtain a recursive relationship:

fn,r(x) =
gn,r(x− 1)

gn,r(x)
=

(1− θ)gn−1,r(x− 1) + θgn−1,r(x− 2)

(1− θ)gn−1,r(x) + θgn−1,r(x− 1)

=
1− θ + θfn−1,r(x− 1)

1−θ
fn−1,r(x)

+ θ
for 1 ≤ r, x ≤ n− 1 . (A6)

28We thank Isaac Sonin and Ernst Presman for their help with proving this lemma.
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This implies that

ρn,r(x) =
n− x+ 1

x

θ

1− θ
1− θ + θ x−1

n−x+1
1−θ
θ
ρ
n−1,r

(x− 1)

1−θ
ρn−1,r(x)

n−x
x

1−θ
θ

+ θ

=
n− x+ 1 + (x− 1)ρn−1,r(x− 1)

n−x
ρn−1,r(x)

+ x
for 1 ≤ r, x ≤ n− 1 . (A7)

(A5) is the induction base. By induction, the numerator in (A7) is strictly increasing, and
the denominator is strictly decreasing, and hence the right side in (A7) is strictly increasing
and depends only on c. When c grows from 1 to ∞ (that is, θ is increasing from 0 to 1

2
), it

is strictly increasing from 1.

(b) Now we can show that for fixed n ≥ 2, 1 ≤ r ≤ n − 1, c > 1, function ρn,r(x) is
strictly increasing in x.

Again, we use induction by n. Let ρ(x) = ρn−1,r(x), H(x) = n − x + xρ(x). Then, by
(A7),

ρn,r(x) = ρ(x)
H(x− 1)

H(x)
, ρn,r(x+ 1)− ρn,r(x) =

C(x)

H(x+ 1)H(x)
,

where

C(x) = ρ(x+ 1)H2(x)− ρ(x)H(x+ 1)H(x− 1)

= ρ(x+ 1)
[
(n− x)2 + 2x(n− x)ρ(x) + x2ρ2(x)

]
= −ρ(x)[n− x− 1 + (x+ 1)ρ(x+ 1)] [n− x+ 1 + (x− 1)ρ(x− 1)]

= ρ(x+ 1)
[
(n− x)2 + 2x(n− x)ρ(x) + x2ρ2(x)

]
.

We can check, using (A6) and (A7), that

ρ2,1(2) =
1 + c

2
> ρ2,1(1) =

2c

1 + c
,

ρ3,1(3) =
2 + c

3
> ρ3,1(2) =

1 + 2c

2 + c
> ρ3,1(1) =

3c

1 + 2c
,

ρ3,2(3) =
1 + 2c

3
> ρ3,2(2) = c

2 + c

1 + 2c
> ρ3,2(1) =

3c

2 + c
,

and hence the proof is complete for n = 2 and n = 3.
For n ≥ 4 and 2 ≤ x ≤ n− 2, we have x(n−x)−n ≥ 0, and by induction, it follows that

C(x) > ρ(x)+ρ2(x)ρ(x+1)−ρ(x)ρ(x+1)− ρ2(x)

= ρ(x)(ρ(x+ 1)− 1)(ρ(x)− 1) > 0

for 2 ≤ x ≤ n− 2.
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To prove (c), it remains to show that ρn−r,r(2)− ρn−r,r(1) > 0 and ρn−r,r(n)− ρn−r,r(n−
1) > 0. Using the total probability formula,

ρn,r(n− 1) =
2

n− 1

θ

1− θ
P (Dnr = n− 2)

P (Dnr = n− 1)

=
1

n− 1

(n− r)(n− r − 1) + 2(n− r)rc+ r(r − 1)c2

n− r + cr
. (A8)

Then, using (A6), we obtain

ρn,r(n)− ρn,r(n− 1) =
(n− r)r(c− 1)2

n(n− 1)(n− r + cr)
> 0 .

Similarly,

ρn,r(2) =
(n− 1)(c(n− r) + r)

c2(n− r)(n− r − 1) + 2(n− r)rc+ r(r − 1)
,

ρn,r(1) =
nc

r + c(1− r)
,

ρn,r(2)− ρn,r(1) =
(n− r)r(c− 1)2

[c2(n− r)(n− r − 1) + 2(n− r)rc+ r(r − 1)](r + c(1− r))
.

Let B−(s) = {i : si = 0} and B+(s) = {i : si = 1}. Then, using (A2), we obtain that,
given a strategy π = (u1, ..., un) and any signal s with N(s) = x, the expected value of a
strategy π is

w(π|x) = 1− Πn
j=1(1− P (Cj|uj, sj, x)).

Let U− ≡ U−(π|s) = {uj, j ∈ B−(s)} and U+ ≡ U+(π|s) = {uj ∈ B+(s)} be two possible
sets of the values of uj at vulnerable and non-vulnerable targets. Formula (A2) immediately
implies that all strategies obtained by permutations of sets (U−, U+) among corresponding
targets have the same value.

We prove later that the upward concavity of function p(u) implies that the optimal
strategy has the property that the number of attacks against any pair of targets with the
same signal is the same or almost the same: as the number of attacks is integer, there might
be a difference of one attack between two targets with the same signals. Let us assume for
simplicity that both equalities hold: ui = u−, i ∈ B−(s) and ui = u+, i ∈ B+(s).

Let us do the following transformation:

ln (1− w(π|x)) =
n∑
j=1

(1− P (Ti = 0|si, x)p(ui))

= n−
n∑
j=1

P (Ti = 0|si, x)p(ui)

= n− p−(x)
∑

i∈B−(s)

p(ui)− p+(x)
∑

i∈B+(s)

p(ui).
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Now, the same strategy π that maximizes the function v(π|x) = p−(x)
∑

i∈B−(s) p(ui) −
p+(x)

∑
i∈B+(s) p(ui) is maximizing the strategy value (π|x).

The following lemma concludes the proof of Proposition 1. To obtain the optimal strategy,
we use the necessary equilibrium condition: with an optimal allocation it is impossible to
increase the payoff by moving an attack from one target to another. Given N = x, 0 ≤ x ≤ n
the allocation of attacks depends on the number a of attacks available. The optimal strategy
has the following structure. Initially, all attacks are launched one by one into each of x
vulnerable slots until the threshold level

d(x) = min
i≥1

{
i|ρ(x|θ) (1− p)i < 1

}
(A9)

is reached in each of them or the attack resources are exhausted. Afterwards, the attacks
are added one by one to non-vulnerable slot until there is an attack on each of them. Then,
attacks are added one by one until each of the vulnerable slots has d(x) + 1 attacks on each
of them, then back to non-vulnerable slots until each has at least 2 attacks, etc. This “fill
and switch” process stops when the attacker runs run out of resources. If x = 0 or n then
just all slots are filled sequentially. The outcome of this process will be an allocation in
which either all “vulnerable” slots will have the same number of attacks launched against
them, or all “not vulnerable” slots, or both. If all “not vulnerable” slots have no attacks
allocated to them, then the number of attacks against each “vulnerable” slot does not exceed
d(x). (Trivially, after the process is complete, the attacker will have to uniformly randomize
the distributions of attacks over sets of slots with the same sign: otherwise, the uniform
distribution of protection by the defender would not be a best response.) The threshold a(x)
in the statement of Proposition 1 is a function of both x (via d(x)) and the total number of
attacks available, a.

Lemma A4 (i) Let π(x) = (ui, i = 1, 2, ..., n) be an optimal strategy . Then |ui1 − ui2| ≤ 1
when the signals at time slots i1, i2 have the same sign.

(ii) Let π(x) = (ui, i = 1, 2, ..., n) be a strategy, 0 < x < n, u− be the number of attacks
in some vulnerable slot, u+ be the number of attacks in some protected slot, and d = d(x) is
defined by formula (A9). Then, if u−−u+ > d(x) or, if u+ ≥ 1 and u−−u+ < d(x)−1, then
strategy π is not optimal, or, equivalently, if π is optimal, and u+ = 0, then 1 ≤ u− ≤ d(x),
and if u+ ≥ 1, then u− − u+ = d(x) or d(x)− 1.

Proof. (i) Let J be a subset of slots, and recall that Cj = 1 when slot j is destroyed. The
conditional independence of testing and attacks’s successes, and total probability formula
imply the following formula for the conditional probability of the destruction of a particular
slot with u ≥ 1 attacks

P (C|u, F ) = P (C|u, T = 0)P (T = 0|F ) = p(u)P (T = 0|F ),

where F is any event generated by testing (signals).
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Using the above formula and the definitions of ρ(x), p−(x) and p+(x), we have:

P (C|u, S = 1, x) = P (T = 0|S = 1, x)P (C|u, T = 0) = p+(x)p(u),

P (C|u, S = 0, x) = P (T = 0|S = 0, x)P (C|u, T = 0) = p−(x)p(u) = ρ(x)p+(x)p(u).(A10)

Suppose that the statement is not true and let us say ui1 = u, ui2 = j, u − j ≥ 2 and
Si1 = Si2 = 1. The concavity of function p(·) implies that p(u+ 1) + p(j − 1) > p(u) + p(j).
Then, using the formulas in (A10), we have

P (C = 1|u+ 1, S = 1, x) + P (C|j − 1, S = 1, x) = p+(x)[p(u+ 1) + p(j − 1))] >

> p+(x)[p(u) + p(j)] = P (C|u, S = 1, x) + P (C|j, S = 1, x). (A11)

Thus, v(π|x) is not maximized and our initial strategy is not optimal. The proof for Si1 =
Si2 = 0 is similar with p+(x) replaced by p−(x) = ρ(x)p+(x).

(ii) Let d(x) = d. We will show that if u− − u+ > d for some pair of vulnerable and
protected slots, then a transfer of one attack from a vulnerable slot from this pair to a
protected slot will increase the value of a strategy . Similarly, if u+ ≥ 1 and u−−u+ < d− 1
for such pair, then the inverse transfer will increase the value. As always, we assume that
a+b > 1 and then ρ(x) > 1 for 0 < x < n, and hence u− ≥ u+. Let u− = u, u+ = j, P (·|N =
x) = P (·|x), and denote the incremental utilities for vulnerable and protected slots as

∆C−(u|x) = P (C|u+ 1, S ′, x)− P (C|u, S ′+(j|x) = P (C|j + 1, S, x)− P (C|j, S, x).

Then, formula (A10) implies that their difference for 0 ≤ j ≤ i is

∆(u, j|x) = ∆C−(u|x)−∆C+(j|x)

= p (1− p)u ρ(x)p+(x)− p (1− p)j p+(x))

= p (1− p)j p+(x)[ρ(x) (1− p)u−j − 1].

The definition of d = d(x) in (A9) implies that ∆(u, j|x) is positive if j = 0, u < d, or if
j ≥ 1, u− j < d. Similarly, ∆(u, j|x) is negative if j = 0, u ≥ d, or if j ≥ 1, u− j ≥ d. These
inequalities imply the claim. Also, note that if p = 1, then d(x) = 1 for all 0 < x < n, and
if p is decreasing to zero, then d(x) tends to infinity.

This concludes the proof of Proposition 1. �

Proof of Proposition 2

By (A7) in the proof of Lemma A3, the critical ratio ρn,r(x|θ) is given by the recursive
formula

ρn,r(x) =
n− x+ 1 + (x− 1)ρn−1,r(x− 1)

n−x
ρn−1,r(x)

+ x
for 1 ≤ r, x ≤ n− 1 .

For each r, one can use the above formula and induction on n to show that ρn,r(x|θ) is an
increasing function of θ for each x, x ≤ n− 1. Indeed, ρn,r(x|θ) is monotonically increasing
in ρn−1,r(x|θ). Then, the induction step completes the argument.
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Now, take any θ1, θ2 such that θ1 < θ2. As ρn,r(x|θ1) < ρn,r(x|θ2)), for the thresholds
d(x|θ1) and d(x|θ2) defined by (A9), one has d(x|θ1) ≤ d(x|θ2). This means that attacks are
more temporally concentrated with θ2 than with θ1, i.e., a(x|θ1) ≤ a(x|θ2). �

Proof of Proposition 3

Observe that ρn,r(x) does not depend on p. By (A9), d(x) = mini≥1

{
i|ρ(x|θ) (1− p)i < 1

}
.

When p increases, d(x) goes down, which results in less temporal clustering of attacks.
Similarly, when r increases, so does ρn,r(x) by (A6) and (A7), which results in a higher d(x),
and more temporally clustered attacks. �
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A2 Empirical Appendix

In this brief empirical appendix, we introduce supplemental results.

A2.1 Descriptive Statistics

Table A-1: Summary statistics

Variable Mean Std. Dev. Min. Max. N
Outcome of Interest
Indirect fire, likelihood parameter -7.025 3.918 -39.686 0 600
Rebel Capacity
Opium revenue 20.506 25.403 0 75.518 600
Opium revenue, regional yield/prices 20.017 24.7 0 73.587 600
Trends in Violence
Indirect fire trend, fighting season 19.187 21.153 5 253 600
Indirect fire trend, growing/harvest season 10.788 15.194 0 161 600
Indirect fire trend, planting season 7.663 10.925 0 109 600

Notes: summary statistics are calculated for the sample studied in the main estimating
equation.
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A2.2 Additional Threats to Inference

In this subsection we detail additional potential threats to inference.
It is possible that revenue from opium production may attract additional counterinsurgent

investments. Consistent with our theoretical model, to defeat rebels accumulating resources,
security forces may have deployed additional resources that could complicate estimation
of the effect of rebel capacity on the randomness of combat. We focus on six measures of
counterinsurgent capacity: close air support missions, cache discoveries, IED neutralizations,
detention of insurgent forces, counterinsurgent surveillance operations, and safe house raids
yielding actionable intelligence assets (salary and recruitment logs, hard drives, forensic
materials, etc.). We sequentially add these covariates to Equation 1. We present these results
in Tables A-2 and A-3. For comparison, the most conservative specification from Table 1
(Column 4) is included as Column 1 in both of these tables. Notice that these measures
of counterinsurgent capacity improve the explanatory power of our models, although the
magnitude of the main effect is slightly attenuated.
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Table A-2: Impact of rebel capacity on within-day randomization of indirect fire attacks,
accounting for state capacity measures (part i)

(1) (2) (3) (4)
Opium Revenue -0.0549∗∗∗ -0.0420∗∗∗ -0.0346∗∗∗ -0.0274∗∗∗

(0.0125) (0.00989) (0.00785) (0.00945)

Model Parameters
Fighting Season Fixed Effect Yes Yes Yes Yes
Fighting Season Activity (levels) Yes Yes Yes Yes
Growing Season Activity (levels) Yes Yes Yes Yes
Planting Season Activity (levels) Yes Yes Yes Yes
Additional Parameters
Weapon Caches Cleared No Yes No No
Close Air Support No No Yes No
IEDs Cleared No No No Yes
Model Statistics
No. of Observations 600 600 600 600
No. of Clusters 154 154 154 154
R2 0.187 0.243 0.299 0.320

Notes: Outcome of interest is the (log) p-value of the randomness test. The quantity
of interest is opium revenue for a given district-year. All regressions include fighting
season fixed effects as well as controls for the intensive margin of fighting during
the fighting, harvest, and planting seasons respectively. Additional parameters are
noted in the table footer. Heteroskedasticity robust standard errors clustered by
district are reported in parentheses. Stars indicate *** p < 0.01, ** p < 0.05, *
p < 0.1.
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Table A-3: Impact of rebel capacity on within-day randomization of indirect fire attacks,
accounting for state capacity measures (part ii)

(1) (2) (3) (4)
Opium Revenue -0.0549∗∗∗ -0.0539∗∗∗ -0.0528∗∗∗ -0.0477∗∗∗

(0.0125) (0.0120) (0.0116) (0.0103)

Model Parameters
Fighting Season Fixed Effect Yes Yes Yes Yes
Fighting Season Activity (levels) Yes Yes Yes Yes
Growing Season Activity (levels) Yes Yes Yes Yes
Planting Season Activity (levels) Yes Yes Yes Yes
Additional Parameters
Coalition Surveillance No Yes No No
Safe House Raids No No Yes No
Detention of Susp. INS No No No Yes
Model Statistics
No. of Observations 600 600 600 600
No. of Clusters 154 154 154 154
R2 0.187 0.188 0.193 0.221

Notes: Outcome of interest is the (log) p-value of the randomness test. The quantity
of interest is opium revenue for a given district-year. All regressions include fighting
season fixed effects as well as controls for the intensive margin of fighting during
the fighting, harvest, and planting seasons respectively. Additional parameters are
noted in the table footer. Heteroskedasticity robust standard errors clustered by
district are reported in parentheses. Stars indicate *** p < 0.01, ** p < 0.05, *
p < 0.1.
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Opium production might also be influenced by coercive tactics used by the Taliban to
intimidate civilians. In general, these tactics are difficult to track. These coercive tactics
represent a problematic omitted variable if they are indeed correlated with production and
further correlated with the sophistication of combat tactics used during the fighting sea-
son. These are plausible concerns. To address them, we incorporate additional information
from our military records which tracks attempts to intimidate the civilian population, using
methods like ‘night letters’ and shows of non-lethal force as well as deliberate killings of
government collaborators (like informants and security force recruits). Our main effect is
only slightly attenuated when we account for these rebel intimidation tactics in Columns 2
and 3 of Table A-4.

Table A-4: Impact of rebel capacity on within-day randomization of indirect fire attacks,
accounting for rebel intimidation tactics

(1) (2) (3)
Opium Revenue -0.0549∗∗∗ -0.0492∗∗∗ -0.0484∗∗∗

(0.0125) (0.0121) (0.0104)

Model Parameters
Fighting Season Fixed Effect Yes Yes Yes
Fighting Season Activity (levels) Yes Yes Yes
Growing Season Activity (levels) Yes Yes Yes
Planting Season Activity (levels) Yes Yes Yes
Additional Parameters
Taliban Intimidation No Yes No
Collaborator Killings No No Yes
Model Statistics
No. of Observations 600 600 600
No. of Clusters 154 154 154
R2 0.187 0.204 0.227

Notes: Outcome of interest is the (log) p-value of the randomness test.
The quantity of interest is opium revenue for a given district-year. All
regressions include fighting season fixed effects as well as controls for
the intensive margin of fighting during the fighting, harvest, and plant-
ing seasons respectively. Additional parameters are noted in the table
footer. Heteroskedasticity robust standard errors clustered by district
are reported in parentheses. Stars indicate *** p < 0.01, ** p < 0.05,
* p < 0.1.
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Table A-5: Estimating treatment effect bounds using the Oster coefficient stability test

Panel A: Baseline Regression Diagnostic Information
(1) (2)

Treatment Outcome Baseline effect Controlled effect
Variable Variable (Std. error), [R2] (Std. error), [R2]
Opium revenue Temporal clustering -0.0552*** (.0125) [0.128] -.0246*** (.0081) [0.374]

Panel B: Oster Coefficient Stability Test Results
(3) (4)

Treatment Outcome Effect for Rmax Alt. Effect for Rmax

Variable Variable ((βRmax
- βctrl)

2) [Rmax] ((βRmax
- βctrl)

2) [Rmax]
Opium revenue Temporal clustering -0.007 (.0003) [.486] -0.232 (.0431) [.486]

Notes: Bounds for treatment effects are estimated using the Oster coefficient stability test
(Oster, 2017). Unobservables are assumed to have as much explanatory power as the observ-
ables. Rmax set at 1.3 (the threshold suggested in (Oster, 2017)). Model specifications are
drawn from least and most conservative main specifications. *** p < 0.01, ** p < 0.05, *
p < 0.1.
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Table A-6: Heterogeneous effects of rebel capacity on within-day randomization of indirect
fire attacks with respect to historical territorial control by Taliban

(1) (2) (3) (4) (5)
Opium Revenue -0.0581∗∗∗ -0.0258∗∗∗ -0.0288∗∗∗ -0.0232∗∗ -0.0231∗∗

(0.0137) (0.00936) (0.00995) (0.00994) (0.00985)
Historical Taliban Control -0.0634 0.0974 0.109 0.111

(0.401) (0.404) (0.406) (0.407)
Hist. Control × Revenue -0.0328∗∗∗ -0.0307∗∗∗ -0.0325∗∗∗ -0.0325∗∗∗

(0.0120) (0.0116) (0.0121) (0.0120)

Model Parameters
Fighting Season Fixed Effect Yes Yes Yes Yes Yes
Fighting Season Activity (levels) No No Yes Yes Yes
Growing Season Activity (levels) No No No Yes Yes
Planting Season Activity (levels) No No No No Yes
Model Statistics
No. of Observations 600 600 600 600 600
No. of Clusters 154 154 154 154 154
R2 0.154 0.156 0.172 0.188 0.188

Notes: Outcome of interest is the (log) p-value of the randomness test. The quantity of interest is
opium revenue for a given district-year. All regressions include fighting season fixed effects as well
as controls for the intensive margin of fighting during the fighting, harvest, and planting seasons
respectively. Additional parameters are noted in the table footer. Heteroskedasticity robust
standard errors clustered by district are reported in parentheses. Stars indicate *** p < 0.01, **
p < 0.05, * p < 0.1.
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Table A-7: Reduced form effects of rebel capacity on production of indirect fire attacks

(1) (2) (3)
Suitability × Agg. Production 0.135∗∗∗ 0.0938∗∗∗ 0.0903∗∗

(0.0360) (0.0338) (0.0352)

Model Parameters
Fighting Season Fixed Effect Yes Yes Yes
Fighting Season Activity (levels) Yes Yes Yes
Growing Season Activity (levels) No Yes Yes
Planting Season Activity (levels) No No Yes
Model Statistics
No. of Observations 3582 3582 3582
No. of Clusters 398 398 398
R2 0.696 0.760 0.767

Notes: Outcome of interest is the (log) of indirect fire attacks dur-
ing the post-harvest fighting season. We add one to all observa-
tions before evaluating the logarithm. The quantity of interest is
opium revenue for a given district-year. The regression is reduced
form, using the primary instrument detailed in the IV section of
the text. All regressions include district and fighting season fixed
effects as well as controls for the intensive margin of fighting during
the fighting, harvest, and planting seasons respectively. Additional
parameters are noted in the table footer. Heteroskedasticity robust
standard errors clustered by district are reported in parentheses.
Stars indicate *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A-8: Second stage effects of rebel capacity on production of indirect fire attacks

(1) (2) (3)
Opium Revenue 0.0365∗∗∗ 0.0261∗∗ 0.0252∗∗

(0.0117) (0.0104) (0.0106)

Model Parameters
Fighting Season Fixed Effect Yes Yes Yes
Fighting Season Activity (levels) Yes Yes Yes
Growing Season Activity (levels) No Yes Yes
Planting Season Activity (levels) No No Yes
Model Statistics
No. of Observations 3582 3582 3582
No. of Clusters 398 398 398
R2 0.557 0.681 0.692

Notes: Outcome of interest is the (log) of indirect fire attacks dur-
ing the post-harvest fighting season. We add one to all observations
before evaluating the logarithm. The quantity of interest is opium
revenue for a given district-year. The regression displayed is the
second stage, using the primary instrument detailed in the IV sec-
tion of the text. All regressions include district and fighting season
fixed effects as well as controls for the intensive margin of fight-
ing during the fighting, harvest, and planting seasons respectively.
Additional parameters are noted in the table footer. Heteroskedas-
ticity robust standard errors clustered by district are reported in
parentheses. Stars indicate *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A-9: Impact of rebel capacity on within-day randomization of indirect fire attacks,
excluding non-producers

(1) (2) (3) (4)
Opium Revenue -0.139∗∗∗ -0.125∗∗∗ -0.116∗∗∗ -0.113∗∗∗

(0.0436) (0.0386) (0.0365) (0.0361)

Model Parameters
Fighting Season Fixed Effect Yes Yes Yes Yes
Fighting Season Activity (levels) No Yes Yes Yes
Growing Season Activity (levels) No No Yes Yes
Planting Season Activity (levels) No No No Yes
Model Statistics
No. of Observations 254 254 254 254
No. of Clusters 70 70 70 70
R2 0.151 0.185 0.213 0.217

Notes: Outcome of interest is the (log) p-value of the randomness test. The
quantity of interest is opium revenue for a given district-year. All regressions
include fighting season fixed effects. Column 2-4 add controls for the intensive
margin of fighting during the fighting, harvest, and planting seasons respectively.
Heteroskedasticity robust standard errors clustered by district are reported in
parentheses. Stars indicate *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A-10: Impact of rebel capacity on within-day randomization of indirect fire attacks,
adjusting measure of revenue

(1) (2) (3) (4)
Opium Revenue -0.139∗∗∗ -0.125∗∗∗ -0.116∗∗∗ -0.113∗∗∗

(0.0436) (0.0386) (0.0365) (0.0361)

Model Parameters
Fighting Season Fixed Effect Yes Yes Yes Yes
Fighting Season Activity (levels) No Yes Yes Yes
Growing Season Activity (levels) No No Yes Yes
Planting Season Activity (levels) No No No Yes
Model Statistics
No. of Observations 254 254 254 254
No. of Clusters 70 70 70 70
R2 0.150 0.185 0.213 0.217

Notes: Outcome of interest is the (log) p-value of the randomness test. The
quantity of interest is opium revenue for a given district-year. All regressions
include fighting season fixed effects. Column 2-4 add controls for the intensive
margin of fighting during the fighting, harvest, and planting seasons respectively.
Heteroskedasticity robust standard errors clustered by district are reported in
parentheses. Stars indicate *** p < 0.01, ** p < 0.05, * p < 0.1.
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A2.3 Additional IV Results

Aid delivery during growing season

Table A-11: Impact of rebel capacity on within-day randomization of indirect fire attacks,
instrumental variables approach (second stage), accounting for aid delivery

(1) (2) (3)
Opium Revenue -0.0741∗∗∗ -0.0743∗∗∗ -0.0725∗∗∗

(0.0247) (0.0247) (0.0234)

Model Parameters
Fighting Season Fixed Effect Yes Yes Yes
Fighting Season Activity (levels) Yes Yes Yes
Growing Season Activity (levels) Yes Yes Yes
Planting Season Activity (levels) Yes Yes Yes
Type of Aid No All CERP Agri./Irri. CERP
Model Statistics
No. of Observations 600 600 600
No. of Clusters 154 154 154
R2 0.173 0.173 0.180
IV Specification
IV Type Benchmark Benchmark Benchmark
Kleibergen-Paap F Statistic 187.4 187.1 177.9

Notes: Outcome of interest is the (log) p-value of the randomness test. The quan-
tity of interest is opium revenue for a given district-year instrumented using an
opium suitability index interacted with the prior year’s national-level production
(inverted). All regressions include fighting season fixed effects as well as con-
trols for the intensive margin of fighting during the fighting, harvest, and plant-
ing seasons respectively. Additional parameters are noted in the table footer.
Heteroskedasticity robust standard errors clustered by district are reported in
parentheses. Stars indicate *** p < 0.01, ** p < 0.05, * p < 0.1.
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Baseline suitability specification

Table A-12: Impact of suitability instrument on opium revenue, instrumental variables ap-
proach (first stage, main estimating sample)

(1) (2) (3) (4)
Suitability × Agg. Production 24.17∗∗∗ 24.20∗∗∗ 23.71∗∗∗ 23.72∗∗∗

(1.749) (1.763) (1.725) (1.732)

Model Parameters
Fighting Season Fixed Effect Yes Yes Yes Yes
Fighting Season Activity (levels) No Yes Yes Yes
Growing Season Activity (levels) No No Yes Yes
Planting Season Activity (levels) No No No Yes
Model Statistics
No. of Observations 600 600 600 600
No. of Clusters 154 154 154 154
R2 0.465 0.467 0.472 0.473

Notes: Outcome of interest is opium revenue for a given district-year. The
quantity of interest is the opium suitability index interacted with the prior
year’s national-level production (inverted). All regressions include fighting
season fixed effects as well as controls for the intensive margin of fighting
during the fighting, harvest, and planting seasons respectively. Additional
parameters are noted in the table footer. Heteroskedasticity robust standard
errors clustered by district are reported in parentheses. Stars indicate ***
p < 0.01, ** p < 0.05, * p < 0.1.

A-24



Table A-13: Impact of suitability instrument on opium revenue, instrumental variables ap-
proach (first stage, full panel sample)

(1) (2) (3) (4)
Suitability × Agg. Production 20.54∗∗∗ 20.42∗∗∗ 20.04∗∗∗ 20.01∗∗∗

(1.093) (1.083) (1.073) (1.076)

Model Parameters
Fighting Season Fixed Effect Yes Yes Yes Yes
Fighting Season Activity (levels) No Yes Yes Yes
Growing Season Activity (levels) No No Yes Yes
Planting Season Activity (levels) No No No Yes
Model Statistics
No. of Observations 3582 3582 3582 3582
No. of Clusters 398 398 398 398
R2 0.304 0.304 0.310 0.311

Notes: Outcome of interest is opium revenue for a given district-year. The
quantity of interest is the opium suitability index interacted with the prior
year’s national-level production (inverted). All regressions include fighting
season fixed effects as well as controls for the intensive margin of fighting
during the fighting, harvest, and planting seasons respectively. Additional
parameters are noted in the table footer. Heteroskedasticity robust standard
errors clustered by district are reported in parentheses. Stars indicate ***
p < 0.01, ** p < 0.05, * p < 0.1.
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Table A-14: Impact of suitability instrument on within-day randomization of indirect fire
attacks, instrumental variables approach (reduced form, main estimating sample)

(1) (2) (3) (4)
Suitability × Agg. Production -1.917∗∗∗ -1.904∗∗∗ -1.758∗∗∗ -1.758∗∗∗

(0.666) (0.660) (0.594) (0.595)

Model Parameters
Fighting Season Fixed Effect Yes Yes Yes Yes
Fighting Season Activity (levels) No Yes Yes Yes
Growing Season Activity (levels) No No Yes Yes
Planting Season Activity (levels) No No No Yes
Model Statistics
No. of Observations 600 600 600 600
No. of Clusters 154 154 154 154
R2 0.129 0.141 0.160 0.160

Notes: Outcome of interest is the (log) p-value of the randomness test. The
quantity of interest is the opium suitability index interacted with the prior
year’s national-level production (inverted). All regressions include fighting sea-
son fixed effects as well as controls for the intensive margin of fighting during
the fighting, harvest, and planting seasons respectively. Additional parameters
are noted in the table footer. Heteroskedasticity robust standard errors clus-
tered by district are reported in parentheses. Stars indicate *** p < 0.01, **
p < 0.05, * p < 0.1.
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Monotonicity assumption

Table A-15: Impact of suitability instrument on opium revenue, instrumental variables ap-
proach (first stage, main estimating sample) accounting for potential variation in instrument
compliance via irrigation mechanism

(1) (2) (3) (4)
Suitability × Agg. Production 23.72∗∗∗ 20.82∗∗∗ 23.52∗∗∗ 23.75∗∗∗

(1.732) (4.735) (2.492) (2.104)
Irrigated Area: 75th pctl and above 7.407∗∗

(3.224)
Suitability × Agg. Production × 75th 1.905

(4.893)
Irrigated Area: 90th pctl and above 7.344

(5.400)
Suitability × Agg. Production × 90th -2.039

(3.722)
Irrigated Area: 95th pctl and above 13.45∗

(7.676)
Suitability × Agg. Production × 95th -4.879

(4.781)

Model Parameters
Fighting Season Fixed Effect Yes Yes Yes Yes
Fighting Season Activity (levels) Yes Yes Yes Yes
Growing Season Activity (levels) Yes Yes Yes Yes
Planting Season Activity (levels) Yes Yes Yes Yes
Model Statistics
No. of Observations 600 600 600 600
No. of Clusters 154 154 154 154
R2 0.473 0.494 0.481 0.487

Notes: Outcome of interest is opium revenue for a given district-year. The quantity
of interest is the opium suitability index interacted with the prior year’s national-
level production (inverted). All regressions include fighting season fixed effects as
well as controls for the intensive margin of fighting during the fighting, harvest,
and planting seasons respectively. Additional parameters are noted in the table
footer. Heteroskedasticity robust standard errors clustered by district are reported
in parentheses. Stars indicate *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A-16: Impact of suitability instrument on opium revenue, instrumental variables ap-
proach (first stage, full panel sample) accounting for potential variation in instrument com-
pliance via irrigation mechanism

(1) (2) (3) (4)
Suitability × Agg. Production 20.01∗∗∗ 16.84∗∗∗ 19.50∗∗∗ 19.89∗∗∗

(1.076) (1.953) (1.313) (1.201)
Irrigated Area: 75th pctl and above 3.939∗∗

(1.564)
Suitability × Agg. Production × 75th 4.595∗∗

(2.113)
Irrigated Area: 90th pctl and above 0.186

(2.074)
Suitability × Agg. Production × 90th 2.076

(1.975)
Irrigated Area: 95th pctl and above 2.859

(2.879)
Suitability × Agg. Production × 95th 0.0556

(2.231)

Model Parameters
Fighting Season Fixed Effect Yes Yes Yes Yes
Fighting Season Activity (levels) Yes Yes Yes Yes
Growing Season Activity (levels) Yes Yes Yes Yes
Planting Season Activity (levels) Yes Yes Yes Yes
Model Statistics
No. of Observations 3582 3582 3582 3582
No. of Clusters 398 398 398 398
R2 0.311 0.322 0.312 0.312

Notes: Outcome of interest is opium revenue for a given district-year. The quantity
of interest is the opium suitability index interacted with the prior year’s national-
level production (inverted). All regressions include fighting season fixed effects as
well as controls for the intensive margin of fighting during the fighting, harvest,
and planting seasons respectively. Additional parameters are noted in the table
footer. Heteroskedasticity robust standard errors clustered by district are reported
in parentheses. Stars indicate *** p < 0.01, ** p < 0.05, * p < 0.1.
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LASSO-based suitability specification

Table A-17: Impact of suitability instrument on opium revenue, instrumental variables ap-
proach (first stage, main sample, LASSO selection)

(1) (2) (3) (4)
SuitabilityLASSO× Agg. Production 22.87∗∗∗ 22.88∗∗∗ 22.39∗∗∗ 22.39∗∗∗

(2.135) (2.150) (2.063) (2.059)

Model Parameters
Fighting Season Fixed Effect Yes Yes Yes Yes
Fighting Season Activity (levels) No Yes Yes Yes
Growing Season Activity (levels) No No Yes Yes
Planting Season Activity (levels) No No No Yes
Model Statistics
No. of Observations 600 600 600 600
No. of Clusters 154 154 154 154
R2 0.429 0.431 0.435 0.436

Notes: Outcome of interest is the (log) p-value of the randomness test. The
quantity of interest is the opium suitability index interacted with the prior year’s
national-level production (inverted) where inputs are selected via LASSO. All re-
gressions include fighting season fixed effects as well as controls for the intensive
margin of fighting during the fighting, harvest, and planting seasons respectively.
Additional parameters are noted in the table footer. Heteroskedasticity robust
standard errors clustered by district are reported in parentheses. Stars indicate
*** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A-18: Impact of suitability instrument on opium revenue, instrumental variables ap-
proach (first stage, full panel sample, LASSO selection)

(1) (2) (3) (4)
SuitabilityLASSO× Agg. Production 18.05∗∗∗ 17.92∗∗∗ 17.51∗∗∗ 17.49∗∗∗

(1.186) (1.168) (1.150) (1.150)

Model Parameters
Fighting Season Fixed Effect Yes Yes Yes Yes
Fighting Season Activity (levels) No Yes Yes Yes
Growing Season Activity (levels) No No Yes Yes
Planting Season Activity (levels) No No No Yes
Model Statistics
No. of Observations 3582 3582 3582 3582
No. of Clusters 398 398 398 398
R2 0.257 0.258 0.264 0.266

Notes: Outcome of interest is the (log) p-value of the randomness test. The
quantity of interest is the opium suitability index interacted with the prior year’s
national-level production (inverted) where inputs are selected via LASSO. All re-
gressions include fighting season fixed effects as well as controls for the intensive
margin of fighting during the fighting, harvest, and planting seasons respectively.
Additional parameters are noted in the table footer. Heteroskedasticity robust
standard errors clustered by district are reported in parentheses. Stars indicate
*** p < 0.01, ** p < 0.05, * p < 0.1.

A-30



Table A-19: Impact of suitability instrument on within-day randomization of indirect fire
attacks, instrumental variables approach (reduced form, main sample, LASSO selection)

(1) (2) (3) (4)
SuitabilityLASSO× Agg. Production -1.735∗∗∗ -1.731∗∗∗ -1.569∗∗∗ -1.569∗∗∗

(0.653) (0.645) (0.589) (0.589)

Model Parameters
Fighting Season Fixed Effect Yes Yes Yes Yes
Fighting Season Activity (levels) No Yes Yes Yes
Growing Season Activity (levels) No No Yes Yes
Planting Season Activity (levels) No No No Yes
Model Statistics
No. of Observations 600 600 600 600
No. of Clusters 154 154 154 154
R2 0.111 0.124 0.143 0.143

Notes: Outcome of interest is the (log) p-value of the randomness test. The quantity
of interest is the opium suitability index interacted with the prior year’s national-
level production (inverted) where inputs are selected via LASSO. All regressions
include fighting season fixed effects as well as controls for the intensive margin of
fighting during the fighting, harvest, and planting seasons respectively. Additional
parameters are noted in the table footer. Heteroskedasticity robust standard errors
clustered by district are reported in parentheses. Stars indicate *** p < 0.01, **
p < 0.05, * p < 0.1.
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Agronomic inputs specification

Figure A-1: Estimated first stage effects of agronomic inputs on opium revenue.
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(b) Temperature-Day Instruments

Notes: Results from Column 4 of Table A-20, where the outcome is opium revenue (as measured in the main
specification) and the right hand side variables include the first stage instruments from our third IV strategy
(raw agronomic inputs: precipitation-day (mm) and temperature-day (Kelvin) binned measures). Panel (a)
plots the precipitation-day coefficients. Panel (b) displays the temperature-day coefficients.
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Table A-20: Impact of agronomic instruments on opium revenue, instrumental variables
approach (first stage, main sample, multiple IV approach)

(1) (2) (3) (4)
Precip Days, 0-.05 -1.528∗∗∗ -1.533∗∗∗ -1.549∗∗∗ -1.548∗∗∗

(0.436) (0.436) (0.433) (0.434)
Precip Days, 0.5-1 -1.583∗∗∗ -1.592∗∗∗ -1.618∗∗∗ -1.617∗∗∗

(0.489) (0.486) (0.483) (0.484)
Precip Days, 1-2 -1.090∗∗ -1.112∗∗ -1.165∗∗ -1.164∗∗

(0.547) (0.554) (0.552) (0.554)
Precip Days, 2-3 -1.409∗∗ -1.379∗∗ -1.397∗∗ -1.396∗∗

(0.674) (0.670) (0.666) (0.669)
Precip Days, 3-4 -0.726 -0.747 -0.780 -0.780

(0.747) (0.748) (0.745) (0.746)
Precip Days, 4-5 -1.214 -1.264∗ -1.306∗ -1.306∗

(0.767) (0.758) (0.753) (0.754)
Precip Days, 5+ -1.166 -1.187 -1.083 -1.086

(0.874) (0.868) (0.857) (0.854)
Temp Days, up to 270 -0.207∗ -0.216∗ -0.227∗∗ -0.227∗∗

(0.117) (0.116) (0.113) (0.112)
Temp Days, 270-275 -0.284∗ -0.292∗ -0.298∗ -0.299∗

(0.158) (0.156) (0.153) (0.154)
Temp Days, 275-280 -0.0866 -0.0924 -0.108 -0.109

(0.187) (0.186) (0.182) (0.181)
Temp Days, 280-285 0.0702 0.0605 0.0423 0.0414

(0.127) (0.127) (0.125) (0.124)
Temp Days, 285-290 0.108 0.0990 0.0817 0.0814

(0.193) (0.193) (0.189) (0.188)
Temp Days, 290-295 -0.300 -0.304 -0.327 -0.327

(0.258) (0.258) (0.257) (0.257)
Temp Days, 295-300 0.916∗∗∗ 0.912∗∗∗ 0.909∗∗∗ 0.910∗∗∗

(0.205) (0.204) (0.206) (0.205)
Temp Days, 300-305 1.451∗∗∗ 1.454∗∗∗ 1.420∗∗∗ 1.418∗∗∗

(0.351) (0.352) (0.350) (0.357)
Temp Days, 305-310 2.609∗∗ 2.628∗∗∗ 2.566∗∗ 2.567∗∗

(1.002) (1.006) (1.007) (1.007)
Temp Days, 310-315 -1.431 -1.765 -1.332 -1.312

(3.158) (3.179) (3.130) (3.181)

Model Parameters
Fighting Season Fixed Effect Yes Yes Yes Yes
Fighting Season Activity (levels) No Yes Yes Yes
Growing Season Activity (levels) No No Yes Yes
Planting Season Activity (levels) No No No Yes
Model Statistics
No. of Observations 600 600 600 600
No. of Clusters 154 154 154 154
R2 0.455 0.457 0.459 0.459

Notes: Outcome of interest is the (log) p-value of the randomness test. The
quantities of interest are the estimated effects of various precipitation-day and
temperature-day binned classifications. Precipitation is in millimeters and tem-
perature is in Kelvin. All regressions include fighting season fixed effects as well as
controls for the intensive margin of fighting during the fighting, harvest, and plant-
ing seasons respectively. Additional parameters are noted in the table footer. Het-
eroskedasticity robust standard errors clustered by district are reported in paren-
theses. Stars indicate *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A-21: Impact of agronomic instruments on opium revenue, instrumental variables
approach (first stage, full panel sample, multiple IV approach)

(1) (2) (3) (4)
Precip Days, 0-.05 -0.768∗∗∗ -0.748∗∗∗ -0.742∗∗∗ -0.738∗∗∗

(0.218) (0.218) (0.219) (0.219)
Precip Days, 0.5-1 -0.795∗∗∗ -0.766∗∗∗ -0.766∗∗∗ -0.757∗∗∗

(0.246) (0.246) (0.247) (0.247)
Precip Days, 1-2 -1.054∗∗∗ -1.008∗∗∗ -1.009∗∗∗ -1.001∗∗∗

(0.282) (0.283) (0.283) (0.283)
Precip Days, 2-3 -1.048∗∗∗ -1.031∗∗∗ -1.023∗∗∗ -1.015∗∗∗

(0.267) (0.267) (0.268) (0.268)
Precip Days, 3-4 -0.225 -0.196 -0.204 -0.207

(0.314) (0.315) (0.316) (0.316)
Precip Days, 4-5 -0.675∗∗ -0.638∗∗ -0.652∗∗ -0.651∗∗

(0.294) (0.295) (0.294) (0.294)
Precip Days, 5+ -0.738∗∗ -0.706∗ -0.646∗ -0.654∗

(0.371) (0.370) (0.370) (0.371)
Temp Days, up to 270 -0.225∗∗∗ -0.224∗∗∗ -0.229∗∗∗ -0.231∗∗∗

(0.0663) (0.0664) (0.0660) (0.0660)
Temp Days, 270-275 -0.194∗∗ -0.192∗∗ -0.198∗∗∗ -0.202∗∗∗

(0.0752) (0.0753) (0.0749) (0.0749)
Temp Days, 275-280 -0.332∗∗∗ -0.336∗∗∗ -0.339∗∗∗ -0.343∗∗∗

(0.0936) (0.0936) (0.0927) (0.0929)
Temp Days, 280-285 -0.0596 -0.0581 -0.0743 -0.0803

(0.0745) (0.0748) (0.0750) (0.0748)
Temp Days, 285-290 -0.0811 -0.0786 -0.0916 -0.0934

(0.0793) (0.0797) (0.0791) (0.0789)
Temp Days, 290-295 -0.127 -0.126 -0.137 -0.136

(0.109) (0.109) (0.109) (0.109)
Temp Days, 295-300 0.381∗∗∗ 0.376∗∗∗ 0.384∗∗∗ 0.389∗∗∗

(0.121) (0.120) (0.120) (0.120)
Temp Days, 300-305 0.857∗∗∗ 0.843∗∗∗ 0.793∗∗∗ 0.772∗∗∗

(0.193) (0.192) (0.191) (0.192)
Temp Days, 305-310 1.320∗∗∗ 1.340∗∗∗ 1.268∗∗∗ 1.263∗∗∗

(0.407) (0.401) (0.396) (0.394)
Temp Days, 310-315 8.374∗∗∗ 8.261∗∗∗ 9.125∗∗∗ 9.382∗∗∗

(3.033) (2.911) (2.863) (2.956)

Model Parameters
Fighting Season Fixed Effect Yes Yes Yes Yes
Fighting Season Activity (levels) No Yes Yes Yes
Growing Season Activity (levels) No No Yes Yes
Planting Season Activity (levels) No No No Yes
Model Statistics
No. of Observations 3582 3582 3582 3582
No. of Clusters 398 398 398 398
R2 0.204 0.206 0.213 0.214

Notes: Outcome of interest is the (log) p-value of the randomness test. The
quantities of interest are the estimated effects of various precipitation-day and
temperature-day binned classifications. Precipitation is in millimeters and tem-
perature is in Kelvin. All regressions include fighting season fixed effects as well as
controls for the intensive margin of fighting during the fighting, harvest, and plant-
ing seasons respectively. Additional parameters are noted in the table footer. Het-
eroskedasticity robust standard errors clustered by district are reported in paren-
theses. Stars indicate *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A-22: Impact of agronomic instruments on within-day randomization of indirect fire
attacks, instrumental variables approach (reduced form, main sample, multiple IV approach)

(1) (2) (3) (4)
Precip Days, 0-.05 0.0462 0.0442 0.0524 0.0525

(0.0795) (0.0788) (0.0793) (0.0794)
Precip Days, 0.5-1 0.0443 0.0408 0.0543 0.0547

(0.0849) (0.0845) (0.0855) (0.0857)
Precip Days, 1-2 0.0484 0.0393 0.0666 0.0668

(0.0898) (0.0873) (0.0877) (0.0877)
Precip Days, 2-3 0.0784 0.0905 0.100 0.100

(0.117) (0.113) (0.111) (0.112)
Precip Days, 3-4 0.107 0.0986 0.115 0.115

(0.143) (0.143) (0.148) (0.148)
Precip Days, 4-5 0.115 0.0950 0.116 0.116

(0.109) (0.108) (0.108) (0.108)
Precip Days, 5+ -0.0768 -0.0850 -0.138 -0.139

(0.210) (0.210) (0.202) (0.202)
Temp Days, up to 270 0.0237 0.0203 0.0260 0.0259

(0.0178) (0.0172) (0.0172) (0.0172)
Temp Days, 270-275 0.0420∗ 0.0388∗ 0.0421∗ 0.0420∗

(0.0233) (0.0230) (0.0227) (0.0230)
Temp Days, 275-280 0.0369 0.0346 0.0425∗ 0.0424∗

(0.0248) (0.0243) (0.0249) (0.0251)
Temp Days, 280-285 0.0193 0.0154 0.0247 0.0245

(0.0217) (0.0216) (0.0221) (0.0226)
Temp Days, 285-290 0.0206 0.0169 0.0258 0.0257

(0.0288) (0.0283) (0.0263) (0.0263)
Temp Days, 290-295 0.0832∗∗ 0.0817∗∗ 0.0937∗∗ 0.0937∗∗

(0.0402) (0.0400) (0.0416) (0.0416)
Temp Days, 295-300 0.00547 0.00387 0.00505 0.00512

(0.0344) (0.0339) (0.0339) (0.0341)
Temp Days, 300-305 -0.171∗∗ -0.171∗∗ -0.154∗∗ -0.154∗∗

(0.0750) (0.0738) (0.0739) (0.0747)
Temp Days, 305-310 -0.607∗ -0.600∗∗ -0.568∗∗ -0.568∗∗

(0.308) (0.303) (0.284) (0.284)
Temp Days, 310-315 3.420∗∗∗ 3.285∗∗∗ 3.063∗∗∗ 3.067∗∗∗

(1.013) (0.988) (0.907) (0.914)

Model Parameters
Fighting Season Fixed Effect Yes Yes Yes Yes
Fighting Season Activity (levels) No Yes Yes Yes
Growing Season Activity (levels) No No Yes Yes
Planting Season Activity (levels) No No No Yes
Model Statistics
No. of Observations 600 600 600 600
No. of Clusters 154 154 154 154
R2 0.149 0.160 0.183 0.183

Notes: Outcome of interest is the (log) p-value of the randomness test. The
quantities of interest are the estimated effects of various precipitation-day and
temperature-day binned classifications. Precipitation is in millimeters and tem-
perature is in Kelvin. All regressions include fighting season fixed effects as
well as controls for the intensive margin of fighting during the fighting, harvest,
and planting seasons respectively. Additional parameters are noted in the ta-
ble footer. Heteroskedasticity robust standard errors clustered by district are
reported in parentheses. Stars indicate *** p < 0.01, ** p < 0.05, * p < 0.1.
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A2.4 Additional Heterogeneous Effects: Intelligence Gathering

Table A-23: Heterogeneous effects of rebel capacity on within-day randomization of indirect
fire attacks with respect to potential intelligence gathering via security base breaches

(1) (2) (3) (4) (5)
Opium Revenue -0.0581∗∗∗ -0.0564∗∗∗ -0.0574∗∗∗ -0.0537∗∗∗ -0.0537∗∗∗

(0.0137) (0.0143) (0.0141) (0.0131) (0.0131)
Infiltration 0.888∗∗∗ 0.740∗∗∗ 0.760∗∗ 0.761∗∗

(0.239) (0.257) (0.307) (0.307)
Infiltration × Revenue -0.0418∗∗∗ -0.0350∗∗ -0.0308∗ -0.0308∗

(0.0131) (0.0146) (0.0160) (0.0161)

Model Parameters
Fighting Season Fixed Effect Yes Yes Yes Yes Yes
Fighting Season Activity (levels) No No Yes Yes Yes
Growing Season Activity (levels) No No No Yes Yes
Planting Season Activity (levels) No No No No Yes
Model Statistics
No. of Observations 600 600 600 600 600
No. of Clusters 154 154 154 154 154
R2 0.154 0.157 0.173 0.188 0.188

Notes: Outcome of interest is the (log) p-value of the randomness test. The quantity of interest is
opium revenue for a given district-year. All regressions include fighting season fixed effects as well
as controls for the intensive margin of fighting during the fighting, harvest, and planting seasons
respectively. Additional parameters are noted in the table footer. Heteroskedasticity robust
standard errors clustered by district are reported in parentheses. Stars indicate *** p < 0.01, **
p < 0.05, * p < 0.1.
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Table A-24: Heterogeneous effects of rebel capacity on within-day randomization of indirect
fire attacks with respect to potential intelligence gathering via insider attacks

(1) (2) (3) (4) (5)
Opium Revenue -0.0581∗∗∗ -0.0461∗∗∗ -0.0470∗∗∗ -0.0433∗∗∗ -0.0433∗∗∗

(0.0137) (0.0110) (0.0111) (0.00921) (0.00920)
Insiders -2.026 -1.924 -1.868 -1.861

(1.479) (1.385) (1.526) (1.511)
Insiders × Revenue -0.0932∗∗∗ -0.0899∗∗∗ -0.0903∗∗∗ -0.0909∗∗∗

(0.0302) (0.0296) (0.0335) (0.0344)

Model Parameters
Fighting Season Fixed Effect Yes Yes Yes Yes Yes
Fighting Season Activity (levels) No No Yes Yes Yes
Growing Season Activity (levels) No No No Yes Yes
Planting Season Activity (levels) No No No No Yes
Model Statistics
No. of Observations 600 600 600 600 600
No. of Clusters 154 154 154 154 154
R2 0.154 0.256 0.263 0.278 0.278

Notes: Outcome of interest is the (log) p-value of the randomness test. The quantity of interest is
opium revenue for a given district-year. All regressions include fighting season fixed effects as well
as controls for the intensive margin of fighting during the fighting, harvest, and planting seasons
respectively. Additional parameters are noted in the table footer. Heteroskedasticity robust
standard errors clustered by district are reported in parentheses. Stars indicate *** p < 0.01, **
p < 0.05, * p < 0.1.
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A2.5 Additional Heterogeneous Effects: Labor Scarcity

Table A-25: Effects of rebel capacity and battlefield losses on within-day randomization of
indirect fire attacks, accounting for counterinsurgent operations from Tables A-2 and A-3]

(1) (2) (3)
Opium Revenue -0.0191∗∗∗ -0.0200∗∗∗ -0.0215∗∗∗

(0.00574) (0.00698) (0.00670)
Battlefield Losses 0.0486∗∗ 0.0828∗∗∗

(0.0207) (0.0274)

Model Parameters
Fighting Season (FS) Fixed Effect Yes Yes Yes
FS Activity (levels) No Yes Yes
Growing Season Activity (levels) No Yes Yes
Planting Season Activity (levels) No Yes Yes
FS Combat Operations (all, levels) Yes Yes No
FS COIN Operations (all, levels) No No Yes
Model Statistics
No. of Observations 600 600 600
No. of Clusters 154 154 154
R2 0.496 0.506 0.542

Notes: Outcome of interest is the (log) p-value of the randomness test.
The quantity of interest is opium revenue for a given district-year. All
regressions include fighting season fixed effects as well as controls for the
intensive margin of fighting during the fighting, harvest, and planting
seasons respectively. Additional parameters are noted in the table footer.
Fighting season parameters are notated with the abbreviation FS. Bat-
tlefield losses in our sample have a mean of 4.605 and standard deviation
of 10.547. Heteroskedasticity robust standard errors clustered by district
are reported in parentheses. Stars indicate *** p < 0.01, ** p < 0.05, *
p < 0.1.
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A2.6 Varying Control over Attack Timing

As we describe in the main text, insurgents have varying levels of control over the timing of
their attacks. Indirect fire events can be initiated at any time against stationary targets like
bases or military outposts. The timing of direct fire and IED attacks cannot be controlled
unilaterally by rebels. Close combat, for example, is often characterized by attacks on
convoys and non-stationary targets. Troops and vehicles are rotated from locations on non-
random schedules. The timing of these attacks, therefore, is consistently less random as a
consequence of government strategy, not rebel tactics. Similarly, IEDs may be emplaced
hours or days before they are triggered by a passing convoy. Rank ordered, rebels have the
least control over the timing of roadside bomb attacks.

We replicate the visual evidence we introduce in our main results in Figures A-2 and A-3.
Notice that direct fire, over which insurgents maintain some limited control over timing, is
negatively correlated with revenue but the slope is consistently flatter than for indirect fire
attacks (over which rebels have unilateral timing control). For IEDs, the coefficient is effec-
tively zero. We introduce the regression-based evidence in Tables A-26 and A-27. Although
direct fire attacks are consistently negatively correlated with revenue, the magnitude of the
main effect (when compared to our indirect fire results) is consistently weaker. Similarly,
although our point estimates are consistently negative with respect to roadside bombs, our
precision is substantially diminished. These results are consistent with our main effects since
rebels lack the ability to control the timing of these other attack types.
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Figure A-2: Bivariate relationship between opium revenue and p-value of randomization test
of combat (direct fire attacks) in Afghanistan

0

20

40

60

80

O
pi

um
 re

ve
nu

e

-20 -15 -10 -5 0
Logarithm of p-values from KS test -- Direct Fire Attacks

Observed opium revenue/p-value Fit line with 95% CI

Figure A-3: Bivariate relationship between opium revenue and p-value of randomization test
of combat (IED attacks) in Afghanistan
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Table A-26: Impact of rebel capacity on within-day randomization of direct fire attacks

(1) (2) (3) (4)
Opium Revenue -0.0309∗∗∗ -0.0110∗∗∗ -0.0121∗∗∗ -0.0119∗∗∗

(0.00780) (0.00292) (0.00328) (0.00327)

Model Parameters
Fighting Season Fixed Effect Yes Yes Yes Yes
Fighting Season Activity (levels) No Yes Yes Yes
Growing Season Activity (levels) No No Yes Yes
Planting Season Activity (levels) No No No Yes
Model Statistics
No. of Observations 1128 1128 1128 1128
No. of Clusters 236 236 236 236
R2 0.0963 0.448 0.450 0.464

Notes: Outcome of interest is the (log) p-value of the randomness test. The quantity
of interest is opium revenue for a given district-year. All regressions include fighting
season fixed effects. Column 2-4 add controls for the intensive margin of fighting
during the fighting, harvest, and planting seasons respectively. Heteroskedasticity
robust standard errors clustered by district are reported in parentheses. Stars indi-
cate *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A-27: Impact of rebel capacity on within-day randomization of IED attacks

(1) (2) (3) (4)
Opium Revenue -0.00849∗∗ 0.000559 -0.000232 -0.00000219

(0.00385) (0.00259) (0.00280) (0.00270)

Model Parameters
Fighting Season Fixed Effect Yes Yes Yes Yes
Fighting Season Activity (levels) No Yes Yes Yes
Growing Season Activity (levels) No No Yes Yes
Planting Season Activity (levels) No No No Yes
Model Statistics
No. of Observations 653 653 653 653
No. of Clusters 161 161 161 161
R2 0.0700 0.179 0.186 0.186

Notes: Outcome of interest is the (log) p-value of the randomness test. The quantity
of interest is opium revenue for a given district-year. All regressions include fight-
ing season fixed effects. Column 2-4 add controls for the intensive margin of fighting
during the fighting, harvest, and planting seasons respectively. Heteroskedasticity ro-
bust standard errors clustered by district are reported in parentheses. Stars indicate
*** p < 0.01, ** p < 0.05, * p < 0.1.
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