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Abstract

Unexpected shifts in the realized stock market volatility, often associated with �nancial
crises, carry a signi�cantly negative risk premium across stocks and Treasuries, which suggests
the existence of a uni�ed pricing model. Investors require a premium for holding the risky
assets (stocks), which correlate negatively with volatility surprises, while they are willing to
pay a premium for holding the safe assets (Treasury bonds), which correlate positively. This
is consistent with investors� "�ights to safety", and the corresponding change in sign in the
stock-bond correlation, during times of economic uncertainty. Furthermore, because of their
positive loadings on volatility, bonds perform well in bad times, which explains their lower
expected returns. Interestingly, the joint pricing of stocks and Treasuries leads to economically
meaningful and statistically signi�cant risk premia estimates, and to a good performance of
asset pricing models. In contrast, both the implied volatility index, VIX, and the tail index,
SKEW, are not robustly priced across the two �nancial markets.

JEL Classi�cation : G01, G12, C11, C21, C22

Keywords : Flights to safety, volatility models, cross-section of stocks and Treasuries, condi-
tional risk premia, downside risk, VIX, SKEW



1 Introduction

Times of market stress are characterized by "�ights to safety" (or "�ights to quality"), where

investors sell their riskier investments to purchase safer assets. As a result, there is an increase

in demand for government backed securities, accompanied by a decline in demand for securities

issued by private agents during such times. For instance, the 2007-2008 �nancial market turmoil

has spurred investors to �ee stocks and seek the safety of the US Treasuries in an attempt to reduce

their stock market risk exposure. This phenomenon has led to one of the worst periods for holding

stocks to coincide with one of the best periods to hold Treasuries.

Because the U.S. government debt is usually issued in the form of U.S. Treasury securities, these

investment vehicles are perceived to be safer assets as they lack signi�cant default risk. Therefore,

it is not surprising that investors turn to Treasuries during times of increased uncertainty as a

safe haven for their investments: the so called "�ight to safety". This type of action leads to a

negative stock-bond return correlation, even though this correlation is positive most of the time

(see Figure 1). Meanwhile, times of increased economic uncertainty are also characterized by a

heightened stock market volatility (see Figure 2). Flights-to-safety episodes point thus to the

interconnectedness between the stock and Treasury markets, and to their possible joint sensitivity

to stock market volatility risk. Motivated by these observations, I assess the pricing ability of

stock market volatility across stocks and Treasuries, while also searching for indicators of �ights to

safety. From here forth, I refer to stock market volatility simply as volatility.

[Figure 1]

[Figure 2]

I make the following contributions to the literature. First, I capture the �ights-to-safety

phenomenon using unexpected shifts in realized volatility. I show that stocks correlate negatively

with volatility surprises, while Treasuries correlate in a positive fashion. Stocks are thus perceived

as being risky investments during turbulent times, while Treasuries are considered to be safe. This

leads to investors��ight to the safety of the Treasury market during times of economic uncertainty,

when aggregate risk aversion increases. Furthermore, a conditional model speci�cation reveals
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a signi�cant time variation in these correlations: there is a procyclical variation in the stocks

correlations with volatility, accompanied by a countercyclical variation in the bond correlations.

Second, I document that unexpected volatility is priced across stocks and Treasuries, with a

negative price of risk. Investors require a premium for holding the risky assets (most stocks),

while they are willing to pay a premium for holding the safe assets (Treasury bonds). Moreover,

conditional tests document a procyclical variation in the volatility price of risk, which is relatively

low (i.e., more negative) during recessions and �nancial crises, when there is a decline in economic

growth, and it is relatively high (i.e., less negative) during expansions, when the economy is growing

at a faster pace. Meanwhile, I document a countercyclical variation in the market price of risk.

Third, by relating volatility to bond returns I provide empirical support for the existence of a

uni�ed pricing model for the stock and Treasury markets. I also show that asset pricing models

tested in the joint markets provide risk premia estimates that are both economically meaningful

(i.e., similar to their realized analogs) and statistically signi�cant. Furthermore, I �nd that asset

pricing models, including the Capital Asset Pricing Model (CAPM), have a good explanatory power

for the cross-section of returns when tested in the joint markets, which provides further support for

the use of a common stochastic discount factor, and points to the fact that the stock market does

not represent all the available assets that are priced by models like CAPM.

Fourth, I establish a relation between volatility and future U.S. economic activity and in�ation,

by documenting that volatility has a signi�cant forecasting power for the business cycle index, up

to 12 months in the future.

Finally, I show that the implied volatility index, VIX, the tail index, SKEW, and the downside

risk (as de�ned in Ang, Chen and Xing (2006)) do not help in capturing �ights to safety, and that

they are also not robustly priced across the two �nancial markets.

The literature has focused on �ights to safety for some time, starting with the model in Vayanos

(2004), where managers become more risk averse during volatile times, when there is a high prob-

ability of withdrawals. In Caballero and Krishnamurthy (2008), Knightian uncertainty is an

important ingredient in the �ights to quality episodes, as it it leads agents to drop risky �nancial

claims in favor of safe claims. As could be expected, the stock-Treasury bond return correlation
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is informative for the �ights-to-safety episodes. This metric is known to be highly unstable: while

positive most of the time, it becomes negative during recessions and �nancial crises, a phenom-

enon called decoupling. Gulko (2002) �nds that decoupling is associated with steep stock market

declines, while Baele, Bekaert, and Inghelbrecht (2010) argue that the time variation in the stock-

Treasury bond return correlation is driven more by phenomena like �ights to quality (or safety)

than by changing macroeconomic fundamentals. Furthermore, Connolly, Stivers, and Sun (2005)

and Bansal, Connolly and Stivers (2010) document that periods with low stock-bond correlation

are characterized by higher stock volatility.

At the same time, the literature has been applying various methodologies for identifying �ights

to safety based on stock and bond returns (see, e.g., Baur and Lucey (2009), Bekaert, Engstrom,

and Xing (2009), and Baele, Bekaert, Inghelbrecht, and Wei (2019)). Realized volatility seems like

a good candidate for such an exercise because it is related to �nancial crises and business cycles

(see Figure 2).

Furthermore, because investment decisions are made by allocating funds between stocks and

Treasuries, these assets should be priced using discounted future cash �ows, discounted by the

same stochastic discount factor. Accordingly, the literature has been moving towards developing a

uni�ed asset pricing model for the stock and bond markets, which motivates me to assess volatility�s

pricing ability across these asset classes.

Using monthly returns on 36 portfolios (25 size- and value-sorted portfolios and 11 maturity-

sorted Treasury portfolios) over the period January 1952 to December 2014, I estimate signi�cantly

negative volatility prices of risk ranging from -45 bp tp -95 bp per month, while controlling for

market risk.1 A parsimonious pricing kernel that includes only the market return and (unexpected)

volatility explains up to 74% (71%) of the cross-sectional variation in stock and bond returns in an

unconditional (conditional) asset pricing setting. These �ndings support the existence of a uni�ed

pricing model for the two �nancial markets.

To understand the negative volatility price of risk, it su¢ ces to look at the most turbulent times,

when market returns are often highly negative, while volatility rises in response to a series of volatil-

1My sample ends on December 2014 because that is the last available date in WRDS for the legacy Treasury
maturity-sorted portfolio returns.
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ity surprises. Assets with positive covariances with (unexpected) volatility are desirable because

they enhance investors�ability to hedge against a deterioration in the investment opportunities set.

As a result, investors are willing to pay a premium for holding such assets.

Furthermore, a detailed analysis of the channels through which volatility gets priced across the

two �nancial markets gives insights into the way market participants react during times of market

stress. I �nd that investors require a premium for holding stocks, which correlate negatively

to volatility surprises, while they are willing to pay a premium for holding bonds, which correlate

positively. The explanation lies in the fact that stocks and bonds have di¤erent risk-return pro�les,

that make them natural hedges for each other during times of heightened volatility. Furthermore,

the opposite signs of these correlations indicate the �ights to safety that occur during times of

economic uncertainty.

An in-depth analysis of the stocks market shows that, while most stocks experience a drop

in returns during times of heightened volatility, with small-cap stocks being a¤ected the most,

large-cap stocks seem to be immune to volatility shocks (or even to pay o¤ in some cases). The

relatively greater ability of the latter group to weather volatility surprises, such as those often

associated with �nancial crises, partially accounts for their lower expected returns. Across the

book-to-market quintiles, large-cap stocks earn between 2.25% and 3.39% lower premia per annum,

that are attributable to volatility risk exposure.

Meanwhile, the Treasury market analysis shows signi�cantly positive volatility loadings, that

are monotonically increasing with maturity. Results imply that Treasuries pay o¤ in times of

heightened volatility, which explains their lower expected returns. My results are in line with the

�ndings in Baker and Wurgler (2012), who show that government bonds comove most strongly

with stocks of large, mature �rms. They also relate to the results in Ludvigson and Ng (2009),

who show that bond returns are forecastable by macroeconomic fundamentals. Furthermore,

across Treasuries, I �nd that a long-term bond (i.e., 61-120 months to maturity) has a 0.94% lower

premium per annum compared to a short-term bond, because it provides more insurance against

volatility shocks.

Interestingly, asset pricing tests performed in the joint markets lead to economically meaningful
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risk premia estimates that are similar to their realized analogs, a result that is hard to obtain when

tests are performed in the stock market in isolation. Moreover, asset pricing models (including

the CAPM) perform well in the joint markets, with the CAPM explaining up to 68% of the cross-

sectional variation in returns.

Assessing volatility pricing e¤ects in the Treasury market is a meaningful exercise, since this

market is very large and important (it reached almost $13 trillion at the end of my sample period).

Furthermore, the role played by volatility across the stock and bond markets is fundamental, be-

cause portfolio decisions involve allocating funds between stocks and Treasuries. Therefore, from

an investment perspective, it is important to identify the common determinants of the required rates

of return across �nancial markets. Furthermore, because markets are exposed to common macro-

economic shocks, �nancial assets should be priced using discounted future cash �ows, discounted

by the same stochastic discount factor.

My �ndings are robust to the methodology used for estimating volatility surprises. My �rst

approach uses the residual from an AR(1) model applied to volatility. My second approach uses

the di¤erence between predicted volatility (built using a GJR Asymmetric�GARCH model) and

realized volatility, and provides additional evidence that volatility surprises, however computed,

are important sources of risk across �nancial markets. Results are further robust when I control

for the Fama-French (1993) size and value factors, the Jegadeesh and Titman (1993) momentum

factor, and the Amihud (2002) illiquidity factor.

Finally, I assess the ability of three alternative factors in capturing �ights-to-safety episodes,

while also testing their pricing impact across markets. First, I look at the implied volatility index,

VIX, which is a proxy for bad times risk and has been shown to price the cross-section of stock

returns (see, e.g., Ang, Hodrick, Xing and Zhang (2006)). Also, �ights to safety may occur when

�nancial markets experience extrem events. And because there is a large literature on disaster risk

that points to tail risk as having a crucial impact on asset returns (see, e.g., Rietz (1988), Barro

(2006), Gabaix (2012), Wachter (2013), and Kelly and Jiang (2014)), I consider tail risk as a second

factor of interest.2 Note that I di¤er from prior authors as I perform my exercise using a traded

2Also, Harvey and Siddique (2000) document the e¤ect of higher moments in the cross-section of stock returns.
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factor, the SKEW index, which measures the perceived tail risk in the market portfolio. Third, I

also consider the downside risk factor of Ang, Chen and Xing (2006). Overall, I �nd that realized

volatility is a more suitable indicator for �ights to safety than any of these alternatives, and also

that VIX, SKEW and downside risk are not robustly priced across the two �nancial markets.

My work is related to two di¤erent strands of literature. My paper contributes to the part of the

literature that has been working towards developing a uni�ed asset pricing model for the stock and

bond markets. Some examples are Ferson and Harvey (1991), Baker and Wurgler (2012), Bekaert,

Engstrom, and Xing (2009), Campbell, Sunderam, and Viceira (2017), Lettau and Wachter (2011),

and Koijen, Lustig, and Van Nieuwerburgh (2017). My work is distinct from this literature, as I

explore the role of volatility in the cross-section of stocks and Treasuries.

A second strand of the literature has been focusing on empirically characterizing �ights to safety.

Some examples are Baur and Lucey (2009), Bekaert, Engstrom, and Xing (2009), Baele, Bekaert,

Inghelbrecht, and Wei (2019), and Adrian, Crump and Vogt (2019). I complement this literature

by capturing �ights to safety using volatility loadings in the stock and Treasury markets.

The remainder of the paper is structured as follows. Section 2 presents the data. Section 3

details the methodology used for indentifying unexpected volatility, and the asset pricing models

used in the paper. Section 4 empirically documents the �ights to safety. Section 5 prices volatility

across the stock and Treasury markets. Section 6 examines possible alternative indicators for �ights

to safety. Section 7 links volatility to economic activity. Section 8 concludes. The Appendix

presents technical details on the GJR Assymetric V olatility model of Glosten, Jagannathan and

Runkle (1993), and on the Griddy-Gibbs sampler of Geman and Geman (1984) and Gelfand and

Smith (1990).

2 Data

I build the monthly realized volatility using daily market return data that I download from CRSP

over the period January 1952 to December 2014. Using such a long sample justi�es volatility�s role

as a state variable proxying for bad time risk. The set of test assets consists of 36 portfolios: 25
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size-and value-sorted portfolios and 11 maturity-sorted Treasury portfolios. I download the value-

weighted returns for the stock market portfolios from Kenneth French�s website at Dartmouth, and I

download the returns on the Treasury portfolios from CRSP. The �rst Treasury portfolio has return

maturities from one to six months, while the last one has return maturities between 60 and 120

months. Only non-callable, non-�ower notes and bonds are included in these portfolios. Treasury

portfolio returns are computed as equal-weighted averages of the unadjusted holding period returns

of individual bonds.

For asset pricing tests I use classical risk factors such as the size, value and momentum factors. I

download the monthly returns for SMB, HML andMOM from Ken French�s website at Dartmouth.

I also use the Amihud illiquidity factor, which I build based on stock level data that I download

from CRSP.

For conditioning tests, I construct three state variables based on data that I download from

WRDS. The �rst variable is the default spread, DEF; built as the di¤erence between the yields

of a long-term corporate Baa bond and a long-term corporate Aaa bond.3 The second variable is

the term spread, TERM , built as the di¤erence between the yields of a thirty-year and a one-year

government bond. The third variable is the dividend yield on the S&P500 value-weighted portfolio,

DY ,which is the sum of dividends over the last 12 months, divided by the level of the index.

Table 1 reports the average excess returns for the test assets. According to the liquidity

preference hypothesis, bond returns should increase with maturity, because long-term bonds are

more sensitive to interest rate risk. This monotonic pattern can be observed in Panel A of Table 1,

with average bond excess returns (in excess of the one-month T-bill rate) increasing with maturity

from 4bp to 16bp per month, all statistically signi�cant. Meanwhile, Panel B shows that, with

the exception of the corner small-growth portfolio, returns are statistically signi�cant in the stock

market. Consistent with the previous literature, stocks sorted based on size and book-to-market

display a sizeable dispersion in returns in both dimensions (with the exception of the growth stocks

in the size dimension).4

3The yields on the corporate bonds come from the Federal Reserve Bank Reports in WRDS.

4See Basu (1977), Ball (1978), Banz (1981), Reinganum (1981), and Fama and French (1993, 2008), among others.
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[Table 1]

3 Methodology

I now present the methodology used for estimating unexpected volatility, and I describe the asset

pricing models used for testing its pricing ability.

3.1 Estimating Unexpected Volatility

For the main tests, I estimate a model-free measure of volatility using daily market return data.

Speci�cally, I follow Anderson et al. (2003) and I sum up the squared daily market returns within

a month, and then I take the square root of this quantity to obtain a monthly measure of realized

volatility:

Vt =

vuut nX
i=0

R2m;t+i; (1)

where n represents the number of trading days within month t. Next, I estimate the unexpected

volatility UVt as in Engle (1982), using the residual from an AR(1) model applied to the Vt series:

Vt = �V + �
V
1 Vt�1 + UVt: (2)

Note that the term UVt in Eq. (2) represents the di¤erence between volatility at time t and its

conditional expectation.

For robustness checks, I build a second (unexpected) volatility factor, based on predicted and

realized volatilities. To this end, I �rst predict volatility using an underlying model that captures

the following stylized facts: volatility increases after a drop in stock prices (Black (1976), Nelson

(1990, 1991)), and is persistent (Schwert (1989), French, Schwert, and Stambaugh (1987)); there

is usually leptokurtosis in returns; negative shocks to returns drive up volatility (Black (1976));

and there is usually a positive autocorrelation of order one in an index�return series (Campbell,
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Lo and MacKinley (1997)). Furthermore, Bollerslev (1986) shows that the generalized autoregres-

sive conditional heteroskedasticity (GARCH ) model provides a �exible structure for modeling the

volatility of �nancial time series. Therefore, I follow Bauwens and Lubrano (1998) and I use a

GJR Asymmetric Student � GARCH model with an AR(1) speci�cation in the mean equation

for the monthly market returns, a Half-Cauchy prior for the excess kurtosis parameter � (� is the

degrees of freedom variable for the Student-t distribution), and �at priors on �nite intervals for all

the other parameters in the model below:

Rm;t = �+ �Rm;t�1 + �t

�t = "t
p
ht;

"t=It�1 � Student (�); t = 1; :::; T:

ht = �+ �ht�1 + �
+�2+t�1 + �

��2�t�1;

�2+t = �2t 1f�t>0g; �
2�
t = �2t 1f�t<0g

(3)

Above, ht represents the conditional variance of market returns. The model described by Eq. (3)

accommodates the asymmetry in the news impact curve (see Appendix A for details on the model).

I estimate Eq. (3) using the Griddy �Gibbs sampler, which is a very popular Markov Chain

Monte Carlo method (see Appendix B for details on the estimation) and I present the posterior

estimates in Table 2.

Next, I build the second unexpected volatility factor as the di¤erence between realized and

predicted volatility, using the estimates from Eqs. (2) and (3):

PRED_UVt = Vt �
p
ht: (4)

[Table 2]

Figure 1 presents the monthly realized and predicted volatilities. The two series track each

other closely, a result that is due to the GARCH predicting equation being a weighted average

of past squared returns, with slowly declining weights. Furthermore, and as expected from a

recession and �nancial crisis proxy, the graph documents a heightened volatility during times of
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economic uncertainty. The shaded areas in Figure 1 represent: the recessions of 1954, 1957-1958,

1960-1961, 1969-1970, 1973-1975, 1980, 1981-1982, 1983, 1990-1991, 2000-2001, the Cuban missile

crisis of October 1962, the credit crunch of 1966, the Penn Central commercial paper debacle of

May 1970, the oil crisis of November 1973, the stock market crash of October 1987, the Asian crisis

of 1997, the Russian debt default and the LTCM crisis from 1998, the burst of the hi-tech bubble

in 2000, the 9/11 terrorist attack, the accounting scandals (Enron, WorldCom) and the Gulf War

of 2002, the �nancial crisis of 2007-2008 (the bursting of the US housing bubble, accompanied by

high default rates on subprime and other adjustable rate mortgages), the European sovereign-debt

crisis of 2010-2012, the U.S. debt downgrade of 2011, and the emerging market crisis of 2014.

3.2 Estimating Illiquidity

An important aspect of �nancial crises is a reduction in market liquidity. Therefore, I need to

control for liquidity e¤ects in my asset pricing exercise. To this end, I download stock level

data from CRSP for the period January 1952 to December 2014 to build the Amihud illiquidity

factor. For each stock i and each month k, I compute 1
#Days

P#Days
t=1

jRi;t;kj
Vi;t;k

; where Ri;t;k and V i;t;k

represent the return and dollar volume (measured in millions), respectively, of stock i on day t of

month k. I collect data on common stocks (share code in 10 and 11) that trade at the beginning

of the month at a price ranging from $5 to $1,000 on NYSE (NYSE and MKT), and that have

valid data for at least 15 trading days in a given month (see Watanabe and Watanabe (2008), for

details). An aggregate measure can then be de�ned by averaging across stocks for each month k:

Ak =
1

Nk

NkX
i=1

 
1

#Days

#DaysX
t=1

jRi;t;kj
Vi;t;k

!
; (5)

where Nk represents the number of stocks in month k. Amihud�s "illiquidity ratio" looks directly

at price impacts. Periods of illiquidity are periods during which small volumes are associated with

large price moves.

I re-scale this measure by
�
mk�1
m1

�
to make it stationary, where mk�1 represents the total

market capitalization in month k-1 for the stocks included in the month k sample, and m1 is the
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corresponding value for the initial month. This scaling factor controls for the time trend in the Ak

series above (see, e.g. Acharya and Pederson (2005)). Finally, I compute the unexpected Amihud

factor (Amihk) as the residual �k from the following model:

�
mk�1
m1

Ak

�
= �+ �1

�
mk�1
m1

Ak�1

�
+ �2

�
mk�1
m1

Ak�2

�
+ �k: (6)

I select the lag length in the autoregressive model in Eq. (6) to ensure that the residuals are serially

uncorrelated.5

3.3 Unconditional Asset Pricing Models

My goal is to test the pricing ability of (unexpected) volatility in the cross-section of stocks and

Treasuries. To model the relation between unexpected volatility and expected returns, I assume

that the pricing kernel m that prices assets across the two �nancial markers is represented by a

linear factor model of the form:

m = 1 + b0ifi; E(mRei ) = 0; i = 1; 2; :::; n; (7)

where bi are the factor loadings, f i is a vector of pricing factors that includes the excess market

return, SMB, HML,MOM, Amihud and unexpected volatility, while Rei is a vector of excess returns.

This linear factor representation of the stochastic discount factor is equivalently written as an

expected-return beta model of the form (see Cochrane, 2001):

E(Rei ) = �
0
i�i; (8)

where E(Rei ) is the vector of expected excess returns, �i are the exposures to the risk factors fi,

and �i are the corresponding prices of risk. The pricing kernel and the expected-return beta model

give a testable implication for the asset pricing models. If unexpected volatility is priced, its

cross-sectional price of risk in the �j vector should be nonzero.

5The AR(2) speci�cation is also the one used by the existing literature when computing the innovation in the
Amihud illiquidity factor.
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I start by expressing the equilibrium expected excess returns as linear combinations of the

(conditional) beta of the asset returns with the market return, �mi , and the (conditional) betas of

the asset returns with the unexpected volatility, �UVi , namely:

E(Rei ) = �0 + �m
c�mi + �UV d�UVi : (9)

As stated above, the regressors in Eq. (9) are the slope coe¢ cients in the return generating process:

Rei;t = �i + �
m
i R

e
m;t + �

UV
i UVt + �i;t; i = 1; 2; :::; n; (10)

with Rem being the excess returns on the market portfolio. and n being the number of test assets.

To check the robustness of volatility pricing, I extend the model to account for classical risk

factors. To this end, I assume the existence of S state variables Xs that a¤ect stock returns:

E(Rei ) = �0 + �m
c�mi + SX

s=1

�sc�si : (11)

The regressors in Eq. (11) are the slope coe¢ cients in the return generating process:

Rei;t = �i + �
m
i R

e
m;t +

SX
s=1

�siXs;t + �i;t; i = 1; 2; :::; n: (12)

The lambdas in Eq. (11) have the usual interpretation: �m is the price of market risk, �s is the

price of risk associated with the generic factor Xs, and �0 represents the pricing error. In order

to compare my results with the existing asset pricing literature, I assume for now time invariant

betas.

I perform the asset pricing tests using a two-step estimation procedure. First, I estimate the

factors�loadings (the betas) on each portfolio, according to Eqs. (10) and (12). Given the betas,

I then estimate the prices of risk (the lambdas) in a second step by regressing cross-sectionally

the portfolios� excess returns on the betas, as implied by Eqs. (9) and (11). Finally, I analyze

the distribution of the lambda estimates. I run the tests at the portfolio level, where the beta

estimates have been documented to be more precise.
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3.4 Conditional Asset Pricing Models

Motivated by the previously documented variability in the conditional stock-bond returns correla-

tion, I extend the exercise using a conditional asset pricing model:

mt+1 = 1 + b
0
i;t(Zt)ft+1; E[mt+1R

e
i;t+1=Zt] = 0; i = 1; 2; :::; n: (13)

The speci�cation used in Eq. (13) implies that the stochastic discount factor mt+1 is a linear

function of the risk factors, where the coe¢ cients depend in a linear fashion on Z t.

I estimate the conditional loadings at time t+1 by conditioning on the set of information

available at time t, Zt. I follow the literature and assume that the information set is spanned by

three macro variables that can a¤ect the two aspects of the stochastic investment opportunity set,

the yield curve and the conditional distribution of asset returns: aggregate dividend yield, term

spread, and default spread.6 I denote the vector of instruments by Zt = (DIV; TERM;DY )t:

I assume a return generating process:

Rei;t+1 = �i + �
m
i (Zt)R

e
m;t+1 + �

UV
i (Zt)UVt+1 + �i;t+1; i = 1; 2; :::; n; (14)

with n being the number of test assets, and �mi (Zt) and �
UV
i (Zt) being the time t conditional

market beta and respectively, the conditional volatility beta for asset i. The factor Rei;t+1 denotes

the time t+1 excess return on asset i, while Rem;t+1 is the time t+1 excess return on the market

portfolio. The two conditional betas have the linear functional forms:

�mi (Zt) = b
m
0i +B

m0
i Zt (15)

�UVi (Zt) = b
UV
0i +BUV

0
i Zt; (16)

where Bm
0

i and BUV
0

i are vectors of coe¢ cients.

Substituting Eqs. (15) and (16) into Eq. (14), leads to

6See, e.g., Ferson and Schadt (1996) or Petkova and Zhang (2005).
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Rei;t+1 = �i + (b
m
0i +B

m0
i Zt)R

e
m;t+1 + (b

UV
0i +BUV

0
i Zt)UVt+1 + �i;t+1; i = 1; 2; :::; n: (17)

I estimate the parameters in Eq. (17), and then I use them to construct the �tted betas d�mi (Zt)
and d�UVi (Zt) in Eqs. (15) and (16). Next, the �tted betas enter as regressors in the conditional

asset pricing model:

E[Rei;t+1=Zt] = �0(Zt) + �m(Zt)
d�mi (Zt) + �UV (Zt) d�UVi (Zt); i = 1; 2; :::; n: (18)

In Eq. (18), �m(Zt) and �UV (Zt) represent the conditional prices of systematic risk (or the condi-

tional expected risk premia) for the market return and volatility. The �0(Zt) term represents the

model pricing error.

Finally, I check the robustness of the volatility pricing e¤ect in the presence of previously

established risk factors. To this end, I use a generalized conditional model of the form:

E[Rei;t+1=Zt] = �0(Zt) + �m(Zt)
d�mi (Zt) + SX

s=1

�s(Zt) d�si (Zt); i = 1; 2; :::; n: (19)

As above, the conditional betas for any generic factor s in Eq. (19) depend in a linear fashion on

Zt:

4 Flights to Safety

As can be observed in Figure 1, volatility has a strong countercyclical pattern, peaking just before

or during recessions, and falling sharply late in recessions or early in recovery periods. To have a

better understanding of what happens during recessions and �nancial crises, it is useful to look at

the realized correlation between the stock and Treasury markets. First, I compute the unconditional

correlation between the monthly returns on the stock market portfolio and the 10-year Treasury

bond, which is positive and equal to 0.10. Next, I compute the conditional correlation using 1-year

rolling windows, on a monthly basis, over the period January 1952 to December 2014.
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I plot the time series of the realized stock-bond return correlations in Figure 2. It is expected

to have, in general, a positive correlation between bond and stock returns, because both of them

are major asset classes representing long duration assets (see Baele et al., 2010). The graph shows

that, while positive most of the time, the correlation becomes negative during recessions or �nancial

crises (the shaded areas in the graph). This result is in line with Gulko (2002), who documents the

decoupling phenomenon: the unconditional positive correlation between stocks and bonds switches

sign during stock market crashes. My �nding also aligns with the results in Connolly et al. (2005),

who document a lower correlation between stock and bond returns during times of increased stock

market uncertainty. It also supports the previous �ndings by Campbell, Sunderam, and Viceira

(2017) (see Figure 1 in their paper), and by Baele, Bekaert, and Inghelbrecht (2010) (see Figure 1

in their paper).

4.1 Results Using Unconditional Models

To capture the �ight to safety phenomenon, I turn my attention to the volatility loadings. To

this end, I run the �rst-pass regression from Eq. (10). Table 3 Panel A) presents results for

the Treasury market. I �nd positive and statistically signi�cant market betas across all Treasury

portfolios. Because the stock-Treasury bond correlation is positive most of the time (as can be

seen in Figure 2), it is not surprising that the estimated time-invariable market betas for Treasury

securities are positive. I also �nd an increasing pattern in market betas across Treasury bonds,

which is in line with the �ndings in Fama and French (1993). Speci�cally, short maturity bonds

have a market beta close to zero, while long maturity bonds have a market beta of 0.06 (t-stat =

4.18). The former result was expected, since short-term Treasuries are considered to be riskless

securities.

[Table 3]

However, the important �nding is that all of the volatility loadings on Treasuries are positive and

statistically signi�cant. This result implies that Treasuries pay o¤ in times of increased economic

uncertainty, when volatility rises. Furthermore, there is a strictly increasing pattern in volatility
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loadings across the di¤erent maturity bonds, with short maturity bonds having a volatility beta

of 0.01 (t-stat = 2.84), while long maturity bonds have a volatility beta of 0.15 (t-stat = 4.05).

These results imply that long maturity bonds provide a hedge against volatility risk. Therefore,

they should be in high demand, and should require lower expected returns when compared to

short-maturity bonds. Why do we then observe higher rates of return required by investors on

long maturity Treasuries, as outlined in Table 1? The answer is that long term bonds also have a

higher market beta, which makes them relatively riskier when compared to short term bonds. In

addition, long term bonds are exposed to interest rate risk.

Table 3 Panel B) reports the estimates for the factor loadings in the stock market. All of the

market betas are positive and statistically signi�cant, implying that all stocks are a¤ected by market

downturn risk. Meanwhile, the majority of volatility betas are signi�cantly negative. The latter

result was expected, as stocks usually experience low returns during turbulent times. Interestingly,

volatility loadings increase with size in a strictly monotonic fashion. Small cap portfolios have a

signi�cantly negative volatility exposure, whereas large cap portfolios are not a¤ected by volatility

surprises or even pay o¤ in some cases, holding the market return constant. This result is in

line with the �ndings in Coval and Shumway (2001). Furthermore, there is a sizeable spread in

volatility loadings between small-cap and large-cap stocks. For example, among the low book-to-

market (growth) �rms, the small-cap stocks have a volatility beta of -0.40 (t-stat = - 3.51), while

the large-cap stocks have a beta of 0.11 (t-stat = 3.11). Among the high book-to-market (value)

�rms, the small-cap stocks have a volatility beta of -0.42 (t-stat = - 5.16), while the large-cap stocks

have a beta of 0.05 (t-stat = 0.63). Therefore, large cap �rms act as a safer investment during

turbulent times. That is because bonds and bond-like stocks depart from speculative stocks as

investors�risk aversion increases. These results are in line with the �ndings in Baker and Wurgler

(2012), who show that government bonds comove most strongly with stocks of large, mature �rms.

The size results can be interpreted as a �ight to safety into larger, well-known companies, who

have better acces to capital markets during volatile times. Meanwhile, value portfolios tend to

have slightly more negative volatility betas than growth portfolios, but the results are economically

weaker than in the size dimension. The model from Eq. (10) explains between 60% and 89% of
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the time series variation in portfolio excess returns.

Figure 3 plots the average portfolio excess returns in Panel A, and the volatility loadings in

Panel B. The graphs show a nice alignment in the size dimension between portfolio returns and

volatility loadings.

[Figure 3]

Note that, because both stocks and bonds have positive exposure to market risk, CAPM can not

explain by itself the �ight-to-safety phenomenon. Instead, it is the opposite exposure to volatility

risk that captures this e¤ect.

4.2 Robustness Checks

This section ensures that the above results are not a by-product of the way I measure unexpected

volatility. To this end, I use the second measure of unexpected volatility from Eq. (4), PRED_UV.

Table 4 repeats the time series regression from Eq. (10). Panel A) presents results for the Treasury

market, where I �nd again positive and statistically signi�cant market betas across all Treasury

portfolios. As above, there is an increasing pattern in market betas across Treasury bonds, with

short maturity bonds having a market beta close to zero, while long maturity bonds having a

market beta of 0.07 (t-stat = 4.52). The second measure of unexpected volatility seems to do a

better job at �tting the yield curve, with the intercepts being almost all insigni�cant.

[Table 4]

As before, all of the volatility loadings on Treasuries are positive and statistically signi�cant;

there is a strictly increasing pattern in volatility loadings across the di¤erent maturity bonds, with

short maturity bonds having a volatility beta of 0.01 (t-stat = 2.07), while long maturity bonds

have a volatility beta of 0.16 (t-stat = 4.62).

Table 4 Panel B) reports the estimates for the factor loadings in the stock market. As above, all

of the market betas are positive and statistically signi�cant, while the majority of volatility betas

are signi�cantly negative. Again, volatility loadings increase with size in a strictly monotonic

fashion. Figure 3 plots the volatility loadings for the second measure in Panel C.
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4.3 Results Using Conditional Models

Motivated by the time variability in the stock-bond correlation, I perform the conditional time

series tests from Eq. (17), I use the aggregate dividend yield, the term spread, and the default

spread as part of the information set available at time t. The vector of instruments is thus

Zt = (DIV; TERM;DY )t: First I run the regression from Eq. (17) to estimate the parameters

needed to build the conditional market and volatility betas in Eqs. (15)-(16). Figure 4 plots

the monthly time series of cross-sectional averages and maximum (minimum) of the conditional

volatility betas. The important �nding here is that the average conditional volatility beta has,

most of the time, opposite signs in the two markets. Panel A shows that most of the time, the

average conditional volatility beta is positive for Treasuries, while Panel B shows that the average

conditional volatility beta is always negative for stocks.

[Figure 4]

5 Pricing Volatility

The above �ndings motivate me to formally investigate the volatility pricing e¤ects across the

two �nancial markets. Because stocks and Treasuries are interconnected and jointly sensitive to

volatility risk, as evidenced by the most recent �nancial crisis, it is reasonable to formally investigate

the volatility e¤ect across these markets. If volatility proxies for common underlying sources of

macroeconomic risk, then it should be priced across the two �nancial markets.7

5.1 Unconditional Asset Pricing Tests

The �rst step in the unconditional asset pricing exercise is to estimate the factor loadings in the

�rst-pass regression (10). The second step consists of estimating Eq. (9) using the �tted regressors

from Eq. (10). To ensure that the volatility pricing ability, if supported by the data, is robust

7Also, if the test assets in one of the markets have a factor structure (as is the case with the stock market
portfolios), and if the variables tested have some correlation with these factors, then one obtains a good model �t
(see Lewellen, Nagel and Shanken, 2010). Testing the asset pricing model outside the stock market addresses this
issue.
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with respect to the inclusion of classical risk factors in the model, I also estimate the asset pricing

model from Eqs. (11)-(12). To this end, I consider the following �ndings.

First, Fama and French (1996) rely on their three-factor model with market return, SMB and

HML for explaining stock return anomalies related to �rm characteristics.8 Second, another

posible candidate for a state variable is the momentum factor (MOM ) of Jegadeesh and Titman

(1993).9 Third, an important aspect of �nancial crises is a reduction in market liquidity, due to an

increased risk aversion among market makers. Therefore, I also control for liquidity in the asset

pricing model using the Amihud (2002) illiquidity factor.

I document the average returns for the traded risk factors in Table 5 Panel A, and I present the

cross-correlation matrix for these factors and volatility in Panel B. There is a signi�cantly negative

correlation between UV and market return (equal to �33%), which was expected since rises in

volatility tend to correspond to downturns in the market. There is also a signi�cant negative

correlation between UV and SMB, although not economically large (equal to -26%). This is in

line with the results reported in the previous section, which show that returns of small stocks are

more (negatively) a¤ected by volatility risk. There is also a signi�cant correlation between volatility

and aggregate illiquidity (equal to 41%), which suggests that times of heightened volatility tend to

coincide with times of low aggregate liquidity, as was experienced during the recent U.S. �nancial

crisis. Finally, UV has a signi�cant correlation to �V IX, although not large from an economic

angle (equal only to 41%). The table presents similar correlations for the PRED_UV factor.

[Table 5]

I now turn to estimating the factors�prices of risk using the Fama-MacBeth (1973) methodology

and the second-pass regression from Eq. (9). I use the statistical distribution of the estimated

lambdas to assess whether the risk factors included in the asset pricing model are priced in the

cross-section of returns. While performing this exercise, it is important to keep in mind the

8HML and SMB are mimicking portfolios for book-to-market equity and size (zero-investment portfolios). HML is
the di¤erence between high book-to-market-stocks portfolios and low book-to-market-stocks portfolios, with similar
weighted-average size, while SMB is the di¤erence between the returns on small-stocks portfolios and those of big-
stocks portfolios, with similar weighted-average book-to-market equity.

9MOM is built as the average return on the two high prior (months 2-12) return portfolios minus the average
return on the two low prior return portfolios.
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following theoretical result. If the factors form a basis for the space of returns, and if the factors

are traded in the market place, then their risk prices should be close in value to their means (see

Cochrane, 2001).10

Table 6 documents the �ndings. The �rst set of rows presents the results for the CAPM model,

which is practically Eq. (9) without the volatility factor. It is reassuring to see that the theoretical

result in Cochrane (2001) holds here. The �rst row of this table together with Table 5 Panel A

highlight a novel result: the estimated market risk premium (equal to 58 bp per month, t-stat =

3.35) is similar to the realized analog of 59 bp from Table 5. This is a result that the literature

has had a hard time obtaining. My �nding may be due to the fact that the stock market does

not represent all the available assets that are priced by models like CAPM. Adding Treasuries

leads to a better performance of asset pricing models, and translates into an estimated market risk

premium that makes economic sense. I document another interesting result in the �rst set of rows:

the market return explains by itself a sizeable amount of the cross-sectional variation in returns in

the joint markets, with an R2adj of 68%.

[Table 6]

The second set of rows in Table 6 supports the role of volatility as a risk factor that is priced

across �nancial markets. Controlling for market risk, volatility has an estimated risk premium of

-56 bp per month (t-stat = - 1.93). Although there is, on average, a signi�cant trade-o¤ between

market risk and return over the period January 1952 to December 2014 across the two markets, a

non-beta measure of risk like volatility plays an important and apparently systematic role, with a

noticeable in�uence on both stocks and Treasuries expected returns. The negative price of volatility

risk suggests that during turbulent times investors are willing to pay a premium for holding the

safe assets (Treasury bonds), which correlate positively with volatility, and they require a premium

for holding the risky assets (stocks), which correlate in anegative fashion. This is consistent with

investors��ight to safety during volatile times. These results are also consistent with Merton�s

(1973) intertemporal asset-pricing model (ICAPM), where the risk premia are associated with the

10 I refer only to traded factors here, thus excluding the non-traded unexpected volatility factor.
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conditional covariances between asset returns and innovations in state variables that describe the

time variation in the investment opportunity set. According to Campbell (1993, 1996), investors

want to hedge against changes in forecasts of future volatilities, so they are concerned about the

unexpected component of volatility.

5.2 The Contribution of Volatility to Expected Returns

The previous subsection established that volatility is a priced risk factor across the stock and

Treasury markets. This subsection shows that the contribution of volatility risk to expected returns

is economically substantial, as well. Table 7 describes how much of the expected returns can be

explained by exposure to volatility risk.

I �nd that Treasury bonds have lower premia (as can be seen in Table 1) because they pay

o¤ in times of heightened volatility. As an example, a long-term Treasury bond has a 0.96% (=

-1.02-(-0.06)) lower premium per annum because of its insurance against volatility shocks (see Table

7 Panel A). In the stock market, results suggest that investors demand large-cap stocks during

turbulent times, because small-cap stocks expose them to larger volatility risk (on top of market

risk). In accordance to rational asset pricing, this hedging demand drives up the price for such

stocks, and leads to lower expected returns for large-cap stocks. Speci�cally, large-cap stocks have

between 2.25% (= -0.11-2.14) and 3.39% (= -0.73-2.66) lower premium per annum when compared

to small-cap stocks, across the value quintiles (see Table 7 Panel B).

These �ndings also imply that in the ICAPM world the market portfolio is not mean-variance

e¢ cient with respect to the universe of common stocks, and suggests adding a position that takes

into account volatility. Since investors are not fully insured against systematic volatility risk, the

premium they pay for assets that covary positively with volatility re�ects their attempts to reduce

this risk exposure.

[Table 7]
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5.3 Robustness Checks

In this section I ensure again that my results are not a by-product of the way I measure unexpected

volatility, and that they are robust when controlling for previously documented sources of systematic

risk.

5.3.1 Controlling for Other Risk Factors

A stringent test consists of assessing the empirical performance of volatility in the presence of the

Fama-French (1993) factors. Therefore, in the next step I perform cross-sectional tests, where I

control for classical risk factors. I present the estimates of the parameters in Eq. (11), for various

values of s; in Table 6. I �nd that volatility has a signi�cant price of risk of -0.95 bp per month

(t-stat = -2.96) when the SMB and HML factors are included in the model. Volatility continues to

mantain its pricing ability when theMOM factor is included in the model (with a price of risk of -97

bp per month, t-stat= -3.03). Finally, and in light of recent literature that documents that stock

market liquidity prices the cross-section of Treasury bond returns (see Li et al., 2009), the question

is whether volatility has a pricing e¤ect in the presence of liquidity risk. Results show that, when

controlling for the Amihud factor from Eq. (6), volatility continues to price the cross-section of

returns (with a price of risk of -103 bp per month, t-stat = -2.98), while illiquidity does not have

explanatory power here.

Overall, while the estimated market risk premium continues to be signi�cant and close its

realized analog, the volatility pricing ability is robust across di¤erent model speci�cations. As

for SMB, it has an insigni�cant price of risk, while HML and MOM have signi�cant prices of risk.

Similarly to the market, the estimated prices of risk for these traded factors are close to the realized

analogs (the exception being the MOM factor, result probably due to factors not being completely

orthogonal to each other).

Finally, I use the R2adj statistic from the cross-sectional regression of average excess returns

on the risk factors�loadings for comparing the relative performance of the di¤erent asset pricing

models (see Jagannathan and Wang, 1996). When CAPM is augmented with volatility, R2adj goes

from 68% to 70%. Volatility also adds to the explanatory power of the Fama-French (1993) and
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Carhart (1997) models.

5.3.2 Using the Second Measure of Unexpected Volatility

This section ensures that results are robust with respect to the methodology used for building

unexpected volatility. To this end, I use the second (unexpected) volatility factor from Eq.(4),

PRED_UV. I present the correlation of this new (unexpected) volatility factor with the other risk

factors in Table 5 Panel B. Similar to the �rst volatility measure, it has a negative and signi�cant

correlation with the SMB factor (-24%) and signi�cant correlations with the �V IX and Amih

factors (44% and 39%, respectively).

I report the results for the asset pricing tests performed using the new volatility measure in

Table 8. I estimate a signi�cant price of risk for the second volatility factor, ranging between

-56 bp per month (t-stat = -1.95) and -95 bp per month (t-stat = -2.96) across the various asset

pricing model speci�cations. The volatility e¤ect is robust with respect to the SMB, HML, MOM

and Amih factors. Augmenting the classical asset pricing models with volatility leads to a slightly

higher explanatory power. As before, results make economic sense and they support the use of

a pricing kernel that includes unexpected volatility when pricing the cross-section of stocks and

Treasuries.

[Table 8]

5.4 Conditional Asset Pricing Tests

Next I perform the conditional asset pricing tests from Eq. (14)-(17). Table 9 documents my

�ndings. The �rst set of rows presents the results for the conditional CAPM model, which is

practically Eq. (18) without the volatility factor. The market return has a signi�cant price of risk

of 59 bp per month (t-stat = 3.41), which is exactly its realized analog. The conditional CAPM

model has a good explanatory power in the cross-section of stocks and Treasuries, with an R2adj of

66%.

The following sets of rows in Table 9 report the results when estimating the models in Eqs.

(18) and (19). My �ndings support the role of volatility as a priced risk factor across markets,
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when using the conditional asset pricing model speci�cation. Controlling for market risk, volatility

has an estimated risk premium of -45 bp per month (t-stat = -1.96). When the SMB and HML

factors are included in the model, volatility continues to have a signi�cant price of risk of -0.54 bp

per month (t-stat = -2.70). Volatility further mantains its pricing ability when the MOM factor

is also included in the model (with a price of risk of -65 bp per month, t-stat = -3.24). Results are

similar when controlling for illiquidity.

[Table 9]

Figure 5 plots the time series of the conditional market and volatility prices of risk estimated

using the model from Eq. (18). The conditional values are the �tted values from a regression of each

price of risk on the conditioning variables. My results indicate that there is a procyclical variation

in the volatility risk premia, and a countercyclical variation in the market risk premia. It is not

surprising that the two time series are almost mirror images of each other, given the documented

�ight to safety in the previous sections. During recession or �nancial crises, the market price of risk

increases (i.e., it becomes more positive) and the volatility price of risk decreases (i.e., it becomes

more negative). When faced with volatile times, investors require a premium for holding the risky

assets (stocks), which correlate negatively to volatility surprises, while they are willing to pay a

premium for holding the safe assets (Treasury bonds), which correlate positively. This is consistent

with investors��ights to safety during times of economic uncertainty.

[Figure 5]

6 Possible Alternatives for Capturing Flights to Safety

In this section I evaluate the ability of posible alternative factors that may capture �ights-to-safety

episodes, while also having a pricing impact across markets: i) the implied volatility index, VIX,

which is a measure of perceived market volatility; ii) the tail index, SKEW, which measures the

perceived tail risk in the market portfolio; and iii) the downside risk factor of Ang, Chen and Xing

(2006).
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6.1 Results Using the Implied Volatility Index, VIX

The literature has been extensively using the implied volatility index VIX as a proxy for bad times

risk. VIX is built using the implied volatility of at-the-money options. The question is whether

VIX captures the �ight to safety in a similar fashion to realized volatility. To address it, I perform

the time series regression from Eq. (10), while replacing UV with �V IX; the monthly changes in

implied volatility.11 Note that this exercise is performed over a much shorter time period, January

1990-December 2014, because VIX is not available before 1990.

Table 10 Panel A presents the results for the Treasury portfolios. I �nd that the �V IX betas

are statistically insigni�cant. Panel B presents the results for the stock portfolios. Only a third

of the �V IX betas are precisely estimated. As a side note, the monotonic pattern previously

documented for realized volatility is not present among the �V IX betas.

[Table 10]

To make sure that results for �V IX are not due to a power issue, given that the VIX series

is available only starting in 1990, I redo the time series tests for realized volatility over the period

January 1990 - December 2014. Table A.1 of the Appendix shows that realized volatility does

capture the �ight to safety over this recent time period, so the failure of VIX in capturing �ights to

safety is not due to a lack of power in the tests. Perhaps the weaker results obtained when using

VIX are caused by the VIX series being an expectation of volatility. In addition, the (squared)

VIX includes both the equity variance premium and the conditional variance, which may complicate

things when trying to capture the �ights to safety phenomenon. Overall, the �ights to safety are

not evident when using �V IX:

I also assess the asset pricing ability of the implied volatility index. Table A.2 Panel A in the

Appendix shows that �V IX is not robustly priced. �V IX loses its explanatory power when used

to augment the Carhart (1997) model.

[Figure 5]

11 I follow Ang et al. (2006) when building the monthly change in VIX.
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6.2 Results Using the Skewness Index, SKEW

Next I analyze the peformance of the SKEW index. SKEW measures the perceived tail risk in

the S&P 500 based on the implied volatility of out-of-the-money options. I download SKEW data

from the Chicago Board Option Exchange (CBOE) for the period January 1990 - December 2014.

Similarly to the implied volatility index, I build the month-to-month changes in this tail risk index,

call it �SKEW .

Table 11 shows the results when running the model in Eq. (10) while replacing UV with

�SKEW: I �nd that the �SKEW betas are mostly statistically insigni�cant in the Treasury

market. As was the case with implied volatility, only a third of the �SKEW betas are precisely

estimated in the stock market. Table A.2 of the Appendix performs the asset pricing test from

Eq. (9) (again while replacing UV with �SKEW ). It is interesting to see that the tail risk

has a positive price of risk in the cross-section of the test assets in models that control for market

risk, size and value factors. This means that investors demand a premium for holding assets with

positive exposure to �SKEW because such investments expose them to crash risk. However,

skewness loses its explanatory power when added to the Carhart (1997) model, as well as when

realized volatility is also included in a 3-factor model speci�cation that controls for the market risk.

The latter result is probably not surprising, given the infrequent nature of extreme events.

[Table 11]

6.3 Results Using Downside Risk

In light of the results in Ang, Chen and Xing (2006), who show that stocks earn compensation

for their exposure to downside risk, I perform two additional exercises. First, I analyze whether

downside risk plays a role in capturing �ights to safety and second, I check if this risk factor has

cross-markets pricing e¤ects.

To this end, I follow Ang et al. (2006) and I build downside risk over the period January

1952-December 2014, as:
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where Rei and R
e
m are the excess returns on asset i, respectively the market portfolio, while �m is

the unconditional mean of the market excess return. I also build the upside risk factor, �+, by

conditioning on values where the market excess return is above its unconditional mean. Table 12

presents the downside risk loadings in the two markets, using a 2-factor model that also includes

upside risk. It shows that downside risk has mostly insigni�cant loadings in the Treasury market,

and so it does not prove helpful in identifying �ights to safety. In addition, Table A.2 Panel C of

the Appendix shows that downside risk is not priced in the cross-section of stocks and Treasuries.

In summary, it looks like realized volatility is a more suitable indicator for �ights to safety,

while also being robustly priced across the two �nancial markets.

[Table 12]

7 Volatility and Economic Activity

Previous literature has related volatility to indicators of economic fundamentals (see, e.g., Schwert

(1989), Hamilton and Lin (1996), Chen (2003), Vayanos (2004), and Engle, Ghysels, and Sohn

(2006)). Here I document its relation to another business cycle indicator, the Chicago Fed National

Activity Index (CFNAI ). CFNAI is a monthly index designed to gauge overall economic activity

and related in�ationary pressure. The CFNAI is based on 85 existing monthly indicators of national

economic activity, drawn from four broad categories of data: production and income; employment,

unemployment, and hours; personal consumption and housing; and sales, orders, and inventories.

The index has an average value of zero and a standard deviation of one, with a positive index

reading corresponds to growth above trend and a negative index reading corresponds to growth

below trend.12 Figure 6 plots this series next to the volatility series over the period May 1967-

December 2014. The two series exhibit opposite dynamics during times of economic uncertainty
12CFNAI is methodologically similar to the index of economic activity developed by Stock and Watson (1999),

and it is basically the �rst principal component of the 85 economic series. It is constructed to have an average value
of zero and a standard deviation of one. Data source: http://www.chicagofed.org.
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(as previously identi�ed in Figure 1).

[Figure 6]

The next step is to link volatility to the real economy. To this end, I analize the predictive

power of volatility for the economic activity index CFNAI using a linear regression model:

CFNAIt+k = �+ bVt; k = 1; 3; 6; 9; 12; 15: (21)

Table 13 presents the results. I �nd that volatility has a signi�cant forecasting power for the

business cycle index up to 1 year in the future. Volatility is signi�cantly and negatively associated

with future economic activity. An increase in volatility predicts a decrease in economic activity

up to 12 months in the future. The economic e¤ect diminishes through time. Speci�cally, a 1%

increase in volatility predicts a 17% growth below trend in economic activity 1-3 months later,

a 12% growth below trend 6 months later, an 8% growth below trend 9 months later, and a 5%

growth below trend 1 year later (the corresponding R2adj are 16%, 7%, 3%, and 1%, respectively).

[Table 13]

8 Conclusion

Events historically associated with �nancial crises attest to the interdependence between stocks and

Treasuries, with both asset classes being sensitive to unexpected shifts in volatility. And because

volatility changes through time in a stochastic and fairly persistent fashion, the trade-o¤ between

volatility risk and asset returns moves in a predictable way over the business cycle. Therefore,

volatility seems like a suitable indicator for �ights to safety. Furthermore, volatility seems to play a

fundamental role in the market, because portfolio decisions involve allocating funds between stocks

and Treasuries. Therefore, volatility also seems like a good candidate for entering the joint pricing

kernel for stocks and Treasuries.

I show that volatility has cross-markets pricing implications: it exerts a noticeable impact across

stocks and Treasuries, carrying a signi�cantly negative price of risk. This implies that, when faced
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with a downturn in the economy, which results in tighter credit markets, investors are willing to

forgo expected returns to get downside protection.

Furthermore, volatility plays a fundamental role in understanding the joint stock-bond price

formation. I show that investors are willing to pay a premium for holding the safe assets (Trea-

sury bonds), which correlate positively to volatility surprises and thus, provide insurance against

volatility shocks, while they require a premium for holding the risky assets (stocks), which correlate

negatively. This is consistent with the change in sign in the stock-bond correlation during times

of economic uncertainty, and it signals �ights-to-safety episodes in the market. Furthermore, my

results highlight the fact that �ights to safety enhance the resiliency of �nancial markets when

needed the most, via the stock-bond diversi�cation bene�ts that increase with stock market uncer-

tainty. Finally, because of their positive loadings on volatility, bonds perform well in bed times,

which explains their lower expected returns.

Interestingly, asset pricing tests performed in the joint markets lead to economically sound

estimates for factors�risk premia, that are close in value to their realized analogs. Results also show

that the cross-markets volatility pricing e¤ect is robust with respect to the inclusion of classical risk

factors in the asset pricing model, and that it is not a by-product of the way I estimate volatility

shocks. I also �nd that the size premium has been tied to economic fundamentals, as captured by

volatility, and that a volatility premium exists in the Treasury yield curve.

Merton�s (1973) model suggests using factors that capture unanticipated changes in the oppor-

tunity set as hedging instruments, and volatility is clearly related to such changes. By extending

the pricing implications of volatility to Treasuries I have taken one step forward in showing that

a uni�ed asset pricing model can be build for the stock and Treasury markets. In light of my

results, existing yield curve models could be recast to include the (unexpected) realized volatility

factor. Finally, my �ndings also suggest that volatility is a useful indicator for �ights to safety in

the market.
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Table 1: Average Excess Returns for the 36 Portfolios 
 

Panel A reports the monthly average excess returns for the 11 Fama maturity-sorted Treasury bond portfolios, and Panel B reports 
the monthly value-weighted average excess returns for the 25 size- and value-sorted portfolios of Fama and French (1992). I report 
the results in percentages. Data cover the period January 1952 to December 2014. I report t-statistics in parentheses. 

      
 

Panel A) Average Excess Returns for the Treasury Portfolios 
      
    Maturity   

1-6mo 7-12mo 13-18mo 19-24mo 25-30mo 31-36mo 37-42mo 43-48mo 49-54mo 55-60mo 61-120mo
      

0.04 0.06 0.08 0.09 0.11 0.12 0.13 0.14 0.15 0.12 0.16
(7.55) (4.97) (4.34) (3.71) (3.47) (3.39) (3.29) (3.11) (3.12) (2.31) (2.62)

 
 
 

Panel B) Average Excess Returns for the Stock Portfolios 
    

  Book-to-Market Equity (BE/ME) Quintiles
   

Size       
Quintiles Low 2 3 4  High Low 2 3 4 High
  
 Average Excess Returns t-stats 

Small 0.30 0.81 0.79 1.04 1.13  (1.07) (3.36) (3.82) (5.26) (5.37)
2 0.49 0.78 0.91 0.95 1.06  (1.97) (3.74) (4.85) (5.19) (5.01)
3 0.59 0.83 0.79 0.94 1.04  (2.57) (4.37) (4.53) (5.38) (5.26)
4 0.65 0.66 0.79 0.88 0.85  (3.15) (3.70) (4.52) (5.17) (4.25)

Big 0.55 0.58 0.66 0.57 0.76  (3.30) (3.74) (4.37) (3.39) (3.96)
 



   
   

 37

Table 2: Posterior Estimates for the Asymmetric Student-GARCH(1,1) Model 
 
The model used is: 

m,t m,t 1 t

t t t

t t 1

2 2
t t 1 t 1 t 1

2 2 2 2
t t { 0} t t { 0}t t

R R

h

/ I ~ Student(0,1, )

h h

1 , 1 

  

 
 
     

   




   

  
 

 

  





    
  

, t=1,… ,T. 

 
The Rt represents the monthly time series of returns on the stock market portfolio for the period January 1952 to December 2014. 
I compute the results using a Griddy-Gibbs sampling algorithm, where I keep 5000 draws and I consider the initial 1000 draws as 
the burn-in sample. I use a flat prior on finite intervals for all parameters except for the prior on υ, which is half-Cauchy. I report 
Standard errors in the parentheses. 
 

 
Estimate Std Err

 0.21 (0.02)
 
 0.03 (0.03)
 
 0.10 (0.04)
 
+ 0.03 (0.02)
 
 0.73 (0.06)
 
 10.54 (3.75)
 
- 0.21 (0.06)
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Table 3: Flights to Safety 
 
This table reports the factor loadings from a 2-factor model that includes the market return and unexpected volatility. The test assets 
are the 11 Fama maturity-sorted Treasury portfolios and the 25 Fama-French (1992) portfolios sorted on size and book-to-market 
equity. I regress the monthly portfolio excess returns on the excess market return and unexpected volatility using an unconditional 
model specification. UV represents unexpected volatility, and is the residual from an AR(1) model applied to the time series of 
realized stock market volatility. Data cover the period January 1952 to December 2014. I report t-statistics in parentheses, and I 
report ܴ௔ௗ௝

ଶ  in percentages. 
 

Panel A) Volatility Loadings in the Treasury Market  
Bond Maturity

1-6mo 7-12mo 13-18mo 19-24mo 25-30mo 31-36mo 37-42mo 43-48mo 49-54mo 55-60mo 61-120mo

    

ො௜ߙ      

0.03 0.05 0.07 0.07 0.09 0.10 0.11 0.11 0.12 0.09 0.12

(7.01) (4.28) (3.69) (3.07) (2.86) (2.78) (2.69) (2.51) (2.54) (1.73) (2.02)

    

መ௜ߚ   
௠  

0.00 0.01 0.02 0.03 0.03 0.04 0.04 0.04 0.04 0.05 0.06

(3.58) (4.99) (4.51) (4.56) (4.25) (4.15) (4.06) (3.70) (3.49) (3.81) (4.18)

    

መ௜ߚ   
௎௏

  

0.01 0.03 0.04 0.06 0.08 0.10 0.11 0.12 0.12 0.14 0.15

(2.84) (3.93) (3.82) (4.23) (4.31) (4.60) (4.62) (4.32) (4.14) (4.36) (4.05)

    

   ܴ௔ௗ௝
ଶ

  

1.81 3.66 3.14 3.47 3.30 3.48 3.47 2.97 2.68 3.07 3.01
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Table 3 – Continued 
 

Panel B) Volatility Loadings in the Stock Market 
Book-to-Market Equity (BE/ME) Quintiles

Size            

Quintiles Low 2 3 4 High  Low 2 3 4 High 

 ො௜ߙ ො௜  t-stats forߙ 
Small -0.49 0.12 0.19 0.47 0.54  (-2.70) (0.84) (1.52) (3.96) (4.18)

2 -0.29 0.12 0.33 0.38 0.43  (-2.28) (1.21) (3.45) (4.06) (3.62)
3 -0.16 0.20 0.22 0.38 0.43  (-1.48) (2.49) (2.81) (4.46) (3.97)
4 -0.06 0.04 0.21 0.33 0.23  (-0.69) (0.68) (2.83) (4.02) (2.08)

Big -0.05 0.02 0.16 0.02 0.18  (-0.89) (0.44) (2.17) (0.28) (1.52)
መ௜ߚ 

௠  t-stats for ߚመ௜
௠ 

Small 1.33 1.16 1.03 0.97 1.00  (30.40) (32.12) (34.59) (33.31) (31.92)
2 1.32 1.10 0.99 0.97 1.07  (42.26) (44.10) (43.07) (42.57) (37.34)
3 1.26 1.06 0.97 0.94 1.02  (48.74) (54.46) (51.55) (45.22) (38.28)
4 1.19 1.04 0.98 0.95 1.07  (60.65) (65.68) (54.53) (48.18) (40.26)

Big 1.01 0.95 0.85 0.92 0.98  (74.04) (72.37) (47.49) (42.36) (34.61)
መ௜ߚ 

௎௏  t-stats for ߚመ௜
௎௏ 

Small -0.40 -0.38 -0.32 -0.32 -0.42  (-3.51) (-4.11) (-4.16) (-4.22) (-5.16)
2 -0.25 -0.33 -0.32 -0.26 -0.35  (-3.14) (-5.18) (-5.39) (-4.49) (-4.72)
3 -0.23 -0.23 -0.21 -0.21 -0.22  (-3.47) (-4.57) (-4.23) (-3.84) (-3.18)
4 -0.13 -0.14 -0.20 -0.13 -0.14  (-2.59) (-3.44) (-4.35) (-2.48) (-2.12)

Big 0.11 0.07 0.02 0.08 0.05  (3.11) (2.18) (0.36) (1.39) (0.63)
 
 
 

 
                   Book-to-Market Equity (BE/ME) Quintiles 

Size      

Quintiles Low 2 3 4 High 

 ܴ௔ௗ௝
ଶ  

Small 59.97 62.82 66.07 64.48 63.20
2 73.71 75.96 75.21 74.46 69.53
3 78.81 82.43 80.76 76.39 69.83
4 84.94 86.95 82.42 78.17 71.45

Big 88.82 88.44 76.95 72.33 63.77
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Table 4: Flights to Safety - Robustness Checks 
 
This table reports the factor loadings from a 2-factor model that includes the market return and unexpected volatility. The test assets 
are the 11 Fama maturity-sorted Treasury portfolios and the 25 Fama-French (1992) portfolios sorted on size and book-to-market 
equity. I regress the monthly portfolio excess returns on the excess market return and unexpected volatility using an unconditional 
model specification.  PRED_UV is the second unexpected volatility measure, and is constructed as the difference between predicted 
and realized volatility (see Eqs. (1) - (4) in the text). Data cover the period January 1952 to December 2014. I report t-statistics in 
parentheses, and I report ܴ௔ௗ௝

ଶ in percentages. 
 

Panel A) Volatility Loadings in the Treasury Market for the 2nd Volatility Measure 
Bond Maturity

1-6mo 7-12mo 13-18mo 19-24mo 25-30mo 31-36mo 37-42mo 43-48mo 49-54mo 55-60mo 61-120mo

    

ො௜ߙ      

0.03 0.02 0.02 -0.01 -0.02 -0.04 -0.05 -0.06 -0.06 -0.11 -0.11

(3.96) (1.06) (0.61) (-0.18) (-0.49) (-0.74) (-0.91) (-1.06) (-0.88) (-1.58) (-1.39)

    

መ௜ߚ   
௠  

0.00 0.01 0.02 0.03 0.03 0.04 0.04 0.04 0.04 0.05 0.07

(3.36) (4.90) (4.47) (4.57) (4.33) (4.27) (4.22) (3.98) (3.74) (4.04) (4.52)

    

መ௜ߚ   
௉ோா஽_௎௏

  

0.01 0.02 0.04 0.06 0.07 0.09 0.11 0.12 0.12 0.14 0.16

(2.07) (3.43) (3.45) (3.96) (4.20) (4.50) (4.65) (4.61) (4.40) (4.62) (4.62)

    

   ܴ௔ௗ௝
ଶ

  

1.32 3.20 2.80 3.19 3.18 3.37 3.50 3.31 2.97 3.36 3.62
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Table 4 – Continued 
 

Panel B) Volatility Loadings in the Stock Market for the 2nd Volatility Measure 
Book-to-Market Equity (BE/ME) Quintiles 

Size            

Quintiles Low 2 3 4 High  Low 2 3 4 High 

 ො௜ߙ ො௜  t-stats forߙ 
Small -0.11 0.51 0.54 0.84 1.09  (-0.44) (2.56) (3.28) (5.27) (6.32)

2 -0.04 0.52 0.69 0.71 0.88  (-0.23) (3.74) (5.44) (5.69) (5.58)
3 0.05 0.44 0.44 0.60 0.64  (0.35) (4.07) (4.25) (5.28) (4.39)
4 0.01 0.20 0.50 0.49 0.45  (0.06) (2.33) (5.10) (4.50) (3.07)

Big -0.21 -0.09 0.16 0.06 0.20  (-2.77) (-1.26) (1.65) (0.48) (1.27)
መ௜ߚ 

௠  t-stats for ߚመ௜
௠ 

Small 1.34 1.17 1.03 0.97 0.99  (30.00) (31.64) (33.99) (32.69) (31.19)
2 1.33 1.10 0.99 0.97 1.07  (41.62) (43.22) (42.22) (41.72) (36.56)
3 1.27 1.07 0.98 0.94 1.02  (48.01) (53.47) (50.63) (44.44) (37.73)
4 1.20 1.04 0.97 0.95 1.06  (59.94) (64.53) (53.46) (47.33) (39.46)

Big 1.01 0.95 0.85 0.90 0.97  (73.16) (71.53) (46.61) (41.06) (33.79)
መ௜ߚ 

௉ோா஽_௎௏  t-stats for ߚመ௜
௉ோா஽_௎௏ 

Small -0.27 -0.27 -0.25 -0.26 -0.38  (-2.56) (-3.15) (-3.47) (-3.72) (-5.11)
2 -0.18 -0.27 -0.25 -0.23 -0.31  (-2.40) (-4.58) (-4.63) (-4.27) (-4.60)
3 -0.15 -0.17 -0.16 -0.16 -0.15  (-2.39) (-3.60) (-3.49) (-3.15) (-2.33)
4 -0.05 -0.11 -0.20 -0.11 -0.15  (-1.01) (-2.94) (-4.72) (-2.38) (-2.40)

Big 0.11 0.08 0.00 -0.02 -0.01  (3.34) (2.52) (-0.02) (-0.33) (-0.17)
 
 
 

 
                   Book-to-Market Equity (BE/ME) Quintiles 

Size      

Quintiles Low 2 3 4 High 

 ܴ௔ௗ௝
ଶ  

Small 59.66 62.48 65.83 64.30 63.17
2 73.57 75.78 74.96 74.39 69.48
3 78.64 82.25 80.61 76.24 69.64
4 84.83 86.89 82.50 78.16 71.49

Big 88.85 88.46 76.95 72.26 63.75
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 Table 5: Average Returns and Cross-Correlations of Asset Pricing Factors 
 
The Re

m is the excess market return. The MOM is the momentum factor of Jegadeesh and Titman (1993). The HML and SMB are 
mimicking portfolios for book-to-market equity and size (zero-investment portfolios). UV represents unexpected volatility, and is 
the residual from an AR(1) model applied to the time series of realized stock market volatility. PRED_UV is the second unexpected 
volatility measure, built as the difference between predicted and realized volatility. ∆VIX represents month-to-month innovations 
in implied volatility index, and ∆SKEW represents month-to-month innovations in the SKEW index, and captures tail risk. Amih 
represents the Amihud residual. Data cover the period January 1952 to December 2014 (the exception is the VIX and SKEW series, 
which is available only from January 1990). I report the results in percentages, on a monthly basis. ***, ** and * denote significance 
at the 1%, 5% and 10% levels, respectively. I report t-statistics in parentheses. 
 

Panel A) Average Returns for the Traded Factors 

 Re
m

 SMB HML
 

MOM
Average 0.59 0.17 0.36 0.73 

t-stat (3.77) (1.60) (3.68) (5.07) 

 
 
 

Panel B) Cross-Correlations for all Factors 

 Re
m UV 

 
PRED_UV

 
SMB HML

 
MOM

 
∆VIX 

 
∆SKEW

 
Amih

Re
m 1.00    

UV -0.33*** 1.00  

PRED_UV -0.37*** 0.84*** 1.00  

SMB 0.26*** -0.26*** -0.24*** 1.00  

HML -0.24*** 0.06 0.03 -0.20*** 1.00  

MOM -0.12*** -0.04 -0.04 -0.02 -0.19*** 1.00   

∆VIX -0.70*** 0.46*** 0.44*** -0.18*** 0.11** 0.21*** 1.00  

∆SKEW 0.20*** 0.04 0.01 -0.09 0.02 -0.07 -0.07 1.00 

Amih -0.36*** 0.41*** 0.39*** -0.31*** 0.12*** 0.02 0.22*** 0.03 1.00
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Table 6: Unconditional Risk Premia 
 

I estimate the factors’ risk premia using the Fama-MacBeth (1973) procedure for the following asset pricing model: 

  


 
S

s

s
is

m
im

e
tiRE

1
01,  , 

where λm is the market price of risk and λs is the price of risk associated with the generic factor s. The left-hand side variable is a 
vector of monthly excess returns for the 11 maturity-sorted Treasury portfolios and the 25 size- and value-sorted portfolios, and 
the betas represent factors’ loadings estimated in the corresponding time series models. UV represents unexpected volatility, and is 
the residual from an AR(1) model applied to the time series of realized stock market volatility. MOM is the momentum factor of 
Jegadeesh and Titman (1993). HML and SMB are mimicking portfolios for book-to-market equity and size (zero-investment 
portfolios). Amih is the Amihud residual. I report results in percentages, on a monthly basis. Data cover the period January 1952 to 
December 2014. I report the Fama-MacBeth t-statistics in parentheses. I report the root MSE for each model and the ܴ௔ௗ௝

ଶ  in 
percentages. 
 

 
Model ߣመ଴ ߣመ௠ መ௎௏ߣ መௌெ஻ߣ

 
መுெ௅ߣ

 
 መெைெߣ

 
 መ஺௠௜௛ߣ

Avg 
MSE R2

adj

CAPM 0.14 0.58      3.85 67.61 

 (3.81) (3.35)        

          

CAPM & UV 0.19 0.43 -0.56     3.02 70.42 

 (4.99) (2.67) (-1.93)       

          

FF-3 0.11 0.46  0.14 0.40   1.81 88.77 

 (3.29) (2.82)  (1.31) (4.03)     

          

FF-3 and UV 0.18 0.38 -0.95 0.17 0.38   1.70 89.94 

 (4.81) (2.34) (-2.96) (1.60) (3.82)     

          

Carhart 0.05 0.62  0.14 0.41 3.39  1.72 95.20 

 (1.60) (3.86)  (1.28) (4.13) (6.58)    

          

Carhart and UV 0.11 0.55 -0.97 0.16 0.39 3.49  1.61 96.03 

 (3.35) (3.46) (-3.03) (1.53) (3.95) (6.57)    

          

Carhart, UV and Amih 0.12 0.55 -1.03 0.17 0.39 3.48 -0.17 1.54 96.07 

 (3.45) (3.45) (-2.98) (1.56) (3.93) (6.56) (-0.79)   
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Table 7: Volatility Contribution to Assets’ Risk Premia 

This table reports the contribution of market volatility to the assets’ risk premia. For each portfolio, I compute the risk premium as 
the product between the volatility price of risk and the volatility loading on the portfolio’s return. I estimate the loadings using a 2-
factor model specification that controls for market risk.  I report the results in percentage, on a yearly basis.  Panel A reports results 
for bond portfolios, and Panel B reports results for stock portfolios. Data cover the period January 1952-December 2014. 
 
 

Panel A) Market Volatility Contributions to the Treasury Portfolios’ Premia 

Bond Maturity
1- 

6 mo 
7- 

12 mo 
13- 

18 mo 
19- 

24 mo 
25- 

30 mo
31- 

36 mo
37- 

42 mo
43- 

48 mo
49- 

54 mo
55- 

60 mo 
61- 

120 mo 

-0.06 -0.20 -0.30 -0.43 -0.55 -0.68 -0.76 -0.80 -0.83 -0.94 -1.02 

     
 

 
Panel B) Market Volatility Contributions to the Stock Portfolios’ Premia  

Book-to-Market Equity (BE/ME) Quintiles 

Size      

Quintiles Low 2 3 4 High 

  

Small 2.66 2.57 2.14 2.12 2.80
2 1.70 2.24 2.14 1.77 2.35
3 1.55 1.54 1.38 1.38 1.46
4 0.88 0.94 1.35 0.84 0.97

Big -0.73 -0.49 -0.11 -0.52 -0.31
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Table 8: Unconditional Risk Premia – Robustness Tests 
 

I estimate the factors’ risk premia using the Fama-MacBeth (1973) procedure for the following asset pricing model: 

  


 
S

s

s
is

m
im

e
tiRE

1
01,  , 

where λm is the market price of risk and λs is the price of risk associated with the generic factor s. The left-hand side variable is a 
vector of monthly excess returns for the 11 maturity-sorted Treasury portfolios and the 25 size- and value-sorted portfolios, and 
the betas represent factors’ loadings estimated in the corresponding time series models. PRED_UV represents the second measure 
of unexpected volatility, and is constructed as the difference between realized and predicted volatility (see Eqs. (5) and (1) in the 
text). MOM is the momentum factor of Jegadeesh and Titman (1993). HML and SMB are mimicking portfolios for book-to-market 
equity and size (zero-investment portfolios). Amih is the Amihud residual. I report results in percentages, on a monthly basis. Data 
cover the period January 1952 to December 2014. I report the Fama-MacBeth t-statistics in parentheses. I report the root MSE for 
each model and the ܴ௔ௗ௝

ଶ  in percentages. 
 

 
Model ߣመ଴ ߣመ௠ መௌெ஻ߣ መ௉ோா஽_௎௏ߣ

 
መுெ௅ߣ

 
 መெைெߣ

 
 መ஺௠௜௛ߣ

Avg 
MSE R2

adj

CAPM 0.14 0.58      3.85 67.61 

 (3.81) (3.35)        

          

CAPM & PRED_UV 0.22 0.37 -0.95     3.18 73.55 

 (5.67) (2.29) (-2.96)       

          

FF-3 0.11 0.46  0.14 0.40   1.81 88.77 

 (3.29) (2.82)  (1.31) (4.03)     

          

FF-3 and PRED_UV 0.14 0.42 -0.56 0.15 0.40   1.74 89.06 

 (4.45) (2.62) (-1.95) (1.43) (4.00)     

          

Carhart 0.05 0.62  0.14 0.41 3.39  1.72 95.20 

 (1.60) (3.86)  (1.28) (4.13) (6.58)    

          

Carhart and PRED_UV 0.09 0.58 -0.88 0.15 0.41 3.59  1.64 95.63 

 (3.19) (3.66) (-2.88) (1.42) (4.10) (6.39)    

          

Carhart, PRED_UV and Amih 0.09 0.58 -0.86 0.15 0.41 3.59 -0.26 1.59 95.63 

 (3.26) (3.66) (-2.77) (1.41) (4.10) (6.38) (-1.18)   
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Table 9: Conditional Risk Premia 
 

I estimate the factors’ risk premia using the Fama-MacBeth (1973) procedure for the following asset pricing model: 

  
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where λm is the market price of risk and λs is the price of risk associated with the generic factor s. The left-hand side variable is a 
vector of monthly excess returns for the 11 maturity-sorted Treasury portfolios and the 25 size- and value-sorted portfolios, and 
the betas represent factors’ loadings estimated in the corresponding time series models. UV represents unexpected volatility, and is 
the residual from an AR(1) model applied to the time series of realized stock market volatility. MOM is the momentum factor of 
Jegadeesh and Titman (1993). HML and SMB are mimicking portfolios for book-to-market equity and size (zero-investment 
portfolios). Amih is the Amihud residual. Zt represents the vector of conditioning variables that enter the information set at time t: 
the default spread, DEF (computed as the difference between the yields of a long-term corporate Baa bond and a long-term 
corporate Aaa bond), the term spread, TERM (computed as the difference between the yields of a thirty-year and a one-year 
government bond), and the dividend yield on the S&P500 value-weighted portfolio, DY (computed as the sum of dividends over 
the last 12 months, divided by the level of the index). I report the results in percentages, on a monthly basis. Data cover the period 
January 1952 to December 2014. I report the Fama-MacBeth t-statistics in parentheses. I report the root MSE for each model and 
the ܴ௔ௗ௝

ଶ  in percentages. 
 

 
Model ߣመ଴ ߣመ௠ መ௎௏ߣ መௌெ஻ߣ

 
መுெ௅ߣ

 
 መெைெߣ

 
 መ஺௠௜௛ߣ

Avg 
MSE R2

adj

CAPM 0.12 0.59      3.79 65.57 

 (3.51) (3.41)        

          

CAPM & UV 0.15 0.47 -0.45     2.96 70.73 

 (4.18) (2.87) (-1.96)       

          

FF-3 0.10 0.42  0.18 0.38   1.77 90.48 

 (3.03) (2.54)  (1.67) (4.27)     

          

FF-3 and UV 0.08 0.48 -0.54 0.19 0.37   1.59 88.75 

 (2.53) (2.96) (-2.70) (1.79) (3.65)     

          

Carhart 0.08 0.54  0.15 0.37 1.28  1.65 87.86 

 (2.59) (3.33)  (1.38) (3.72) (3.34)    

          

Carhart and UV 0.07 0.54 -0.65 0.19 0.37 1.56  1.52 90.12 

 (2.36) (3.36) (-3.24) (1.77) (3.67) (4.05)    

          

Carhart, UV and Amih 0.06 0.56 -0.60 0.20 0.36 1.70 0.00 1.45 90.10 

 (1.92) (3.48) (-3.02) (1.91) (3.57) (4.45) (0.01)   
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Table 10: VIX Loadings  
 

This table reports the ∆VIX loadings from an asset pricing model that also includes the market return. The test assets are the 11 
Fama maturity-sorted Treasury portfolios and the 25 Fama-French (1992) portfolios sorted on size and book-to-market equity. I 
regress the monthly portfolio excess returns on the excess market return and changes in VIX using an unconditional model 
specification. Data cover the period January 1952 to December 2014. I report t-statistics in parentheses, and I report ܴ௔ௗ௝

ଶ in 
percentages. 

Panel A) VIX Loadings in the Treasury Market 
Bond Maturity

1-6mo 7-12mo 13-18mo 19-24mo 25-30mo 31-36mo 37-42mo 43-48mo 49-54mo 55-60mo 61-120mo

    

መ௜ߚ   
௱௏ூ௑

  

0.00 0.00 0.00 0.01 0.02 0.02 0.02 0.03 0.02 0.02 0.01

(1.06) (0.82) (0.87) (1.46) (1.72) (1.50) (1.55) (1.51) (1.16) (0.94) (0.41)

    

   ܴ௔ௗ௝
ଶ

  

-0.00 0.00 0.01 2.56 3.02 2.26 2.34 2.16 1.91 1.81 0.27
 

 
Panel B) VIX Loadings in the Stock Market 

Book-to-Market Equity (BE/ME) Quintiles 

Size            

Quintiles Low 2 3 4 High  Low 2 3 4 High 

መ௜ߚ 
௱௏ூ௑  t-stats for ߚመ௜

௱௏ூ௑ 
Small 0.05 -0.06 -0.06 -0.02 0.00  (0.46) (-0.62) (-0.81) (-0.35) (-0.02)

2 -0.01 -0.07 -0.12 -0.12 -0.05  (-0.09) (-1.13) (-2.07) (-2.22) (-0.72)
3 -0.02 -0.03 -0.10 -0.09 -0.15  (-0.35) (-0.61) (-2.16) (-1.71) (-2.32)
4 -0.01 -0.14 -0.15 -0.08 0.00  (-0.19) (-3.59) (-3.07) (-1.71) (-0.01)

Big 0.04 -0.05 -0.08 -0.02 -0.04  (1.34) (-1.41) (-1.88) (-0.34) (-0.49)
 
 

 
                   Book-to-Market Equity (BE/ME) Quintiles 

Size      

Quintiles Low 2 3 4 High 

 ܴ௔ௗ௝
ଶ  

Small 56.79 54.54 62.69 56.90 58.94
2 69.43 71.09 69.18 69.35 63.62
3 72.39 79.30 76.82 69.54 66.21
4 79.83 82.85 75.54 74.33 67.67

Big 88.27 84.33 70.04 64.88 61.06
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Table 11: SKEW Loadings  
 

This table reports the SKEW loadings from an asset pricing model that also includes the market return. The test assets are the 11 
Fama maturity-sorted Treasury portfolios and the 25 Fama-French (1992) portfolios sorted on size and book-to-market equity. I 
regress the monthly portfolio excess returns on the excess market return and changes in SKEW using an unconditional model 
specification. Data cover the period January 1952 to December 2014. I report t-statistics in parentheses, and I report ܴ௔ௗ௝

ଶ in 
percentages. 
 

Panel A) SKEW Loadings in the Treasury Market  
Bond Maturity

1-6mo 7-12mo 13-18mo 19-24mo 25-30mo 31-36mo 37-42mo 43-48mo 49-54mo 55-60mo 61-120mo

    

መ௜ߚ   
௱ௌ௄ாௐ

  

-0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.01

(-0.34) (0.93) (1.45) (1.74) (1.76) (1.73) (1.71) (1.60) (1.39) (1.24) (0.33)

    

   ܴ௔ௗ௝
ଶ

  

-0.00 0.00 0.02 0.03 0.03 0.03 0.03 0.02 0.02 0.00 -0.00
 
 

Panel B) SKEW Loadings in the Stock Market  
Book-to-Market Equity (BE/ME) Quintiles 

Size            

Quintiles Low 2 3 4 High  Low 2 3 4 High 

መ௜ߚ 
௱ௌ௄ாௐ  t-stats for ߚመ௜

௱ௌ௄ாௐ 
Small -0.17 -0.11 -0.10 -0.07 -0.10  (-2.59) (-2.01) (-2.36) (-1.51) (-2.30)

2 -0.11 -0.08 -0.04 -0.02 -0.06  (-2.36) (-2.09) (-1.17) (-0.70) (-1.36)
3 -0.09 -0.02 0.01 -0.01 -0.03  (-2.23) (-0.52) (0.43) (-0.33) (-0.75)
4 -0.04 0.02 0.02 -0.01 0.04  (-1.18) (0.88) (0.50) (-0.29) (1.13)

Big 0.01 0.03 0.02 0.04 0.06  (0.34) (1.29) (0.83) (0.99) (1.36)
 
 

                   Book-to-Market Equity (BE/ME) Quintiles 

Size      

Quintiles Low 2 3 4 High 

 ܴ௔ௗ௝
ଶ  

Small 57.72 55.09 63.30 57.21 59.66
2 70.00 71.39 68.87 68.89 63.79
3 72.83 79.29 76.47 69.24 65.66
4 79.92 82.15 74.78 74.08 67.81

Big 88.21 84.32 69.75 64.98 61.27
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Table 12: Downside Risk Loadings 
 

This table reports the downside risk loadings from an asset pricing model that also includes the upside risk. The test assets are the 
11 Fama maturity-sorted Treasury portfolios and the 25 Fama-French (1992) portfolios sorted on size and book-to-market equity. 
I regress the monthly portfolio excess returns on the downside and upside risks using an unconditional model specification. Data 
cover the period January 1952 to December 2014. I report t-statistics in parentheses, and I report ܴ௔ௗ௝

ଶ in percentages. 
 

Panel A) Downside Risk Loadings in the Treasury Market  
Bond Maturity

1-6mo 7-12mo 13-18mo 19-24mo 25-30mo 31-36mo 37-42mo 43-48mo 49-54mo 55-60mo 61-120mo

    

መ௜ߚ   
ௗ௢௪௡

  

-0.00 -0.00 -0.01 -0.01 -0.02 -0.03 -0.03 -0.03 -0.03 -0.02 -0.02

(-1.30) (-0.93) (-1.13) (-1.30) (-1.39) (-1.81) (-1.60) (-1.74) (-1.39) (-0.93) (-0.63)

    

   ܴ௔ௗ௝
ଶ

  

2.26 3.42 2.95 2.99 2.62 2.82 2.47 2.26 1.72 1.58 1.87
 
 

Panel B) Downside Risk Loadings in the Stock Market 
Book-to-Market Equity (BE/ME) Quintiles 

Size            

Quintiles Low 2 3 4 High  Low 2 3 4 High 

መ௜ߚ 
ௗ௢௪௡  t-stats for ߚመ௜

ௗ௢௪௡ 
Small 1.53 1.33 1.18 1.10 1.19  (20.34) (21.26) (22.94) (21.90) (21.96)

2 1.42 1.22 1.12 1.07 1.22  (26.37) (27.94) (28.01) (27.01) (24.46)
3 1.35 1.15 1.06 0.96 1.08  (30.20) (33.96) (32.39) (26.65) (23.59)
4 1.19 1.07 1.03 0.94 1.09  (35.39) (39.25) (33.20) (27.67) (23.91)

Big 0.94 0.92 0.82 0.89 0.97  (40.04) (40.72) (26.57) (23.87) (20.07)
 
 

                   Book-to-Market Equity (BE/ME) Quintiles 

Size      

Quintiles Low 2 3 4 High 

 ܴ௔ௗ௝
ଶ  

Small 59.62 62.24 65.58 63.87 62.37
2 73.44 75.23 74.49 73.90 68.87
3 78.54 82.04 80.42 75.93 69.46
4 84.81 86.75 82.01 78.02 71.28

Big 88.81 88.38 77.00 72.27 63.75
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Table 13: Predicting Economic Activity using Volatility  
 
I predict economic activity, proxied by CFNAI, with volatility using a linear regression model. CFNAI is a statistical measure of 
coincident economic activity, whose movements are meant to closely track periods of economic expansion and contraction, as well 
as periods of increasing and decreasing inflationary pressure. It is methodologically similar to the index of economic activity 
developed by Stock and Watson (1999), and it represents a weighted average of 85 monthly indicators of national economic activity. 
CFNAI is the first principal component of the 85 economic series. I download the monthly data for this index for the period March 
1967-December 2014 from http://www.chicagofed.org. I report t-statistics in parentheses. 
 

 
 

CFNAIt+1 CFNAIt+3 CFNAIt+6 CFNAIt+9 

 
CFNAIt+12 

 
CFNAIt+15 

Intercept 0.72 0.71 0.49 0.33 0.22 0.12 

(t-stat) (9.15) (9.04) (5.95) (3.96) (2.63) (1.44) 

       

Volatility -0.17 -0.17 -0.12 -0.08 -0.05 -0.03 

(t-stat) (-10.46) (-10.32) (-6.77) (-4.47) (-2.94) (-1.58) 

 
R2

adj 
 

15.90 
 

15.55 
 

7.25 
 

3.20 
 

1.31 
 

0.26 
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Figure 1. Realized and Predicted Stock Market Volatilities. I build realized volatility on a monthly basis for the period January 
1952 to December 2014, using daily market return data from NYSE, AMEX, and NASDAQ maintained by CRSP as follows: 







0

2
,

i
itmt R  

where Rm,t denotes the daily return on the stock market portfolio, and Δ represents the number of trading days in a given month. I 
predict market volatility based on the estimates of an Asymmetric-Student GARCH (1,1) model applied to the monthly stock market 
return data (see Eq. (3) in the text). I report both series in percentages, at a monthly level. Realized volatility is slightly larger than 
the predicted volatility. For each year, the tick marks correspond to the month of January. The shaded areas represent NBER 
recessions or financial crises (see text for details). 
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Figure 2. Realized Stock-Bond Return Correlations. I build the rolling 1-year realized correlations between the stock market 
return and the 10-year Treasury bond return on a monthly basis, for the period January 1952 to December 2014. For each year, the 
tick marks correspond to the month of January. The shaded areas represent NBER recessions or financial crises (see text for details). 
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Panel A) Average Excess Returns 
 

 

Panel B) (–Volatility) Loadings
UV
i̂  for the 1st Volatility Measure 

 
Panel C) (–Volatility) Loadings

UVPRED
i

_̂ for the 2nd Volatility Measure 

 
 

Figure 3. Average Excess Returns and Unexpected Volatility Loadings on Stocks. I obtain the monthly value-weighted 
portfolio return data for the period January 1952 to December 2014 for the 25 Fama-French (1992) portfolios sorted on size and 
book-to-market equity from Kenneth French’s Web site at Dartmouth. I estimate volatility loadings using Eq. (6) in the text for 
both measures of (unexpected) volatility. Since most volatility loadings are negative, the plots present (–) loadings for better 
visualization. 
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Panel A) Conditional Bond Volatility Beta  

 
 

 
Panel B) Conditional Stock Volatility Beta

 
 
 
 
Figure 4. Conditional Volatility Loadings. This figure plots the monthly cross-sectional average and maximum/minimum of the 
conditional factor loadings. I estimate the conditional betas at a monthly frequency using a two-factor model with market return 
and unexpected volatility as risk factors (see text for details). I report the results for the period January 1952 to December 2014. 
For each year, the tick marks correspond to the month of January.  
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Figure 5. Conditional Risk Premia. This figure plots the conditional monthly market and volatility risk premia. I estimate the 
conditional lambdas on a monthly frequency using a two-factor model with market return and unexpected volatility as risk factors 
(see text for details). I report the results for the period January 1952 to December 2014. For each year, the tick marks correspond 
to the month of January.  
 
 

 
 
Figure 6. Realized Stock Market Volatility and Economic Activity. The continuous line represents the monthly stock market 
volatility series and the dashed line represents the monthly CFNAI index, a measure of economic activity. Data cover the period 
May 1967 to December 2014. For each year, the tick marks correspond to the month of January.  
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Online Appendix 



1 The Assymetric Volatility Model

The model used in this study is the GJR model of Glosten, Jagannathan and Runkle (1993), which

is designed to introduce asymmetry into the model:

Rm;t = �+ �Rm;t�1 + �t

�t = "t
p
ht;

"t=It�1 � Student (�); t = 1; :::; T:

ht = �+ �ht�1 + �
+�2+t�1 + �

��2�t�1;

�2+t = �2t 1f�t>0g; �
2�
t = �2t 1f�t<0g

(A1)

The distribution of Rm;t is Student with mean zero and variance h
1=2
t �=(�� 2) given past informa-

tion It�1 and assuming � > 2. The "t sequence is independent and the initial variance is a known

constant. Let 
 denote the parameter vector in this model, with 
 = (�; �; �; �+; ��; �; �). The

posterior density for a sample of T observations is given by

'(
=R) / '(
)l(
=R); (A2)

with the likelihood function given by

l(
=R) /
TY
t=1

�(�+12 )

�(�2 )
(�h

1=2
t )�1=2

"
1 +

R2t

�h
1=2
t

#��+1
�

; (A3)

where the prior density, '(
), needs to respect the positivity restrictions on the parameters and

the condition � < 1. Integrability of the posterior density depends in part on the integrability

of the prior density. Given an integrable (or proper) prior and a non-pathological likelihood, the

posterior will also be integrable. Examining the likelihood function (A3) it can be seen that, if h1=2t

is strictly positive, since the Student density is �nite and positive, no pathology appears. However,

the posterior density of � is not integrable if one were to use a �at prior (see Bauwens and Lubrano

(1998)). For the posterior density of � to be integrable, the prior information must be such that

the posterior is forced to go to zero quickly enough in the tail. The prior at the right tail should be

1



at least O(�1+d); with d being small and positive, e.g. 1=�2 (improper prior obtained by being �at

on 1=�). This prior must be truncated to the interval (m;1), with m being small and positive, to

avoid causing problems at the left tail. This approach avoids the problem of l(
=R)=�2 approaching

in�nity as � approaches zero. Therefore, for a proper prior for �, I use a half � right Cauchy

centered at 0:

'(�) / (1 + �2)�1 (� > 0): (A4)

For the rest of the parameters in the model I use a uniform prior.

2 The Griddy-Gibbs Sampler

The Gibbs sampler of Geman and Geman (1984) and Gelfand and Smith (1990) is a very popular

MCMC method. Let �1; �2; :::�n be a set of parameters that need to be estimated, X the available

data, and M the model entertained. Suppose that the conditional distributions of each parameter

given the others, fi(�i=�j 6=i; X;M) are known, but the likelihood function of the model is hard to

obtain. What I do is to draw a random number from each of these conditional distributions. For

instance, if n = 3, let�s consider �2;0 and �3;0 two arbitrary starting values of �2 and �3. Then

1. I draw a random sample f1(�1=�2;0; �3;0; X;M), call it �1;1;

2. I draw a random sample f2(�2=�3;0; �1;1; X;M), call it �2;1;

3. I draw a random sample f3(�3=�2;1; �1;1; X;M), call it �3;1.

This is a Gibbs iteration. The iteration can be repeated for n times, with n su¢ ciently large

such that m < n initial random draws can be discarded. I get the Gibbs sample this way,

(�1;m+1; �2;m+1; �3;m+1); :::(�1;n; �2;n; �3;n); which can be used to obtain the point estimates and

the variances of the three parameters.

In the case when the conditional posterior distributions of the parameters don�t have closed-

form expressions, the Gibbs sampler implementation can become complicated. But Ritter and

Tanner (1992) have a method to obtain draws in this case. It is called the Griddy�Gibbs sampler:

1. I choose a grid of points from a properly selected interval of �i, say �i1 � �i2 � ::: � �im. I

2



evaluate the conditional posterior density function to obtain wj = f(�ij=�lk 6=ij ; X;M) for j = 1; :::m;

2. I use w1; :::; wm to obtain an approximation to the inverse cumulative distribution function

of f(�ij=�lk 6=ij ; X;M);

3. I draw a Uniform(0; 1) random variate and I transform the observation via the approximate

inverse CDF to obtain a random draw for �i.

The usual Gibbs sampler cannot be applied to the GARCH model even if the error term is

(conditionally) normal. It requires analytical knowledge of the full conditional posterior densities.

Regression models with GARCH errors do not contain this knowledge. To handle this, I apply a

unidimensional deterministic integration rule to each coordinate of the posterior density in combi-

nation with the Gibbs sampler, as described by Bauwens and Lubrano (1998). The random draws

of the joint posterior are then obtained by evaluating and inverting the full conditional densities.

I keep 5000 draws in the Griddy �Gibbs sampler and I consider the 1000 initial draws as the

burn-in sample. The grid I do the search over is similar to the one used by Bauwens and Lubrano

(1998): � � � � � � � � �+ � �� � � 2 (�0:60; 0:94) � (0:00; 0:40) � (0:01; 0:90) � (0:35; 0:95) �

(0:00001; 0:50)� (0:01; 0:70)� (0:01; 30): I report the posterior estimates in Table B1. The extent

to which a volatility shock today feeds through into the next period0s volatility is equal to 0.75.

The leverage hypothesis of Black (1976) is also supported by the results, with only the coe¢ cient

for the negative shocks to returns being precisely estimated.
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Table A.1: Volatility Loadings for the Subperiod with VIX (and SKEW) Data 
 
This table reports the factor loadings from a 2-factor model that includes the market return and unexpected volatility. The test assets 
are the 11 Fama maturity-sorted Treasury portfolios and the 25 Fama-French (1992) portfolios sorted on size and book-to-market 
equity. I regress the monthly portfolio excess returns on the excess market return and unexpected volatility using an unconditional 
model specification. UV represents unexpected volatility, and is the residual from an AR(1) model applied to the time series of 
realized stock market volatility. Data cover the period January 1990 to December 2014. I report t-statistics in parentheses, and I 
report ܴ௔ௗ௝

ଶ in percentages. 
 

Panel A) Volatility Loadings in the Treasury Market (January 1990-December 2014) 
Bond Maturity

1-6mo 7-12mo 13-18mo 19-24mo 25-30mo 31-36mo 37-42mo 43-48mo 49-54mo 55-60mo 61-120mo

    

ො௜ߙ      

0.03 0.06 0.09 0.12 0.15 0.17 0.20 0.22 0.24 0.24 0.29

(8.15) (6.51) (5.38) (4.76) (4.49) (4.23) (4.14) (3.86) (3.75) (3.52) (3.40)

    

መ௜ߚ   
௠  

0.00 0.00 -0.00 -0.01 -0.01 -0.01 -0.01 -0.01 -0.02 -0.02 -0.01

(0.83) (0.35) (-0.61) (-1.08) (-1.08) (-0.85) (-0.97) (-0.96) (-1.09) (-1.22) (-0.58)

    

መ௜ߚ   
௎௏

  

0.01 0.02 0.03 0.05 0.08 0.09 0.10 0.11 0.12 0.12 0.11

(4.14) (4.20) (3.50) (3.74) (4.01) (3.87) (3.58) (3.40) (3.16) (2.88) (2.30)

    

   ܴ௔ௗ௝
ଶ

  

5.10 5.64 4.82 6.28 7.09 6.25 5.64 5.11 4.68 4.21 1.97
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Table A.1 – Continued 
 

Panel B) Volatility Loadings in the Stock Market (January 1990-December 2014) 
Book-to-Market Equity (BE/ME) Quintiles

Size            

Quintiles Low 2 3 4 High  Low 2 3 4 High 

 ො௜ߙ ො௜  t-stats forߙ 
Small -0.53 0.30 0.29 0.60 0.62  (-1.67) (1.07) (1.41) (2.81) (2.86)

2 -0.19 0.22 0.39 0.38 0.34  (-0.82) (1.24) (2.32) (2.27) (1.54)
3 -0.10 0.26 0.28 0.40 0.54  (-0.50) (1.84) (2.00) (2.51) (2.78)
4 0.11 0.24 0.19 0.45 0.12  (0.71) (2.02) (1.30) (3.20) (0.63)

Big 0.01 0.14 0.23 -0.15 0.09  (0.09) (1.37) (1.64) (-0.86) (0.42)
መ௜ߚ 

௠  t-stats for ߚመ௜
௠ 

Small 1.34 1.13 0.99 0.91 0.95  (17.31) (16.46) (19.66) (17.44) (18.00)
2 1.33 1.05 0.93 0.93 1.08  (23.28) (23.86) (22.62) (22.78) (20.13)
3 1.26 1.06 0.94 0.90 1.01  (24.95) (30.34) (27.92) (22.96) (21.19)
4 1.20 0.97 0.96 0.89 1.05  (30.88) (33.18) (26.44) (25.90) (22.34)

Big 0.98 0.90 0.80 0.92 1.08  (44.81) (37.00) (23.77) (21.33) (19.98)
መ௜ߚ 

௎௏  t-stats for ߚመ௜
௎௏ 

Small -0.48 -0.44 -0.32 -0.28 -0.41  (-2.56) (-2.68) (-2.62) (-2.25) (-3.21)
2 -0.23 -0.34 -0.29 -0.24 -0.32  (-1.66) (-3.25) (-2.88) (-2.41) (-2.45)
3 -0.25 -0.16 -0.15 -0.25 -0.23  (-2.07) (-1.91) (-1.83) (-2.59) (-2.02)
4 -0.18 -0.20 -0.25 -0.27 -0.19  (-1.87) (-2.81) (-2.84) (-3.20) (-1.63)

Big 0.14 0.06 -0.05 -0.05 0.05  (2.68) (1.01) (-0.55) (-0.44) (0.39)
 
 
 

 
                   Book-to-Market Equity (BE/ME) Quintiles 

Size      

Quintiles Low 2 3 4 High 

 ܴ௔ௗ௝
ଶ  

Small 57.70 55.56 63.45 57.61 60.33
2 69.71 71.96 69.59 69.44 64.29
3 72.77 79.52 76.72 69.91 66.06
4 80.06 82.57 75.43 74.94 67.96

Big 88.48 84.28 69.71 64.89 61.05
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Table A.2: Additional Unconditional Tests 
 

I estimate the factors’ risk premia using the Fama-MacBeth (1973) procedure for the following asset pricing model: 

  


 
S

s

s
is

m
im

e
tiRE

1
01,  , 

where λm is the market price of risk and λs is the price of risk associated with the generic factor s. The left-hand side variable is a 
vector of monthly excess returns for the 11 maturity-sorted Treasury portfolios and the 25 size- and value-sorted portfolios, and 
the betas represent factors’ loadings estimated in the corresponding time series models. UV represents unexpected volatility, and is 
the residual from an AR(1) model applied to the time series of realized stock market volatility. ∆VIX represents month-to-month 
innovations in implied volatility index, and ∆SKEW represents month-to-month innovations in the SKEW index, and captures tail 
risk. Mkt_dn represents downside risk and Mkt_up is upside risk (downside risk reflects the covariance of asset returns with the 
market return, conditional on the latter being below its unconditional mean; a similar definition holds for upside risk). HML and 
SMB are mimicking portfolios for book-to-market equity and size (zero-investment portfolios). Data cover the period January 1990 
to December 2014 in Panels A and B, and they cover the period January 1952 to December 2014 for Panel C. I report the Fama-
MacBeth t-statistics in parentheses. I report the root MSE for each model and the ܴ௔ௗ௝

ଶ  in percentages. 
 

Panel A) Results with ∆VIX 
 

Model ߣመ଴ ߣመ௠ መ∆௏ூ௑ߣ መௌெ஻ߣ

 
መுெ௅ߣ

 
 መெைெߣ

Avg 
MSE R2

adj

FF-3 & ∆VIX 0.23 0.36 -1.60 0.19 0.27  1.83 80.31 

 (5.87) (1.40) (-2.39) (0.97) (1.48)    

         

Carhart & ∆VIX 0.13 0.64 -0.92 0.14 0.29 3.38 1.75 91.25 

 (3.64) (2.53) (-1.41) (0.72) (1.60) (5.63)   

 
 

        

 
Panel B) Results with ∆SKEW 

 
Model ߣመ଴ ߣመ௠ መ௎௏ߣ መௌ௄ாௐߣ መௌெ஻ߣ

 
 መுெ௅ߣ

 
 መெைெߣ

Avg 
MSE R2

adj

CAPM, UV & ∆SKEW 0.26 0.41 -0.94 2.52    2.55 71.31 

 (5.58) (1.58) (-2.04) (1.24)      

          

FF-3 & ∆SKEW 0.20 0.42  2.48 0.17 0.31  1.95 78.91 

 (5.02) (1.62)  (1.95) (0.88) (1.69)    

          

Carhart & ∆SKEW 0.12 0.68  0.17 0.12 0.31 3.59 1.84 90.82 

 (3.20) (2.64)  (0.13) (0.62) (1.71) (5.32)   

          

 
Panel C) Results with Downside and Upside Risks 

 
Model ߣመ଴  መ௠_௨௣ߣ መ௠_ௗ௡ߣ

Avg 
MSE R2

adj 
Mkt_dn & Mkt_up 0.16 0.52 0.01 2.98 68.02 

 (4.02) (1.34) (0.03)   

 
 
 


