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Abstract 

 
Natural resource management involves acquiring and using information about the stock being managed.  
Assessment of available stocks is subject to multiple forms of uncertainty, even when budgetary and 
technical resources are available. Here the focus is on uncertainty in the level of population of a 
harvested species. We allow for learning to reduce uncertainty where information may be generated 
through resource use as well as assessment independent of resource use. From an economic 
perspective, investment in stock assessment should be weighed against its expected benefit in terms of 
improved management performance. The manager chooses the level of resource use and independent 
assessment in order to maximize the expected net present value of rents. In the process, the manager 
takes into account the value of information in the form of more precise stock level estimates. We find 
that the dynamics of learning and opportunities for policy experimentation in our model differ 
substantially from simpler cases where information involving harvesting data is unused and in which 
independent assessments are always available at no cost. Our model provides insight into the economic 
value generated by different levels of investment in learning, in particular the return on investment in 
information. We illustrate the model with a numerical example of the joint harvest and stock 
assessment problem in fisheries.   
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1. Introduction 
 
Renewable resource management involves acquiring and using information about managed 
stocks. For example, groundwater reserves and recharge rates must be measured. Current 
abundance estimates for many threatened species, even well-known species like African 
elephants, are subject to considerable uncertainty (Chase et al. 2016). In fisheries management, 
a standard practice is to coordinate regulations like harvest limits with a stock assessment, the 
aim of which is to predict how management choices will affect future yield and stock 
abundance. Even when budgetary and technical resources exist to produce a cutting-edge 
assessment, results are subject to substantial uncertainty (Ralston et al. 2011). Disease 
management focuses on early detection and measurement of infectious disease outbreaks, in 
which the dynamics of susceptible and infected populations can be challenging to track 
(MacLachlan and Springborn 2016). 
 
State uncertainty describes a decision problem involving a key state variable, like the 
abundance of a wild population, which is either observed with error or not observed at all in 
more or more periods. While state uncertainty has been recognized as being fundamental to 
most renewable resource management problems, methods for modeling optimal management 
that account for state uncertainty have been slow to develop (LaRiviere et al. 2018). Recently 
progress has been made so that standard bioeconomic models can be analyzed after 
introducing state uncertainty (MacLachlan et al. 2016, Kling et al. 2017, Memarzadeh et al. 
2019, Sloggy et al. 2019). Among the insights from these models are findings on optimal 
investment in learning by measuring the uncertain state variable, as well as the potential cost 
of applying policies based on conventional perfect-observability models. 
 
Despite considerable recent progress, state uncertainty in most analyses is considered in a 
limited sense. One common simplification is that state variable measurements are received for 
free in every decision period, perhaps from an established monitoring program with negligible 
non-sunk costs. Also, only one means of measurement is typically considered – i.e., at most one 
type of observation is available to use. In practice, there may be multiple methods available to 
obtain information about the status of a resource. A well-known example is marine fisheries 
stock assessment, which may incorporate “fishery-dependent” catch data and fishery 
independent measurements to produce an estimate of stock abundance. For problems that 
involve costly measurement through potentially more than one approach, cost-effective 
learning jointly with other management activities is not well understood. (Nichols and Williams 
2006). 
 
We study the when and the how of learning about an uncertain renewable resource in this 
paper. Our bioeconomic optimal harvest model features two types of investment in population 
measurement: acquiring and learning from catch per-unit effort (CPUE), or direct monitoring of 
population abundance. Neither measurement is freely received by the decision maker in our 
model, and it is possible to pay to learn from both in the same period. The resulting model is a 
continuous-state partially observable Markov decision process (POMDP). We develop and apply 
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a novel numerical approximation approach that provides a tractable means of modeling how 
information available to the decision maker develops over time. 
 
 Our results show that optimal learning about an uncertain resource state can involve irregular 
investment in obtaining measurements. Depending on cost assumptions, alternative solution 
concepts that assume investment in measurement occurs every decision period may entail 
substantial over-investment in acquiring information. To the best of our knowledge, our 
analysis is the first to characterize optimal investment in both catch-based and catch-
independent monitoring information as part of a single management strategy. 
 
The paper is structured as follows. The review of our methods includes a description of the 
process, observation, and learning components of our model. Following a description of our 
approximation strategy and numerical solution procedure in Section 2, we present results on 
the optimal policy. We compare properties of our model under different assumptions for costs 
with alternative solution concepts in Section 3. Our concluding discussion discusses 
opportunities for future research. 
 
 
2. Methods 
 
We model the problem of a decision maker–the “resource manager”–who chooses allowable 
harvest and investment in measurement of a population. Dynamics of the population are 
stochastic and never perfectly observed, which introduces state uncertainty. Our model relaxes 
two key restrictions imposed in most related models that deal with state uncertainty. First, 
rather than always being free and/or exogenously given, optional population observations are 
costly to acquire. Second, the decision maker has two ways of investing in population 
measurement: learning from catch per-unit effort (CPUE) and/or learning from a monitoring 
activity that is independent of CPUE.  
 
While our analysis nests a number of related dynamic optimization models, it involves a 
number of important simplifying assumptions. Like nearly all dynamic optimization models in 
resource economics that consider state uncertainty, we assume the bioeconomic process 
model (including the population state transition model and objective function) are known to 
the resource manager. In particular, we do not consider parameter uncertainty. Second, in 
order to connect our analysis to related work, we focus on a stylized management problem 
concerning a valuable harvested species such as wild game or marine fish, and do not consider 
related applications like invasive species management (Kotani et al. 2011). In our concluding 
discussion we preview ongoing work to generalize the model presented here to simultaneously 
consider state and parameter uncertainty. 
 
Next, we present the model by introducing, in turn, the population model, observation 
(learning) model and the integrated decision problem. Finally, we describe the numerical 
solution method and present our application, including functional form assumptions and base 
parameter values. 
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2.1. Population Model 
 
In each period 𝑡, the resource manager chooses the expected share of harvest of a stock 𝑋𝑡 by 
selecting the level of a harvest effort control 𝑈𝑡. The realized amount of harvest 𝐻𝑡, is 
determined by a standard Gordon-Schaffer assumption (Gordon 1953, 1954) via the catch 
equation: 
 

𝐻𝑡 = 𝑞(𝜉𝑡
𝑞

; 𝑈𝑡)𝑈𝑡𝑋𝑡 

 
Effort is normalized so that 𝑈𝑡 ∈ [0,1]. Catch per-unit effort when 𝑈𝑡 is nonzero therefore takes 
the following form: 
 

𝐶𝑃𝑈𝐸𝑡 = 𝑞(𝜉𝑡
𝑞

; 𝑈𝑡)𝑋𝑡 

 
We follow the conventional assumption that realizations of harvest conditional on a non-zero 
effort level and the current stock level are stochastic by including a stochastic catchability term 

𝑞(𝜉𝑡
𝑞

; 𝑈𝑡). CPUE is unlikely to have the same coefficient of variation (𝐶𝑉) (conditional on the 

true stock level) when effort is very low as it does when effort is very high. We build flexibility 
into this component of the model by representing realizations of catchability as draws from a 
parameterized density that is bounded on the unit interval, but shifts as a function of effort. In 

Eq. (1), 𝜉𝑡
𝑞

is an iid uniform draw, and 𝑞(⋅) is an inverse CDF function that admits 𝑈𝑡 as a 

parameter restriction. In our application, we assume that 𝐸[𝑞(𝜉𝑡
𝑞

; 𝑈𝑡)|𝑈𝑡 = 𝑈𝑖] = 𝑞̅ for all 

feasible effort choices 𝑈𝑖, and 𝐶𝑉[𝑞(𝜉𝑡
𝑞

; 𝑈𝑡)|𝑈𝑡 = 𝑈𝑖] is a decreasing function of 𝑈𝑖. To simplify 

notation, in what follows we write 𝑞(𝜉𝑡
𝑞

; 𝑈𝑡) ≡ 𝑞(𝑈𝑡). We include additional details on our 

numerical implementation of catchability and other densities involved in the model, as well as 
base parameter values, in Section 2.5 below. Overall, this structure encodes the notion that 
information gleaned from observing CPUE is less “noisy” the great the level of harvest effort.  
 
Population growth is stochastic and is produced from escapement 𝑆𝑡 following harvest: 𝑆𝑡 =
𝑋𝑡 − 𝐻𝑡. We adopt a stochastic Beverton-Holt model (Beverton & Holt, 1957) for the 
population state equation: 
 

𝑋𝑡+1 = (
(1 + 𝑟)𝑆𝑡

1 + (
𝑟
𝐾

) 𝑆𝑡

) 𝑍𝑡
𝑔

 

 
In Eq. (3), 𝑟 is a discrete time deterministic growth rate, 𝐾 is the environmental carrying 

capacity (where expected future population equals escapement) and 𝑍𝑡
𝑔

 is an iid growth shock 
with positive support. 
 
 

(1) 

(2) 

(3) 
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2.2. Observation Model 
 
Observations of the stock are not free nor are they perfect. Instead, two types of noisy 
measurements of the stock are available. Each period the resource manager decides whether 
to incur the cost of obtaining one or both observations.  
 
The first is CPUE (Eq. (2)). A control 𝐿𝑡 ∈ {0,1} is an indicator for the manager choosing to 
acquire and learn from CPUE in period 𝑡. The catchability shock 𝑞𝑡(𝑈𝑡) acts as an observation 
shock that prevents the resource manager from observing the population perfectly. Our 
assumption that the CV of 𝑞𝑡(𝑈𝑡) is decreasing in 𝑈𝑡 means that higher levels of harvest effort 
produce a more informative estimate of 𝑋𝑡, assuming the manager also chooses to invest in 
learning from CPUE. When 𝐿𝑡 = 0, the CPUE measurement is not received. 
 
The second method of observing the population is monitoring. A continuous monitoring effort 
control variable 𝑀𝑡 ∈ [0,1], when non-zero, produces an observation 𝑌𝑡+1 received at the 
beginning of the next period: 
 

𝑌𝑡+1 = 𝑍𝑚(𝜉𝑡+1
𝑚 ; 𝑀𝑡)𝑋𝑡+1 

  
We label Eq. (4) the monitoring observation equation. The strictly positive stochastic term 
𝑍𝑚(𝜉𝑡

𝑚; 𝑀𝑡−1) behaves similarly to catchability in terms of its relationship to the corresponding 
control variable choice. The function 𝑍𝑚(⋅) is an inverse CDF function for a parametrized 
density that maps the iid uniform shock 𝜉𝑡

𝑚 to a draw from the corresponding density, subject 
to the constraint on the parameters imposed by the choice of 𝑀𝑡−1. We assume that 

𝐸 [
1

𝑍𝑚(𝜉𝑡+1
𝑚 ;𝑀𝑡)

|𝑀𝑡 = 𝑀𝑖] = 1 ∀𝑀𝑖 ∈ (0,1] and that 𝐶𝑉[𝑍𝑚(𝜉𝑡+1
𝑚 ; 𝑀𝑡)|𝑀𝑡 = 𝑀𝑖] is decreasing in 

𝑀𝑖 over (0,1]. These restrictions serve two purposes. First, 𝑌𝑡 is an unbiased estimator of 𝑋𝑡 (it 
can be shown that 𝐸[𝑋𝑡|𝑌𝑡 , 𝑀𝑡−1] = 𝑌𝑡). Second, the informativeness of the monitoring 
observation increases as monitoring effort increases, all else being equal. For parsimony we 
define 𝑍𝑡+1

𝑚 (𝑀𝑡) ≡ 𝑍𝑚(𝜉𝑡+1
𝑚 ; 𝑀𝑡) in what follows.  

 
In the next section we describe how both types of learning (via CPUE and/or monitoring) are 
incorporated into the resource manager’s decision problem. 
 
 
2.3. Decision Problem 
 
The resource manager’s objective is to maximize the expected discounted sequence of rents 
from harvest, net of costs of harvest effort and population measurements. The per-period 
reward function is: 
 

Π(𝑈𝑡 , 𝑀𝑡 , 𝐿𝑡) = 𝑅(𝑞𝑡𝑈𝑡𝑋𝑡) − 𝐶𝑈(𝑈𝑡) − 𝐶𝑀(𝑀𝑡) − 𝑐𝐿𝐿𝑡 
 

(4) 

(5) 
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Our assumptions for harvest rent, 𝑅(⋅), and costs are standard: rent is concave in 𝐻𝑡 = 𝑞𝑡𝑈𝑡𝑋𝑡; 
𝐶𝑈(⋅) and 𝐶𝑀(⋅) are each convex in the corresponding  control variable; and 𝑐𝐿 is a nonnegative 
constant. The resource manager applies a constant positive discount factor 𝛽 that is strictly less 
than one. 
 
Unlike most dynamic optimization problems in economics, the decision maker in our model 
does not observe the physical state, 𝑋𝑡, perfectly. Moreover, depending on the control choices 
made in the current and prior period, she may choose not to receive any measurements of the 
population in a given period at all. Instead, decisions must be made using an information state 
𝐼𝑡. The information state includes the record of actions and observation received. Let an action 
be the control choices made in a particular period: 𝐴𝑡 ≡ (𝐿𝑡 , 𝑀𝑡 , 𝑈𝑡). Then in period 𝑡, {𝐴𝜏}𝜏=0

𝑡  
is included in 𝐼𝑡 by definition. Observations 𝐶𝑃𝑈𝐸𝑡 and 𝑌𝑡 also are included in 𝐼𝑡, but for any 
particular decision period they will not appear if the resource manager does not choose to 
invest in acquiring them (e.g., if 𝐿𝑡 = 0, then 𝐶𝑃𝑈𝐸𝑡 does not enter into the update of 𝐼𝑡 to 
𝐼𝑡+1). 
 
Summing up, the resource manager’s problem may be stated as follows: 
 

max
{𝑈𝑡,𝑀𝑡,𝐿𝑡}

∑ 𝐸𝐼𝑡
[Π(𝑈𝑡 , 𝑀𝑡 , 𝐿𝑡)]𝛽𝑡

∞

𝑡=0
 

 
subject to the process (Eqs. (1), (3), and (5)) and observation models (Eqs. (2) and (4)), along 
with our definition of 𝐼𝑡 and an initial information condition 𝐼0. A well-known property of this 
type of decision problem is that, in general, an analytical or exact numerical solution is 
unavailable. We describe our solution approach in the next section. 
 
2.4. Solution Method 
 
The resource manager’s problem is an example of a continuous-state partially-observable 
Markov decision process (POMDP). Given the Markov structure of the process and observation 
models, optimal decisions may be made using a belief state 𝜛𝑡(𝑋𝑡), which is a continuous 
univariate density over the range of the true population level, rather than the full information 
state 𝐼𝑡. With 𝜛𝑡(𝑋𝑡), a belief-state dynamic programming problem may be posed and in 
principle solved to obtain an optimal feedback policy.  
 
Unfortunately, for decision problems with one continuous uncertain state variable, the exact 
𝜛𝑡(𝑋𝑡) for the corresponding continuous-state POMDP may be any continuous univariate 
density. This presents a severe curse of dimensionality problem. Our approximate solution 
method builds on ideas introduced by Zhou, Fu & Marcus (2010) (hereinafter ZFM) and applied 
in several recent papers (MacLachlan et al. 2017, Kling et al. 2017, Sloggy et al. 2019). We 
approximate the belief state with 𝑏𝑡(𝑋𝑡), a univariate lognormal density that may be 
summarized in terms of its parameters. The resource manager’s problem involves multiple 
types of observations, which may not be received at all in a given period. As a result, modeling 
the dynamics of 𝑏𝑡(𝑋𝑡) from one period to the next in a tractable way for the purpose of 

(6) 
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dynamic optimization is a challenging numerical problem. We describe what we believe is a 
new approach to modeling belief dynamics below. 
 

Table 1. Qualitative description of the belief update cases 

Control 
choices 

Description Outcome 

𝑀 = 0, 𝐿 = 0 
(any 𝑈) 

Do not pay to use a 
population measurement 
to update beliefs. 

Prior belief 𝑏(𝑋) is propagated through the 
population dynamics conditional on 𝑈 to obtain 
posterior 𝑏+(𝑋+). 

𝑀 = 0, 𝐿 = 1 
(𝑈 > 0)a Pay to measure CPUE. 

1. Prior belief is updated based on 𝐶𝑃𝑈𝐸 observation 
(Eq. (2)) conditional on 𝑈. 

2. Updated beliefs are propagated through 
population dynamics conditional on 𝑈 to obtain 
posterior belief state. 

𝑀 > 0, 𝐿 = 0 
(any 𝑈) 

Pay to monitor population. 

1. Prior belief is propagated through the population 
dynamics conditional on 𝑈. 

2. Monitoring observation 𝑌+ (Eq. (4)) is used in 
update to posterior belief state conditional on 𝑀. 

𝑀 > 0, 𝐿 = 1 
(𝑈 > 0) 

Pay to measure CPUE and 
monitoring population. 

1. Prior belief is updated based on 𝐶𝑃𝑈𝐸 
observation. 

2. Updated beliefs are propagated through 
population dynamics conditional on 𝑈. 

3. Monitoring observation 𝑌+ is used in update to 
posterior belief state. 

Notes: (a) The set of feasible controls excludes 𝐿 > 0 and 𝑈 = 0. 

 
 
2.4.1. Learning model 
 
The belief state is updated conditional on actions taken and observations received. The multiple 
measurement controls and the “Bayesian tracking” nature of the model makes the update 
possibilities more complex than prior related work. Table 1 provides a brief qualitative 
description of the possible belief update cases in our model. To simplify the notation, we adopt 
the “+” convention for next-period values and suppress the time subscript.  
 
Each path for beliefs begins with a prior 𝑏(𝑋) that determines control choices {𝑈, 𝑀, 𝐿}. There 
are four cases for updating beliefs, summarized above in Table 1. First, when 𝑀 = 𝐿 = 0, the 
resource manager predicts the next period population using the population model (Eqs. (1) and 
(3)) without making use of new information, other than her choice of harvest effort. New 
information is available to update beliefs when either 𝑀 or 𝐿 are positive. When 𝑀 = 0 and 
𝐿 = 1, CPUE is measured. CPUE is a noisy observation of 𝑋, and is therefore used to update 
𝑏(𝑋) directly (conditional on 𝑈, which determines the density of 𝑞(𝑈)) before propagating the 
belief  state through the population dynamics to produce the posterior 𝑏+(𝑋+). When 𝑀 > 0 
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and 𝐿 = 0, a monitoring observation is used to update beliefs conditional on 𝑀 (given the 
dependence of the observation shock 𝑍𝑚+(𝑀) on 𝑀). 
 
A two-stage belief update occurs when 𝑀 > 0 and 𝐿 = 1. First, 𝑏(𝑋) is updated based on 
𝐶𝑃𝑈𝐸 conditional on 𝑈. This updated belief is then propagated through the population 
dynamics conditional on 𝑈. Beliefs are updated a second time given 𝑌+ conditional on 𝑀 to 
produce the posterior belief state. 
 
 
2.4.2. Approximating Belief Updates 
 

With a lognormal approximate belief state, beliefs regarding the true population level may be 
summarized by the lognormal location and scale parameters (𝜇𝑡 , 𝜎𝑡). Unfortunately, none of the 
belief update possibilities described above produce a posterior belief state that has a lognormal 
posterior. This is a well-known feature of continuous-state POMDPs that is not unique to our 
approximation strategy. To address this we find the parameters of an approximate posterior 
distribution that match the true posterior most closely in the sense of minimizing the Kullback-
Leibler divergence. As shown by ZFM, this so-called projection approach is equivalent to 
matching the moments of the true and approximate posterior when the belief distribution is in 
the exponential family, of which the lognormal is a member. For the lognormal distribution, this 
involves matching the first two moments of the log population. 
 
To implement moment matching we build on an approach to particle filtering coupled with 
density projection first proposed by ZFM. In what follows, we again adopt the “+” notation. To 
simplify the discussion we also suppress the dependence of observation shocks 𝑞(𝑈) and 
𝑍𝑚(𝑀), instead writing 𝑞, 𝑍𝑚, while also not explicitly noting the dependence of the 𝑌 and 
𝐶𝑃𝑈𝐸 conditional densities on control choices. Lastly, although we describe here computations 
involved in producing the approximately optimal policy function, we perform closely-related 
calculations when simulating belief state dynamics conditional on a pre-computed policy (see 
Section 3.3). 
 
The basic idea is as follows. First, we discretize the actions and the parameters of the 
approximate belief state. For each of these discrete values we generate samples of both the 
target variables (𝑋 or 𝑋+) and, where applicable, measurements (𝐶𝑃𝑈𝐸 and 𝑌). For each 
observation of the measurement variables, we determine the conditional probability of 
obtaining each sampled value of the corresponding target variable. These probabilities are used 
to obtain weighted averages of the target samples to estimate moments of the target variables 
that can be interpreted as expectations conditioned on the measurements. Using these 
averages, we determine interpolation weights on the discrete values of the approximate belief 
state parameters, which are averaged to obtain transition probabilities over discrete values of 
posterior (𝜇+, 𝜎+). These transition probabilities represent columns in a column-stochastic 
belief state Markov transition matrix (MTM). 
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We begin by selecting a discrete set of nodal levels for the belief parameters (𝜇, 𝜎) and actions 
(𝐿, 𝑀, 𝑈). As described in further detail in the next section, a theoretically consistent and 
computationally convenient strategy is to divide the transition computations first between 
those conditional on 𝐿 = 0 and 𝐿 = 1, and then into 2 stages involving first learning from CPUE 
and then from monitoring. Doing so produces separate sets of MTMs. One set corresponds to 
(𝜇, 𝜎, 𝐿, 𝑈) (consisting of two MTMs for each node of 𝑈, with one conditional on 𝐿 = 0 and 
another conditional on 𝐿=1). The second corresponds to (𝜇, 𝜎, 𝑀) (one MTM for each node of 
𝑀). This collection of MTMs is then combined to generate an approximation of the full MTM for 
(𝜇, 𝜎, 𝐿, 𝑀, 𝑈). 
 
We first consider the 2 stage transition conditional on 𝐿 = 1 (meaning 𝑈 > 0 by necessity) and 
𝑀 > 0. Given any specific value of (𝜇, 𝜎) and positive (𝑀, 𝑈) we use the particle filter to obtain 
two separate MTMs that map (𝜇, 𝜎, 𝑀, 𝑈) into probabilities associated with levels of the 
updated belief parameters (𝜇+, 𝜎+). In the first stage we obtain an MTM mapping (𝜇, 𝜎, 𝑈) into 
(𝜇+, 𝜎+), which includes the observation update for (𝜇, 𝜎) (resulting from information in 𝐶𝑃𝑈𝐸) 
and the time update that maps the updated (𝜇, 𝜎) into (𝜇+, 𝜎+) via the stochastic population 
dynamics. The second stage correspond to the monitoring update, using (𝜇+,𝜎+, 𝑀) to update 
(𝜇+,𝜎+) (through receiving 𝑌+).1 This produces a second MTM. 
 
It is useful to first describe the second-stage monitoring update in further detail. The approach 
to generating a monitoring update is similar to that used by Kling et al. (2017). We generate 𝑛𝑑 

samples of 𝑋𝑖
+ using (𝜇+, 𝜎+) from which associated values of 𝑌𝑖

+ = 𝑍𝑖
𝑚+𝑋𝑖

+. 2 In other words, 
the target variable is the beginning of next period population 𝑋+, and the measurement is the 
monitoring observation 𝑌+. For each monitoring observation 𝑌𝑗

+ the conditional probability of 

each population observation 𝑆𝑖
+ is proportional to3 

𝑤𝑖𝑗
𝑚 ∝

𝑓𝑍𝑚 (
𝑌𝑗

+

𝑋𝑖
+)

𝑋𝑖
+  

 

with the particle weights 𝑤𝑖𝑗
𝑚 are normalized to sum to 1: ∑ 𝑤𝑖𝑗

𝑚 = 1
𝑛𝑑
𝑖=1 .  

 
Notice that the sample values of 𝑋𝑖

+ do double duty. First, they provide a set of samples of the 
values of 𝑌𝑖

+. Second, they serve as a set of possible population levels each with a conditional 
probability weight (𝑤𝑖𝑗) that depends on the level, 𝑋𝑖

+ conditioned on 𝑌𝑗
+. The weights can 

                                                            
1 In the case of a 2-stage transition involving an update conditional on both 𝐶𝑃𝑈𝐸 and 𝑌+, it would perhaps be 
more accurate to describe an intermediate posterior (𝜇̃, 𝜎̃) produced from the first stage update, which is then 
mapped to the final posterior (𝜇+, 𝜎+) by the monitoring transition. However, since the same MTMs are used to 
model belief transitions when one of 𝐿 or 𝑀 is zero (e.g., the first-stage transition MTMs for 𝑈 nodes used to 
compute expected posterior beliefs when monitoring is not chosen), we avoid introducing an intermediate prior in 
order to make the description applicable to other belief update cases.  
2 Note here as described above the density of 𝑍𝑖

𝑚+ depends on the conditioning value of 𝑀. 
3 Dividing by zero does not occur since all sampled 𝑋𝑖 are strictly positive. 

(7) 
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then be used to obtain samples of values of the mean and standard deviation of the log 
population levels conditional on observations of 𝑌𝑗

+: 

 

𝜇𝑗
+ ≈ ∑ 𝑤𝑖𝑗

𝑚 log(𝑋𝑖
+

)
𝑛𝑑

𝑖=1
(8) 

 

𝜎𝑗
+ ≈ √∑ 𝑤𝑖𝑗

𝑚[log(𝑋𝑖
+) − 𝜇𝑗

+]
2𝑛𝑑

𝑖=1
(9) 

 
Samples (𝜇𝑗

+, 𝜎𝑗
+) and are used to compute the MTM that maps the unconditional belief 

parameters (𝜇+,𝜎+) into parameters of the conditional belief distribution. Sampled values will 
not generally fall on nodal points, so we assign probability values using the interpolation 
approach detailed in the next section.  

 
The belief update for the case where learning from a CPUE measurement is more complicated. 
To the best of our knowledge, our technique for modeling the belief update using projection 
particle filtering is a novel. The target variable this time is the beginning of period population 𝑋, 
and the measurement is 𝐶𝑃𝑈𝐸. Using the prior belief parameters (𝜇, 𝜎), we first generate 𝑛𝑑 
samples of the population level 𝑋𝑖 and, separately, the catchability shock 𝑞𝑖.

4 This allows us to 
compute samples 𝐶𝑃𝑈𝐸𝑖 = 𝑞𝑖𝑋𝑖  Eq. (2).  Next, given 𝑈, we obtain a sample of escapement 
values 𝑆𝑖𝑗 for each 𝐶𝑃𝑈𝐸𝑗. Directly computing 𝑆𝑖𝑗 = 𝑋𝑖 − 𝐶𝑃𝑈𝐸𝑗𝑈 by reusing the samples 𝑋𝑖 

and 𝐶𝑃𝑈𝐸𝑗 values can lead to two numerical problems. First, some 𝑆𝑖𝑗 may be negative, 

especially when 𝑞𝑖 or 𝑈 are large. Such zero-probability escapement values would need to be 
removed, leading to a second problem of small useable samples that may fall well below the 
intended number (𝑛𝑑). 
 
To produce useful escapement samples, we generate 𝑗 sets of population samples from the 
prior belief truncated from below by 𝐶𝑃𝑈𝐸𝑗: 

 

log(𝑋𝑖𝑗) = Φ−1(𝑃̅𝑗 + (1 − 𝑃̅𝑗)𝜉𝑖
𝑃; 𝜇, 𝜎2) 

 

where Φ−1(⋅) is the inverse normal CDF, 𝜉𝑖
𝑃is a sample from the uniform distribution, and  𝑃̅𝑗 =

Φ(log(𝐶𝑃𝑈𝐸𝑗); 𝜇, 𝜎2). With this resampling approach, each 𝑋𝑖𝑗 satisfies the intuitively 

reasonable condition that 𝑋𝑖𝑗 ≥ 𝐶𝑃𝑈𝐸𝑗 (i.e., there must have been at least sufficient 

population available to generate the CPUE measurement).  
 
Similar to Eq. (7), the conditional probability of 𝑋𝑖𝑗 given 𝐶𝑃𝑈𝐸𝑗 is:  

 

                                                            
4 We suppress here the dependence of 𝑞𝑖(𝑈) on 𝑈. 

(10) 
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𝑤𝑖𝑗
𝐶 ∝

𝑓𝑞 (
𝐶𝑃𝑈𝐸𝑗

𝑋𝑖𝑗
)

𝑋𝑖𝑗
 

 

where again we normalize setting ∑ 𝑤𝑖𝑗
𝐶𝑛𝑑

𝑖=1 = 1. Next, each 𝑋𝑖𝑗 is simulated forward through 

the population dynamics equation using a sample of growth shocks 𝑍𝑖
𝑔

 to produce samples 𝑋𝑖𝑗
+.  

With these, we produce samples of (𝜇𝑗
+, 𝜎𝑗

+) by performing calculations with 𝑤𝑖𝑗
𝐶  and 𝑋𝑖𝑗

+ 

analogous to Eqs. (8)-(9). An MTM is produced looping over the belief state space and 
performing interpolation over nodal values of the approximate belief state parameters. 
 
A third type of MTM is necessary for control combinations involving 𝐿 = 0. In that case, the 
first stage transition does not involve a Bayesian update. Instead, population samples produced 
from nodal values of (𝜇, 𝜎) are propagated through the population dynamics conditional on 𝑈 

using draws of 𝑍𝑖
𝑔

. Moments of the sampled 𝑋𝑖
+are used directly to match the posterior to the 

lognormal distribution parameters (𝜇+, 𝜎+) without weighting. Note that this assumption 
means that the manager knows and uses the effort but not the harvest information. As with the 
other transition stages, interpolation is carried out to construct an MTM. 
 
 
2.4.3. Numerical Implementation 
 
Once our approximation approach is used to produce Markov transition matrices characterizing 
belief dynamics, the problem may be solved as a belief state dynamic programming problem 
using conventional methods. Aside from the more complicated belief dynamics, our numerical 
procedure is similar to recent analyses of bioeconomic models involving state uncertainty (Kling 
et al. 2017, Sloggy et al. 2019). We choose nodal values of the belief state variables by selecting 
a regular grid over the arithmetic mean and CV (𝑚𝑒𝑎𝑛𝑖 , 𝐶𝑉𝑖) of the population stock 𝑋 and 
convert these to obtain a discretization of the mean and standard deviation of (𝜇, 𝜎) of log(𝑋). 
 
Like Sloggy et al., we use Halton draws to generate samples and apply linear interpolation in the 
MTM computations. We also exploit a technique described by Fackler (2018) for carrying out 
dynamic programming computations by calculating the expected continuation value in the 
Bellman equation without forming the full problem transition Markov matrix. The full transition 
matrix has the dimension 𝑛𝑚𝑒𝑎𝑛𝑛𝐶𝑉 × 𝑛𝑚𝑒𝑎𝑛𝑛𝐶𝑉𝑛𝐿𝑛𝑀𝑛𝑈 (see Table 2 for definitions). By 
splitting up the problem we instead generate 2 𝑛𝑚𝑒𝑎𝑛𝑛𝐶𝑉 × 𝑛𝑚𝑒𝑎𝑛𝑛𝐶𝑉𝑛𝑈 matrices (for with- 
and without CPUE learning) and an 𝑛𝑚𝑒𝑎𝑛𝑛𝐶𝑉 × 𝑛𝑚𝑒𝑎𝑛𝑛𝐶𝑉𝑛𝑀; this is proportional to 2𝑛𝑈 + 𝑛𝑀 
rather than 2𝑛𝑈𝑛𝑀. This results in significantly faster processing speeds.  
  

(11) 
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Table 2. Details on solution approximation: sizes 

Symbol Definition Value Notes 

𝑛𝑑 Samples 2,500 
Halton draws are used to generate 
samples 

 𝑛𝑚𝑒𝑎𝑛 Number of belief mean nodes 201  

𝑛𝐶𝑉 Number of belief CV nodes 51  

(𝑚𝑒𝑎𝑛𝐿 , 𝑚𝑒𝑎𝑛𝑈) Mean node bounds (1e-4, 200)  

(𝐶𝑉𝐿 , 𝐶𝑉𝑈) CV node bounds (1e-4, 0.5)  

𝑛𝐿 Learn from CPUE options 2 𝐿 ∈ {0,1} 

𝑛𝑀 Number of monitoring nodes 5  

𝑛𝑈 
Number of harvest effort 
nodes 

100  

 
Once formed, we use the modified policy iteration (MPI) to solve the dynamic program. The 
solution is found relatively quickly. By far the most time-consuming aspect of this method is 
computing the MTMs. The run time depends on the number of samples and of state and action 
nodes chosen. For reasonably accurate approximations, it is not unusual for the MTM 
computation to take one or more days, while MPI takes minutes to converge. Fortunately, the 
MTM calculations may be sped up to some degree with parallel processing. 
 
 
2.5. Parameter values 
 

In this section we report parameter values underlying our numerical analysis. We develop a 
base set of parameter values and distributional assumptions designed to be useful while also 
allowing the model to match stylized facts about stochasticity in renewable resource 
management problems. Table 3 reports model parameters held fixed across cases we consider 
in our analysis. 
 
All cases considered adopt a simplified version of the per-period reward function (Eq. (5)) with 
only linear variable costs for monitoring and fixed costs for using CPUE data: 
 

Π̃(𝑈𝑡 , 𝑀𝑡 , 𝐿𝑡) = 𝑝𝑞𝑡(𝑈𝑡)𝑋𝑡𝑈𝑡 − 𝑐𝑀𝑀𝑡 − 𝑐𝐿𝐿𝑡 
 
Parameters 𝑐𝑀 and 𝑐𝐿 vary across cases. In addition the marginal cost of harvest is constant and 
is netted out of profit.  
  

(12) 
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Table 3. Base parameter values 
Symbol Definition Value Notes 

𝑟 Intrinsic growth rate 0.5  

𝐾 Carrying capacity 100  

𝐶𝑉̅̅ ̅̅
𝑔 Growth shock CV 0.15 𝑍𝑡

𝑔
∼Burr-3 and 𝐸(𝑍𝑡

𝑔
) = 1 

𝛾𝑔 Growth shock skewness -0.1  

𝑞̅ Mean catchability 0.6 𝑞𝑡(𝑈𝑡) ∼Kummaraswamy 

𝐶𝑉̅̅ ̅̅
𝑞
𝑈 Maximum catchability CV 0.425  

𝜂𝑞 Catchability CV calibration coefficient 2.75  

𝐶𝑉̅̅ ̅̅
𝑚
𝑈 Maximum monitoring noise CV 0.425 𝑍𝑡

𝑚(𝑀𝑡) ∼Burr-3 and 𝐸 (
1

𝑍𝑡
𝑚(𝑀𝑡)

) = 1 

𝛾𝑚 Monitoring noise skewness -0.1  

𝜂𝑚 
Monitoring shock CV calibration 
coefficient 

2.25  

𝑝 Price per-unit harvest 1  

𝛽 Discount factor 0.952 𝛽 ≈ 1.05−1 

 
 
We require specific functional forms for the shocks included in the process and observation 

models. We start by assuming realizations of 𝑞𝑡(𝑈𝑡) are described by a Kumaraswamy 

distribution. This is a parameterized density with support over (0,1) with similar properties to 

the Beta distribution but with an easily inverted CDF: 

 

𝐹(𝑥; 𝑎, 𝑏) = 1 − (1 − 𝑥𝑎)𝑏 

 

 
Fig. 1. Densities for process model shocks 

 

For each node of 𝑈𝑖 used in our solution method, we numerically solve for Kumaraswamy 

parameters (𝑎𝑖 , 𝑏𝑖) such the mean of the density is 𝑞̅ and the CV is determined by the following 

(13) 
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decreasing function of 𝑈𝑡: 𝐶𝑉[𝑞𝑡(𝑈𝑡)|𝑈𝑡 = 𝑈𝑖] = 𝐶𝑉̅̅ ̅̅
𝑞
𝑈 exp(−𝜂𝑞𝑈𝑖). This functional form results 

in the coefficient of variation of CPUE declining in 𝑈 within the range [𝐶𝑉̅̅ ̅̅
𝑞
𝑈 exp(−𝜂𝑞) , 𝐶𝑉̅̅ ̅̅

𝑞
𝑈). 

The Kumaraswamy distribution is ideally suited for numerical analysis since it has closed forms 

for both the cumulative distribution function (CDF) and its inverse. Selections of the 𝑈𝑖 node-

specific densities generated from this procedure are shown in Fig.1, Panel B, with the most flat 

distribution corresponding to 𝑈 = 0 and the most narrow corresponding to 𝑈 = 1. 

 

We assume that both the growth shock 𝑍𝑡
𝑔

 and multiplicative monitoring measurement error 

shocks follow Burr-3 distributions. The Burr-3 CDF is given by:  

 

𝐹(𝑥; 𝑎, 𝑏, 𝑐) = [1 + (
𝑥

𝑎
)

−𝑐

]
−𝑏

 

 

The Burr-3 shares some similarities with well-known distributions like the lognormal and 
gamma, while having a much simpler and easily invertible CDF involving no special functions. As 
with harvesting effort, increasing monitoring effort decreases the coefficient of variation of 
multiplicative measurement error; specifically: 𝐶𝑉[𝑍𝑡

𝑚(𝑀𝑡)|𝑀𝑡 = 𝑀𝑖] = 𝐶𝑉̅̅ ̅̅
𝑚
𝑈 exp(−𝜂𝑚𝑀𝑖). 

Similar to the catchability shock, this bounds the CV of the monitoring shock on 
[𝐶𝑉̅̅ ̅̅

𝑚
𝑈 exp(−𝜂𝑚) , 𝐶𝑉̅̅ ̅̅

𝑚
𝑈). We adjust distribution parameter values numerically so that the mean, 

skewness, and CV of the Burr-3 densities in the model fit assumed values reported in Table X or 
given by the assumed relationship for conditional CV. Resulting densities corresponding to 
nodal values of 𝑀𝑖 used in our numerical analysis are shown in Fig. 1 Panel C. 
 
 
3. Results 
 
Our presentation of numerical results begins with a brief review of the model solution in the 
special case of perfect observability. Next, we review three cases of the solution to our full 
model, which differ in terms of assumptions about management costs. We close by describing 
findings from a simulation exercise that compares dynamics associated with the full model with 
a selection of counterfactuals. 
 
 
3.1. Stochastic model solution 
 

To anchor the discussion that follows we first describe the solution to a special case of the 

model when the resource manager does not face state uncertainty. Assuming that the 

beginning-of-period population is always observed perfectly results in a standard stochastic 

bioeconomic optimization problem with one state (𝑋𝑡) and one control (𝑈𝑡). The optimal 

policy and value functions are shown in Fig. 2. 

 

(14) 
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Fig. 2. Stochastic model solution 
 
A standard way to show the optimal feedback policy is in the form of expected escapement: 

𝐸[𝑆𝑡|𝑋𝑡 , 𝑈𝑡] = (1 − 𝑞̅𝑈𝑡)𝑋𝑡. The pattern up until roughly the value of 𝑋𝑡 = 𝐾 = 100 is a 

standard constant escapement (Fig. 2, Panel A).5 For larger values of 𝑋𝑡, this pattern is broken 

and escapement is allowed to rise, albeit at a slower rate than the dashed 45° line shown in the 

panel. The reasons is that we adopt what we regard as a realistic assumption that it is not 

feasible to exhaust the stock in expectation. The maximum expected harvest yield is  𝑞̅𝑋𝑡. We 

assume  𝑞̅ < 1. While humans have extirpated many wild populations, our view is that it is 

unrealistic to allow this to occur in expectation within one decision making period. The model 

still allows for asymptotic extirpation of the population, however. 

 
Table 4. Full model solution cases 

Case Parameter Values 

Base  𝑐𝐿 = 0.01,  𝑐𝑀 = 0.4  

High 𝑐𝐿  𝑐𝐿 = 1,  𝑐𝑀 = 0.0001 

High 𝑐𝑀  𝑐𝐿 = 0.001,  𝑐𝑀 = 1.25 

 
 
3.2. Full model solution 
 
A solution to the full model is an optimal value function and feedback policy defined over 
approximate belief state parameters, or equivalently in our application the lognormal statistics 
(𝑚𝑒𝑎𝑛𝑡 , 𝐶𝑉𝑡). The feedback policy maps the belief state to an optimal action comprised of the 
three controls: whether or not to learn from CPUE (𝐿𝑡), monitoring (𝑀𝑡), and harvest effort 
(𝑈𝑡).  We explore the behavior of the full model solution by recomputing it for different cases 

                                                            
5 To fully characterize the constant escapement nature of the stochastic model solution, we use interpolation 
during value iteration for this version of the model in order to achieve a finer approximation with respect to the 
control variable. While this is practical for a simple problem like this special case, we have not yet attempted to 
apply this method to the much larger full POMDP model. 
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of the objective function parameters (Eq. (12)).6 Table 4 above summarizes these cases, which 
we consider in turn. 
 
 
3.2.1. Base case 
 
Our strategy for developing a base case was to find values of the cost of measuring and learning 
from a CPUE observation (𝑐𝐿) and the marginal cost of monitoring effort (𝑐𝑀) such that both 
controls are applied with appreciable frequency in the ergodic set of belief dynamics. The base 
case parameters (Table 4) produces a solution with complex behavior with respect to the 
control choices in the belief state space (Fig. 3 below). Effort for the most part takes on a 
familiar profile, staying at zero until the expected population biomass reaches a threshold value 
(Panel A & B). This is overall consistent with constant escapement. 
 
Two features of the optimal effort policy depart from the standard constant escapement shape. 
First, effort is slightly elevated as confidence falls (CV of the belief state rises).7 This seemingly 
anti-precautionary feature of the policy should be interpreted while noting that the “medium 
confidence” iso-CV value is relatively rare and the low confidence value is outside of the ergodic 
set for this parameterization of the model. Still, the fact that effort is rising slightly rather than 
falling is perhaps surprising. We attribute this to two effects. First, greater harvest can reduce 
harvest in the next period by narrowing the range of likely populations following growth. A 
second feature of our model is that some level of harvest is necessary in order to learn from a 
CPUE measurement. The connection between effort and learning from CPUE creates a complex 
but intuitive pattern in this solution (compare Panels A and D). A narrow band of low effort 
choices emanates out into low-to-moderate expected stock sizes and moderate to high CV 
values (Panel A). This appears to be driven by the simultaneous choice to learn from CPUE over 
those values (Panel D). 
 
 
 

                                                            
6 A noteworthy feature of this solution approach is that solving the model with different objective function 
parameters is much faster than re-solving after changing parameters or other assumptions in the process or 
observation models (Table 3), or discretization choices (Table 2). This is due to the fact that the same MTMs may 
be used for different cases of the reward function, while one or more MTMs must be re-computed when other 
parameters are changed. Re-solving the dynamic programming problem when the same MTMs may be used is 
relatively fast (on the order of minutes).  
7 In Figs. 3-5, the iso-CV values chosen are also node values in the discretization and are approximately: 0.0701 
(“high confidence”), 0.2401, and 0.41 (low confidence). 
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Fig. 3: Model solution: base case 
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Monitoring effort is optimal over a range of the state space near the positive effort threshold 
(Panel C). At moderate to high belief CV levels (lower confidence), when it is not optimal to 
harvest it is optimal to monitor to determine if the stock is sufficiently recovered to allow 
harvesting to be resumed. When harvesting is undertaken, it is useful to use the CPUE data so 
long as current uncertainty levels are high enough that their use will reduce uncertainty in a 
cost effective manner. This result is intuitive: a more accurate estimate of the current 
population is useful when it may change the decision of whether to harvest the population or 
not. Interestingly, for some low CV levels a zone where harvesting and learning from CPUE 
bounds the monitoring zone from below. This produces a pattern where, fixing the mean, it can 
be optimal to collect no measurements, then at higher CV values switch to learning from CPUE 
and then to monitoring effort. In this solution 𝐿 and 𝑀 are substitutes: no nodal values of the 
belief state involve investing in both learning from CPUE and monitoring in the same period, 
although the model does allow for that possibility. 
 
The optimal value function follows a pattern similar to the model with no state uncertainty, 
rising quickly from low expected biomass levels (Panel E). The cost of initial uncertainty is 
possible to characterize using the value function. Under this set of parameter values, a higher 
initial belief CV reduces the expected value of management, but the effect is small: taking the 
mean % difference of the value function along the low confidence iso-CV transect used in Panel 
B, relative to the value function over high confidence iso-CV transect yields an average of 0.6% 
loss. The same exercise using the boundary values (𝐶𝑉𝐿 , 𝐶𝑉𝑈) (Table 2) produces an average of 
0.9%. We attribute the small differences to the transient nature of high belief CV values. Beliefs 
are rapidly pulled from initial conditions to a neighborhood of long-run beliefs in this model. 
Calculations are also sensitive to parameter values, and we provide additional results on 
dynamics realizations of management in the next section. Due to the subtle visual changes in 
the value function across cases, we do not produce separate panels for the value function for 
the remaining cases. 
 
 
3.2.2. High cost of learning from CPUE, low cost of monitoring 
 

Next, we consider a case when the cost of monitoring is negligible, and the cost of learning 

from CPUE is high enough so that the solution does not apply that control anywhere in the 

state space (Fig. 4 Panel D). In this sense, this brings the full model closest to previous 

bioeconomic POMDP models that involve free monitoring in every period. It turns out that it is 

enough to set 𝑐𝐿 = 1 to produce this result. Compared to the average magnitude of the value 

function (~253), this apparently small cost suggests that learning from CPUE is relatively 

uninformative about the future post-growth population level. Results from our dynamic 

analysis presented in the next section confirm this property of the model. 
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Fig. 4: Model solution: high cost of learning from CPUE, low cost of monitoring (high 𝑐𝐿 case) 

 

Effort tends to increase slightly as a function of the belief CV, however this effect is more muted 
than the base case (Panel B). This case also involves negligible monitoring costs, so monitoring 
is conducted nearly everywhere. Interestingly, for low enough expected biomass levels 
monitoring is not conducted despite its low cost. There are a few possible explanations for this 
result. First, our solution perhaps involves too few samples (𝑛𝑑) to differentiate the expected 
value of monitoring vs. not monitoring in this area of the belief state. Second, the zone where 
monitoring is not chosen overlaps with the zero effort zone of beliefs (compare Panels A and C). 
The strong tendency for beliefs to rapidly revert to the ergodic set, coupled with the distance in 
belief space to the harvest threshold likely makes even a small cost of monitoring tip the 
balance toward inaction. 
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3.2.3. Low cost of learning from CPUE, high cost of monitoring 
 

When the marginal cost of monitoring effort is relatively expensive 𝑐𝑀 = 1.25, it is not chosen 
anywhere in the belief state space (Fig. 5 Panel C). Substitution to learning from CPUE is evident 
in the pattern of effort (compare Panel A and D). One consequence is a more pronounced but 
still modest anti-precautionary effect, with sufficiently high belief CV values triggering harvest 
(Panel B).  
 

 
 

Fig. 5: Model solution: high cost of monitoring (high 𝑐𝑀 case) 
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The pattern of the 𝐿 control over the state space is complex (Panel D). We suspect numerical 
precision may be the cause of the blue channel of inaction through low CV values.8 
 
3.3. Dynamics 
 
We conduct a series of simulations to supplement insights from the case-specific value and 
policy functions reviewed in previous section. To do so, we generate dynamic realizations of the 
true underlying stock, corresponding beliefs, and resulting action choices. Simulations are 
produced over 𝑇 periods for each case of the full model presented above, as well as additional 
counterfactuals for comparison. Importantly, we produce true matched counterfactual dynamic 

runs. For each time series 𝑘, realizations of {𝜉𝑡𝑘
𝑞

, 𝑍𝑡𝑘
𝑔

, 𝜉𝑡𝑘
𝑚}𝑡=1

𝑇 (Eqs. (1), (3)-(4)) are pre-computed 

and applied to each policy, and each time series is initialized from the same initial belief and 
true stock level. As a result, differences among policy-specific realizations indexed by 𝑘 are due 
solely to differences in controls selected or available to the respective policies. Finally, like 
other dynamic models involving state uncertainty we require two initial conditions in order to 
simulate dynamics of the controlled process: one for the belief state and one for the true 
underlying population. For all simulations reported in this section we use 𝑋0 = 100 for the true 
population initial condition, meaning the population is in the range of unexploited population 
levels near 𝐾, and  (𝑚𝑒𝑎𝑛0, 𝐶𝑉0) = (100, 0.14), which suggests the resource manager has an 
accurate initial estimate characterized by moderate confidence. 
 

Table 5. Summary of supplemental policies 

Policy Description 

Sethi POMDP 
Equivalent to the full model with monitoring effort always chosen at it’s 
second-highest level without any cost incurred. 

Perfect 
observability 

State uncertainty is eliminated from the model and the conventional 
stochastic dynamic programming solution is applied to the true population 
level (Fig. 2). 

Ignore state 
uncertainty 

Measurements are generated from Eq. (4) assuming the lowest level of 
positive monitoring effort (𝑀 = 0.25). The observations are taken as the 
true population biomass and effort is chosen according to the perfect 
observability solution. 

 
The additional policies we consider are summarized in Table 5. The perfect observability case 
provides an expected upper bound on the net present value of management, all else being 
equal. The “Sethi POMDP” alternative is perhaps more correctly attributed to Memarzadeh and 
Boettiger in that it is a POMDP solution to an earlier optimal harvesting problem involving state 

                                                            
8 For this case the difference in the value function between 𝐿 = 0 and 𝐿 = 1 is very small, and even with near 
indifference (less than 0.01% gap), the dynamic programming algorithm will default to 𝐿 = 0. We plan to 
investigate this issue with additional work using a more refined grid over belief state values and more samples. 
Unfortunately, producing these results with a 42 core server can entail a run time of several days.  
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uncertainty developed by Sethi et al. (2005).9 It involves no learning from CPUE and free 
monitoring at a fixed monitoring effort level which we specify as being the second-most 
informative monitoring control choice in the full model. As a plausible lower bound on 
performance from managing while acting on monitoring observations, we introduce a 
counterfactual where the optimal control for the model with no population uncertainty is 
applied to the most recent (and informative but relatively inaccurate in this specification) 
measurement.  
 

Table 6. Selected features of dynamics 

Featurea 

Model 

Base 
case 

High 𝑐𝐿 High 𝑐𝑀 
Sethi 

POMDP 
Ignore state 
uncertainty 

Perfect 
observability 

Mean Value 
[Standard Deviation] 

Average belief state mean 
47.87 
[0.48] 

48.69 
[0.63] 

47.43 
[0.4] 

48.6 
[0.61] 

- - 

Average belief state CV 
0.174 

[0.0013] 
0.044 

[0.0004] 
0.212 

[0.003] 
0.072 

[0.0007] 
- - 

Average true population 
biomass 

47.92 
[1.22] 

48.69 
[0.682] 

47.43 
[1.44] 

48.6 
[0.747] 

45.09 
[0.938] 

48.93 
[0.642] 

True population biomass 
CV 

0.227 
[0.016] 

0.178 
[0.011] 

0.245 
[0.019] 

0.184 
[0.011] 

0.241 
[0.013] 

0.175 
[0.011] 

Average number of periods 
with zero harvest 

4.67 
[2.64] 

22.87 
[5.24] 

0.0004 
[0.02] 

18.6 
[5.03] 

60.72 
[5.957] 

22.61 
[5.22] 

Per-period average realized 
harvest 

9.94 
[0.535] 

10.14 
[0.518] 

9.84 
[0.547] 

10.12 
[0.52] 

9.75 
[0.49] 

10.16 
[0.518] 

Average effort level 
0.322 

[0.012] 
0.316 

[0.014] 
0.325 
[0.01] 

0.316 
[0.014] 

0.313 
[0.013] 

0.314 
[0.015] 

Average number of periods 
with learning from CPUE 

104.17 
[5.17] 

0 
[0] 

199.99 
[0.02] 

- - - 

Average number of periods 
with monitoring 

53.78 
[2.95] 

199.74 
[0.534] 

0 
[0] 

- - - 

Average number of periods 
with learning from both 
CPUE and monitoring 

0 
[0] 

0 
[0] 

0 
[0] 

- - - 

Notes: (a) Results summarize 5,000 time series of policy-specific dynamics over 200 years. All dynamic runs 
begin a true initial stock of 𝑋0 = 100 and an initial belief state with (𝑚𝑒𝑎𝑛0, 𝐶𝑉0) = (100, 0.14). 

                                                            
9 We keep the Sethi label to acknowledge the structural similarities between our bioeconomic model and theirs. 
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Table 6 provides a selection of diagnostics calculated from the dynamics. Differences among 
the counterfactuals are often subtle, but some intuitive results emerge. The base case involves 
average confidence falling between the case where maximum monitoring effort is nearly 
always applied, and the case where the resource manager always learns from a CPUE 
measurement (Table 6, row 2). Ignoring state uncertainty and acting on inaccurate 
measurements leads to a relatively large number of periods where harvest is forgone, while this 
essentially never occurs when monitoring costs are high and the resource manager learns from 
CPUE in nearly every period (row 5). Unsurprisingly, when monitoring is very low cost and 
highly accurate observations are received each period, the dynamics closely parallel those of 
the perfect observability case (compare column 2 and column 6). 
 

Table 7. Selected performance measures 

Feature 

Modela 

Base case High 𝑐𝐿 High 𝑐𝑀 
Sethi 

POMDP 
Ignore state 
uncertainty 

Perfect 
observability 

Mean Value 
[Standard Deviation] 

Realized NPV 
252.75 
[22.91] 

257.32 
[22.92] 

252.51 
[22.92] 

256.96 
[22.9] 

252.62 
[21.59] 

257.56 
[23.01] 

Realized PV of 
harvest rent 

253.93 
[22.83] 

257.34 
[22.92] 

252.54 
[22.92] 

- - - 

Realized PV of  
non-harvest 
management 
costs 

1.23 
[0.133] 

0.21 
[0.0001] 

0.021 
[2e-10] 

- - - 

Realized harvest 
CV 

0.725 
[0.044] 

0.769 
[0.046] 

0.724 
[0.041] 

0.769 
[0.045] 

1.1 
[0.05] 

0.776 
[0.047] 

Realized NPV: 
Base case rewards 

- - - 
250.72 
[22.89] 

246.37 
[21.59] 

- 

Realized NPV: high 
𝑐𝑀 rewards 

- - - 
237.43 
[22.89] 

246.15 
[21.59] 

- 

Notes: (a) Results summarize 5,000 time series of policy-specific dynamics over 200 years. All dynamic runs 
begin a true initial stock of 𝑋0 = 100 and an initial belief state with (𝑚𝑒𝑎𝑛0, 𝐶𝑉0) = (100, 0.14). 

 
Performance measures for the same set of dynamic runs are reported in Table 7. Differences 
are generally quite small, however with a known data generating process and the ability to 
generate arbitrarily many time series, signing differences among policy counterfactuals is 
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possible (conditional on parameter values and discretization scheme).10 One surprising finding 
is the closeness of average NPV among all policies relative to the perfect observability policy. 
We conjecture that, compared to a naïve alternative like our version of ignoring state 
uncertainty, Bayesian solutions will do particularly well when “process error” affecting stock 
dynamics via catchability and the growth shock is low and measurement error is high. To 
investigate this issue, we plan to pursue sensitivity analyses over other bioeconomic model 
parameters outside of the objective function in forthcoming updates to this research. 
  
One interesting use of these results is to reevaluate the Sethi POMDP solution by recomputing 
realized NPV of management assuming that monitoring is not free. Recall that the Sethi POMDP 
policy is computed assuming a fixed level of monitoring is carried out in each period. Since the 
solution involves constant monitoring, any costs of monitoring are excluded from the 
associated dynamic optimization problem. When these costs are instead accounted for at 
values consistent with their levels in either the base or high 𝑐𝑀 scenarios, the gap between the 
Sethi POMPD counterfactual and the performance of our model increases in both cases (rows 
5-6). This result quantifies the gain in performance from optimally investing in monitoring, and 
planning harvest effort jointly with the monitoring strategy. 
 
The same recalculation of NPV may be performed for the policy that ignores state uncertainty. 
The surprising closeness of the NPV between that alternative and the high 𝑐𝑀 case of the full 
model is in this light understood as being a function of the management costs: they are 
computed for the full model but left out of the ignore state uncertainty counterfactual in 
keeping with the original assumption of myopia for the latter policy. When monitoring costs  
are accounted for, a small gap emerges. However, the surprisingly competitive performance 
associated with acting on the most recent measurement (albeit less predictable in terms of 
realized CV of harvest) points to the disadvantage of having to rely exclusively on CPUE 
measurements, which occurs in the high 𝑐𝑀 case. CPUE is much less informative about the next 
period population, and also requires harvesting when it would not be optimal given a high-
quality monitoring observation.  
 
Finally, Figure 6 presents some long run results given 2 alternative policies. In the top panels 
the beliefs about the population level are displayed when no harvesting occurs.11 In this case 
mean beliefs (shown in the left panel, are located near the carrying capacity 𝐾 which is the 
long-run mean population level. The uncertainty around this level, shown in the right panel, 
reflects the long-run uncertainty due to environmental noise. The bottom panels display the 
long run distribution of the mean and CV of the belief distribution with optimal actions. In this 
case the mean is distributed in a fairly narrow band around 50. The CV on the other hand 
displays a curious bi-modality. Closer examination of the pattern of results suggests that 

                                                            
10 Specifically, standard deviations reported in Tables 6 and 7 are across-realization standard deviations of the 
corresponding calculation from a full known data generating process, and not standard errors of statistical 
estimates. 
11 Due to time constraints these results are from a different analysis than other results presented and hence may 
not be completely consistent with other presented results – this will be corrected in the draft that is posted online 
for the meeting. 
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monitoring results where the CV is at its upper level of about 0.12 whereas the CPUE (or no 
information) is used when the CV is at its lower level of about 0.04. In the former case the CV is 
reduced in the next period and the latter case it is increased. Thus, for these parameters, a 
different policy tends to be selected in alternate years.  
 

 

Fig 6. Long-run distributions of the mean and CV of beliefs about the population. The top panels display 

results with no harvesting occurs. The bottom panel arises when optimal harvesting effort and 

monitoring occurs.  

 

 
 
4. Conclusion 
 
This analysis aims to put the problem of investing in measuring a managed population on equal 
terms with interventions like harvesting within a bioeconomic optimization model. When 
population measurement may be done using a combination of costly controls, modest but 
conceptually important differences with previous solution concepts based on free monitoring 
emerge. When monitoring the population is not free, it is not in general optimal to do every 
period. This suggests bioeconomic models that assume population monitoring is done each 
period entail population measurement when it is not cost-effective, and other actions like 
harvesting may be wrongly specified to depend on over-investment in one form of learning. 
These same models likewise typically consider only one channel of information about a 
population. We show that it is possible to optimally invest in multiple forms of population 
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measurement. In our application, learning from CPUE and monitoring effort appear to be 
substitutes, with the pattern of substitution strongly influenced by cost differences. This finding 
needs further investigation with a more refined solution to our full model, and sensitivity 
analysis over the process and observation shock densities involved in our bioeconomic model. 
 

 

Fig. 7: Belief dynamics under state and parameter uncertainty 
 

 
Results from this analysis are preliminary, but they so far confirm our sense that the problem of 
optimally investing in information gathering in bioeconomic models is best characterized as one 
involving state and parameter uncertainty simultaneously (Fackler and Pacifici 2014). Similar to 
related prior work on state uncertainty, we assume that parameters of the process and 
observation models are known with certainty, which likely removes much of the potential value 
of learning from the model. 
 
Fig. 7 above provides a sample simulation of belief dynamics from a generalization of the model 
developed in this paper. In that model, the process and observation components are the same 
as in this paper, however the long-run carrying capacity parameter 𝐾 is no longer known by the 
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resource manager with certainty. Instead, the belief state is developed over both the 
population and the parameter. We approximate the belief state in this example with a bivariate 
lognormal density, and compute belief updates using a procedure closely related to the one 
described for this model in Section 2.4.  
 
Our conjecture is that investment in learning in this more realistic model will differ substantially 

from results of this analysis. In particular, more substantial differences between this model and 

the alternative solution concepts considered in Section 3 seem likely to emerge. We are in the 

process of working toward an approximately-optimal solution for this model, however due to 

the greater dimensionality (5 vs 2 belief state parameters that are continuous), the problem 

requires approximate dynamic programming rather than conventional modified policy iteration 

that we are able to apply to this model. Recent advances in ADP methods suitable for 

bioeconomic analysis make us optimistic that a practical solution can be found (Springborn and 

Faig 2019). 
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