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Abstract

An increase in labor dismissal costs leads firms to increase process innovation, namely
innovation that reduces production costs, especially in industries with a large share of
labor costs in total costs. Firms with high innovation ability adjust their production
methods and mitigate the effects of increased labor rigidity. They exhibit larger increases
in process innovation and capital intensity, and larger decreases in employment and
employment growth. This allows them to increase labor productivity, operating
performance, and ultimately to avoid value losses. Our evidence highlights that, by
facilitating the adjustment of the input mix when market conditions change, innovation
ability is a key driver of firm performance.
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1. Introduction

Frictions in labor markets that make a firm’s labor input rigid and costly to adjust
lead to higher production costs and operating leverage. Such frictions can thus reduce a firm’s
value both by decreasing its expected future cash flows and by increasing its cost of capital.!
To mitigate the impact of these frictions, firms reduce their financial leverage (Simintzi, Vig,
and Volpin (2015), Serfling (2016)) or reorganize their production activity by substituting
capital for rigid labor and by outsourcing production (Autor (2003), Autor, Kerr, and Kugler
(2007)). However, it is often overlooked that in order to take advantage of a higher, more cost-
effective, capital-labor ratio a firm must be able to develop new production methods that are
appropriate for that capital-labor ratio (Jones (2005)). The ability to invent new production
methods is thus critical for a firm’s success in mitigating the impact of labor markets frictions
on its value, yet little is known about this role of innovation empirically.

In this paper, we examine how a firm’s innovation ability shapes the adjustment of its
production techniques and ultimately affects its performance following an increase in labor
dismissal costs—a key source of labor rigidity. Such costs make layoffs costly and labor
difficult to adjust (Autor, Kerr, and Kugler (2007)). The resulting operating leverage
effectively increases the cost of labor relative to other inputs making cost-effective to firms to
substitute capital for labor. We first study the effect of labor rigidity on a firm’s invention of
new cost-saving production methods—process innovations. We then study how a firm’s ex-
ante innovation ability drives the adjustment of its production input mix in response to
increased labor rigidity, and thereby moderates the impact of higher labor rigidity on its
productivity, operating performance, and market value. Our evidence shows that, by
facilitating the adjustment of the input mix when conditions in input markets change,
innovation ability is a key driver of firm performance.

Using textual analysis of patent claims, we create novel measures of innovation that
distinguish process innovations, which refer to inventions of new methods used to adjust
firms’ production (Scherer (1982, 1984), Eswaran and Gallini (1996)) from other non-process

innovations. Stilted legalistic language and the use of consistent vocabulary across firms and

1 A large literature discusses the effects of various labor market frictions on firms’ operations and performance,
including Clark (1984), Abowd (1989), Besley and Burgess (2004), Autor, Kerr, and Kugler (2007), Messina and
Vallanti (2007), Atanassov and Kim (2009), Chen, Kacperczyk, and Ortiz-Molina (2011), Agrawal and Matsa
(2013), Donangelo (2014), Favilukis and Lin (2016), Campello et al. (2018), and Favilukis, Lin, and Zhao (2019),
among many others. See Matsa (2018) for a broader discussion of labor market frictions in corporate finance.



over time allows us to accurately distinguish patent claims that describe process innovations
from those that do not. Our main measures thus count the number of process and non-process
claims contained in patents filed by each firm in a given year. To account for the
heterogeneity in patent quality, we also use citation-weighted counts of process and non-
process patents. To highlight the importance of understanding what economic mechanisms
drive the creation of process innovations, we document a significant steady increase in the
share of process innovation in total innovation over time, from 19.5 % in 1975 to 32.2% in
1997, the last year in our sample, and continuing to increase afterward.

We use a difference-in-differences methodology based on the staggered adoption of the
“good faith” exception to the common law “employment at will” doctrine by U.S. state courts
between 1973 and 1995. This doctrine gives employers unlimited discretion to fire employees
at any time. The good faith exception significantly restricts this discretion because it serves
as a general prohibition against firing workers without just cause and it thus opens firms to
potentially costly litigation if they lay off workers (Dertouzos and Karoly (1992), Kugler and
Saint-Paul (2004), Autor, Kerr, and Kugler (2007)). Prior work further shows that the
adoption of this exception leads to a significant increase in labor adjustment costs and
operating leverage (Autor, Kerr, and Kugler (2007), Serfling (2016)).

We find that, following the adoption of the good-faith exception, firms located in
adopting states increase their process innovation by 6.1% to 8.9% relative to firms in other
(non-adopting) states. This increase in process innovation becomes statistically and
economically significant four years after the adoption. Further, the increase in process
innovation is more pronounced in industries where labor costs account for a larger share of
production costs, and thus are more impacted by the law. The adoption of the good-faith
exception does not, however, materially affect non-process innovation. These results suggest
that higher labor adjustment costs lead firms to increase their innovation efforts focused on
developing new production methods.

The evidence supports a causal interpretation of our results. First, the good-faith
exception concerns firms’ firing decisions rather than innovation outcomes or production
technique choices, and its recognition follows from court decisions made by independent
judges in specific cases rather than from changes in state legislation that are potentially
contentious. Second, in addition to firm and year fixed effects, our results hold controlling for
various time-varying firm characteristics, as well as controlling for the state’s business

environment and political leaning. When possible, we also include state fixed effects
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interacted with year fixed effects, which ensures that state-specific time-varying omitted
variables cannot explain our findings. Third, the pre-treatment trends in the innovation of
firms in treated and control states are indistinguishable. Fourth, the adoption of the good-
faith exception in neighboring states does not affect a firm’s innovation, suggesting that local
economic shocks correlated with the adoption of the good-faith exception are unlikely to drive
our results. Fifth, our results are unlikely to be driven by a differential impact across states
of increased patent enforcement in the early 1980s and associated surge in patenting activity
(Lerner and Seru (2017)). Our results hold controlling for time-varying differences in patent
filings across states, if we restrict our sample to the 1975-1990 period (which precedes the
most significant surge in patenting occurred during the 1990s), or if we exclude firms in the
states of California and Massachusetts (which historically harbor a large fraction of
patenting firms).

An increase in employment protection in a firm’s state of headquarters can also
increase the job security of its inventors employed in that state and, through this mechanism,
lead them to exert more effort in innovation (Acharya, Baghai, and Subramanian (2014)). If
such effort was focused on processes, this rationale could explain our results. Employment
contracts are typically governed by labor laws in the state where the employee works, so the
adoption of the good-faith exception in a firm’s state of headquarters does not affect the job
security of inventors the firm employs in other states. Inconsistent with job security alone
driving our results, we find that the adoption of the good-faith exception in a firm’s state
leads to an increase in its process innovation even if the majority of its lead inventors are
located in other states or if the lead inventors are dispersed across several states.

Next, we show that firms with high ex-ante innovation ability respond to increased
labor dismissal costs by developing considerably more process innovations compared to those
with low ex-ante innovation ability. Non-process innovation remains largely unaffected even
for high ex-ante innovation ability firms. Furthermore, consistent with our intuition that
innovation ability helps firms mitigate the negative consequences of labor market rigidities,
we also find that firms with high ex-ante innovation ability reduce their total employment
and employment growth, and increase their capital intensity. Such adjustments in
production input mix are insignificant for low innovation ability firms. These results suggest
that, when an increase in labor rigidity makes the labor input more costly, innovation ability
facilitates the creation of process innovations which firms then deploy as new production

methods.



Finally, we show that the ex-ante ability to innovate and adjust production methods
helps firms mitigate the adverse effects of labor market rigidities on their performance.
Following the adoption of the good-faith exception, we document significant increases in the
productivity of labor for high innovation ability firms. We also find that high innovation
ability firms maintain their profitability and avoid market value losses, while low innovation
ability firms fare much worse. Our results thus suggest that innovation ability allows firms
to shield their value from labor market shocks.

Our paper advances the literature that examines how frictions in labor markets affect
corporate policies and outcomes. It is closely related to prior work that shows how
employment protection creates operating leverage and, through this mechanism, impacts
corporate investment and financing decisions (Autor, Kerr, and Kugler (2007), Simintzi, Vig,
and Volpin (2015), Serfling (2016), Bai, Fairhurst, and Serfling (2019)).2 Contrary to Bai et
al. (2019), who find a negative effect of employment protection on average firm investment,
we show that firms with higher ex-ante ability to innovate are those who invest more in
capital to offset the value losses from the increased rigidity. This evidence is consistent with
the view in Jones (2005), who highlights that the availability of new production techniques
suited for different capital-labor ratios affects firms’ ability to change their input mix and
thus shapes production functions.

A few prior studies examine how frictions in labor markets affect innovation. Acharya,
Baghai, and Subramanian (2014) argue that employment protection incentivizes inventors
to exert effort and find that the adoption of the good faith exception leads to an increase in
firms’ overall innovation. We distinguish between process and non-process innovation, and
highlight another channel through which labor protection affects innovation, namely, the
need to invent new processes that allow firms to adjust their production methods and
mitigate the negative impact of labor rigidity on their values. Bradley, Kim, and Tian (2017)
show that an increase in labor unionization leads to a decrease in innovation, because unions
can hold up the firm and demand higher wages once the firm has incurred the sunk cost of
innovation, which reduces the firm’s ex-ante incentives to innovate. This suggests that
different types of labor markets frictions impact firms’ innovation differently. Bena and

Simintzi (2019) show that large U.S. multinational firms reduce their process innovation

2 Similarly, Autor et al. (2016), Bloom, Draca, and Van Reenen (2016), and Hombert and Matray (2018) show that
innovative firms differentiate their products in response to competition from lower-cost foreign rivals.



after their access to “cheap” offshore labor improves. We instead focus on changes in the
effective price of domestic labor that affect all U.S. firms, and show that employment
protection boosts process innovation allowing firms to reduce their reliance on domestic labor.

A broader corporate finance literature examines what factors stimulate innovation,
such as governance (Atanassov (2013), Balsmeier, Fleming, and Manso (2017)), ownership
structure (Aghion, Van Reenen, and Zingales (2013), Bena et al. (2017)), organization
(Lerner, Serensen, and Stromberg (2011), Ferreira, Manso, and Silva (2014), Seru (2014)),
managerial compensation (Manso (2011), Ederer and Manso (2013)), capital structure
(Atanassov, Nanda, and Seru (2007)), litigation risk (Cohen, Gurun, and Kominers (2016)),
corporate taxes (Mukherjee, Singh, and Zaldokas (2017)), and the supply of credit (Amore,
Schneider, and Zaldokas (2013)). We further highlight that the distinction between process
and non-process innovation might be useful in understanding what drives innovation.

Our paper is also related to the academic and public debates around the view that the
introduction of new technologies which support automation makes labor redundant, leading
to job displacement, lower wages, and more inequality (Autor, 2015; Autor, Levy, and
Murnane, 2002; Autor and Dorn, 2013).) It is thus important to understand how the
incentives for automation respond to policy intervention. Our evidence highlights that
employment protection increases labor costs and thus directly affects firms’ incentives and
efforts to invent new production methods that facilitate the substitution of capital for labor,
which can negate some of the intended benefits for workers. More generally, a potential
unintended consequence of increased labor protection is that it could, in fact, accelerate
automation and thereby lead to job displacement that is permanent in the long-run.

The paper is organized as follows. Section 2 discusses our conceptual framework and
hypotheses. Section 3 discusses our measures of process and non-process innovation, the
data, and our identification strategy. Section 4 examines the impact of labor rigidity on
innovation. Section 5 focuses on how ex-ante innovation ability affects the adjustment of

production methods and firm performance. Section 6 concludes.

2. Higher labor costs and new production techniques

Jones (2005) highlights that adjustments to a firm’s input mix inherently require
inventions of new production techniques and that the availability of such inventions
constrains a firm’s ability to do such adjustments. Specifically, he notes that “production

techniques” are ideas regarding how to organize production efficiently for specific capital-
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labor ratios. Such techniques specify a series of instructions to transform inputs into output
based on that capital-labor ratio. If a firm wants to change its capital-labor ratio, this renders
its original production technique obsolete and thus needs to discover a new one that is
appropriate for the new capital-labor ratio. Hence, production functions represent the
substitution possibilities across different production techniques, which in turn depend on the
extent to which new techniques that are appropriate for different capital-labor ratios are
discovered.

Embedding the production function with input substitution possibilities described
above into the profit maximization problem of the firm implies that changes in the relative
price of inputs incentivize firms to change their capital-labor ratios, which requires the
availability of new production methods to support the new desired capital-labor ratios. Hence,
there is a direct link between changes in the relative costs of production inputs and
innovation in new production methods. This intuition dates back to John Hicks (1932), who
noted that “..a change in the relative prices of the factors of production is itself a spur to
invention, and to invention of a particular kind—directed to economizing the use of a factor
which has become relatively expensive...”

Consider for example the introduction of assembly lines in automotive production in
the early 1900’s. High labor costs and inefficiencies in production required that profit-
maximizing automakers substitute machines for workers to reduce production costs, but this
was unfeasible within the “craftmanship” approach to production predominant at the time.
The substitution could only be implemented using a new way to organize the production
process targeted at a higher capital-labor ratio. This led to a revolutionary new production
technique — the “assembly line”, which was credited to Ransom Olds (he patented the
“stationary assembly line”, and introduced it to produce the Oldsmobile Curved Dash model
in his Lansing, Michigan factory in 1901) and Henry Ford (he created the “moving assembly
line”, and introduced it to produce the Model T in his Lansing Park, Michigan factory in
1913). This innovation led to huge productivity gains and cost savings, including a dramatic
reduction in production time while using less manpower per automobile, which translated
into much lower final prices, higher production volumes, and higher profit margins for these

automakers.?

3 By 1916 the price of Ford’s Model T had fallen to $360 from its debut price of $850 in 1908 and sales were more
than triple their 1912 level. The Model T was discontinued in 1927, accounting for nearly half of all automobiles
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In the context of this paper, we focus on an increase in the effective price of labor
(relative to capital) associated with changes in labor laws that increased employment
protection. Following the above intuition, our hypothesis is that increases in employment
protection lead firms to invent new cost-saving production methods that allow firms to
substitute capital for labor. Further, the discussion above suggests that firms with greater
innovation ability are better able to implement the required substitution of capital for labor

and thus to mitigate the impact of higher labor costs on their performance.

3. Innovation measures and empirical framework
3.1 Process vs. non-process innovation

The conceptual distinction between process and non-process innovation is at the heart of
our conceptual framework, empirical tests, and interpretation of the results. Prior literature
highlights that process innovation refers to a new way to produce an existing good and aims
to improve a firm’s own production methods to lower its production costs (Scherer (1982,
1984), Link (1982), Cohen and Klepper (1996), Eswaran and Gallini (1996)). In contrast, non-
process innovation generally refers to inventions sold to others, such as new or improved
products that the firm aims to sell to either final consumers or other firms.

An example of process innovation is the “assembly line” (discussed in Section 2), which
led to many related patents after the original idea. A recent one (published in 2005) is Ford
Motor’s patent “Manufacturing assembly line and a method of designing a manufacturing
assembly line” (US20050044700A1), which contains “A method of designing a manufacturing
process line. A process is identified as a set of discrete steps. A subset of steps is assigned to
one of a plurality of standardized work cells. The work cells include a standardized workpiece
presenter and a standardized processing tool. Additional subsets of discrete steps are assigned
to a standardized work cell until the design for the manufacturing process is completed.”

Other examples of Ford’s process innovation include “Wheel manufacture”
(US3859704A), granted in 1975, which describes “a process for the production of vehicular
wheels and finds particular utility in wheels in which a steel rim must be united to a
magnesium or aluminum spider. The aluminum or magnesium spider is united to the steel

rim by a combination of adhesive action and metal interlocking since steel is essentially

sold in the world to that date. The Olds Motor Works Co. (founded by Ransom Olds) was bought by General
Motors in 1908. General Motors discontinued the “Oldsmobile” brand in 2004, after a production run of 96 years.
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unweldable to either aluminum or magnesium.” and “Method for motor vehicle interior
climate control” (US20170144505A1), describing “A method for climate control for an interior
of a motor vehicle includes acquiring climatically relevant data of the interior and/or
surroundings of the vehicle, creating a thermodynamic model of a vehicle climate system [...],
the model including [...], introducing into the interior a quantity of air having a temperature
different from an existing interior temperature [further details omitted].”

Examples of Ford’s non-process patented innovation include “Motor vehicle body mount”
(US3622194A), granted in 1971, describing “A body mount for connecting a motor vehicle body
part to a motor vehicle frame...[description of body mount omitted]”, and various patents
grated in 2018 such as “Airbag for oblique vehicle impacts” (US9963101B2), describing “An
airbag system includes an inflator and an airbag in communication with the inflator. [further
details omitted]”, its “Head rest with a compartment for a travel pillow” (US10093205B2), its
“Keyless vehicle door latch system with powered backup unlock feature” (US20180051493A1),
and its “Direct injection fuel pump” (US10006426B2), among others.

The adoption of new processes might require innovation in new equipment that supports
the new processes. For example, Ford’s patent “Methods and systems for assisted direct start
control” (US20170341637A1) first describes “A method of controlling a vehicle system
including an engine that is selectively shut-down during engine idle-stop conditions,
comprising: ... [further details omitted]” and then “A vehicle system, comprising: a powertrain
including wheels, an engine, a torque converter having a lock-up clutch, and an automatic
transmission including a forward clutch; wheel brakes; and a control system configured to
selectively shut-down the engine during engine idle-stop conditions ...[further details
omitted]”. Process innovation can also aid subsequent non-process innovation by the same or
other firms in related fields. For example, Ford Motor’s process patent granted in 1975 “Wheel
manufacture” (US3859704A) discussed above is cited by subsequent non-process patents,
such as ITT Corp’s “Aluminum alloy motorcycle wheel having an extruded rim shrink fitted

and resin bonded to a die cast hub-spoke unit” (US4256348A) granted in 1981.

3.2 Distinguishing process and non-process innovation in patent filings

We use the process and non-process innovation measures developed by Bena and
Simintzi (2019). Specifically, our main dependent variables separately measure a firm’s
patented process and non-process innovation output and are extracted from the texts of

patent grants. To this end, our measure relies on the critical defining element of a patent:
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the list of specific “claims”. The claims define — in technical terms — what subject matter the
patent protects and the scope of protection conferred. For this reason, the list of specific
claims in a patent is the primary subject of examination in patent prosecution and crucial in
patent litigation cases.

As detailed in Bena and Simintzi (2019), our measure is based on the full texts of all
utility patents awarded by the United States Patent and Trademark Office (USPTO) from
January 1976 to December 2012. The patent texts are then parsed to extract the section that
contains the list of patent claims. Finally, with the use of standard textual analysis
techniques, claims can be unambiguishly distinguished within each patent as either process
or non-process claims. This is aided by the very legalistic and stilted language used in
drafting claims, e.g., process claims always refer to “A method for ...” or “A process for ...” (or
minor variations), followed by a verb (typically in gerund form). For example, the list of 23
claims in Ford’s patent “Method of assembling a vehicle from preassembled modular
components” (US6493920B1) reads “I. A method of assembling a vehicle, the method
comprising; ... [full description omitted]”; “2. The method of claim 1 wherein the roof panel is
made of material selected from the group consisting of aluminum and magnesium.”; and all
remaining claims also begin “The method of claim...”.

To see how the standardized legal language used in the drafting of patent claims allows
to accurately distinguish process from non-process claims, note that the most frequent
bigrams of words in process claims that do not appear among the top 1,000 bigrams of words
in non-process claims are (after word stemming and in the order of frequency): “compris-
step”’, “method-compris”, “said-method”, “process-prepar”, “process-compris”, “step-provid,
“aqueous-solut”, “step-form”, “alkali-metal”’, “effect-amount”, “process-produc”’, “method-
produc”, “method-manufactur”, “compris-contact”’, “method-form”, and “method-make”.4 See

Bena and Simintzi (2019) for more detail.

3.8 Matching of patents to firms and measures of process and non-process innovation
To match patent filings to firms in Compustat we follow Bena, Ferreira, Matos, and Pires
(2017). We first search each patent grant document and identify the names of patent

assignees, the country of these assignees, and whether each assignee is a U.S. corporation, a

4 Non-process claims use very different unique words. For example, in June 21, 2004 Apple Inc. filed a “Integrated
sensing display” non-process patent (US 7535468 B2), whose first and second claims read “I. A device comprising
a display panel...” and “2. The device of claim 1, wherein the image elements are located in a...”.



non-U.S. corporation, an individual, or a government body. Using this information, we then
match patents to firms in Compustat. Our matching algorithm involves two main steps. First,
we standardize patent assignee names and firm names, focusing on unifying suffices and
dampening the non-informative parts of firm names. Second, we apply multiple fuzzy string
matching techniques to identify the firm, if any, to which each patent belongs.?

We measure a firm’s annual process and non-process innovation in two ways. The first
approach exploits the fact that each and every patent can be broken down into the individual
process and non-process claims it contains. Thus, a firm’s Process Claims is computed by
summing the number of process claims contained in all of its patents filed in each year.
Similarly, a firm’s Non-Process Claims is computed by summing the number of non-process
claims contained in all of its patents filed in each year. Both variables are set to zero for firm-
years with no patents. The advantage of these measures is that they capture all process and
non-process innovations patented by a firm. However, they ignore differences in the quality
of innovations protected by each specific claim in a patent, because there are no claim-level
indicators of quality (e.g., citations are for entire patents and not for individual claims).

Our second approach uses the number of citations received by each patent to account for
the differences in the scientific merit of innovations (Hall, Jaffe, and Trajtenberg (2001,
2005), Jaffe and Trajtenberg (2002)). To ensure a clear distinction between process and non-
process innovations, we focus on patents that contain only process claims (Process Patents)
or only non-process claims (Non-Process Patents), but not both.® C-W Process Patents is the
citations-weighted number of process patents and C-W Non-Process Patents is the citations-
weighted number of non-process patents filed by a firm in each year, respectively. Both
measures are set to zero for firm-years with no process or no non-process patents.

Figure 1 shows that, together with an overall increase in the total number of claims
(process and non-process) during our sample period (which mirrors the increase in patenting
documented in prior studies), there is a steady increase in the share of process innovation.
For the average firm in our sample, the share of process claims in total claims was 24.5%
over the entire sample period, but this share rose steadily from 19.5% in 1975 (first year in
our sample) to 32.2% in 1997 (last year in our sample). Although outside our sample period,

this trend continued in subsequent years, leading to a share of almost 40% in 2010. Hence,

5 See Bena, Ferreira, Matos, and Pires (2017) for more detail on the matching procedure and a comparison of the
matches to those in the NBER patent database.
6 Process patents and non-process patents account for 70.3% of all patents in our data.
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process innovation is becoming an increasingly important component of overall innovation.
In Panel A of Table 2, we examine which industries account for the bulk of process
innovation. We report the share of each two digit SIC industry in the total number of process
claims contained in all patents over the period 1975-97 as well as the subperiods 1975-80,
1981-85, 1986-90, and 1991-97. Manufacturing industries account for the majority of process
innovation, with Chemicals & allied products (SIC 28), Electronic & electrical equipment
(SIC 36), and Machinery & computer equipment (SIC 35) at the top of this list, although
communications (SIC 48) and business services (SIC 73) account for a sizeable fraction as
well. Interestingly, some industries have increased their shares in process innovation over
the years (SICs 36, 35, 38, and 73) and some have decreased their shares (SICs 28, 29, and
33), while the shares of other industries remained largely unchanged (SIC 37, 48, and 26).
In Panel B, we examine the importance of process innovation relative to total innovation
for the same industries identified in Panel A. Specifically, we report the shares of process
claims in the total number of (process and non-process) claims contained in all patents for
the period 1975-97 as well for the subperiods 1975-80, 1981-85, 1986-90, and 1991-97. Over
our entire sample period, process innovation accounts for a large fraction of patented
innovation in those industries that generate the bulk of process innovation. In all of these
industries process innovation accounts for at least a quarter of the innovation in the industry
and in some (petroleum refining, primary metal industries, business services) it accounts for
about half. Importantly, consistent with the aggregate trend, for most industries there is a

large and steady increase in the share of process innovation over the years.

3.4 Wrongful discharge

To estimate the causal effect of labor dismissal costs on firms’ process and non-process
innovation, we use a difference-in-differences approach based on the variation in these costs
associated with the staggered adoption of “wrongful discharge laws” by U.S. state courts
between the late 1970s and the early 1990s. Prior work extensively discusses these laws and
their economic significance as a source of exogenous variation in labor dismissal costs
(Dertouzos and Karoly (1992), Miles (2000), Kugler and Saint-Paul (2004), Autor, Donohue,
and Schwab (2004, 2006), Autor, Kerr, and Kugler (2007)). Recently, Acharya, Baghai, and
Subramanian (2014) and Serfling (2016) further validate this setting for identification
purposes.

The legal framework regarding worker dismissals prevailing at the beginning of the
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1970s was centered around the common law doctrine of “employment at will”. This doctrine
sustained a legal presumption that employers could fire workers at will, that is, “for good
cause, bad cause, or no cause” (a quote from Payne vs. Western & Atlantic Railroad, Supreme
Court of Tennessee, 1884), which gave employers unlimited discretion in firing workers.
Between 1973 and 1995, courts in 46 states set new legal precedents recognizing three
exceptions to employment at will usually referred to as “wrongful discharge laws”. These
exceptions significantly limited employers’ discretion to fire workers, opened them to
potentially costly litigation, and generated uncertainty about when employers could
terminate workers with impunity. The survey of public firms’ managers conducted by
Dertouzos, Holland, and Ebener (1988) indicated that 46% of managers feared potential
losses arising from such lawsuits, while Jung (1997) and Boxold (2008) document
economically significant awards to plaintiffs.

The key legal change we use to gauge an increase in labor dismissal costs is the adoption
of the “good-faith exception”to the employment at will doctrine by state courts. This exception
represents an implied covenant to terminate employment only in good faith and fair dealing,
which essentially prevents employers from firing workers for any “bad cause”. The good-faith
exception represents the largest deviation from at-will employment and is the most far
reaching. It gives employees both a contract and a tort cause of action in the event they are
dismissed, allowing them to seek compensation for both contractual losses and emotional
distress, as well as punitive damages that imply highly uncertain amounts. Importantly, it
serves as a general prohibition against terminating any worker without just cause (economic
necessity or poor performance) and thus could have sweeping consequences (Dertouzos and
Karoly (1992), Kugler and Saint-Paul (2004), and Autor, Kerr, and Kugler (2007)).

State courts adopted two other exceptions to the employment at will doctrine during this
period that had less impact on firms. We include them as control variables in our analyses.
One is the “implied-contract exception”, which protects workers from discharges when there
is an implicit promise that the firm will not fire workers without good cause.” The other is
the “public-policy exception”, which protects workers against discharges that would thwart

an important public policy, such as, performing jury duty, filing a worker’s compensation

7 Such promises follow from the language in employment contracts and personnel manuals, or from expectations
of continuing employment based on the length of service and prior promotions. In practice, employers can reword
these documents to clearly indicate that employment contracts are at will (Miles (2000), Autor, Kerr, and Kugler
(2007)) and employers indeed took such steps (Sutton and Dobbin (1996)).
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claim, reporting an employer’s wrongdoing, or refusing to commit perjury.®

Prior work highlights that the adoption of the good-faith exception significantly increases
hiring and firing costs, ultimately increasing labor adjustment costs and operating leverage.
Using plant-level data from the Census Bureau, Autor, Kerr, and Kugler (2007) show that
the adoption of this exception reduces employment volatility, both in the intensive (within-
plant) and the extensive (plant entry/exit) margins.?® Further, in a sample of public firms,
Serfling (2016) shows that it leads to a reduction in the volatility of employment and in the
likelihood that a firm fires workers when its earnings decrease; it also leads to an increase in
the elasticity of changes in earnings to changes in sales and in the volatility of profits.

The adoption of the good-faith exception is unlikely to be driven by changes in economic
or political conditions in the state that could be correlated with firms’ incentives to innovate.
It occurs in judiciary decisions by state courts and not through a potentially contentious
legislative process in the state. The judges are independent and largely immune to political
pressure from interested parties, and thus base their decisions on the merits of the specific
case. Further, Walsh and Schwarz (1996) document three key reasons why judges adopt these
exceptions: enhancing fairness in employment relationships, assuring consistency with
established principles of contract law, and following similar rulings in other states. Last,
Acharya, Baghai, and Subramanian (2014) and Serfling (2016) show that the adoption of the
good-faith exception is not driven by changing political conditions, economic conditions, or in
other labor regulation in the state, and that such rulings were not anticipated. Hence, it

provides plausibly exogenous variation in employment protection in our study of innovation.

3.5 Data and variables

The sample spans the period 1975-1997 and is based on the publicly traded firms in the
Compusat dataset. As in Bloom, Schankerman and Van Reenen (2013), it includes all non-
financial and non-utility firms headquartered in the U.S. that filed at least one patent with
the United States Patent and Trademark Office (USPTO) during this period, for a total of
44,898 firm-year observations. We define all variables in the Appendix. The corresponding

summary statistics are in Table 1.

8 This exception is of minor legal and economic significance, because large compensation amounts are rare and
courts limit public policy cases to clear violations of specific legislative commands rather than violations of a
vaguer sense of public obligation (Edelman, Abraham, and Erlanger (1992), Autor, Donohue, and Schwab (2006)).
9 Also consistent with these legal changes affecting hiring decisions, Kugler and Saint-Paul (2004) further show
that the good-faith exception reduced the re-employment probability of unemployed relative to employed workers.
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To merge the wrongful discharge law indicators and other state level variables into our
dataset, we rely on a firm’s historical state of headquarters.!® To this end, we use the
“company header history” file in the legacy CRSP/Compustat Merged database. This file
provides, for each firm, the time frame for each verified historical state of headquarters and
allows us to accurately track changes in the headquarter state over time. When this
information is missing for a particular year, we use the firm’s next or last verified state of
headquarters if available. In this way, we obtain the historical state of headquarters for 75%
of the observations in our sample. The remaining 25% of observations correspond to firms
with no data available in the company header history file. Most these firms have the last
reporting year in Compustat between 1975 and 1990 and especially in the early part of our
sample. For these firms, we use the state of headquarters reported in the “company header
file”, which is the state of headquarters as of the firm’s last reporting year. For these firms,

the last recorded headquarter state we use is close in time to most of their observations.!!

4. Results
4.1 Econometric specification
To identify the effect of wrongful discharge laws on process and non-process innovation,

we estimate the following difference-in-differences regression:

Yist = P1Good Faithg, + p,Implied Contracts, + f3Public Policys,
+6Xist—1 t i+ U+ €5t

where i denotes firm, s denotes the firm’s state of headquarters, and ¢ denotes year. The
dependent variables y are Log(1 + Process Claims), Log(1 + Non-Process Claims), Log(1 + C-
W Process Patents), and Log(1 + C-W Non-Process Patents). The three indicator variables for
whether the state recognizes the corresponding exception to the employment at will doctrine
are Good Faith, Implied Contract, and Public Policy, respectively. The vector X includes
lagged firm-level control variables (Log(1 + Patent Stock), Log(l + R&D Stock), Log(Sales),
and Log(M/B)) and state-level control variables (State GDP Growth and State Political

Balance). As in Bloom, Schankerman and Van Reenen (2013), we control for differences in a

10 According to employment law, the relevant jurisdiction for a wrongful discharge lawsuit is the state where the
employee works. Firms often employ workers in different states, but data restrictions only allow us to identify a
firm’s state of headquarters, where most of a firm’s workers are typically employed.

11 For example, if a firm last appears in Compustat in 1985, the company header file records the state of
headquarters in 1985 and we use this state in all prior years as well.
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firm’s stock of knowledge using lagged patent stock and lagged R&D stock, as well as for
other relevant firm characteristics. Further, the inclusion of the state-level control variables
alleviates concerns that changes in a state’s economic conditions or political environment
correlated with both the adoption of wrongful discharge legislation and innovation could
confound our inferences. Last, a; is a firm fixed effect, which controls for firm characteristics
that do not vary over our sample period, and y; is a year fixed effect, which absorbs time-
varying shocks affecting all firms. In all specifications, standard errors are clustered by state.

Our empirical approach is aided by the staggered adoption of wrongful discharge laws,
which allows us to use a time-varying control group that provides a counterfactual for how
firms’ innovation would have evolved in the treated states had they not adopted such
legislation. The key coefficient of interest is B1, which gauges the causal effect of the adoption
of the good-faith exception on innovation. This coefficient captures the change in innovation
for firms in adopting (treated) states relative to the contemporaneous change in innovation
for firms in non-adopting (control) states. The causal interpretation hinges on the parallel
trends assumption that the pre-treatment trends in innovation are the same for both treated

and control groups. We provide timing tests in support of this assumption in the next section.

4.2 Impact of labor dismissal costs on process vs. non-process innovation

Table 3 reports the results of pooled (panel) OLS regressions that implement our main
difference-in-differences approach discussed in Section 4.1. In Panel A, the dependent
variables are Log(1 + Process Claims) in columns (1)-(2) and Log(1 + C-W Process Patents) in
columns (3)-(4). The adoption of the good-faith exception leads to a statistically significant
increase in the process innovation of firms in adopting states relative to that of firms in non-
adopting states both in specifications with and without control variables.'? This effect is also
economically significant: In models without control variables, process innovation increases
by 13.4% when measured by process claims and it increases by 9.1% when measured by
citations-weighted process patents. When we include the control variables the magnitudes
decrease to 8.9% and 6.1%, respectively.

In Panel B, the dependent variables are Log(1 + Non-Process Claims) in columns (1)-(2)

12 The inclusion of control variables helps alleviate the concern that differences between firms in treatment and
control states could confound our inferences given the lack of truly random assignment to these groups. However,
it is conceivable that some of these variables (in particular the firm-level controls) could be affected by the adoption
of wrongful discharge laws and bias our estimates. Hence, both specifications are useful in assessing the effect of
wrongful discharge laws on innovation.
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and Log(1 + C-W Non-Process Patents) in columns (3)-(4). Consistent with the possibility that
the introduction of new production methods might sometimes require supporting non-process
innovation (or generate it as a by product), the estimated effect of the adoption of the good
faith exception on non-process innovation is positive. However, it is statistically insignificant
in three out of the four specifications and only marginally significant in specification (3). The
effect of Good Faith on non-process innovation is much smaller in economic magnitude than
its effect on process innovation reported in Panel A.

Overall, the results in Table 3 provide support for the hypothesis that labor market
rigidities that increase the effective price of labor lead firms to tilt their innovation efforts
toward developing new production processes. Consistent with the discussion in Section 3.4
and prior evidence that the good-faith exception places the greatest rigidities on labor
markets, we find no effect of the other two exceptions on firms’ process or non-process
innovation. Hence, we include Implied Contract and Public Policy in all subsequent analyses,
but in the remainder of the paper we focus on the good-faith exception.

Next, we examine the dynamics of the differences in Process Claims and in Non-Process
Claims between treated and control firms around the adoption of the good-faith exception.
To this end, we use empirical models analogous to those in columns 2 and 4 of Table 3 but
replace Good Faith by the indicator variables Good Faith -3, Good Faith -2, Good Faith -1,
Good Faith 0, Good Faith +1, Good Faith +2, Good Faith +3, Good Faith +4, and Good Faith
5+, which are equal to one if the firm’s state of headquarters adopts the exception in the
respective years.

The results of these tests are reported in Figures 2a (process claims) and 2b (non-process
claims). Figure 2a shows that there is no statistically or economically significant difference
in the process innovation of firms in treated and control states prior to the adoption of the
good-faith exception. This evidence is consistent with the parallel-trends assumption behind
our difference-in-differences identification. The figure also suggests that the increase in the
process innovation of treated firms manifests gradually over time. It starts two years after
the adoption and ultimately leads to a statistically and economically significant persistent
difference in process innovation between treated and control firms four years after the
adoption (the coefficients of Good Faith +4 and Good Faith 5+ statistically significant at the
5% level). This pattern is consistent with a reasonable lag between the shift in the focus of
firms’ innovation efforts at the time of the adoption and the actual patenting of new processes.

Figure 2b shows that there are no differences in the non-process innovation of firms in treated
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and control states in the years before or after the adoption of the good-faith exception.

To better understand what drives the results in Figure 2a, in Figure 3 we plot the levels
of process innovation separately for treated and control firms around the adoption of the
good-faith exception. To this end, we proceed in three steps. First, we retain the variation in
Process Claims that is unexplained by firm fixed effects and year fixed effects (i.e., we adjust
1t by removing time-invariant differences across firms and time trends common to all firms).
Second, for each adoption event, we construct a dataset of treated firms (in the adopting state)
and control firms (in never adopting states) over the years -3 to +10 relative to the adoption
year for the treated state (year 0). We require that firms are in the data in both year -1 and
year 0. Third, we pool all events together in to a single dataset in event time, going from year
-3 to year +4 and then years 5+ (averaging Process Claims over the years +5 to +10). Figure
3 shows that the process innovation of firms in control states remains fairly constant over
the years -3 to 5+. This indicates that changes in the process innovation of firms in the control
group do not explain the dynamics of the differences in the process innovation between
treated and control firms illustrated in Figure 2a. The process innovation of firms in treated
states instead follows the same pattern as the one demonstrated in Figure 2a, suggesting our
results are driven by a surge in the process innovation of firms in states that adopted the

good-faith exception.

4.3 Cross-sectional heterogeneity: industry labor cost share

To further examine what drives the impact of higher labor dismissal costs on innovation,
we ask whether the effect of the adoption of the good-faith exception on innovation is related
to the importance of labor costs in the industry’s cost structure. Firms’ incentives to invent
new cost-saving production processes in response to the adoption of the good-faith exception
are arguably greater in industries for which labor costs account for a larger fraction of
production costs. If higher labor adjustment costs drive the observed increase in process
innovation documented in Table 3, the adoption of the good-faith exception should have a
larger impact on process innovation in such industries.

To investigate this issue, in Table 4 we augment our main specification to include
LaborCostShr and Good Faith X LaborCostShr, where LaborCostShr is the labor cost share
of the firm’s 3-digit SIC industry (see the Appendix for details on the construction of this
variable). To facilitate the interpretation of the estimated coefficients, LaborCostShr is

standardized to have mean zero and standard deviation of one before forming the interaction.
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In all regression models, we include the same control variables as in Table 3. We consider a
specification with firm fixed effects and year fixed effects and another one with firm fixed
effects and state fixed effects interacted with year fixed effects. In the latter, we fully control
for any unobservable time-varying state-level factors that could confound our results.

The results in columns (1)-(4) show that the adoption of the good-faith exception leads to
a larger increase in process innovation in industries for which labor costs account for a larger
share of production costs: The coefficient of Good Faith X LaborCostShr is positive and
statistically significant, both when we measure process innovation using process claims in
columns (1)-(2) or citations-weighted process patents in columns (3)-(4). The estimates imply
that, in industries whose LaborCostShr is one-standard deviation higher than the sample
mean, the increase in process innovation is 5.9 to 6.7 percentage points larger when process
innovation is measured by process claims and 5.3 to 5.9 percentage points larger when it is
measured by citations-weighted process patents. The results in columns (5)-(8) show that the
recognition of the good-faith exception has no effect on non-process innovation, regardless of
the share of labor costs in total costs in the firm’s industry: The coefficients of Good Faith
and of Good Faith X LaborCostShr are generally positive but statistically insignificant in all
four regression specifications.

Overall, the results in Table 4 provide evidence that is consistent with the view that an
increase in labor dismissal costs leads firms to increase their efforts to develop new cost-
saving process innovation as they seek to mitigate the impact of increased labor rigidity on
their operations. They also highlight the likely reason why non-process innovation is
unaffected, that is, non-process innovation does not aim to improve production methods to

reduce costs as required by the treatment.

4.4 Alternative explanations

In Table 5, we examine if our main results could be due to unobserved changes in local
economic conditions that drive both the passage of wrongful discharge laws and the increase
in process innovation. To this end, we augment our main specification in Table 3 to include
Good Faith Neighbor, which is an indicator variable equal to one if a “neighboring state”
(adjacent to the firm’s state of headquarters) has adopted the good-faith exception by year ¢
and zero otherwise, alongside with Good Faith. If economic conditions that are common to
bordering states drive the results, then we should see an increase in process innovation for

firms in states that do not adopt the legal change but share a common border with adopting
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states. However, in columns (1)-(2) we find no effect of Good Faith Neighbor on a firm’s
process innovation measured by process claims or by citations-weighted process patents,
while the coefficient of Good Faith remains positive and statistically significant. Columns (3)-
(4) further show no effect of Good Faith Neighbor on a firm’s non-process innovation.

Lerner and Seru (2017) caution that a stronger enforcement of patent rights in the period
which coincides with the early period of our sample led to a surge in patenting activity that
may have differentially affected innovation across states. Specifically, stronger patent rights
could have differentially impacted geographically-clustered fields of innovation, causing
differential trends in innovation across states that could confound our inferences. To alleviate
this concern, in Table 6 we use various approaches to control for these possible patterns in
the data.

In Panel A, we focus on process innovation, measured by process claims in columns (1)-
(3) and citations-weighted process patents in columns (4)-(6). First, in columns (1) and (4) we
add the (lagged) logarithm of the mean number of patents filed by other firms located in the
firm’s state, Log(State Patents), as an additional explanatory variable. The estimated effect
of Good Faith on process innovation is very similar to that in the baseline results. Second, in
columns (2) and (5) we repeat the analysis over the 1975-1990 period, that is, the period
before the explosive growth in patents observed post 1990, which occurred with different
intensities across states. Despite the lower statistical power associated with a smaller sample
and set of events, the coefficient of Good Faith remains statistically and economically
significant. Last, in column (3) and (6) we exclude from the sample two states, California and
Massachusetts, which showed the highest patent growth over our sample period and account
for a large share of patenting activity in the U.S. Again, the estimated coefficient of Good
Faith remains positive and significant. Panel B repeats the same analyses using the two non-
process innovation measures as the dependent variables, but the coefficient of Good Faith
remains statistically insignificant in all tests. Overall, we find that our results are robust to
the concerns outline above.

We also investigate another potential mechanism through which the adoption of the
good-faith exception in a firm’s state of headquarters could lead to an increase in the firm’s
process innovation. The adoption of this exception in the firm’s state of headquarters
increases job security not only for the firm’s production workers (the focus of our conceptual
arguments), but also for the firm’s inventors employed in that state. Increased job security of

a firm’s inventors employed at headquarters can incentivize them to exert more effort in their
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innovation activities (Acharya, Baghai, and Subramanian (2014)). If for some reason such
additional effort is largely focused in developing new processes, then the job security
mechanism could explain our baseline results in Table 3. We note, however, that this
mechanism alone cannot easily explain why the increase in process innovation is larger in
industries with a larger share of labor costs in total costs as we document in Table 4.

To shed further light on whether increased job security drives our main results, we
analyze the text of each patent grant document and extract the state of the lead inventor’s
business address. This allows us to identify patents for which the lead inventor is employed
in a state other than the firm’s state of headquarters. For such inventors, their job security
is generally unaffected by the adoption of the good-faith exception in the firm’s state of
headquarters, because their employment contracts with the firm are typically signed under
the labor laws of the state where they actually work.

Our tests reported in Table 7 are thus based on the importance of the location of a firm’s
inventors. Whether lead inventors are employed in the firm’s state of headquarters or in
other states is crucial to the job security mechanism: The effect of Good Faith on process
innovation should be weaker when the firm’s inventors are employed in other states and thus
unlikely to experience an increase in their job security. In contrast, the mechanism we
highlight is that increased employment protection in a firm’s state of headquarters (where
most of its production workers are located) incentivizes the firm to develop cost-saving
process innovation. In this view, the state in which the firm’s inventors are located is
unimportant and should be unrelated to the impact of Good Faith on process innovation.

In Panel A, we examine whether the impact of Good Faith on process innovation depends
on the location of the firm’s inventors. To this end, we augment our main specification to
include interactions of Good Faith with two indicator variables. The first is equal to one if
more than 50% of the lead inventors listed in all patents the firm applied for in a given year
are located outside the firm’s state of headquarters and zero otherwise (Majority Inventors
Outside). The second i1s equal to one if no state concentrates more than 50% of the lead
inventors listed in all patents the firm applied for in a given year and zero otherwise (Disperse
Inventors). In columns (1)-(4) the dependent variable is based on process claims and in
columns (5)-(8) it is based on citations-weighted process patents. We consider a specification
with firm fixed effects and year fixed effect and another with firm fixed effects and state fixed
effects interacted with year fixed effects. The estimated coefficients of Good Faith X Majority

Inventors Outside and Good Faith X Disperse Inventors are statistically insignificant in all
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eight specifications we consider. For completeness, Panel B reports the results of analogous
tests for non-process innovation. Again, the coefficients on both interactions are statistically

insignificant. In sum, increased inventor job security is unlikely to be the driver of our results.

4.5 Robustness tests

We now discuss the results of two additional tests that help assess the robustness of our
main results in Table 3. These results are reported in tables A1-A2 of the Online Appendix.

First, in Table A1l we examine the robustness of our results based on citations-weighted
patents (columns (3)-(4) in both panels of Table 3) to the choice of the weighting scheme. In
columns (1)-(2) and (5)-(6) we use raw (unweighted) patent counts (Process Patents and Non-
Process Patents). In columns (3)-(4) and (7)-(8) we use market value-weighted counts (V-W
Process Patents and V-W Non-Process Patents) from Kogan et. al. (2017). The results in
columns (1)-(4) continue to indicate a positive and statistically significant impact of the
adoption of the good-faith exception on process innovation. Compared to the analogous
results in Panel A of Table 3, the coefficient of Good Faith is smaller in magnitude when the
dependent variable is not weighted and similar when it is value weighted. The results on
non-process innovation in columns (5)-(8) are also consistent with those reported in Panel B
of Table 3. Once the control variables are included in the regressions, there is not statistically
significant impact of the adoption of the good-faith exception on non-process innovation.
Further, the coefficients of Good Faith are positive but smaller than for process innovation.

In Table A2, we restrict attention to firm-years with at least one process or non-process
patent and examine the impact of Good Faith on the share of process innovation in the firm’s
total (process and non-process) innovation computed in four alternative ways: using the
number of claims of each type (Process Share in Claims), the number of citations-weighted
patents of each type (Process Share in C-W Patents), the number of unweighted patents of
each type (Process Share in Patents), and the number of value-weighted patents of each type
(Process Share in V-W Patents), respectively. The regression specifications are analogous to
those in Table 3. Across all specifications, we find that the adoption of the good-faith
exception leads to a statistically significant increase in the share of process innovation. The
estimated coefficients of Good Faith in the specifications with control variables indicate that
the share of process innovation increases by 2.1 percentage points when the dependent
variable is Process Share in Claims (or 8.6% relative to the sample mean for this variable)

and by 3 percentage points when the dependent variable is Process Share in C-W Patents (or
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15.1% relative to the sample mean for this variable). The results based on Process Share in
Patents and Process Share in V-W Patents are very similar: The share of process innovation

increases by 15.7% and 15.8% relative to the sample mean of these variables, respectively.

5. Innovation ability, adjustment of production methods, and firm performance

The discussion in Section 2 highlights the importance of a firm’s ex-ante innovation
ability in the adjustment of its production techniques to changing conditions in input markets
and thus as a source of value. We thus examine whether firms with greater ex-ante
innovation ability exhibit greater adjustments of their production methods and input mix in
response to increased labor dismissal costs and how such ability ultimately affects firms’
performance.

Following Bloom and Van Reenen (2002), our measure of ex-ante innovation ability is
a firm’s stock of patents (also referred to as “stock of knowledge” in the economics literature).
Although firms do not necessarily patent all their inventions, this measure is arguably a good
proxy for a firm’s innovation ability in general. In Table 8, we examine how a firm’s ex-ante
innovation ability affects the response of its innovation to an increase in labor adjustment
costs. To this end, we augment our regressions of process and non-process innovation on Good
Faith to include an interaction of Good Faith with the firm’s lagged stock of patents Log(1 +
Patent Stock), which is standardized to a mean of zero and standard deviation of one.l? The
coefficient of Good Faith X Log(1 + Patent Stock) thus allows for a direct comparison of the
effect for the top patenting firms (firms with Log(1 + Patent Stock) one-standard deviation
above the mean) and for the scarcely patenting firms (firms with Log(1 + Patent Stock) one-
standard deviation below the mean) to the effect for the average firm. We also include all the
control variables used in our main specification in Table 3. We consider a specification with
firm fixed effects and year fixed effects and another with firm fixed effects and state fixed
effects interacted with year fixed effects. Columns (1)-(4) report the results for the two
measures of process innovation and columns (5)-(8) report those for the two measures of non-
process innovation.

The estimated coefficient of Good Faith X Log(l + Patent Stock) is positive and

statistically significant in columns (1)-(4). These results imply that, relative to a firm with

13 The Patent Stock corresponding to a Log(1 + Patent Stock) at the sample mean, one-standard deviation above
the mean, and one-standard deviation below the mean are 4.5, 26.4, and 0.11 patents, respectively.
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the stock of patents at the sample mean, for firms with a one-standard deviation above the
sample mean stock of patents, the adoption of the good-faith exception leads to an increase
in process innovation that is 8.1% to 9.8% higher when measured with process claims and
15.1% to 15.5% when measured with citations-weighted process patents. The estimated
coefficient of Good Faith X Log(l + Patent Stock) is statistically insignificant in all
specifications that use non-process innovation as the dependent variables (columns (5)-(8)).
These results suggest that high innovation ability firms choose to develop new processes to
facilitate the introduction of new production methods when labor adjustment costs increase.

In Table 9, we examine how a firm’s ex-ante innovation ability allows firms to adjust
their employment and capital intensity in response to the adoption of the good-faith
exception. We consider four alternative dependent variables: the annual percentage change
in employment, Employment Growth, in columns (1)-(2); the level of employment,
Log(Employment), in columns (3)-(4); the capital-labor ratio, Log(K/L), in columns (5)-(6);
and capital expenditures per employee, Log(Capex/Emp), in columns (7)-(8). As in Table 8,
we include Good Faith and Good Faith X Log(l + Patent Stock) and all control variables in
the regressions, and we consider specifications with firm fixed effects and year fixed effects
and also with firm fixed effects and state fixed effects interacted with year fixed effects.

The coefficient of Good Faith is negative when the dependent variables are employment
growth and employment level, and positive when the dependent variables are the capital-
labor ratio and capital expenditures per employee. This suggests that the typical firm, that
is, the firm with Log(l + Patent Stock) at the sample mean, reduces employment and
substitutes capital for labor, but the coefficients are statistically insignificant. Importantly,
the coefficients of Good Faith X Log(1 + Patent Stock) are statistically significant for all
dependent variables, indicating that firms with high innovation ability exhibit more
pronounced adjustments of their input mix following the adoption of the good faith exception.
Specifically, the firm with a one-standard deviation above the sample mean stock of patents
experiences a one percentage point larger decrease in employment growth, a 6.7%-7.9%
larger decrease in employment, a 6.7%-7.4% larger increase in the capital-labor ratio, and a
9.1%-10.1% larger increase in the capital expenditures per employee, relative to the firm with
stock of patents at the sample mean.

In Table 10, we ask if the impact of the adoption of the good-faith exception on a firm’s
labor productivity, operating performance, and equity value depends on its ex-ante ability to

innovate. The dependent variables are labor productivity measured by sales per employee,
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Log(Sales/Emp), operating performance measured by operating income before depreciation
scaled by assets, Profit, and shareholder value measured by the market-to-book equity ratio,
Log(ME/BE). The key explanatory variables of interest are Good Faith and Good Faith X
Log(1 + Patent Stock). We include all control variables in the regressions, and we consider
specifications with firm fixed effects and year fixed effects and those with firm fixed effects
and state fixed effects interacted with year fixed effects.

In columns (1)-(2), the dependent variable is Log(Sales/Emp). Consistent with the
typical firm (with Log(1 + Patent Stock) at the sample mean) taking measures to boost labor
productivity, we find a positive but small and statistically insignificant coefficient of Good
Faith. Importantly, the coefficient of Good Faith X Log(1 + Patent Stock) is positive and
statistically significant in both specifications. A firm with innovation ability one-standard
deviation above the sample mean increases its labor productivity by 5.9%-6.9% after the
adoption of the good-faith exception, relative to a firm with innovation ability at the sample
mean.'* This evidence is consistent with that in Dinlersoz and Wolf (2018), who use the
Census Bureau's Survey of Manufacturing Technology to report that more automated
establishments are less production labor intensive and exhibit greater productivity of labor.

In columns (3)-(4), the dependent variable is Profit. The coefficient of Good Faith in
column (3) is negative but small and statistically insignificant. Thus, the increase in labor
rigidity has little impact on the profitability of a firm with innovation ability at the sample
mean. The key result is that the coefficient of Good Faith X Log(1 + Patent Stock) is positive
and statistically significant in both specifications. Hence, firms with greater ex-ante
innovation ability exhibit better operating performance when labor dismissal costs increase.
The estimates in column (3) imply that the adoption of the good faith exception leads to a 0.6
percentage-point increase in the profitability of firms with innovation ability one-standard
deviation above the sample mean, relative to a firm with innovation ability at the mean.

Last, in columns (5)-(6), we use Log(ME/BE) as the dependent variable to examine how
a firm’s ex-ante innovation ability ultimately shields shareholder value when labor dismissal
costs increase. The coefficient of Good Faith reported column (5) suggests a negative effect of

increased labor rigidity on the equity value of a firm with innovation ability at the sample

14 Besides lower employment, labor productivity can also increase for other reasons, e.g., if the adoption of new
production methods leads firms to substitute unskilled for skilled labor (Autor and Katz (1999), Autor, Levy, and
Murnane (2003), Autor and Dorn (2013)), if higher firing costs lead firms to more carefully select new hires and
ultimately increase the quality of its workforce, or because of an increase in the physical capital per worker.
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mean, but it is statistically insignificant. Importantly, in both specifications the coefficients
of Good Faith x Log(1 + Patent Stock) are positive and statistically significant. The estimates
in column (5) imply that a firm with innovation ability one-standard deviation above the
sample mean experiences a 4.5% increase in its equity value after the adoption of the good-
faith exception, relative to a firm with innovation ability at the sample mean.

In sum, the results in Table 10 suggest that, through the process innovation mechanism
we describe, high innovation ability firms are better able to adjust their production
techniques, boost the productivity of their labor, and thereby maintain their performance,
ultimately avoiding economically significant value losses when increased labor rigidity hurts
their business. More generally, our evidence highlights that innovation ability is a key
determinant of a firm’s success in adjusting to changing conditions in input markets and,

ultimately, a key driver of firm value.

6. Conclusions

Our evidence highlights that increases in labor rigidity steer firms’ innovation
activities toward process innovation that facilitates the required adjustment of production
methods — a substitution of capital for labor — and thereby mitigates the negative effects of
such rigidity on firm value. More broadly, our findings suggest that high innovation ability
allows firms to more easily adjust their strategies when business conditions change and that,
through this mechanism, innovation ability is a key driver of firms’ performance.

From a public policy point of view, we highlight the unintended (or at least not fully
understood) consequences of labor regulation that aims to benefit employees. Labor laws that
increase employment protection or otherwise make labor costlier ultimately lead firms to
take actions to mitigate the impact of these laws on their performance. This can negate some
of the benefits of employment protection sought by the regulation. Autor (2003) documents
an increase in outsourcing. We highlight another mechanism, namely, a change in corporate
R&D policy towards introducing production methods that are less reliant on labor inputs.

Our study also stresses the importance of distinguishing different types of innovation.
Prior studies examine the impact of regulatory changes on overall innovation, but such
changes do not have to affect all types of innovation in the same way. The new measures of
process innovation we develop in this paper can thus aid future research that seeks to

understand the determinants of innovation.
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Appendix: Variable Definitions

Process and non-process innovation measures

Process Claims

Non-Process Claims

C-W Process Patents

C-W Non-Process Patents

The number of process claims contained in all patents filed (and ultimately awarded)
by the firm in each year.

The number of non-process claims contained in all patents filed (and ultimately
awarded) by the firm in each year.

The citations-weighted number of process patents filed (and ultimately awarded) by
the firm in each year. Citations received are counted, for each patent, over the period
that ends 3 years after the patent award year. Process patents are patents that
contain only process claims.

The citations-weighted number of non-process patents filed (and ultimately awarded)
by the firm in each year. Citations received are counted, for each patent, over the
period that ends 3 years after the patent award year. Non-Process patents are
patents that contain only non-process claims.

Wrongful Discharge Laws indicators (from Autor, Donohue, and Schwab (2006)):

Good Faith

Implied Contract

Public Policy

Indicator variable equal to one if the firm’s state of headquarters has adopted the
Good Faith exception to the “firing at will” doctrine by year ¢, and zero otherwise.

Indicator variable equal to one if the firm’s state of headquarters has adopted the
Implied Contract exception to the “firing at will” doctrine by year ¢, and zero
otherwise.

Indicator variable equal to one if the firm’s state of headquarters has adopted the
Public Policy exception to the “firing at will” doctrine by year ¢, and zero otherwise.

Additional Good Faith variables

Good Faith -3

Good Faith -2

Good Faith -1

Good Faith 0

Good Faith +1

Good Faith +2

Good Faith +3

Indicator variable equal to one if the firm’s state of headquarters will adopt the Good
Faith exception in three years, and zero otherwise.

Indicator variable equal to one if the firm’s state of headquarters will adopt the Good
Faith exception in two years, and zero otherwise.

Indicator variable equal to one if the firm’s state of headquarters will adopt the Good
Faith exception in the following year, and zero otherwise.

Indicator variable equal to one if the firm’s state of headquarters adopted the Good
Faith exception in the current year, and zero otherwise.

Indicator variable equal to one if the firm’s state of headquarters adopted the Good
Faith exception the year before, and zero otherwise.

Indicator variable equal to one if the firm’s state of headquarters adopted the Good
Faith exception two years before, and zero otherwise.

Indicator variable equal to one if the firm’s state of headquarters adopted the Good
Faith exception three years before, and zero otherwise.
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Good Faith +4

Good Faith 5+

Good Faith Neighbor

Indicator variable equal to one if the firm’s state of headquarters adopted the Good
Faith exception four years before, and zero otherwise.

Indicator variable equal to one if the firm’s state of headquarters adopted the Good
Faith exception five or more years before, and zero otherwise.

Indicator variable equal to one if a “neighboring state”, that is, a state adjacent to
the firm’s state of headquarters, has adopted the Good Faith exception by year t, and
zero otherwise.

Employment and capital intensity variables

Employment Growth
Log(Employment)
Log(K/L)

Log(Capex/Emp)

Annual growth rate of a firm’s employment (emp).
Logarithm of a firm’s employment level (emp).

Logarithm of a firm’s capital-labor ratio defined as property, plant, and equipment
(ppent) divided by employment (emp).

Logarithm of a firm’s capital expenditures per employee defined as capital
expenditures (capex) divided the employment (emp).

Labor productivity, profitability, and shareholder value measures

Log(Sales/Emp)

Profit

Log(ME/BE)

Control variables

Patent Stock

R&D Stock

Log(Sales)

Log(M/B)

State GDP Growth

State Political Balance

Other variables

LaborCostShr

Logarithm of sales (sale) dividend by the number of employees (emp).

Operating income before depreciation (oibdp) divided by assets (at); winsorized at
the top/bottom 5% of the annual distribution.

Natural logarithm of the market value of equity (prce_f X csho) divided by the book
value of equity (at - If).

A firm’s patent stock computed by adding its patents since 1872 and assuming an
annual depreciation rate of 15%.

A firm’s R&D stock computed by adding its R&D spending (xrd) since 1950 and
assuming an annual depreciation rate of 15%.

The logarithm of a firm’s sales (sale).

The logarithm of a firm’s market value of assets (the sum of the market value of
equity, csho X prec_f, the book value of long term debt, dltt, and the book value of
debt in current liabilities, dlc) scaled by the book value of assets (at).

Annual growth rate of state GDP in current dollars (Source: U.S. Bureau of
Economic Analysis).

Fraction of a state’s congress members in the U.S. House of Representatives that
belong to the Democratic Party (Source: History, Art & Archives, U.S. House of
Representatives).

The average labor cost share in the firm’s 3-digit SIC industry. For each firm, dollar
labor costs are computed as the Compustat number of employee’s (emp) times the
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Log(State Patents)

Majority Inventors Outside

Disperse Inventors

average wage rate in the firm’s industry obtained from the Quarterly Census of
Employment and Wages provided by the U.S. Bureau of Labor Statistics. Next, the
dollar labor costs are divided by the firm’s cost of goods sold (cogs). Last, firm cost
shares are averaged across all firm-years in each 3-digt SIC industry.

The logarithm of the mean number of patents filed (and ultimately awarded) in each
year by firms headquartered in the same state as the firm. Patents filed by the firm
itself are excluded from the calculation of the mean.

Indicator variable equal to one if more than 50% of the lead inventors listed in all
patents the firm applied for in a given year are located outside the firm’s state of

headquarters, and zero otherwise. The lead inventor is the first inventor listed on
the patent grant document.

Indicator variable equal to one if no U.S. state concentrates more than 50% of the
lead inventors listed in all patents the firm applied for in a given year, and zero
otherwise. The lead inventor is the first inventor listed on the patent grant
document.
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Figure 1: The figure reports the average number of total (process and non-process) claims (left axis) and the
average share of process claims in total claims (right axis) for firms in our sample over the period 1975-1997.
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Figure 2: The figures report the differences in Process Claims (Figure 2a) and in Non-Process Claims (Figure 2b)
between treated and control firms around the adoption of the Good Faith exception (year 0). The differences are
estimated using empirical models analogous to those in columns 2 and 4 of Table 3, but replacing Good Faith by
Good Faith -3, Good Faith -2, Good Faith -1, Good Faith 0, Good Faith +1, Good Faith +2, Good Faith +3, Good
Faith +4, and Good Faith 5+ (see the Appendix for definitions). The dots indicate the estimated coefficients of
these indicators and the dashes above / below indicate the upper and lower bounds of the 95% confidence intervals.
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Figure 3: The figure reports the values of Process Claims for treated and control firms around the adoption of
the Good Faith exception. The data is constructed in three steps. First, using the sample in our main tests, we
retain the variation in Process Claims that is unexplained by firm fixed effects and year fixed effects (i.e., we
adjust the original variable by removing time-invariant differences across firms and time trends common to all
firms). Second, for each adoption event, starting from our main sample, we construct a panel dataset of treated
firms (in the adopting state) and control firms (in never adopting states) over the time frame -3 to +10 years
relative to the adoption year for the treated state (year 0). We require that firms are in the data in both year -1
and year 0. Third, we pool all events together in to a single dataset in event time, going from year -3 to year +4
and then years 5+ (averaging Process Claims over the years +5 to +10).
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Table 1: Summary Statistics

The sample spans the period 1975-1997. It includes all non-financial and non-utility firms headquartered in the U.S.
that filed at least one patent with the USPTO during this period and for which we can compute the key variables. All
variables are defined in the Appendix.

Mean  Sd. Dev. Pctile 10 Median Pctile 90

Process and non-process innovation measures

Log(1 + Process Claims) 1.133 1.825 0.000 0.000 4.025

Log(1 + Non-Process Claims) 1.872 2.195 0.000 0.000 5.017

Log(1 + C-W Process Patents) 0.507 1.214 0.000 0.000 2.303

Log(1 + C-W Non-Process Patents) 1.126 1.658 0.000 0.000 3.664
Wrongful Discharge Laws indicators

Good Faith 0.238 0.426 0.000 0.000 1.000

Implied Contract 0.638 0.480 0.000 1.000 1.000

Public Policy 0.654 0.476 0.000 1.000 1.000

Employment and capital intensity variables

Employment growth 0.037 0.254 -0.189 0.023 0.288
Log(Employment) 0.283 2.054 -2.375 0.262 3.046
Log(K/L) 2.988 1.086 1.725 2.911 4.359
Log(Capex/Emp) 1.424 1.197 0.000 1.383 2.917

Labor productivity, profitability, and shareholder value measures

Log(Sales/Emp) 4.543 0.793 3.665 4.536 5.461
Profit 0.108 0.141 -0.053 0.136 0.249
Log(ME/BE) 0.494 0.857 -0.497 0.423 1.553

Control variables

Log(1 + Patent Stock) 1.708 1.609 0.000 1.314 3.984
Log(1 + R&D Stock) 1.830 1.928 0.000 1.302 4.623
Log(Sales) 4.691 2.264 1.930 4.687 7.617
Log(M/B) 0.116 0.715 -0.630 -0.018 1.085
State GDP Growth 0.077 0.036 0.035 0.075 0.124
State Political Balance 0.602 0.164 0.435 0.600 0.833

36



Table 2: Process Innovation Across Industries

Panel A reports the shares of two-digit SIC industries in all patented process innovation (measured by process claims)
over the period 1975-97 as well for the subperiods 1975-80, 1981-85, 1986-90, and 1991-97. Industries are ranked by
their shares over the period 1975-97 in descending order, with the top 10 industries reported in detail and the rest
combined into the category “All other industries”. Panel B reports the shares of process innovation in total patented
innovation (measured by process and non-process claims) for the same two-digit SIC industries identified in Panel A,
also over the period 1975-97 as well for the subperiods 1975-80, 1981-85, 1986-90, and 1991-97.

Panel A: Distribution of Process Innovation Across Industries

SIC2 Industry description 1975-97 1975-80 1981-85 1986-90 1991-97
28  Chemicals & allied products 23.5% 29.2% 28.2% 27.8% 18.8%
36  Electronic & electrical equipment 17.8% 9.9% 12.5% 13.9% 23.1%
35  Machinery & computer equipment 15.1% 6.8% 7.8% 11.4% 21.1%
29  Petroleum refining 9.8% 17.3% 17.9% 11.1% 4.7%
38  Instruments etc. 9.2% 6.5% 6.2% 9.8% 10.8%
37  Transportation equipment 6.5% 6.4% 6.9% 8.8% 5.7%
48  Communications 3.4% 3.7% 4.1% 4.4% 2.8%
26  Paper & allied products 2.6% 1.9% 2.0% 3.1% 2.7%
73 Business services 1.7% 0.2% 0.2% 0.4% 3.0%
33  Primary metal industries 1.6% 3.2% 2.0% 2.2% 0.8%

All other industries 8.8% 15.0% 12.2% 7.3% 6.5%

Panel B: Share of Process Innovation in Total Innovation for Selected Industries

SIC2 Industry description 1975-97 1975-80 1981-85 1986-90 1991-97
28  Chemicals & allied products 38.9% 35.1% 39.6% 40.1% 40.0%
36  Electronic & electrical equipment 28.2% 17.2% 20.8% 23.9% 34.5%
35  Machinery & computer equipment 27.3% 13.7% 19.9% 24.2% 32.5%
29  Petroleum refining 59.4% 58.5% 61.7% 56.6% 60.5%
38  Instruments etc. 25.9% 19.4% 20.5% 25.5% 29.1%
37  Transportation equipment 21.8% 17.7% 21.0% 21.8% 24.1%
48  Communications 29.1% 19.7% 24.1% 28.2% 41.5%
26  Paper & allied products 25.1% 21.7% 21.5% 23.6% 27.8%
73 Business services 41.6% 10.4% 15.3% 29.8% 46.3%
33  Primary metal industries 45.8% 49.8% 43.6% 49.4% 40.2%

All other industries 30.1% 31.3% 32.1% 27.3% 29.5%

37



Table 3: Wrongful Discharge Laws and Process vs. Non-Process Innovation

The table reports the results of OLS regressions of process innovation and non-process innovation on Good Faith,
the other Wrongful Discharge Laws indicators (Implied Contract and Public Policy), lagged controls variables
(Log(1+ Patent Stock), Log(1+R&D Stock), Log(Sales), Log(M/B), State GDP Growth, and Political Balance), as
well as firm fixed effects and year fixed effects. In Panel A, the dependent variables are Log(1+Process Claims)
and Log(I1+C-W Process Patents). In Panel B, the dependent variables are Log(1+Non-Process Claims) and
Log(1+C-W Non-Process Patents). All other variables are defined in the Appendix. The standard errors are
adjusted for heteroscedasticity and clustering at the state level (t-statistics in parentheses). *, **, and *** denote

significance at the 10%, 5%, and 1% levels, respectively.

Panel A: Impact of Good Faith on process innovation

Process Claims

C-W Process Patents

ey) (2 3 4)
Good Faith 0.134%*** 0.089*** 0.091*** 0.061**
(4.456) (2.959) (3.062) (2.119)
Implied Contract 0.002 -0.022 0.002 -0.016
(0.030) (-0.561) (0.054) (-0.626)
Public Policy -0.022 -0.002 -0.030 -0.018
(-0.509) (-0.062) (-0.939) (-0.811)
Log(1 + Patent Stock) 0.422%** 0.281***
(14.699) (7.876)
Log(1 + R&D Stock) 0.178%** 0.114%**
(6.090) (5.849)
Log(Sales) 0.105*** 0.037***
(6.785) (2.930)
Log(M/B) 0.074%*** 0.045%**
(4.454) (4.750)
State GDP Growth -0.347 -0.387
(-1.026) (-1.461)
State Political Balance -0.112 -0.042
(-1.353) (-0.690)
Firm Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Observations 44,898 44,898 44,898 44,898
Adjusted R2 0.706 0.728 0.713 0.733
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Panel B: Impact of Good Faith on non-process innovation

Non-Process Claims

C-W Non-Process Patents

ey) 2 3 4)
Good Faith 0.070 0.027 0.054* 0.021
(1.488) (0.567) (1.758) (0.789)
Implied Contract 0.007 -0.012 -0.003 -0.018
(0.135) (-0.256) (-0.073) (-0.586)
Public Policy -0.002 0.019 -0.005 0.010
(-0.039) (0.478) (-0.130) (0.284)
Log(1 + Patent Stock) 0.416%** 0.336***
(11.246) (11.644)
Log(1 + R&D Stock) 0.142%** 0.106***
(4.086) (4.506)
Log(Sales) 0.189*** 0.120%**
(9.653) (8.271)
Log(M/B) 0.107*** 0.094***
(5.274) (6.080)
State GDP Growth -0.407 -0.175
(-0.921) (-0.594)
State Political Balance -0.067 -0.022
(-0.917) (-0.351)
Firm Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Observations 44,898 44,898 44,898 44,898
Adjusted R2 0.677 0.694 0.715 0.733
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Table 4: Cross-Sectional Variation in the Effect of Good Faith on Innovation — The Role of the Industry Labor Cost Share

The table reports the results of OLS regressions of process and non-process innovation on Good Faith that further interact Good Faith with the average labor
cost share in the firm’s 3-digit SIC industry, LaborCostShr (standardized to a mean of zero and standard deviation of one). The dependent variables are
Log(1+Process Claims) in columns (1)-(2), Log(1+C-W Process Patents) in columns (3)-(4), Log(1+Non-Process Claims) in columns (5)-(6), and Log(1+C-W Non-
Process Patents) in columns (7)-(8). All regressions include Implied Contract and Public Policy and the lagged controls variables (Log(1+Patent Stock),
Log(1+R&D Stock), Log(Sales), Log(M/B), State GDP Growth, and Political Balance). All variables are defined in the Appendix. Specifications (1), (3), (5), and
(7) include firm fixed effects and year fixed effects. Specifications (2), (4), (6), and (8) include firm fixed effects and state fixed effects interacted with year fixed
effects. The standard errors are adjusted for heteroscedasticity and clustering at the state level (t-statistics in parentheses). *, **, and *** denote significance

at the 10%, 5%, and 1% levels, respectively.

Process Innovation

Process Claims

C-W Process Patents

Non-Process Innovation

Non-Process Claims C-W Non-Process Patents

ey) (2 3 4) (5) (6) ) )]

Good Faith 0.095%*** 0.066** 0.030 0.022

(2.829) (2.116) (0.641) (0.823)
Good Faith x LaborCostShr 0.059*  0.067** 0.053* 0.059** 0.013 0.017 -0.001 0.001

(1.777) (2.056) (1.962) (2.328) (0.328) (0.385) (-0.036) (0.028)
LaborCostShr 0.047 0.048 0.019 0.025 0.107***  0.109*** 0.071%** 0.078***

(1.372) (1.280) (0.820) (1.007) (3.383) (3.797) (2.725) (3.113)
Other WDLs & Controls Yes Yes Yes Yes Yes Yes Yes Yes
Firm Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Year Fixed Effects Yes No Yes No Yes No Yes No
State x Year Fixed Effects No Yes No Yes No Yes No Yes
Observations 44,860 44,765 44,860 44,765 44,860 44,765 44,860 44,765
Adjusted R2 0.728 0.729 0.733 0.733 0.694 0.695 0.733 0.733
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Table 5: Adoption of the Good Faith Exemption in Neighboring States

The table reports the results of OLS regressions of process and non-process innovation on Good Faith and an indicator variable Good
Faith Neighbor for whether a “neighboring state” (a state adjacent to the firm’s state of headquarters) has adopted the Good Faith
exception by year ¢t and zero otherwise. The dependent variables are Log(1+Process Claims) in column (1), Log(1+C-W Process Patents)
in column (2), Log(1+Non-Process Claims) in column (3), and Log(1+C-W Non-Process Patents) in column (4). All regressions include
Implied Contract and Public Policy, the lagged controls variables (Log(1+Patent Stock), Log(1+R&D Stock), Log(Sales), Log(M/B), State
GDP Growth, and Political Balance), as well as firm-fixed effects and year fixed effects. All variables are defined in the Appendix. The
standard errors are adjusted for heteroscedasticity and clustering at the state level (t-statistics in parentheses). *, **, and *** denote
significance at the 10%, 5%, and 1% levels, respectively.

Process Innovation Non-Process Innovation
Process Claims  C-W Process Patents Non-Process Claims C-W Non-Process Patents
1) (2) (3) (4)
Good Faith 0.086*** 0.063** 0.022 0.016
(2.999) (2.208) (0.465) (0.628)
Good Faith Neighbor -0.021 0.013 -0.039 -0.040
(-0.555) (0.729) (-0.946) (-1.475)
Other WDLs & Controls Yes Yes Yes Yes
Firm Fixed Effects Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
Observations 44,898 44,898 44,898 44,898
Adjusted R2 0.728 0.733 0.694 0.733
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Table 6: Controlling for Time Trends in Innovation

The table reports the results of OLS regressions of process innovation and non-process innovation on Good Faith, the other
Wrongful Discharge Laws indicators (Implied Contract and Public Policy), lagged controls variables (Log(1+Patent Stock),
Log(1+R&D Stock), Log(Sales), Log(M/B), State GDP Growth, and Political Balance), as well as firm fixed effects and year
fixed effects. In Panel A, the dependent variables are Log(1+Process Claims) in columns (1)-(3) and Log(1+C-W Process
Patents) in columns (4)-(6). In Panel B, the dependent variables are Log(1+Non-Process Claims) in columns (1)-(3) and
Log(1+C-W Non-Process Patents) in columns (4)-(6). For both panels, columns (1) and (4) include Log(State Patents), defined
as the logarithm of the mean number of patents filed by firms headquartered in the firm’s state in each year (the patents
filed by the firm itself are excluded in the calculation of this mean), as an additional control variable. For both panels,
columns (2) and (4) estimate the benchmark specification restricting the sample to the period 1975-1990, and columns (3)
and (6) estimate the benchmark specification excluding the states of California and Massachusetts from the sample. All
variables are defined in the Appendix. The standard errors are adjusted for heteroscedasticity and clustering at the state
level (t-statistics in parentheses). *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.

Panel A: Effect of Good Faith on process innovation

Process Claims C-W Process Patents
ey) (2 3 4) 6)) (6)

Good Faith 0.080***  (0.081*** 0.122%** 0.056**  0.052* 0.068**

(2.726) (2.704) (4.920) (2.142) (1.964) (2.056)
Log(State Patents) 0.091** 0.050

(2.309) (1.620)
Sample Full 1975-90 Excl. CA & MA Full 1975-90  Excl. CA & MA
Other WDLs & Controls Yes Yes Yes Yes Yes Yes
Firm Fixed Effects Yes Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes Yes Yes
Observations 44,898 29,328 35,326 44,898 29,328 35,326
Adjusted R2 0.728 0.756 0.740 0.733 0.786 0.761

Panel B: Effect of Good Faith on non-process innovation

Non-Process Claims C-W Non-Process Patents
Y] (2 3 4) (5) (6)

Good Faith 0.015 -0.009 0.030 0.013 -0.008 -0.004

(0.299) (-0.184) (0.551) (0.514)  (-0.342) (-0.109)
Log(State Patents) 0.118** 0.077*

(2.018) (2.008)
Sample Full 1975-90 Excl. CA & MA Full 1975-90  Excl. CA & MA
Other WDLs & Controls Yes Yes Yes Yes Yes Yes
Firm Fixed Effects Yes Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes Yes Yes
Observations 44,898 29,328 35,326 44,898 29,328 35,326
Adjusted R2 0.694 0.718 0.702 0.733 0.766 0.745
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Table 7: Effect of Good Faith on Process vs. Non-Process Innovation — Lead Inventor’s State of Location

The table reports the results of OLS regressions of process and non-process innovation on Good Faith that further interact Good Faith with two variables that capture
the location of inventors relative to the location of the firm. The first is an indicator variable equal to one if more than 50% of the lead inventors listed in all patents
the firm applied for in a given year are located outside the firm’s state of headquarters and zero otherwise (Majority Inventors Outside). The second is an indicator
variable equal to one if no state concentrates more than 50% of the lead inventors listed in all patents the firm applied for in a given year and zero otherwise (Disperse
Inventors). In Panel A, the dependent variables are Log(I+Process Claims) in columns (1)-(4) and Log(1+C-W Process Patents) in columns (5)-(8). In Panel B, the
dependent variables are Log(1+Non-Process Claims) in columns (1)-(4) and Log(1+C-W Non-Process Patents) in columns (5)-(8). All regressions include Implied
Contract and Public Policy and the lagged controls variables (Log(1+Patent Stock), Log(1+R&D Stock), Log(Sales), Log(M/B), State GDP Growth, and Political
Balance). All variables are defined in the Appendix. Specifications (1), (3), (5), and (7) include firm fixed effects and year fixed effects. Specifications (2), (4), (6), and
(8) include firm fixed effects and state fixed effects interacted with year fixed effects. The standard errors are adjusted for heteroscedasticity and clustering at the
state level (t-statistics in parentheses). *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.

Panel A: Regressions of process innovation on Good Faith interacted with Majority Inventors Outside and Disperse Inventors

Process Claims C-W Process Patents
1) (2) (3) (4) (5) (6) (7) (8)
Good Faith 0.084*** 0.073** 0.055* 0.053*
(2.896) (2.339) (1.891) (1.966)
Good Faith x Majority Inventors Outside 0.047 0.030 0.084 0.073
(0.501) (0.345) (0.989) (0.826)
Majority Inventors Outside 0.664*** 0.667*** 0.288*** 0.280***
(12.269) (12.174) (5.218) (4.963)
Good Faith x Disperse Inventors 0.146 0.135 0.078 0.071
(1.605) (1.544) (0.827) (0.755)
Disperse Inventors 0.435*** 0.435*** 0.075%**  (0.073***
(12.947) (13.028) (3.319) (3.241)
Other WDLs & Controls Yes Yes Yes Yes Yes Yes Yes Yes
Firm Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Year Fixed Effects Yes No Yes No Yes No Yes No
State x Year Fixed Effects No Yes No Yes No Yes No Yes
Observations 44,898 44,803 44,898 44,803 44,898 44,803 44,898 44,803
Adjusted R2 0.732 0.733 0.731 0.732 0.735 0.735 0.733 0.734
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Panel B: Regressions of non-process innovation on Good Faith interacted with Majority Inventors Outside and Disperse Inventors

Non-Process Claims

C-W Non-Process Patents

1) (2) (3) (4) (5) (6) (7) (8)
Good Faith 0.027 0.025 0.020 0.018
(0.525) (0.456) (0.728) (0.619)
Good Faith x Majority Inventors Outside -0.026 -0.026 -0.003 -0.000
(-0.286) (-0.319) (-0.037) (-0.005)
Majority Inventors Outside 0.901*** 0.898*** 0.658*** 0.649***
(18.721) (18.568) (15.370) (15.321)
Good Faith x Disperse Inventors 0.012 -0.004 0.020 0.008
(0.181) (-0.066) (0.256) (0.107)
Disperse Inventors 0.890*** 0.894*** 0.515%** 0.518***
(23.760) (23.904) (15.690) (16.183)
Other WDLs & Controls Yes Yes Yes Yes Yes Yes Yes Yes
Firm Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Year Fixed Effects Yes No Yes No Yes No Yes No
State x Year Fixed Effects No Yes No Yes No Yes No Yes
Observations 44,898 44,803 44,898 44,803 44,898 44,803 44,898 44,803
Adjusted R2 0.699 0.700 0.702 0.703 0.737 0.738 0.737 0.738
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Table 8: Innovation Ability and the Effect of Good Faith on Process vs. Non-Process Innovation

The table reports OLS regressions of process and non-process innovation on Good Faith, including an interaction of Good Faith with the firm’s lagged stock of patents,
Log(1+Patent Stock) (standardized to a mean of zero and standard deviation of one). The dependent variables are Log(1+Process Claims) in columns (1)-(2), Log(1+C-
W Process Patents) in columns (3)-(4), Log(1+Non-Process Claims) in columns (5)-(6), and Log(1+C-W Non-Process Patents) in columns (7)-(8). All regressions include
Implied Contract and Public Policy and the lagged controls variables (Log(1+ Patent Stock), Log(1+R&D Stock), Log(Sales), Log(M/B), State GDP Growth, and Political
Balance). All variables are defined in the Appendix. Specifications (1), (3), (5), and (7) include firm fixed effects and year fixed effects. Specifications (2), (4), (6), and (8)
include firm fixed effects and state fixed effects interacted with year fixed effects. The standard errors are adjusted for heteroscedasticity and clustering at the state
level (t-statistics in parentheses). *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.

Process Innovation Non-Process Innovation
Process Claims C-W Process Patents Non-Process Claims C-W Non-Process Patents
1) (2) (3) (4) (5) (6) (7) (8)
Good Faith 0.065** 0.024 0.028 0.012
(2.348) (0.983) (0.473) (0.447)
Good Faith x Log(1 + Patent Stock) 0.098* 0.081* 0.155%* 0.151** -0.002 -0.023 0.038 0.029
(1.931) (1.808) (2.519) (2.522) (-0.034) (-0.422) (0.759) (0.659)
Log(1 + Patent Stock) 0.649%**  (0.647*** 0.405%** 0.408*** 0.668%**  (0.661*** 0.528*** 0.524***
(16.750)  (15.971) (12.380) (12.419) (12.522) (11.304) (14.027) (12.609)
Other WDLs & Controls Yes Yes Yes Yes Yes Yes Yes Yes
Firm Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Year Fixed Effects Yes No Yes No Yes No Yes No
State x Year Fixed Effects No Yes No Yes No Yes No Yes
Observations 44,898 44,803 44,898 44,803 44,898 44,803 44,898 44,803
Adjusted R2 0.728 0.729 0.734 0.734 0.694 0.695 0.733 0.733
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Table 9: Innovation Ability and the Effect of Good Faith on Employment and Capital Intensity

The table reports OLS regressions of firm employment and capital intensity on Good Faith, including an interaction of Good Faith with the firm’s lagged stock of patents,
Log(1+Patent Stock) (standardized to a mean of zero and standard deviation of one). The regressions also include the other Wrongful Discharge Laws indicators (Implied
Contract and Public Policy) and lagged control variables. The dependent variables are a firm’s annual employment growth rate (Employment Growth) in columns (1)-(2), the
logarithm of a firm’s employment level (Log(Employment)) in columns (3)-(4), the logarithm of a firm’s capital-labor ratio defined as property, plant, and equipment divided by
employment (Log(K/L)) in columns (5)-(6), and the logarithm of a firm’s capital expenditures per employee (Log(Capex/Emp)) in columns (7)-(8). All other variables are defined
in the Appendix. Specifications (1), (3), (5), and (7) include firm fixed effects and year fixed effects. Specifications (2), (4), (6), and (8) include firm fixed effects and state fixed
effects interacted with year fixed effects. The standard errors are adjusted for heteroscedasticity and clustering at the state level (t-statistics in parentheses). *, ** and ***
denote significance at the 10%, 5%, and 1% levels, respectively.

46



Employment Growth Log(Employment) Log(K/L) Log(Capex/Emp)
ey) (2 3 4) 6)) (6) ) )]

Good Faith -0.005 -0.022 0.030 0.016

(-0.791) (-0.821) (1.560) (0.826)
Good Faith x Log(1 + Patent Stock) -0.010** -0.009%** -0.079%** -0.067%**  0.067*** 0.074%*** 0.091*** 0.101**

(-2.083) (-3.480) (-6.390) (-4.411) (6.091) (3.824) (3.764) (2.553)
Log(1 + Patent Stock) 0.000 -0.000 0.110%** 0.109%**  0.042%** 0.041%*** -0.038* -0.040*

(0.007) (-0.095) (9.668) (9.004) (2.907) (2.825) (-1.721) (-1.713)
Implied Contract -0.004 -0.045%* -0.014 0.002

(-0.653) (-2.259) (-0.878) (0.108)
Public Policy -0.006 -0.008 -0.035 -0.038

(-1.126) (-0.472) (-1.638) (-1.443)
Log(1 + R&D Stock) 0.087*** 0.087*** 0.085%** 0.082%**  (0.049*** 0.049*** 0.385%** 0.379*%**

(15.139) (15.028) (10.455) (9.978) (4.209) (4.056) (20.882) (19.584)
Log(Sales) -0.068%** -0.070%** 0.536*** 0.529***  0.066*** 0.064*** 0.106*** 0.104%***

(-19.109) (-19.706) (22.121) (21.784) (6.458) (6.042) (6.486) (6.059)
Log(M/B) -0.024%** -0.024%** 0.041** 0.044***  (0.035*** 0.037*** -0.024* -0.020

(-4.600) (-4.399) (2.609) (2.785) (3.471) (3.978) (-1.879) (-1.557)
State GDP Growth 0.115* 0.422%** -0.221 0.964***

(1.864) (4.812) (-1.311) (3.538)
State Political Balance -0.010 -0.032 0.025 0.105**

(-0.694) (-0.869) (0.503) (2.255)
Firm Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Year Fixed Effects Yes No Yes No Yes No Yes No
State x Year Fixed Effects No Yes No Yes No Yes No Yes
Observations 43,935 43,840 44,216 44,120 44,166 44,070 43,567 43,465
Adjusted R2 0.175 0.180 0.967 0.967 0.859 0.861 0.697 0.699
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Table 10: Innovation Ability and the Effect of Good Faith on Labor Productivity, Profitability, and Equity Value

The table reports OLS regressions of firm labor productivity, profitability, and equity value on Good Faith, including an interaction of
Good Faith with the firm’s lagged stock of patents, Log(1+Patent Stock) (standardized to a mean of zero and standard deviation of one).
The regressions also include the other Wrongful Discharge Laws indicators (Implied Contract and Public Policy) and lagged control
variables. All variables are defined in the Appendix. The dependent variables are the logarithm of sales per employee (Log(Sales/Emp))
in columns (1)-(2), operating income before depreciation scaled by assets (Profit) in columns (3)-(4), and the logarithm of the market to
book equity ratio (Log(ME/BE)) in columns (5)-(6). Specifications (1), (3), and (5) include firm fixed effects and year fixed effects.
Specifications (2), (4), and (6) include firm fixed effects and state fixed effects interacted with year fixed effects. The standard errors are
adjusted for heteroscedasticity and clustering at the state level (t-statistics in parentheses). *, **, and *** denote significance at the
10%, 5%, and 1% levels, respectively.

Log(Sales/Emp) Profit Log(ME/BE)
ey) (2 3 4) (5) (6)

Good Faith 0.022 -0.000 -0.026

(1.270) (-0.071) (-0.632)
Good Faith x Log(1 + Patent Stock) 0.069*** 0.059*** 0.006*** 0.006** 0.045%* 0.042**

(7.230) (4.697) (2.847) (2.106) (2.228) (2.267)
Log(1 + Patent Stock) -0.052%**  .0.050***  -0.009***  .0.008*** -0.047%* -0.045%*

(-5.201) (-4.647) (-3.830) (-3.602) (-2.226) (-2.130)
Implied Contract 0.028* 0.002 0.014

(1.754) (0.568) (0.441)
Public Policy -0.018 0.003 0.014

(-1.526) (1.151) (0.389)
Log(Sales) -0.010 -0.012 -0.017*%**  .0.016%**  -0.076***  .0.073%**

(-0.995) (-1.140) (-5.701) (-5.283) (-5.835) (-5.559)
Log(1 + R&D Stock) 0.189*** 0.189*** 0.024*** 0.024*** -0.130%**  .0.130***

(16.979) (16.411) (8.838) (8.850) (-9.991) (-9.896)
State GDP Growth -0.078 0.095** 1.319%**

(-0.918) (2.487) (6.125)
State Political Balance 0.014 0.010 0.058

(0.480) (1.462) (0.816)
Firm Fixed Effects Yes Yes Yes Yes Yes Yes
Year Fixed Effects Yes No Yes No Yes No
State-Year Fixed Effects No Yes No Yes No Yes
Observations 44,118 44,021 44,744 44,648 43,853 43,761
Adjusted R2 0.825 0.827 0.669 0.673 0.618 0.627
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Table Al: Robustness of Main Results to Using Alternative Measures of Innovation

The table reports the results of OLS regressions of process and non-process innovation on Good Faith that also include the other Wrongful Discharge
Laws indicators (Implied Contract and Public Policy) and lagged control variables (Log(1+Patent Stock), Log(1+R&D Stock), Log(Sales), Log(M/B),
State GDP Growth, and Political Balance), as well as firm fixed effects and year fixed effects. The dependent variables are Log(I1+Process Patents) in
columns (1)-(2), Log(1+V-W Process Patents) in columns (3)-(4), Log(1+Non-Process Patents) in columns (5)-(6), and Log(1+V-W Non-Process Patents)
in columns (7)-(8). Log(1+Process Patents) and Log(1+Non-Process Patents) are based on (unweighted) counts of process and non-process patents,
respectively. Log(1+V-W Process Patents) and Log(1+V-W Non-Process Patents) are based on value-weighted counts of process and non-process
patents, respectively. The value of each patent comes from Kogan et. al. (2017). All other variables are defined in the Appendix. The standard errors
are adjusted for heteroscedasticity and clustering at the state level (t-statistics in parentheses). *, ** and *** denote significance at the 10%, 5%,
and 1% levels, respectively.
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Process Innovation

Non-Process Innovation

Process Patents V-W Process Patents Non-Process Patents V-W Non-Process Patents
1) (2) (3 (4) (5) (6) (7 (8
Good Faith 0.054***  0.040** 0.087*** 0.059** 0.049* 0.032 0.056** 0.026
(2.752) (2.074) (3.099) (2.310) (1.945) (1.354) (2.172) (0.997)
Implied Contract 0.001 -0.008 0.004 -0.011 0.002 -0.005 0.003 -0.009
(0.047) (-0.559) (0.131) (-0.482) (0.085) (-0.237) (0.092) (-0.318)
Public Policy -0.016 -0.010 -0.018 -0.007 0.003 0.012 0.038 0.053*
(-0.875)  (-0.737) (-0.553) (-0.287) (0.117) (0.548) (1.001) (1.933)
Log(1 + Patent Stock) 0.160*** 0.250%** 0.215%** 0.283***
(8.123) (5.849) (10.099) (8.615)
Log(1 + R&D Stock) 0.045%** 0.109*** 0.039** 0.113***
(4.082) (4.964) (2.299) (4.367)
Log(Sales) 0.029%** 0.053*** 0.084*** 0.119*%**
(4.953) (3.794) (8.259) (7.057)
Log(M/B) 0.020%** 0.089*** 0.044*** 0.161***
(3.819) (8.677) (4.799) (9.211)
State GDP Growth -0.189 -0.247 -0.106 -0.150
(-1.562) (-1.166) (-0.583) (-0.579)
State Political Balance -0.032 -0.042 -0.031 -0.073
(-1.017) (-0.779) (-0.733) (-1.290)
Firm Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 44,898 44,898 44,898 44,898 44,898 44,898 44,898 44,898
Adjusted R2 0.803 0.818 0.788 0.803 0.805 0.820 0.825 0.839
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Table A2: Wrongful Discharge Laws and Share of Process Innovation

The table reports the results of OLS regressions of the share of process innovation in total innovation (conditional on a firm’s filing at least one patent in that year) on Good
Faith that also include the other Wrongful Discharge Laws indicators (Implied Contract and Public Policy) and lagged control variables (Log(1+Patent Stock), Log(1+R&D Stock),
Log(Sales), Log(M/B), State GDP Growth, and Political Balance), as well as firm fixed effects and year fixed effects. In columns (1)-(2), the dependent variable is the share of
process claims in the total number of claims contained in all patents filed by a firm in each year (Process Share in Claims). In columns (3)-(4), the dependent variable is the ratio
of the citation-weighted number of process patents to the citation-weighted number of process and non-process patents filed by a firm in each year (Process Share in C-W Patents).
In columns (5)-(6), the dependent variable is the share of (unweighted) process patents in the total number of (unweighted) process and non-process patents filed by a firm in
each year (Process Share in Patents). In columns (7)-(8), the dependent variable is the ratio of the value-weighted number of process patents to the value-weighted number of
process and non-process patents filed by a firm in each year (Process Share in V-W Patents). The value of each patent comes from Kogan et. al. (2017). All other variables are
defined in the Appendix. The standard errors are adjusted for heteroscedasticity and clustering at the state level (t-statistics in parentheses). ¥, **, and *** denote significance
at the 10%, 5%, and 1% levels, respectively.
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Process Share in Claims

Process Share in C-W Patents

Process Share in Patents

Process Share in V-W Patents

€)) (2) (3) 4) (5) (6) (1) (8)
Good Faith 0.023* 0.021* 0.034** 0.030%** 0.028%** 0.026** 0.029*%* 0.026**
(2.003) (1.932) (2.433) (2.301) (2.903) (2.555) (2.444) (2.286)
Implied Contract 0.006 0.005 0.011 0.007 0.011 0.010 0.008 0.005
(1.040) (0.941) (1.227) (0.956) (1.547) (1.459) (1.121) (0.855)
Public Policy -0.011 -0.010 -0.009 -0.008 -0.013* -0.013* -0.010 -0.009
(-1.332) (-1.370) (-1.076) (-1.122) (-1.799) (-1.863) (-1.187) (-1.242)
Log(1 + Patent Stock) 0.005 0.010%** 0.011** 0.008**
(1.419) (2.924) (2.648) (2.569)
Log(1 + R&D Stock) 0.012*%* 0.018%** 0.013** 0.016%**
(2.578) (3.382) (2.160) (3.101)
Log(Sales) -0.004 -0.006 -0.002 -0.004
(-0.920) (-0.992) (-0.379) (-0.762)
Log(M/B) 0.001 0.002 0.003 0.004
(0.122) (0.387) (0.666) (0.829)
State GDP Growth -0.033 -0.221** -0.015 -0.173%**
(-0.492) (-2.608) (-0.175) (-2.840)
State Political Balance -0.017 -0.018 -0.005 -0.020
(-0.727) (-0.770) (-0.208) (-1.040)
Firm Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 22,232 22,232 19,621 19,621 22,002 22,002 19,598 19,598
Adjusted R? 0.414 0.415 0.411 0.412 0.357 0.358 0.434 0.435
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