
On the measurement of environmental inequality: Ranking
emissions distributions generated by different policy

instruments

By Erin T. Mansur∗ and Glenn Sheriff†

Adapting results from the income distribution literature, we de-
velop a normatively significant metric with which to rank emis-
sions distributions from alternative policy options in a manner
consistent with an explicit well-behaved preference structure. This
approach allows one to determine which policy has the most de-
sirable outcome for a given demographic group as well as which
groups benefit most from a given policy. Applying these methods to
Southern California’s NOx pollution-trading program and a coun-
terfactual command-and-control policy suggests that in this case
trading benefited all demographic groups and generated a more eq-
uitable overall distribution of emissions, even after controlling for
lower aggregate emissions. Upper-income and white demographics
had more desirable distributions relative to low-income and some
minority groups under the trading program, however, and popula-
tion shifts over time may have undermined anticipated gains for
African Americans.
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Tension can exist between the goal of environmental protection and concern1

for individuals in historically disadvantaged communities. Initially, environmental2

justice concerns focused on the question of whether permits for facilities generat-3

ing hazardous waste were more likely to be issued in poor or minority neighbor-4

hoods (e.g., United Church of Christ, 1987). More recently, focus has shifted to5

policy mechanisms themselves (Fann et al., 2011; Fowlie et al., 2012).6

Traditional performance-based command-and-control air pollution regulations7
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typically allow a regulated source to emit pollution per unit of input or output up1

to the amount written in its permit. In efforts to reduce the cost of environmental2

protection, recent decades have seen the introduction of programs that would3

allow individual sources to increase emissions if they pay a tax or purchase credits4

from other sources that reduce emissions (Stavins, 2003).5

The distributional question is whether such market-based mechanisms cause6

low income and minority populations to be worse off than a system in which each7

source has to comply with its own permit. In principle, market-based mechanisms8

could cause a reallocation of pollution to low income or minority neighborhoods9

for several reasons. It may be economically efficient to do so if marginal control10

costs in these areas are relatively high. Alternatively, the flexibility inherent in11

market mechanisms could allow plant managers to make pollution control de-12

cisions on the basis of informal political or discriminatory, rather than purely13

economic, motives. More affluent neighborhoods may be more effective at pres-14

suring plant managers to reduce emissions, for example (Hamilton, 1993; Gray15

and Shadbegian, 2004). Or, managers may experience greater disutility from in-16

creasing emissions in white versus minority neighborhoods (Hamilton, 1995).17

There is a large literature showing a correlation between pollution exposure and18

demographic characteristics such as racial minority or low income status (see, for19

example, Ringquist, 2005; Banzhaf et al., 2019). Less evidence exists regarding20

the relationship between exposure and environmental policy design. Early work21

compared anticipated air quality improvements from command-and-control poli-22

cies to baseline levels, generally finding that low income and minority populations23

tended to receive larger benefits (Harrison and Rubinfeld, 1978; Gianessi et al.,24

1979). Fowlie et al. (2012) found no evidence that emissions sources surrounded by25

minority and low income populations emitted more under a nitrogen oxides (NOx)26

emissions trading program than in a counterfactual command-and-control policy.27

Using the same emissions data, but looking at air pollution dispersion models28

rather than simple circles around facilities, Grainger and Ruangmas (2018) find29
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limited evidence suggesting that facilities “upwind” from African American com-1

munities may have higher emissions with a market based instrument.2

The question is not merely academic, particularly in light of recent policies to3

reduce CO2 emissions. One of the most cost effective means of reducing emissions4

is to move production from more to less carbon intensive sources, e.g., shifting5

electricity generation from coal to natural gas burning power plants. Although6

CO2 itself is not toxic in atmospheric concentrations, fossil fuel combustion typ-7

ically generates local co-pollutants such as fine particulate matter (PM2.5) and8

nitrogen oxides (NOx) that are. Thus, the concern is that the facilities that in-9

crease production may disproportionately affect poor or minority communities. A10

California court temporarily stayed the state’s fledgling carbon emission trading11

program due to a suit on such grounds.112

The literature uses many descriptive statistical tools (group means, correlations,13

etc.) to consider whether a particular distribution of environmental harm poses14

an environmental justice problem (Maguire and Sheriff, 2011). None of these15

measures are normatively significant, in the sense that there is not a relationship16

between a distributional ranking based on their mathematical value and the way17

that a “reasonable” human being would rank them (Blackorby et al., 1999).18

The main contribution of this paper is to rank alternative environmental pol-19

icy instruments from an environmental justice perspective by adapting approaches20

commonly used in the income distribution literature (e.g., Lambert, 2001). Begin-21

ning with an explicit well-behaved preference structure, we derive a mathematical22

function for a given distribution of environmental outcomes such that its value is23

consistent with the underlying preference ordering. In contrast to the techniques24

predominantly used in the environmental justice literature, the key advantage of25

this normative approach is that it allows us to make statements such as distribu-26

tion A is better than B based on a transparent set of explicit value judgements.27

1Superior Court of California Case CPF-09-509562, Association of Irritated Residents et al. vs. Cal-
ifornia Air Resources Board.
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The methodological approach relies on three key empirical ingredients: a coun-1

terfactual emissions profile, a geographical emissions dispersion model, and a2

model of how emissions exposure translates into health impacts. Our contribution3

is not to advance the state of the art in calculating any of these ingredients, but4

rather to illustrate how existing off-the-shelf estimates can be used to generate5

normatively significant rankings. As the literature progresses, the methods we6

describe can easily accommodate new estimates to generate improved rankings.7

We apply these methods to analyze the environmental justice implications of8

Southern California’s Regional Clean Air Incentives Market (RECLAIM) pro-9

gram. RECLAIM replaced command-and-control regulations for stationary sources10

of oxides of nitrogen with an emissions trading program. More specifically, we an-11

alyze the distribution of short run changes in facility emissions, rather than long12

run questions of entry and exit. Although the methods are generalizable to other13

trading programs, the empirical results regarding the relative performance of trad-14

ing to traditional regulation are clearly limited to RECLAIM. Nonetheless, RE-15

CLAIM’s environmental justice implication has a broader policy relevance since it16

has featured prominently in the debate over California’s carbon trading program17

(see discussion in Farber, 2012; Fowlie et al., 2012, and its online appendix).18

Comparative assessment of distributional implications of policy alternatives is19

complicated by the lack of counterfactual emissions. As in Fowlie et al. (2012),20

we use matching techniques to generate counterfactual emissions outcomes. Us-21

ing data collected by Fowlie et al. (2012) for both RECLAIM participants and22

firms operating under a traditional command-and-control regime we predict the23

counterfactual emissions of participating firms.24

Our main dispersion model uses the “centroid containment” method (Mohai and25

Saha, 2006). We construct a 3 km radius buffer around each facility and consider26

exposed individuals to be those residing in the facility’s census block group and27

all other block groups whose centroids fall within the buffer. Similar buffers are28

commonly used in a variety of contexts (e.g., Chakraborty and Armstrong, 1997;29
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Greenstone and Gallagher, 2008; Fowlie et al., 2012). Recognizing the limitations1

of such a basic model, we consider two alternatives: a simple “west wind” in2

which emissions travel farther east than west, and the more sophisticated air3

quality dispersion model used by Grainger and Ruangmas (2018) that predicts4

the transport of emissions particles through the atmosphere. Our health impacts5

model assumes that an individual’s utility is a simple function of NOx pollution6

in her census block group. We discuss limitations to this approach and alternative7

assumptions in Section II.8

Our approach provides answers to the following types of questions. At baseline,9

did disadvantaged demographic groups have a worse distribution of NOx pollution10

from regulated facilities than the population as a whole? Did the distribution11

for these groups improve after the RECLAIM program came into effect? Would12

they have been better off under traditional command-and-control regulation? Did13

population sorting over time undermine benefits of RECLAIM for disadvantaged14

demographic groups? In short, did the efficiency of the RECLAIM program come15

at the expense of historically disadvantaged socio-economic groups?16

Previous research has applied income inequality measures to environmental pol-17

icy issues, without considering environmental justice considerations.2 To evaluate18

the equity of proposals to limit GHG emissions, for example, Heil and Wodon19

(2000) calculated Gini coefficients for projected country-level per capita CO220

emissions under various mitigation scenarios. A related literature (e.g., Fankhauser21

et al., 1997; Anthoff and Tol, 2010) combines equity weights with integrated as-22

sessment models to calculate international damage from climate change. Mil-23

limet and Slottje (2002) calculated Gini coefficients for state and county-level per24

capita toxic release exposures to understand whether uniform federal environmen-25

tal standards ameliorate disparities in environmental outcomes.26

More recently, indexes originally developed for measuring income inequality27

2Many studies use the related concept of concentration indexes to rank joint distributions of health
attributes and socioeconomic status. This approach, however, only applies to cases in which the latter
can be clearly ranked (e.g., income). It less useful for analyzing distributions across categorical variables,
such as race, that lack a natural ordering (Fleurbaey and Schokkaert, 2011).
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have been used to compare distributions of pollution outcomes across individ-1

uals at a relatively fine level of spatial disaggregation, typically calculated at2

the U.S. Census Block Group level. The most common measure has been the3

Atkinson inequality index (Levy et al., 2007, 2009; Fann et al., 2011; Clark et al.,4

2014), although studies have also employed other measures such as Gini coefficient5

(Bouvier, 2014; Boyce et al., 2016; Holland et al., 2019) and Generalized Entropy6

indexes (Boyce et al., 2016). Unlike our approach, using inequality indexes to com-7

pare distributions with different means has the disadvantage that they are not8

welfare measures, and consequently lack normative significance (Kaplow, 2005).9

In other words, a person with well-behaved preferences would not necessarily10

prefer a pollution distribution that has a lower Gini coefficient or Atkinson index.11

We find little evidence to suggest an environmental justice concern regard-12

ing the distribution of emissions from RECLAIM facilities during the 1990–199313

baseline period. The distributions of exposures for whites and individuals from14

households above twice the poverty line are worse than the distributions for all15

other demographic groups. Both the counterfactual command-and-control policy16

and RECLAIM changed the relative ordering of demographic groups. Although17

the black demographic has the most desirable exposure distribution under all18

three scenarios, under RECLAIM the distribution for whites is preferable to that19

for Hispanics. With respect to income, under RECLAIM the wealthiest group has20

the most desirable distribution.21

Despite this shift in relative positions across groups, each individual group22

is better off under RECLAIM than at baseline or command and control. This23

improvement is due to both a reduction in average exposure levels as well as a24

reduction in the inequity of the dispersion in exposure levels within groups. That25

is, there is no evidence to suggest that the gains accruing to RECLAIM for one26

demographic group came at the expense of any other group, nor that average27

improvements within a group came at the expense of increased “hotspots” within28

the group.29
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Figure 1. Facility versus individual as unit of analysis

Source: Authors. Factory icon made by Vectors Market from www.flaticon.com.

The paper is organized as follows. Section I describes the microeconomic foun-1

dation for the social evaluation functions used to rank emission distributions. Sec-2

tion II provides a brief description of the RECLAIM policy setting (for a more3

detailed description, see Fowlie et al., 2012). Section III describes the raw emis-4

sions and demographic data as well as the calculation of counterfactual emissions.5

Section IV presents empirical results, and Section V offers concluding comments.6

I. Theoretical model for ranking distributions of environmental7

disamenities8

The fundamental question of interest is determining the relative desirability of9

distributions of environmental harm arising from different policy scenarios. In a10

break from the current environmental justice literature, we employ a welfarist11

policy evaluation framework. This change in perspective is important since any12

non-welfarist ranking can potentially prefer a policy that makes everyone worse13

off (Kaplow and Shavell, 2001).14

A key implication of this approach is that the unit of analysis is the individual.15

In contrast, much of the literature (e.g., Wolverton, 2009; Fowlie et al., 2012;16

Grainger and Ruangmas, 2018) focuses on facility observations. Although the17

facility approach is useful for examining impacts of a policy or neighborhood18

characteristics on plant emissions, in order to measure direct welfare implications,19
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we need to examine policy impacts on individuals.1

Figure 1 illustrates the potential importance of this distinction in the context2

of environmental justice. Consider three facilities, two identical large emitters3

and one small. Let the circles represent a 3 km radius from each facility, and “P”4

and “R” represent predominantly poor and rich census blocks of equal population5

size. Using a facility-level unit of analysis might suggest there is no environmental6

justice concern; large emitters are surrounded by rich communities, while the small7

emitter is be surrounded by the poor community. Using the individual as the unit8

of analysis would identify the potential hotspot in which individuals in the poor9

community are exposed to over twice the cumulative emissions as those in rich10

communities.11

We make the standard assumption that individuals attach utility to the outcome12

(pollution exposure) not the magnitude of the change in outcomes between policy13

scenarios (Bernoulli, 1954). In particular, we rank pollution distributions based14

on the preferences of a hypothetical representative individual, using the veil of15

ignorance (Harsanyi, 1953; Rawls, 1971) to ensure her impartiality. That is, the16

rankings are based on the ex ante preferences of a representative individual who17

believes she will randomly receive an ex post outcome from the distribution.18

For purposes of ranking the desirability of emissions distributions we assume19

all individual characteristics, both internal and external, are held constant. We20

thus abstract from questions of differing vulnerability to pollution based on race21

or income (Hsiang et al., 2019). Similarly, we assume that external factors are22

constant across the scenarios being evaluated, thus abstracting from possible he-23

donic adjustments à la Roback (1982) to wages and housing prices arising from24

differences in pollution.25

Under a given policy scenario let x be an individual’s exposure to the environ-26

mental outcome of interest. Ideally, this variable could be an indicator of health27

outcomes. Data limitations, however, might limit the analysis to individual expo-28

sure levels, local ambient pollutant concentrations, or nearby facility emissions.29
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In our main specification, the outcome variable is the sum of annual emissions1

from all RECLAIM facilities within a 3 km radius of the census block centroid2

containing the individual. The vector x ≡ (x1, x2, ..., xn, ..., xN )′ ∈ RN+ represents3

exposures in the N census block groups. Behind the veil of ignorance, the vec-4

tor x generated by a given policy can be framed as an ex ante lottery in which5

the representative individual has an equal chance of receiving the outcome for6

any individual in the population. Thus, the probability assigned to each ex post7

outcome xn is πn, census block group n’s share of the population.8

Suppressing the probability vector, π, let U(x, y) be the ex ante utility generated9

by an emissions lottery conditional on a deterministic numeraire good (income)10

y. Ranking distributions is equivalent to determining which lottery would be11

preferred by the representative individual. As detailed below, doing so requires12

imposing structural assumptions on the individual’s preferences.13

We begin with a standard assumption ensuring that pollution is bad.14

ASSUMPTION 1: Pareto Criterion. Increasing pollution for at least one ex post15

outcome, leaving all others unchanged makes a lottery less desirable.16

As is common in the income distribution literature (e.g., Lambert, 2001) we17

also impose that U is Schur concave in x.18

ASSUMPTION 2: Schur Concavity. (i) The pollution lottery is symmetric; per-19

mutations of x do not change the desirability of a lottery. (ii) Transferring a unit20

of pollution from a low exposure outcome to a high exposure outcome makes a21

lottery less desirable.322

The next assumption allows one to rank the pollution distributions of policies23

A and B for a specific demographic group independently of the outcomes of these24

policies for another group.25

3Formally, let Q be a square matrix composed of non-negative real numbers whose rows and columns
each sum to 1. The function f(x) is Schur concave if Qx is not a permutation of x and f(Qx) ≥ f(x).
All symmetric quasiconcave functions are Schur concave, although the converse is not true (Dasgupta
et al., 1973).
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Figure 2. Illustrative generalized Lorenz curves for pollution exposure
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Population percentile rank decreasing in exposure

Notes: Distribution A GL dominates B. GL curve A is nowhere above
B, indicating that each population percentile in A has weakly less NOx

exposure than the corresponding percentile in B. Distribution C does not
GL dominate D. The higher population percentiles C have less exposure
than D, while the lower percentiles in C have more exposure.

ASSUMPTION 3: Separarbility in population subgroups. Distributional rankings1

for a demographic subgroup are insensitive to outcomes for the rest of the popu-2

lation.3

Let xd denote the vector of outcomes corresponding to individuals in demo-4

graphic group d, and x−d denote the vector of outcomes for individuals outside the5

group. Separability in population subgroups implies U(x, y) ≡ Ũ(Ud(xd, y),x−d, y).6

This property ensures that ranking alternative vectors (lotteries) xd for group d7

is independent of outcomes for all other individuals (Blackorby et al., 1981).8

These three assumptions are sufficient to allow partial distributional rankings9

based Generalized Lorenz (GL) curve dominance (Shorrocks, 1983), both for the10

population as a whole and each demographic group. The vertical axis is similar to11

that of a Lorenz curve. Rather than plotting cumulative percentage of total ex-12

posure, however it plots the cumulative percentage multiplied by the population13

mean exposure. The horizontal axis of the standard Shorrocks (1983) GL curve14

requires a minor modification, however, to ensure suitability for ranking bad out-15
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comes. For goods, such as income, the horizontal axis represents the population1

percentile ranked in increasing order of x, i.e., from worst to best off. For pollu-2

tion, in contrast, the horizontal axis of the GL graph is ranked in decreasing order3

of x. As with the income GL curve, the height the curve at 100 percent of the4

population equals the mean exposure and a ray from the origin depicts a perfectly5

equal distribution. Unlike for income, the GL curve for an unequal pollution dis-6

tribution is bowed upwards from this ray, not downwards. As illustrated in Figure7

2, distribution A dominates distribution B if A’s GL curve is somewhere below8

and nowhere above B’s. This dominance ensures that A has both lower overall9

levels of pollution and a more equitable distribution. This condition is analogous10

to second order stochastic dominance (Thistle, 1989).11

GL dominance is a partial ordering since it cannot rank distributions whose GL12

curves cross, like distributions C and D in the right panel of Figure 2. To evalu-13

ate such distributions it is necessary to impose further preference structure. We14

begin with an assumption that is only implicitly imposed by much of the income15

distribution literature: separability in utility between consumption of numeraire16

y and consumption of the environmental outcome of interest.17

ASSUMPTION 4: Separability in consumption. The reference income level y18

does not affect the ranking of any two pollution lotteries.19

Separability in consumption implies U(x, y) ≡ U∗(u(x), y). It ensures that the20

marginal rate of substitution between two ex post pollution exposure outcomes21

is independent of income. This assumption is satisfied by utility functions with22

a marginal utility of y that is decreasing (multiplicatively separable) or constant23

(additively separable) in ex post pollution exposure (Rey and Rochet, 2004). It is24

violated by utility functions in which marginal utility of income increases with ex25

post exposure (Hammitt, 2013). Using survey data, Evans and Viscusi (1991) eval-26

uate how marginal utility of income is affected by health, with ambiguous results.27

They find that less severe adverse health outcomes may increase the marginal28

utility of income, while more severe outcomes may decrease it. Nonetheless, the29
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health economics literature commonly assumes multiplicative separability (e.g.,1

Garber and Phelps, 1997; Murphy and Topel, 2006).2

Atkinson (1970) showed how preferences over distributions can be represented3

by a social evaluation function measured in cardinal units of x. The “equally4

distributed equivalent” (EDE) value of x is the scalar value of pollution exposure5

Ξ(x) that, if allocated to each individual, would be as desirable as the original6

distribution:7

Ξ(x) ≡ {x̃ : u(x̃ · 1) = u(x)} .(1)

The next assumption implies that distributional rankings are unaffected by par-8

allel shifts in all outcomes. In practical terms it ensures that rankings of alterna-9

tive pollution distributions are insensitive to some common unknown background10

level of exposure.11

ASSUMPTION 5: Translatability. Ξ(x + λ · 1) = Ξ(x) + λ for any λ ∈ R1 .12

Translatability, combined with separability in population subgroups, implies13

that u(x) is the expectation of Pollak (1971) functions (Blackorby and Donaldson,14

1980):15

u(x) = −
N∑
n=1

e−κxnπn;κ < 0,with(2)

Ξ(x) = −1

κ
ln

N∑
n=1

e−κxnπn.(3)

This EDE differs from that used in the income distribution literature by the sign16

of κ. For income κ would be positive, whereas Schur concavity of U(·) requires17

that κ be negative for a “bad” x. The representative individual’s aversion to18

inequality in adverse environmental outcomes is decreasing in κ.19

These assumptions also imply that the social evaluation function satisfies con-20
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sistency in aggregation, i.e., rankings of distributions do not change if the EDE is1

calculated for the entire population versus calculated for each demographic group2

then aggregated (Blackorby and Donaldson, 1980).3

GL dominance and EDEs rank distributions in a way that takes into account4

both overall pollution levels and the equity of the distribution across the popu-5

lation. It may also be of interest to compare the equity of distributions indepen-6

dently of the overall pollution levels. Suppose, for example, it were found that7

historical market-based mechanisms tended to result in emissions distributions8

that are less equitable than command-and-control regulations. This result might9

suggest that future market-based policies should be designed to have greater10

overall pollution reduction than a command-and-control alternative in order to11

generate similar benefits.12

To evaluate equity in a way consistent with translatability, we employ absolute13

Lorenz (AL) curves (Moyes, 1987). AL curves effectively de-mean the GL curves;14

their height is the difference between height of the respective GL curve at a given15

population percentile and the height of a hypothetical GL curve in which everyone16

were to receive the mean exposure (a ray from the origin to the actual GL curve17

at the 100th percentile). A perfectly flat curve along the horizontal axis would18

depict a perfectly equal distribution. The curvature represents the inequity of the19

distribution from this ideal, independent of overall average reductions in pollution.20

AL dominance occurs if a curve is somewhere below and nowhere above another.21

It is a partial ordering since it cannot rank distributions whose curves cross.22

Analogous to the relationship between EDEs and GL curves, inequality indexes23

can be calculated to generate a complete ordering of distributions whose AL24

curves intersect. Kolm (1976) defined an absolute income inequality index as the25

mean minus the EDE. For a bad, however, the EDE is greater the mean. To26

ensure the index value increases as the distribution becomes less equal, we use27
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this alternative specification:1

I(x) ≡ Ξ(x)−
N∑
n=1

xnπn.(4)

The index value indicates the maximum increase in emissions exposure the2

representative individual would accept to replace the actual distribution with a3

perfectly equal distribution. It enables analysis of whether an improvement in4

average emissions levels comes at the cost of increased disparity of outcomes,5

e.g., reducing emissions at relatively clean sources while exacerbating emission6

hot spots. Translatability implies that I(x) is an index of absolute inequality.7

That is, the measured level of inequality is unaffected by an arbitrary common8

background pollution level λ: I(x) = I(x + λ · 1) for any λ ∈ R1.9

The conditions imposed on u(x) also allow calculation of an index of inter-group10

inequality,11

Ig(x) ≡ Ξ(x)−
D∑
d=1

Ξd(xd)πd,(5)

in which πd and Ξd(xd) are the population share and EDE pollution exposure12

levels corresponding to each of the D groups. It measures the pollution exposure13

reduction necessary to maintain the same welfare if emissions were to change from14

a distribution in which everyone receives the EDE of the actual distribution to15

an unequal distribution that allocates to each member of a demographic group16

the EDE of that group’s actual distribution. The higher the requisite exposure17

reduction, the greater the inter-group inequality (for greater detail in the context18

of income distribution, see Blackorby et al., 1981).19

Recently, several studies have used income inequality indexes to compare dis-20

tributions of environmental outcomes. The inequality indexes typically used in21

this literature, the Atkinson index (Levy et al., 2007, 2009; Fann et al., 2011;22
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Clark et al., 2014), the Gini coefficient (Boyce et al., 2016), and the General-1

ized Entropy index (Boyce et al., 2016), are all indexes of relative inequality.2

For these, an equiproportional increase in pollution for all individuals does not3

increase inequality.4

While relative indexes are convenient for comparing nominal incomes from dif-5

ferent time periods or across countries with different currencies, they are less6

justified for measuring inequality of pollution exposure. It seems unsatisfactory7

for a distribution with individuals exposed to trivial amounts of pollution, say8

0.1 tons and 0.001 tons, to be as equitable as one with exposures of 0.1 ton and9

10 tons. For the index defined in Eq. (4), such proportional increases in pollution10

increase measured inequality (Kolm, 1976). In the next sections we provide an11

illustration of how to apply these concepts to evaluate the relative desirability of12

an emissions market versus a command and control policy from an environmental13

justice perspective.14

II. Policy setting15

Air quality regulation in the Los Angeles basin falls under the jurisdiction16

of the South Coast Air Quality Management District (SCAQMD). In 1989, in17

an attempt to reduce some of the highest smog (ozone) levels in the country,18

SCAQMD introduced strict NOx emission control standards for stationary sources19

(NOx is a precursor pollutant to ozone). At the federal level, an innovation in the20

1990 Clean Air Act Amendments allowed local regulators to use market based21

mechanisms to attain ozone ambient air quality standards.22

SCAQMD took advantage of these provisions to replace 40 prescriptive rules23

with the RECLAIM market based incentive program. Under RECLAIM, facilities24

were granted a limited quantity of RECLAIM trading credits (RTCs) based on25

historical fuel consumption and production technology characteristics. Each credit26

entitled the owner to emit one pound of NOx emissions during a 12-month period.27

From the program’s inception in 1994, SCAQMD gradually reduced the total28
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annual supply of RTCs such that by 2003 aggregate emissions would be equivalent1

to the target emissions level hoped to be achieved by the command-and-control2

requirements that RECLAIM replaced.3

The program initially included almost all facilities in the region with annual4

NOx or SO2 emissions of four tons or more (public facilities were not included).5

The 392 facilities initially included in RECLAIM comprised over 65 percent of6

stationary source NOx emissions in SCAQMD (Zerlauth and Schubert, 1999).7

During the California electricity crisis, power plants dramatically increased their8

demand for RTCs leading to a price spike and some noncompliance. RECLAIM9

rules were subsequently amended in 2001 to remove 14 power producing facilities10

from the market, instead requiring them to install pollution control devices. We11

exclude these electric plants from the analysis.12

During the early years of the program there was an excess of RTCs, such that13

only after 1999 did the aggregate “cap” bind (SCAQMD, 2001). The effects of the14

early RTC surplus were unlikely to affect later years, however, since the credits15

could not be banked, i.e., they were only valid in the designated year.416

The primary goal of the RECLAIM program was to reduce NOx emissions.17

NOx are created when extremely high temperatures cause atmospheric oxygen18

and nitrogen to react with each other. Common manmade sources are fossil fuel-19

fired industrial boilers and internal combustion engines.20

Epidemiological evidence suggests that NOx directly affects human health via21

the respiratory system (U.S. EPA, 2008). NOx emissions indirectly affect human22

health by contributing to the formation of ground level ozone and PM2.5. Ozone23

is created by a photochemical reaction between NOx, atmospheric volatile or-24

ganic compounds and sunlight. NOx reacts with atmospheric ammonia to create25

components of PM2.5.26

There is sufficient uncertainty about the direct health impact of NOx that the27

U.S. Environmental Protection Agency (EPA) does not estimate these impacts28

4Holland and Moore (2012) examine the limited potential for intertemporal trading in this market.
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when quantifying the benefits of NOx reduction. The relationship between ozone,1

PM2.5, and human health is sufficiently well documented, however, that the EPA2

routinely monetizes national benefits from a given reduction in NOx emissions3

via these indirect channels in its regulatory benefit-cost analysis (e.g., U.S. EPA,4

2015).5

Ideally, we would be able to trace a clear link between a unit of NOx emissions6

from a particular source and an individual’s health at a given location. To do so7

would require identifying the individual vulnerability to changes in exposure levels8

caused by changes in ambient NOx concentrations arising from a marginal ton9

of NOx emissions from a particular source. This vulnerability may be a function10

of unobservable factors such as individual health or outdoor activity (Hsiang11

et al., 2019). We would similarly need to estimate individual health impacts from12

changes in ozone and PM2.5 concentrations corresponding to the NOx emissions.13

There is considerable uncertainty in each of these steps. Models can disagree14

sharply even in predicting NOx dispersion. The Hybrid Single Particle Lagrangian15

Integrated Trajectory (HYSPLIT) model used by Grainger and Ruangmas (2018),16

for example, generates significant NOx dispersion in areas 50 miles from a source,17

whereas the ICST3 model used by Lejano and Hirose (2005) shows dispersion18

tapering off within 3 miles. Schlenker and Walker (2016) find a similar result re-19

gressing airport impacts on monitored NO2 levels, with marginal effects reducing20

substantially 3–6 miles downwind.21

Moreover, the factors involved in time and place of ozone and PM2.5 creation22

are extremely complex, as the process depends on sunlight, wind speed and direc-23

tion, elevation, ambient temperature, and concentrations of various atmospheric24

chemicals. In some cases, for example, increases in NOx can reduce ozone con-25

centrations (Jacob, 1999). Airborne pollutants such as ozone and PM2.5 can also26

travel for hundreds of miles downwind (Bergin et al., 2007). Combined with a lack27

of a clear dose-response function for NOx health impacts, it is therefore difficult28

to estimate changes in the geographical distribution of these chemicals and their29



18 RANKING EMISSIONS DISTRIBUTIONS

ensuing health effects arising from a change in NOx emissions from a particular1

source with a reasonable degree of precision.2

We take a different approach, viewing NOx emissions as a proxy for undesirable,3

yet not well understood, adverse health impacts from RECLAIM facilities. We4

are agnostic regarding whether these impacts arise from NOx itself, ozone, PM2.5,5

or other unmeasured air toxics, such as heavy metals, that may be emitted in the6

combustion process that creates NOx. We assume that a representative individual7

believes that these health damages increase with the tons of NOx emitted by8

nearby facilities, where nearby is defined as within 3 km of her home.9

We also examine sensitivity to two alternative dispersion models. Given the10

prevailing wind direction in most of the region (see figures in Lejano and Hirose,11

2005; Schlenker and Walker, 2016; Grainger and Ruangmas, 2018), we consider12

a specification that places greater weight on facilities to the west; rather than13

assuming a facility’s impacts fall evenly within a circle of 3 km radius, we model14

facility emissions as falling within a semicircle of 1 km radius to the west and a15

semicircle of 4 km radius to the east. We also consider a specification using the16

more sophisiticated HYSPLIT model results of Grainger and Ruangmas (2018).17

III. Data18

Emissions and industrial classification for NOx emitting facilities come from the19

California Air Quality Resources Board (ARB). California law requires polluting20

facilities to report emissions to their local Air Quality Management District, and21

the ARB maintains a database of these reports (Fowlie et al., 2012). We use these22

data to calculate emissions for two periods: the 1990–1993 pre-RECLAIM period23

(period 1) and the 2004–2005 period in which RECLAIM was fully implemented24

(period 2). Only the 212 facilities reporting emissions in both periods are included25

in the analysis.26

We use a matching algorithm similar to that employed by Fowlie et al. (2012) to27

calculate counterfactual estimates for what NOx emissions would have been had28
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Table 1. Facility Emission Summary Statistics

Annual average tons NOx Baseline Command and control RECLAIM

Total 21,688.5 11,657.8 6,566.2
Mean 102.3 55.0 31.0
Standard Deviation 305.0 166.9 117.4
Coefficient of Variation 3.0 3.0 3.8
Minimum 0.4 0.3 0.0
Maximum 2,492.3 1,699.9 1,041.8
N 212 212 212

Notes: Baseline is 1990–1993 emissions. Command and control is counterfactual 2003–2004 emissions.
RECLAIM is actual 2003–2004 emissions.
Source: Author calculations, based on data from California Air Resources Board.

facilities been regulated under command-and-control rather than RECLAIM. Our1

approach consists of four steps. First, for each RECLAIM facility we generate a2

pool of potential controls from non-RECLAIM facilities of the same industrial3

classification in California ozone nonattainment areas subject to command-and-4

control regulation. Second, from this pool we select the three nearest neighbors:5

those facilities whose pre-RECLAIM period emissions are closest to those of the6

RECLAIM facility. Third, we calculate the average percent change in emissions for7

these matched controls. Fourth, we apply this percent change to the RECLAIM8

facility’s period 1 emissions to generate the period 2 counterfactual.59

Table 1 summarizes actual and counterfactual emissions data for the RECLAIM10

facilities over the two periods. Actual emissions correspond to emissions under11

the RECLAIM program, and counterfactual emissions correspond to the emis-12

sions that would have occurred under command and control as estimated by the13

matching procedure. The table shows that both policy scenarios resulted in a14

decline in both total emissions and the absolute dispersion of emissions relative15

to the baseline. The RECLAIM program had substantially lower emissions than16

the counterfactual. Although the standard deviation of RECLAIM emissions was17

lower than the counterfactual, the coefficient of variation was higher.18

Block group demographic data come from the 1990 and 2000 U.S. Censuses.19

5Our approach differs from Fowlie et al. (2012) by using percent, rather than absolute, changes to
estimate counterfactual emissions. We do this to avoid negative predicted emissions for some facilities.
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Table 2. South Coast Demographic Summary Statistics

1990 2000

Census Block Group Census Block Group

Total Standard Total Standard
Demographic Group (millions) Mean Deviation (millions) Mean Deviation

Race/Ethnicity
Hispanic 4.4 503 633 6.2 637 671
White 6.4 725 788 5.5 574 584
Black 1.1 127 274 1.1 114 234
Other 1.3 151 260 2.1 215 299

Income
Below poverty 1.7 198 258 2.3 241 277
1-2 × poverty 2.4 272 301 3.1 316 302
Above 2 × poverty 8.9 1,005 899 9.3 959 687

Total 13.3 1,506 1,159 14.9 1,544 958

Notes: Hispanic includes all races who report Hispanic ethnicity. All others are of non-Hispanic ethnicity.
Source: Author calculations, based on data from US Census.

The affected population analyzed here consists of all individuals living in a census1

block group in the SCAQMD. We divide this population along race/ethnicity and2

income. The Hispanic ethnicity consists of all individuals who self-report as being3

Hispanic, regardless of their race. The Black, White and Other race categories4

consist of individuals who self-report as those races, but do not report as Hispanic.5

Individual income is reported by the Census relative to the poverty line. We use6

three classifications, belonging to a household below the poverty line, between7

one and two times the poverty line, and more than two times the poverty line8

(the latter is the highest income category reported in the Census).9

Table 2 reveals substantial demographic changes between the two decennial10

censuses. Although total population increased by about 10 percent, the white11

population fell and the black population remained roughly constant. The Hispanic12

population grew significantly, overtaking White as the largest group. All three13

income categories grew during this period, with the above 2 times the poverty14

line group growing the slowest.15

To analyze the impact of neighborhood demographics on facility emissions,16

Fowlie et al. (2012) use the common tactic of taking the facility as the unit of17
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analysis and calculating demographic information for surrounding areas within1

a given radius. That approach answers the question of how facility RECLAIM2

emissions can be predicted by demographics of surrounding communities. Here,3

we take the opposite approach, basing our analysis on individuals. This approach4

answers the question of how a given demographic is affected by RECLAIM. We5

aggregate emissions from all facilities within 3 km of the block group centroid to6

calculate cumulative stationary source NOx emission exposure for each individual7

in a given census block group.8

Appendix Figure B1 depicts kernel density functions representing the distri-9

bution of cumulative emission exposure over census block groups for each policy10

scenario. Cumulative emissions are the total annual average emissions from all11

RECLAIM facilities within 3 km of a census block group (census block groups12

with zero exposure from RECLAIM facilities are not included in the diagrams).13

Consistent with the facility-level data presented in Table 1, the figure shows a14

leftward shift in the distribution under both the RECLAIM and counterfactual15

command-and-control policies relative to the Period 1 baseline. This shift suggests16

that the RECLAIM emissions reductions did not come at the expense of creating17

pollution hotspots. To the contrary, the cumulative emissions experienced by the18

most exposed block groups falls from 4,000 tons under the baseline to just over19

1,000 tons under RECLAIM. These diagrams do not, however, indicate how many20

individuals of each demographic group live in the affected block groups. Norma-21

tively ranking emissions distributions requires such individual-level information.22

In the next section, we apply the methods described in Section I to actual and23

counterfactual NOx distributions associated with the RECLAIM program. We24

begin by focusing on GL dominance, imposing as few restrictions on preferences25

as possible. Although this partial ordering is sufficient for answering several im-26

portant policy questions, to obtain a complete ordering of pollution distribution27

requires more preference structure. To do so, we use Eq. (3) to calculate EDEs. Fi-28

nally, recognizing the substantial differences in average emissions between policy29
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options, we use absolute Lorenz curves and inequality indexes, effectively rescal-1

ing the counterfactual command-and-control scenario so that it achieves the same2

average emissions exposure as RECLAIM.3

IV. Results4

Here we present rankings of the emissions distributions from the three pol-5

icy scenarios (baseline, counterfactual command-and-control, and RECLAIM)6

across four racial/ethnic groups (Black, White, Hispanic, and Other), three in-7

come groups (below poverty, 1–2 times the poverty line, and more than twice the8

poverty line), and the affected population as a whole, using demographic data9

from the 1990 and 2000 censuses. The affected population is everyone living in a10

SCAQMD census block whose centroid is within 3 km of a RECLAIM facility.11

The analysis answers four questions relevant to environmental justice concerns12

with market-based environmental policy instruments. First, did any demographic13

group suffer a welfare loss under the RECLAIM program relative to the command-14

and control-alternative? Second, did the RECLAIM program favor particular de-15

mographic groups in relative terms compared with command and control? These16

questions consider both pollution levels and the equity of the pollution distribu-17

tion. Since there are substantial differences in total pollution levels between the18

three scenarios, it may be the case that these differences overwhelm the distribu-19

tional implications of the policies. To examine the pure distributional implications,20

we de-mean the distributions to conduct an absolute Lorenz curve analysis. This21

analysis answers the following question: Which policy would each demographic22

group choose if they each had the same average pollution levels?23

The preceding analysis uses demographic information available at the creation24

of RECLAIM, the 1990 U.S. Census. Over time, geographic concentrations of25

demographic groups shift. Most of these changes are likely to be independent26

of the RECLAIM program. It is possible, however, that some population shifts27

may stem in part from changes in environmental quality. Improvements in air28
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quality in some neighborhoods may have increased property and residential rental1

values which in turn may have attracted wealthier households and induced poorer2

households to leave (see, for example, Banzhaf and Walsh, 2008).3

Understanding the impact of such population shifts is important for environ-4

mental justice analysis. Even if environmental programs are targeted towards5

poor and minority populations, it is possible that population shifts may under-6

mine their benefits over time. To address this concern, we repeat the analysis7

using the 2000 census. By comparing these results to those using 1990 data we8

can answer the question of whether demographic shifts led to a less desirable9

pollution distribution for low income or minority populations.10

A key advantage of the GL analysis is that it imposes few restrictions on pref-11

erences. This flexibility comes at the cost not being able to rank distributions12

whose GL curves cross. GL curves also do not provide information regarding the13

equity of distributions across demographic groups. That is, it may be of interest14

whether a policy treats demographic groups more or less equally. To address these15

issues, we impose additional structure on preferences as described in Section I,16

and conduct a supplementary analysis using EDEs and inequality indexes.17

A. Ranking policy outcomes by generalized Lorenz curve dominance18

Figure 3 addresses the question of which policy would the representative in-19

dividual prefer, conditional on belonging to a given demographic group. It de-20

picts GL curves for baseline, command-and-control, and RECLAIM NOx expo-21

sure levels by race/ethnicity and income, holding population fixed at 1990 levels.22

For all demographic groups, RECLAIM GL curves dominate the counterfactual23

command-and-control curves which in turn dominate baseline curves. In other24

words, there is not evidence to support a concern that RECLAIM caused low25

income or minority populations to suffer relative to pollution levels they would26

have otherwise experienced. In this case, the GL curve ranking is equivalent to27

ranking distributions based on mean exposure alone (the height of the curve at28
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Figure 3. Generalized Lorenz Curve Ranking by Policy, 1990 Census
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the 100th percentile); any differences in intra-group inequality do not outweigh1

differences in average exposure.2

Our main results were calculated under the assumption that the impact of3

NOx emissions are evenly spread within 3 km of each facility. Due to prevailing4

westerly winds in the Los Angeles region, there may be concern that emissions5

may affect neighborhoods to the east. To address this issue we generate two6

alternative exposure patterns. The first assumes that emissions affect census block7

groups 4 km to the east but only 1 km to the west of each facility. The second8

uses the weighted treatment area generated by the HYSPLIT model runs used9

in Grainger and Ruangmas (2018). The appendix provides details on how we10

calculated exposure levels based on these alternate patterns.11

Figures 4 and 5 present the results of this sensitivity exercise. The overall12

relative patterns are similar, although absolute exposure levels differ. For each13

demographic group, RECLAIM performs better than the other two scenarios.14

Black consistently has the best distribution, while White and Hispanic have the15

worst. Only under the HYSPLIT model does Hispanic fare relatively well. The16

fact that overall exposures are higher under the west wind dispersion indicates17
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Figure 4. Generalized Lorenz Curve Ranking by Policy, 1990 Census, west wind
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Figure 5. Generalized Lorenz Curve Ranking by Policy, 1990 Census, HYSPLIT
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that on average more people of all demographic groups are affected to the east1

of facilities than in a symmetric circle. In contrast, the low exposure levels using2

the HYSPLIT model arise from the fact that the same emissions are spread over3

much greater distances, affecting areas with relatively low population density.4

These results suggest that adjustments for dispersion patterns are unlikely to5

substantially alter the environmental justice implications of RECLAIM.6

The maps in figure 6 help explain why the different dispersion models do not7

generate qualitatively different environmental justice implications. Panels (a) and8

(b) depict the spatial distribution of total emissions generated by the 3 km ra-9

dius and HYSPLIT dispersion models. Panels (c) and (d) respectively depict the10

distribution of block groups in terms of the share of population that is low in-11

come (less than 2 times the poverty line) and Hispanic or non-white. The black12

dots represent the 15 highest emitting RECLAIM facilities (all of which had over13

300 tons average annual emissions at baseline). To focus attention on emissions14

that meaningfully affect the distributional rankings, we do not include the most15

sparsely populated block groups (below the 10th percentile in terms of popula-16

tion). The maps show that under both dispersion models, the most highly affected17

areas tend to be the predominantly white and upper income block groups along18

the coast. In contrast, the interior portions of Los Angeles most dominated by19

low income and minority residents have relatively low exposure.20

Despite this pattern of overall improvement, there may be concerns that RE-21

CLAIM exacerbated a disparity between demographic groups. Figure 7 reframes22

the question, considering which demographic group has the preferred pollution23

distribution, conditional on a given policy scenario.24

Consistent with Figure 6, among racial/ethnic groups Black had the most desir-25

able distribution of NOx outcomes at baseline, while White had the least desirable26

distribution. Although the Black distribution is unambiguously better than the27

other groups for the two policy scenarios, the relative position of White improves.28

For the command-and-control scenario, the White GL curve intersects the His-29
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Figure 6. South Coast NOx exposure and demographic composition
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panic and Other curves, while for the RECLAIM scenario the distribution for1

whites is strictly preferred to these other two. Thus, although all groups are bet-2

ter off under RECLAIM there is room for concern that RECLAIM left White3

better off than say Hispanic.4

A similar story emerges with respect to income groups. Under the baseline5

and command-and-control scenarios, individuals below the poverty line had the6

most favorable distribution, whereas those whose incomes were more than twice7

the poverty line had the worst. Under RECLAIM, the relative position of the8

wealthiest appears to have improved.9
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Figure 7. Generalized Lorenz Curve Ranking by Demographic Group, 1990 Census
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Figure 8. Generalized Lorenz Curve Ranking of RECLAIM emissions by Census
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A potential drawback to using GL curves calculated from 1990 census data is1

that neighborhood composition may have changed over time, perhaps even due to2

RECLAIM itself. Improvements in air quality in some neighborhoods may have3

increased property and residential rental values which in turn may have attracted4

wealthier households and induced poorer households to leave (e.g., Banzhaf and5

Walsh, 2008). In such cases, GL curves in Figure 7 may overstate exposure re-6

ductions for poor communities. Such sorting would also complicate the welfare7

interpretation of GL curves since the rankings hold all else constant. If individuals8

living in areas with improved air quality were to face higher rents, their increase9

in utility would be lower.10

Figure 8 depicts the potential impact of such demographic sorting over time. It11

compares RECLAIM GL curves calculated using 1990 versus 2000 census demo-12

graphic information. This analysis is only suggestive at best, since we do not have13

a counterfactual population distribution, i.e., an estimate of 2000 demographic14

locations in the absence of RECLAIM. We can, however, observe how actual15

population shifts in 2000 affected distributions relative to what would have been16

predicted using 1990 demographic data. Sorting does not appear to have played a17

major role for most demographic groups. The notable exception is for the Black18

group. It is the only group for which benefits predicted by the 1990 census would19

have over-estimated the improvements relative to 2000. The data do not allow20

us to determine whether this phenomenon was due to obstacles to moving to or21

remaining in cleaner neighborhoods or some other cause. Interestingly, however,22

income does not appear to drive these results since there is no evidence of a similar23

shift for any income group.24

B. Ranking policy outcomes by absolute Lorenz curve dominance25

One reason that NOx distributions from RECLAIM dominate those for other26

policy scenarios is that the overall level of emission exposure is much lower. It is27

unclear why RECLAIM had such a strong reduction in pollution levels since it28
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Figure 9. Absolute Lorenz curves ranking by policy, 1990 Census
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was intended to achieve the same reductions as the command-and control-regime,1

but at lower cost.2

Fowlie et al. (2012) speculate that cost reductions may have provided political3

cover for regulators to achieve more ambitious pollution targets. Another possible4

explanation is that regulations are typically limited to reducing emissions on the5

intensive margin, e.g., emissions per unit of output. Market-based mechanisms6

allow sources to meet an absolute quantitative limit by changing behavior on the7

extensive margin as well (by reducing output). Moreover, command-and-control8

regulations commonly face legal constraints regarding their maximum stringency.9

Under the Clean Air Act, for example, existing major NOx sources in heavily10

polluted ozone nonattainment areas are subject to reasonably available control11

technology (RACT) requirements. RACT is determined on a source-by-source12

basis, taking into account “technological and economic feasibility”. Such con-13

straints would not, in principle, apply to the determination of a sector-wide cap14

in an emissions trading program.15
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Regardless of the reason, it is natural to question whether focusing on GL curves1

obscures the larger question of the relative equity of command-and-control and2

market-based mechanisms behind the differences in total emissions. An alternative3

comparison would be between RECLAIM and a command-and-control policy with4

the same average exposure.5

To address this question, Figure 9 presents AL curves. In terms of equity only,6

the RECLAIM distribution dominates both the baseline and counterfactual dis-7

tributions for each demographic group and the for the population as a whole.8

Since the AL curves for different demographic groups intersect, it is necessary9

to calculate inequality indexes to make comparisons of equity implications across10

demographic groups as well as to rank distributions from the perspective of inter-11

group equity.12

C. Ranking policy outcomes using equally distributed equivalents and inequality indexes13

Parameter κ in Eq. (2) is a key element in calculating EDEs and inequality14

indexes. The choice of κ reflects a value judgement regarding the degree to which15

the representative individual is averse to inequality in pollution lotteries, with16

higher values corresponding to higher aversion. Using Eq. (2) the elasticity of17

marginal utility with respect to pollution is κx.18

The literature provides little guidance regarding “reasonable” values of this19

elasticity, and such estimation is beyond the scope of this study. For income20

distribution, the U.S. Census Bureau uses elasticities of 0.25, 0.5, and 0.75 (e.g.,21

Jones and Weinberg, 2000; DeNavas-Walt et al., 2012). In laboratory experiments22

on income inequality Amiel et al. (1999) found values in the neighborhood of23

0.25. To our knowledge, Cropper et al. (2016) is the only study that estimated24

this elasticity for an environmental good (a hypothetical cleanup program). They25

found found higher values, with a mean of 0.72 and median of 2.8.26

These studies assume preferences to be scale invariant, rather than translatable,27

meaning that inequality can be expressed with a relative, rather than absolute28
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index. As such, the calculated elasticity, α, is constant, rather than varying with1

exposure as is the case for an absolute index.2

To establish a correspondence between an elasticity α and a comparable vector3

of elasticities κx, we minimize the sum of squared differences between the absolute4

value of individual elasticities and the constant α:5

κ(α) = −arg min
κ̂

{
[κ̂x− α1]′[κ̂x− α1]

}
= −

α
∑N

n=1 xn∑N
n=1 x

2
n

.(6)

We use κ(0.50) to calculate the main results, presenting results for κ(0.25) and6

κ(0.75) in the appendix. Although EDE and index magnitudes vary with different7

parameter values, the ordering remains largely unchanged.8

GL curves only enable ordinal ranking of distributions in which they do not9

cross. Tables 3 and 4 display the mean, EDE, and inequality index values for10

baseline, command-and-control, and RECLAIM NOx exposure distributions using11

1990 and 2000 demographics respectively. By further restricting preferences as in12

Eq. (2), these tables allow cardinal welfare comparisons for all distributions.13

Rankings by EDE in Panel B can only differ from those made by comparing14

means in Panel A for cases in which the respective GL curves cross. Under the15

command-and-control policy using 2000 demographics, for example, the distri-16

bution for White is less desirable than that of Hispanic despite the fact that its17

average exposure is lower. Looking at the inequality index values, this relative18

ranking is due to the fact that the the distribution for whites is less equitable19

(index value of 7.4 relative to 3.1 tons).20

EDE values enable the determination of whether a policy generated welfare21

improvements for a given demographic group. They do not, however, indicate22

whether improvements come at the cost of increased disparity of outcomes. Such23

a concern is particularly relevant for emissions trading programs like RECLAIM.24
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Table 3. NOx tons, 1990 census

Command
Baseline and control RECLAIM Difference

(a) (b) (c) (c)-(b)

Panel A. Means
Race/Ethnicity

Hispanic 81.0 47.6 27.6 -20.0
( 3.9) ( 2.1) ( 1.8) ( 1.7)

White 83.5 41.7 18.8 -22.9
( 5.7) ( 2.6) ( 1.4) ( 1.3)

Black 49.2 31.3 12.2 -19.1
( 3.1) ( 1.7) ( 0.9) ( 1.4)

Other 76.6 42.6 21.4 -21.2
( 7.1) ( 3.7) ( 2.1) ( 1.8)

Income
Below poverty 71.0 40.8 22.6 -18.2

( 3.3) ( 1.7) ( 1.4) ( 1.3)
1-2 × poverty 74.8 42.9 23.5 -19.4

( 3.5) ( 1.9) ( 1.4) ( 1.3)
Above 2 × poverty 82.1 43.5 20.7 -22.8

( 4.7) ( 2.3) ( 1.3) ( 1.2)
Total 79.1 42.9 21.4 -21.5

( 4.0) ( 2.0) ( 1.2) ( 1.1)
Panel B. Equally distributed equivalents

Race/Ethnicity
Hispanic 94.3 50.9 29.6 -21.3

( 4.8) ( 2.3) ( 2.0) ( 1.9)
White 120.7 48.9 20.9 -28.0

( 9.8) ( 3.5) ( 1.7) ( 2.0)
Black 55.2 32.7 12.8 -19.9

( 3.6) ( 1.8) ( 1.0) ( 1.5)
Other 104.1 48.9 23.6 -25.4

( 11.9) ( 4.8) ( 2.4) ( 2.6)
Income

Below poverty 84.7 44.0 24.2 -19.7
( 4.4) ( 2.0) ( 1.6) ( 1.5)

1-2 × poverty 90.6 46.4 25.3 -21.1
( 4.9) ( 2.1) ( 1.6) ( 1.6)

Above 2 × poverty 113.0 49.8 22.8 -27.0
( 8.0) ( 3.0) ( 1.5) ( 1.7)

Total 104.8 48.2 23.4 -24.8
( 6.6) ( 2.5) ( 1.4) ( 1.5)

Panel C. Inequality indexes
Race/Ethnicity

Hispanic 13.3 3.3 2.0 -1.3
( 1.0) ( 0.3) ( 0.3) ( 0.3)

White 37.2 7.3 2.1 -5.1
( 4.4) ( 1.0) ( 0.3) ( 0.7)

Black 6.0 1.4 0.7 -0.7
( 0.8) ( 0.2) ( 0.1) ( 0.1)

Other 27.5 6.3 2.1 -4.2
( 5.1) ( 1.1) ( 0.3) ( 0.8)

Between race 0.065 0.004 0.004 0.000
( 0.025) ( 0.001) ( 0.001) ( 0.002)

Income
Below poverty 13.7 3.2 1.7 -1.5

( 1.3) ( 0.3) ( 0.2) ( 0.3)
1-2 × poverty 15.8 3.5 1.7 -1.8

( 1.7) ( 0.4) ( 0.2) ( 0.3)
Above 2 × poverty 30.9 6.4 2.1 -4.2

( 3.5) ( 0.8) ( 0.2) ( 0.6)
Between income 0.025 0.001 0.000 -0.001

( 0.012) ( 0.001) ( 0.000) ( 0.001)
Total 25.7 5.4 2.0 -3.4

( 2.8) ( 0.6) ( 0.2) ( 0.5)

Notes: Distribution of RECLAIM 3 km radius emissions to individuals in the SCAQMD. Standard errors
in parentheses calculated using a bootstrap of 1000 draws over the sample of SCAQMD census block
groups. Equally distributed equivalent and inequality index calculated using κ(0.50). Hispanic includes
people of all races who claim Hispanic ethnicity. All races are non-Hispanic. Below poverty indicates
people below the poverty line, 1-2 × poverty indicates people between one and two times the poverty
line, and Above 2 × poverty indicates people above twice the poverty line.
Source: Author calculations, based on data from California Air Resources Board and U.S. Census.
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Table 4. NOx tons, 2000 Census

Command
Baseline and control RECLAIM Difference

(a) (b) (c) (c)-(b)

Panel A. Means
Race/Ethnicity

Hispanic 74.0 43.6 24.8 -18.8
( 3.1) ( 1.6) ( 1.3) ( 1.2)

White 81.0 39.8 16.9 -23.0
( 5.5) ( 2.5) ( 1.4) ( 1.3)

Black 56.3 35.8 13.2 -22.6
( 3.3) ( 1.8) ( 0.9) ( 1.5)

Other 74.6 41.1 19.5 -21.6
( 7.8) ( 4.0) ( 2.2) ( 1.9)

Income
Below poverty 68.9 39.8 21.8 -18.0

( 3.1) ( 1.6) ( 1.3) ( 1.1)
1-2 × poverty 70.2 41.0 22.1 -18.9

( 3.1) ( 1.6) ( 1.2) ( 1.1)
Above 2 × poverty 78.6 41.8 19.3 -22.5

( 4.4) ( 2.2) ( 1.2) ( 1.1)
Total 75.4 41.3 20.3 -21.0

( 3.6) ( 1.8) ( 1.1) ( 1.0)
Panel B. Equally distributed equivalents

Race/Ethnicity
Hispanic 86.4 46.7 26.5 -20.2

( 3.9) ( 1.8) ( 1.4) ( 1.4)
White 118.5 47.2 18.9 -28.3

( 9.5) ( 3.5) ( 1.6) ( 2.0)
Black 65.2 37.9 14.0 -23.9

( 4.2) ( 2.0) ( 1.0) ( 1.6)
Other 103.9 47.7 21.5 -26.1

( 13.3) ( 5.2) ( 2.5) ( 2.8)
Income

Below poverty 81.9 42.9 23.4 -19.5
( 4.3) ( 1.8) ( 1.4) ( 1.3)

1-2 × poverty 85.0 44.5 23.7 -20.8
( 4.5) ( 1.9) ( 1.3) ( 1.3)

Above 2 × poverty 108.2 48.0 21.3 -26.7
( 7.6) ( 2.9) ( 1.4) ( 1.6)

Total 99.2 46.4 22.1 -24.3
( 6.0) ( 2.3) ( 1.2) ( 1.4)

Panel C. Inequality indexes
Race/Ethnicity

Hispanic 12.4 3.1 1.7 -1.4
( 1.0) ( 0.2) ( 0.2) ( 0.2)

White 37.5 7.4 2.0 -5.3
( 4.3) ( 1.0) ( 0.3) ( 0.7)

Black 9.0 2.1 0.8 -1.3
( 1.3) ( 0.3) ( 0.1) ( 0.2)

Other 29.2 6.6 2.0 -4.6
( 5.7) ( 1.2) ( 0.3) ( 0.9)

Between race 0.277 0.112 0.071 -0.041
( 0.039) ( 0.013) ( 0.011) ( 0.009)

Income
Below poverty 13.1 3.1 1.6 -1.5

( 1.4) ( 0.3) ( 0.2) ( 0.3)
1-2 × poverty 14.8 3.5 1.6 -1.9

( 1.6) ( 0.4) ( 0.2) ( 0.3)
Above 2 × poverty 29.6 6.2 1.9 -4.2

( 3.3) ( 0.8) ( 0.2) ( 0.6)
Between income 0.025 0.001 0.000 -0.001

( 0.012) ( 0.001) ( 0.000) ( 0.001)
Total 23.9 5.1 1.8 -3.3

( 2.6) ( 0.6) ( 0.2) ( 0.4)

Notes: Distribution of RECLAIM 3 km radius emissions to individuals in the SCAQMD. Standard errors
in parentheses calculated using a bootstrap of 1000 draws over the sample of SCAQMD census block
groups. Equally distributed equivalent and inequality index calculated using κ(0.50). Hispanic includes
people of all races who claim Hispanic ethnicity. All races are non-Hispanic. Below poverty indicates
people below the poverty line, 1-2 × poverty indicates people between one and two times the poverty
line, and Above 2 × poverty indicates people above twice the poverty line.
Source: Author calculations, based on data from California Air Resources Board and U.S. Census.
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It is possible that the dirtiest facilities may also face the least pressure to reduce1

emissions. It may be more costly to retrofit pollution controls onto older dirtier2

sources, for example. Or, perhaps communities near these sources lack the power3

to exert political pressure to reduce emissions.4

The inequality indexes presented in Panel C of Table 3 indicate how RECLAIM5

impacted the disparity of outcomes. A higher index value signals a more unequal6

distribution, independent of the mean. These results suggest that RECLAIM’s7

improvement in average exposure relative to command-and-control regulation dis-8

played in Panel A did not come at the expense of increased disparity of outcomes.9

Index values for all demographic groups are the same or slightly lower for RE-10

CLAIM using 1990 census data.11

There is little change in RECLAIM inequality index values using 2000 census12

data, suggesting that overall residential sorting played little role in the disper-13

sion of outcomes within groups. Notably, however, between race inequality, as14

calculated by Eq. (5), increased for all scenarios from 1990 demographics to 200015

demographics.16

V. Conclusion17

With the implementation of cap and trade programs for carbon emissions in18

California and RGGI and recent ballot initiatives for carbon taxes in Washing-19

ton state, market-based programs for reducing pollution have received increased20

attention. The flexibility of these programs relative to a regulatory command-21

and-control regime offers cost savings, but also raises questions about potential22

distributional implications.23

Environmental justice advocacy groups have expressed concern that polluting24

facilities in low income and minority neighborhoods may respond to carbon trad-25

ing programs by buying permits to increase emissions beyond what would have26

been allowed under a command-and-control regime. The concern is not with CO227

per se, but with other co-pollutants that have adverse health impacts.28
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Southern California’s RECLAIM program provides a useful test case for eval-1

uating such concerns since it replaced command-and-control regulations with a2

NOx emissions trading program. There are two key challenges to rigorously eval-3

uating its distributional impact.4

First, it is necessary to generate data for a credible counterfactual emissions5

scenario. It is not sufficient to compare plant emissions under RECLAIM to emis-6

sions prior to the program since many other changes affecting pollution decisions7

may have taken place during the intervening years. Instead, we match RECLAIM8

facilities with similar California facilities outside the program which continued to9

be subject to traditional NOx regulations. We then map actual and counterfac-10

tual emissions onto nearby census blocks whose populations are broken down into11

various demographic groups.12

Second, it is necessary to develop an approach for ranking the alternate emis-13

sions profiles in a way that is consistent with how members of the affected pop-14

ulations would rank them. To do so, we postulate a hypothetical representative15

individual and effectively ask her to identify which emissions distribution she16

would prefer among the various policy scenarios and demographic groups. To en-17

sure her choices are broadly applicable, we impose minimal restrictions on her18

preferences. To ensure her choices are fair, she ranks distributions from behind a19

veil of ignorance. When making a choice, she knows how a given distribution will20

affect each member of the population, but she does not know how it will affect21

her specifically. Instead, she will be randomly assigned a pollution exposure from22

the distribution chosen.23

The results of this analysis are striking. Each racial/ethnic group and each in-24

come category would prefer the RECLAIM distribution over the corresponding25

command-and-control alternative. Moreover, there is little evidence to suggest26

that RECLAIM systematically favored white or high income groups over minor-27

ity or low income groups. Although the pollution distribution for White under28

RECLAIM was preferable to that of Hispanic, for example, it was worse than that29
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of Black. These results are robust to alternative specifications regarding spatial1

emissions patterns and individual preferences. Moreover, comparing demographic2

information from the 2000 to 1990 census suggests that migration patterns did3

little to alter these conclusions. Although some of the gains for Black were reduced4

by demographic changes, it was still better off with RECLAIM.5

One reason RECLAIM performed so well was that total pollution under the6

program was substantially less than under the counterfactual, regardless how eq-7

uitably the remaining emissions were distributed across the population. Looking8

forward, it would be useful to understand whether the RECLAIM distribution9

was more equitably distributed than the counterfactual independently of aver-10

age pollution levels. Were RECLAIM to generate a less equitable distribution11

then there might be cause to require that a future market-based mechanism be12

more stringent than an alternative command-and-control regulation in order to13

compensate for its adverse distributional implications. Our approach allows us14

to disentangle overall pollution levels from the equity of the distribution itself.15

We find that the RECLAIM distribution was more equitable than the counter-16

factual for each demographic group, across demographic groups, and across the17

population as a whole.18
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Appendix A: Calculating exposure using HYSPLIT weights11

Our main specification assumes that the full impact of a facility’s emissions is12

felt in census block groups with centroids within a 3 km radius of the facility. In13

contrast, Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT)14

Model used by Grainger and Ruangmas (2018) assumes that wind and other me-15

teorological and topographical factors spread the impact out out over a much16

larger geographic area. In this section, we describe how we use weights derived17

from the Grainger and Ruangmas (2018) HYSPLIT model runs to generate expo-18

sure levels in each census block group such that the aggregate amount of pollution19

generated is comparable to the levels generated by our main specification.20

HYSPLIT models the impact of each facility’s emissions on ambient NOx con-21

centrations on a grid of approximate 1× 1 km cells using meteorological data ob-22

tained twice daily from 1990. As described in their technical appendix Grainger23

and Ruangmas (2018) apportion these gridded impacts to census block groups24

according to the area of each block group covered by each grid cell. Pollution25

concentrations are normalized such that they sum to 1 for each facility. The block26

group weight is the proportion of total emissions from facility j accruing to block27
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group i. The authors kindly shared with us a file containing the weights for each1

facility-block group pair.2

We use the following methodology to use these weights to allocate facility emis-3

sions across census block groups such that the total emissions generated by each4

facility is comparable with our main 3 km radius dispersion specification.5

Let the index k denote the two dispersion models, with k = M corresponding6

to our main specification, and k = H corresponding to the HYSPLIT model. We7

begin by modeling exposure of individual n in block group i under dispersion8

model k, xkin, as the sum of scaled weighted emissions, ej , across all facilities9

(indexed by j):10

xkin =
∑
j

ejw
k
ijs

k
j , for k = {M,H}.(A1)

For our main specification, weights wMij are equal to one for all census blocks with11

centroids within the 3 km radius and equal to zero for all others. For the HYSPLIT12

specification, wHij are the weights calculated by Grainger and Ruangmas (2018).13

As detailed below, the scaling factors skj are chosen to make the aggregate impact14

of each facility comparable under the two dispersion model specifications.15

The total “effective” emissions within block group i, Eki , are defined to be the16

individual exposure level multiplied by the block group area ai:17

Eki = ai
∑
j

ejw
k
ijs

k
j .(A2)

The effective emissions in block group i originating from facility j are:18

Ekij = aiejw
k
ijs

k
j .(A3)
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The total effective emissions of facility j across all block groups is:1

Ẽkj =
∑
i

aiejw
k
ijs

k
j .(A4)

The scaling factors sMj and sHj are chosen such that the effective emissions for2

facility j calculated by a given dispersion weighting scheme are equal to the effec-3

tive emissions using the 3 km weights of the main specification (i.e., by definition4

sMj = 1):5

skj ≡ {s :
∑
i

ejaiw
k
ijs =

∑
i

ejaiw
M
ij } for k = {M,H}(A5)

=

∑
i aiw

M
ij∑

i aiw
k
ij

.(A6)
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Figure B1. Distributions of cumulative NOx emissions over census block groups
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Table C1. Tons NOx exposure, 1990 Census, low inequality aversion

Command
Baseline and control RECLAIM Difference

(a) (b) (c) (c)-(b)

Panel A. Equally distributed equivalents
Race/Ethnicity

Hispanic 87.0 49.2 28.5 -20.7
( 4.2) ( 2.2) ( 1.7) ( 1.7)

White 99.0 45.0 19.8 -25.2
( 7.3) ( 3.0) ( 1.5) ( 1.6)

Black 51.9 31.9 12.5 -19.5
( 3.4) ( 1.8) ( 0.9) ( 1.5)

Other 88.2 45.5 22.4 -23.1
( 9.3) ( 4.2) ( 2.2) ( 2.2)

Income
Below poverty 77.0 42.3 23.4 -18.9

( 3.7) ( 1.8) ( 1.4) ( 1.4)
1-2 × poverty 81.7 44.5 24.4 -20.2

( 4.1) ( 2.0) ( 1.4) ( 1.4)
Above 2 × poverty 95.1 46.4 21.7 -24.6

( 6.0) ( 2.6) ( 1.4) ( 1.4)
Total 89.9 45.3 22.4 -23.0

( 5.0) ( 2.2) ( 1.3) ( 1.3)
Panel B. Inequality indexes

Race/Ethnicity
Hispanic 6.0 1.6 1.0 -0.6

( 0.4) ( 0.1) ( 0.1) ( 0.1)
White 15.5 3.3 1.0 -2.3

( 1.7) ( 0.4) ( 0.1) ( 0.3)
Black 2.7 0.7 0.3 -0.3

( 0.3) ( 0.1) ( 0.1) ( 0.1)
Other 11.6 2.9 1.0 -1.9

( 2.1) ( 0.5) ( 0.2) ( 0.4)
Between race 0.015 0.002 0.002 0.000

( 0.006) ( 0.001) ( 0.001) ( 0.001)
Income

Below poverty 6.0 1.5 0.8 -0.7
( 0.5) ( 0.1) ( 0.1) ( 0.1)

1-2 × poverty 6.9 1.7 0.8 -0.8
( 0.7) ( 0.2) ( 0.1) ( 0.1)

Above 2 × poverty 12.9 2.9 1.0 -1.9
( 1.4) ( 0.3) ( 0.1) ( 0.3)

Between income 0.005 0.000 0.000 -0.000
( 0.003) ( 0.000) ( 0.000) ( 0.000)

Total 10.8 2.5 0.9 -1.5
( 1.1) ( 0.3) ( 0.1) ( 0.2)

Notes: Distribution of RECLAIM 3 km radius emissions to individuals in the SCAQMD. Standard errors
in parentheses calculated using a bootstrap of 1000 draws over the sample of SCAQMD census block
groups. Equally distributed equivalent and inequality index calculated using κ(0.25). Hispanic includes
people of all races who claim Hispanic ethnicity. All races are non-Hispanic. Below poverty indicates
people below the poverty line, 1-2 × poverty indicates people between one and two times the poverty
line, and Above 2 × poverty indicates people above twice the poverty line.
Source: Author calculations, based on data from California Air Resources Board and U.S. Census.
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Table C2. Tons NOx exposure, 1990 Census, high inequality aversion

Command
Baseline and control RECLAIM Difference

(a) (b) (c) (c)-(b)

Panel A. Equally distributed equivalents
Race/Ethnicity

Hispanic 103.5 52.8 30.7 -22.1
( 5.4) ( 2.4) ( 2.1) ( 1.9)

White 151.9 53.8 22.1 -31.7
( 13.5) ( 4.1) ( 1.8) ( 2.5)

Black 59.5 33.5 13.2 -20.3
( 4.2) ( 1.9) ( 1.1) ( 1.6)

Other 126.0 53.0 24.8 -28.2
( 16.3) ( 5.6) ( 2.6) ( 3.1)

Income
Below poverty 94.9 45.9 25.2 -20.7

( 5.4) ( 2.1) ( 1.7) ( 1.6)
1-2 × poverty 102.4 48.6 26.3 -22.3

( 6.2) ( 2.3) ( 1.7) ( 1.7)
Above 2 × poverty 138.3 54.0 24.1 -29.9

( 10.9) ( 3.4) ( 1.6) ( 2.1)
Total 125.6 51.7 24.5 -27.2

( 9.0) ( 2.9) ( 1.5) ( 1.8)
Panel B. Inequality indexes

Race/Ethnicity
Hispanic 22.4 5.2 3.1 -2.1

( 1.8) ( 0.4) ( 0.4) ( 0.4)
White 68.4 12.1 3.4 -8.8

( 8.1) ( 1.6) ( 0.4) ( 1.2)
Black 10.3 2.2 1.1 -1.2

( 1.6) ( 0.3) ( 0.2) ( 0.2)
Other 49.4 10.3 3.3 -7.0

( 9.4) ( 1.9) ( 0.5) ( 1.4)
Between race 0.231 0.008 0.007 -0.001

( 0.085) ( 0.003) ( 0.002) ( 0.004)
Income

Below poverty 23.8 5.1 2.6 -2.5
( 2.5) ( 0.5) ( 0.3) ( 0.4)

1-2 × poverty 27.5 5.7 2.8 -2.9
( 3.1) ( 0.6) ( 0.3) ( 0.5)

Above 2 × poverty 56.2 10.5 3.3 -7.2
( 6.5) ( 1.3) ( 0.3) ( 1.0)

Between income 0.091 0.003 0.000 -0.003
( 0.035) ( 0.002) ( 0.000) ( 0.002)

Total 46.5 8.8 3.1 -5.7
( 5.3) ( 1.0) ( 0.3) ( 0.8)

Notes: Distribution of RECLAIM 3 km radius emissions to individuals in the SCAQMD. Standard errors
in parentheses calculated using a bootstrap of 1000 draws over the sample of SCAQMD census block
groups. Equally distributed equivalent and inequality index calculated using κ(0.75). Hispanic includes
people of all races who claim Hispanic ethnicity. All races are non-Hispanic. Below poverty indicates
people below the poverty line, 1-2 × poverty indicates people between one and two times the poverty
line, and Above 2 × poverty indicates people above twice the poverty line.
Source: Author calculations, based on data from California Air Resources Board and U.S. Census.


