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Abstract

We present a novel modeling approach for granular general equilibrium economies with

persistent heterogeneity that yields exact global solutions. A key feature of our approach

is the use of stochastic lumpy adjustment (SLA) technologies. The associated stochastic

structure can capture any degree of granularity in adjustments of asset positions, and is

thus more flexible than standard technologies. We show how SLA technologies can be em-

ployed in the context of both capital investment and the trading of financial assets. As our

approach does not impose any restrictions on the shape of the state variable distribution,

it can also be used to evaluate the conditions under which previous solution methods are

likely to succeed. Obtaining exact solutions in these granular economies primarily involves

inverting sparse matrices, a computational operation that can take full advantage of recent

advances in high-performance parallel computing architectures.
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1. Introduction

The increasing availability of micro data on the behavior of individual agents and firms has

spurred the need to incorporate important observed heterogeneity in macroeconomic models.

However, due to the complexity that this feature induces, simplifying assumptions are usually

imposed. A key objective of these simplifications is to reduce the infinite dimensionality of

the state space of the model (i.e., an entire state space distribution) without sacrificing the key

elements of the problem at hand. An often-imposed assumption is the completeness of financial

markets, which for many applications in economics and finance allows agents to be aggregated

into a single representative agent. In other cases, market incompleteness is maintained and ap-

proximate model solutions are introduced to keep the analysis tractable (e.g., in Krusell and

Smith, 1998). This latter approach has led to a literature debating under what circumstances the

accuracy of the approximated aggregate law of motion suffices and under what circumstances it

does not.1 Going beyond the issue of solution accuracy, the models proposed in these cases gen-

erally abstract from key dimensions of granularity observed in the data. In cross-sectional dis-

tributions of firms and agents, the largest and wealthiest entities account for substantial fractions

of economic activity and wealth (see Gabaix (2011) and the references therein), observations

that are at odds with the typical assumption that these entities are atomistic.

In this paper, we present a novel approach to modeling granular general equilibrium economies

with persistent heterogeneity that yields exact global solutions. A key feature underlying our

method is the use of stochastic lumpy adjustment (SLA) technologies.2 The stochastic structure

of these technologies can capture any degree of granularity in adjustments of asset positions,

and is thus more flexible than standard investment technologies that abstract from lumpiness.

1See, e.g., Den Haan (2010a) for a discussion.
2Other work shows the broad applicability of SLA technologies in partial equilibrium settings. In particular,

in Binsbergen and Opp (2019), we propose an SLA technology for capital investment to examine the effect of
financial market anomalies on firm investment and output. Opp (2019) considers a setting with stochastic lumpy
earnings adjustments and learning to study the impact of large shareholders on firms that are in financial distress.

2



We show how in general equilibrium economies with incomplete markets, SLA technologies

can be applied in the context of both capital investment and the trading of financial assets.

Whereas existing general equilibrium models may feature some dimensions of granularity,

a key principle of our approach is that all state variables exhibit granular adjustments. Ob-

taining exact global solutions to this class of environments primarily involves inverting sparse

matrices, a standard computational operation that can take full advantage of recent advances

in high-performance parallel computing architectures. With our approach, it is not necessary

to impose ex ante restrictions on the degree of persistent heterogeneity that an economy can

exhibit. Our method can handle features that have traditionally been challenging for existing

solution methods, such as, non-linearities, occasionally binding constraints, and lumpy capital

adjustment. These are important innovations relative to previous approaches that provide only

approximate solutions, either by summarizing the distributional state space with a fixed num-

ber of moments (Krusell and Smith, 1998) or alternatively, by perturbing the problem around

a given fixed point for which the solution is known (Judd and Mertens, 2019). The validity of

these approximation methods has been questioned in the literature particularly in environments

with the above-mentioned features.

To illustrate this modeling approach, we first consider a classic Krusell and Smith (1998)

type economy. Recasting this type of economy with the proposed principles involves specifying

agents and technology such that non-atomistic entities’ investment policies affect the lumpy

adjustment dynamics of capital holdings. Specifically, groups of agents with positive measure

(e.g., firms) control hazard rates with which they upgrade or downgrade their capital stocks

by lumpy increments. As both the measure of each group and the size of capital increments

can theoretically be set to arbitrarily small values, this environment can capture any degree

of granularity appropriate for an application. While this setting allows evaluating interesting

theoretical limiting cases where granularity approaches zero, lumpiness is a desirable feature

in many relevant economic problems; almost any type of economic entity in practice exhibits

3



some degree of granularity. In a second application, we show how the principles of our method

can also be used in environments where agents can trade financial assets. In that setting, we

allow agents to trade long-term debt, and we propose a central market clearing mechanism for

trades that maintains the stochastic lumpy adjustment of asset positions.

Solutions to the proposed class of models are characterized by continuous-time Markov gen-

erator matrices. These matrices are generically sparse, a result that emerges in our continuous-

time environment where any state-variable can locally move to only a relatively small set of

neighboring states. Sparsity, in turn, dramatically increases the numerical efficiency of invert-

ing large matrices, which is the main computational operation required to obtain exact model

solutions. Moreover, given the Markov generator matrix characterizing the economy, exact con-

ditional and stationary distributions are available. As a result, the proposed class of models can

be evaluated and estimated without the need to use time-consuming simulations.

It may be tempting to view our approach as another way of approximating existing models

using a discretized state space, much like previous grid-based solution methods. However,

our contribution is different. By incorporating granularity as an inherent part of the economic

model, the model does not have to be approximated. This has the important advantage of

not having to second guess whether an approximation is sufficiently accurate. Instead, the

assumptions of the model are clearly stated upfront, and conditional on those assumptions, the

model solution is exact. Further, as we have argued above, we view granularity as an important

empirical regularity, that is, agents, firms, and investment opportunities are in fact not atomistic

objects in practice.

While our class of models requires inverting increasingly large (but sparse) matrices when

studying environments with a large number of possible state variable realizations and/or a large

number of groups, this computational operation can be parallelized, allowing researchers to

take advantage of recent and projected advances in high-performance computing architectures.

Further, even given the currently available computational power, the fact that the model is ex-
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actly solvable provides a number of important benefits relative to existing work. First, with our

approach, researchers can gradually increase the degree of heterogeneity while maintaining ex-

act solutions, allowing to assess the economic relevance of heterogeneity. Second, our method

is also ideally suited to (re-)evaluate how well previous numerical solution methods fare when

used to approximate our exactly solved class of models. Our approach does not impose any

restrictions on the shape of the state variable distribution. It can therefore be used to evaluate

the conditions under which previous solution methods are likely to succeed.

Literature. As highlighted in the introduction, we apply our modeling approach to a Krusell

and Smith (1998) (KS) type economy that features idiosyncratic labor (employment) shocks

against which agents cannot fully insure.3 While insurance is imperfect, agents can buy and sell

an asset (capital) subject to an exogenous lower bound on assets holdings. KS argue that in their

environment, the utility costs from fluctuations in consumption are small and that this finding

is consistent with a previous literature that suggests that self-insurance with only one asset is

quite effective.4 Even though the findings in KS are similar to models where self-insurance is

effective, the results are not in fact driven by a highly effective self-insurance channel. In their

model, the unconditional standard deviation of individual consumption is about four times that

of aggregate consumption, and the unconditional correlation of the consumption of any two

agents is very close to zero. Instead, the reason for their findings is that in their stationary equi-

libria, agents are insured well enough that the marginal propensity to save out of current wealth

is almost completely independent of the levels of wealth and labor income, except at the very

lowest levels of wealth. While some very poor agents therefore do have substantially different

savings rates, this heterogeneity is not important enough to materially affect the equilibrium due

to the small wealth that these agents possess. KS also suggest a range of extensions that could

3See, e.g., Bewley (1977), Scheinkman and Weiss (1986).
4See, e.g., Lucas (1987), Cochrane (1989), and Krusell and Smith (1996) as well as the asset pricing literature

that focuses on incomplete markets (Marcet and Singleton (1999), Telmer (1993), Lucas (1994), Heaton and Lucas
(1996), den Haan (1996), and Krusell and Smith (1997)).
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potentially increase the importance of wealth (capital) heterogeneity including (1) models with

endogenous borrowing constraints (such as in Kiyotaki and Moore (1997)) (2) models where

the return to savings is dependent on consumers’ own production technology rather than the

aggregate savings technology (where the return is equal for all agents), and (3) fixed costs in

capital accumulation (Banerjee and Newman (1993)).

Since the KS paper, the literature on heterogeneity in finance and macroeconomics has sub-

stantially evolved. Examples of methods largely inspired by the KS method include Storeslet-

ten et al. (2007), Gomes and Michaelides (2008), and Favilukis et al. (2017). In addition, new

approaches for modeling and/or solving environments with heterogeneous agents have been de-

veloped in Den Haan et al. (2010), Den Haan (2010b), Judd et al. (2010), and Judd and Mertens

(2019). While the upside of the most recent solution methods is that they can handle a large(r)

number of agents and/or state variables, they do still rely on approximations in one form or

another. Notable exceptions that do generate closed-form solutions are Heathcote et al. (2014)

and Han et al. (2018). The former maintains closed-form solutions by setting up the problem

such that (i) individual wealth is a redundant state variable, and (ii) agents have access to per-

fect insurance against some shocks and no explicit insurance against others, the latter of which

is particular to the island structure that they assume. To achieve this insurance dichotomy as

an equilibrium outcome, the island-economy structure is important. The latter who recast the

Aiyagari-Bewley-Huggett model of income and wealth distribution in continuous time and show

for the special case of two income groups how to maintain closed-form solutions.

2. The Granular Economy

The economy is in continuous time. There is a measure one population of infinitely lived

consumers. There is only one good, and preferences over streams of consumption of each agent
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are given by

E0

∫ ∞
0

e−βτU(Cτ )dτ, (1)

where the flow utility is given by CRRA preferences

U(C) =
C1−γ − 1

1− γ
. (2)

Production of the good, Y , follows from a Cobb-Douglas function of capital, K, and labor

input L

Yt = ZtK
α
t L

1−α
t , (3)

with α ∈ [0, 1].

Groups. The measure one of agents consists of ng groups of equal measure. Shocks to agents

occur at the group-level, including investment and (un)employment shocks. As the number

of groups is increased, this setup converges to a specification where groups are atomistic (see

Appendix A for details). That said, the specification also accommodates economic shocks that

affect larger groups of agents (for example, when a large firm goes bankrupt). For notational

simplicity, we drop subscripts indicating groups whenever doing so does not create ambiguity.

Investment in capital. Two essential features of the proposed modeling approach are (1) that

capital investment decisions are made at the group level, and (2) that the investment technology

is of the SLA type. Under this technology, log-capital kt = log[Kt] takes values in a discrete

set Ωk, the nk elements of which constitute an equidistant grid with lower bound min{Ωk} ∈ R
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and grid increments of size ∆k > 0.5

Let N+
k,t and N−k,t denote Poisson processes that keep track of successful capital acquisitions

and divestments, and let N δ
k,t denote a Poisson process for capital depreciation shocks. The

corresponding capital evolution equation is given by

dkt = ∆k · (dN+
k,t − dN

−
k,t − dN

δ
k,t). (4)

Groups incur flow costs (payoffs) when aiming to upgrade (downgrade) their capital stocks.

Specifically, they control the Poisson intensities of the processes N+
k,t and N−k,t. Each group

chooses its expected investment rate

i+t ≡ (e∆k − 1)Et
[
dN+

k,t

]
≥ 0, (5)

and stochastically succeeds in upgrading its capital to the next-higher level, that is, by a log

change of size ∆k, with Poisson intensity i+t /(e∆k − 1). Throughout, E denotes the expectation

operator.

In the process of attempting to upgrade capital, agents within a group incur a flow cost equal

to i+t Kt.6 Once an upgrade occurs (dN+
k,t = 1), the additional capital is useable immediately,

at no additional costs. When a group’s capital stock reaches the upper bound emax{Ωk}, further

upgrades are infeasible. By choosing nk high enough, this restriction will be immaterial, as

optimal investment will be zero above some endogenous threshold for capital.

5The SLA technology can also easily accommodate grids of log-capital that are non-equidistant. By choosing
∆k small enough, this specification can, in principle, also approximate a continuous support for capital arbitrarily
well (see Appendix A for details).

6It is straightforward to introduce additional adjustment costs in this setting. We choose not to introduce them
at this point to stay closer to the original Krusell and Smith (1998) framework.
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Similarly, groups choose their expected disinvestment rate

i−t ≡ (1− e−∆k)Et
[
dN−k,t

]
≥ 0, (6)

and downgrade their capital by a log change of size ∆k with Poisson intensity i−t /(1 − e−∆k).

The divestment process yields flow proceeds equal to i−t Kt. Conditional on a Poisson arrival,

there is no additional payment to the agents in the group. Divestments are infeasible when

capital reaches the lower bound emin{Ωk}. Again, by specifying min{Ωk} low enough, we can

ensure that a firm would never optimally attempt to divest at this lower bound, such that this

restriction is also non-binding.

Capital depreciates stochastically to the next-lower level with a Poisson intensity δ/(1 −

e−∆k), except at the lower bound min{Ωk} where the Poisson intensity is zero. Thus, for

kt > min{Ωk}, the expected depreciation rate is δ, and the expected growth rate of capital is

given by

Et[dKt]

Kt

= (i+t − i−t − δ)dt. (7)

We introduce the generator matrix Λk that collects the transition rates between all capital states

Ωk. This matrix depends on the endogenous investment controls i = (i+, i−).

Budget constraint. The flow of output Y can be used for consumption C or for investment,

Yt = Ct + i+t Kt − i−t Kt. (8)

Aggregate productivity. There is also a stochastic shock to aggregate productivity, which is

denoted by Z. Z follows an NZ state continuous-time Markov chain with generator Matrix ΛZ .
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Labor supply. Each agent in a group is endowed with εL̃ units of labor input, where ε is

stochastic and can take on the value zero or one at the group level. When ε = 1, each agent

in the group is employed and supplies L̃ units of labor. When ε = 0, agents in the group are

unemployed. The generator matrix governing employment shocks is given by Λε(Z), which

indicates that the transition rates can depend on the aggregate state Z.

Market arrangement. As in Krusell and Smith (1998), the economy features incomplete

markets. Capital is the only asset in which agents can invest. As a result, capital is used both as

a store of value and as a means of insurance against employment shocks.

Equilibrium prices. Consumers collect income from working and from the services of their

capital. Let the total amount of capital in the economy be denoted by K̄ and the total amount

of labor supplied by L̄, then the constant returns-to-scale production function implies that the

relevant prices are given by:

w(K̄, L̄, Z) = (1− α) · Z ·
(
K̄

L̄

)α
, (9)

r(K̄, L̄, Z) = α · Z ·
(
K̄

L̄

)α−1

. (10)

State variables and transition dynamics. The aggregate state of the economy consists of (1)

the current value of the state Z, and (2) the distribution of the ng groups across nk × 2 states

(recall that there are two possible employment statuses for a group). The number of possible

distributions of ng groups across nk × 2 states is:

nh =
(ng + 2nk − 1)!

ng!(2nk − 1)!
(11)

Thus, the total number of possible aggregate states is n = nh × nZ .
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Suppose sh ∈ {1, ..., nh} denotes a particular histogram index, and let h(sh, j) denote the

j-th element of the vector of length nε × nk representing the histogram buckets. Finally, let

K(j) denote the capital level associated with the j-th histogram bucket. Aggregate capital is

thus given by the sum of the products of capital levels in each histogram state times the number

of groups in that state.

K̄(sh) =

2nk∑
j=1

h(sh, j) ·K(j) (12)

Similarly, the aggregate labor supply is given by

L̄(sh) =

2nk∑
j=1

h(sh, j) · L(j), (13)

where L(j) denotes the labor supply of a group that is in the j-th bucket.

For an individual group, the relevant state variables are its own log-capital k, its employment

status ε, and the aggregate state index s ∈ {1, ..., n}. Let Λ denote the generator matrix collect-

ing all exogenous and endogenous transition rates between the possible values of the state tuple

(k, ε, s). We will use the notation Λ(k, ε, s) to refer to the row of the matrix Λ corresponding to

a specific state (k, ε, s).

Optimization. The Hamilton-Jacobi-Bellman (HJB) equation faced by a group is given by:

0 = max
C(k,ε,s)≥0

i+(k,ε,s)≥0

i−(k,ε,s)≥0

{U(C(k, ε, s))− βV (k, ε, s) + Λ(k, ε, s)V} , (14)

where the notation V denotes a vector that collects the values of V (k, ε, s) for all possible values

of the state tuple (k, ε, s), and where the ordering of states follows the same convention as the

one used for the matrix Λ. Note that the endogenous investment controls i+ and i− enter the
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vector Λ(k, ε, s). The budget constraint for an individual in a group is given by:

r(K̄t, L̄t, Zt)Kt + w(K̄t, L̄t, Zt)L̃tεt = Ct + i+t Kt − i−t Kt. (15)

It is convenient to define the amount of consumption absent investment, which we refer to

as the base level of consumption:

Cb(k, ε, s) ≡ r(K̄, L̄, Z)K + w(K̄, L̄, Z)L̃ε. (16)

The first-order conditions with respect to i+ and i− yield the optimal investment controls:

i+(k, ε, s) =
1

K
max

[
Cb(k, ε, s)−

(
V (k + ∆k, ε, s

kg+)− V (k, ε, s)

K(e∆k − 1)

)− 1
γ

, 0

]
, (17)

i−(k, ε, s) =
1

K
max

[(
V (k, ε, s)− V (k −∆k, ε, s

kg−)

K(1− e−∆k)

)− 1
γ

− Cb(k, ε, s), 0

]
, (18)

where skg+ and skg− denote the new aggregate state indices that obtain when the individ-

ual’s group capital level is increased and decreased by one increment, respectively (which also

changes the histogram of groups in the economy). Optimal consumption is given by:

C(k, ε, s) = Cb(k, ε, s)− i+(k, ε, s)K + i−(k, ε, s)K. (19)

Solution approach. Conditional on any choices for the controls i+(k, ε, s) and i−(k, ε, s),

the system of HJB equations (14) is linear in the value functions V (k, ε, s). Thus, given any

policy functions, value functions are available in closed form. The exact global solution to the

economy is obtained via policy function iteration, relying on exactly solved value functions in

each step.
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3. An Exactly Solved Economy

To illustrate the granular economy outlined in the previous section, we solve the model

using four capital states and seven groups of agents. The transition rates for the aggregate

states (boom and bust) as well as the productivity factor (Z) are summarized in the top panel of

Table 1. The bottom panel of the table summarizes the state invariant parameters, which we all

set to standard values. The annual depreciation rate δ is set to 12%, the rate of time preference

β is set to 0.1 (corresponding to a log discount rate of 0.9), and the capital share in the Cobb-

Douglas production function is set to 0.6. The transition rates in and out of employment are

set such that the average employment rate is 5%, and employed agents stay employed for 3.33

years on average.

Table 1
Parameters. The table lists parameters of the economy. The economy features seven groups (ng = 7) and
four capital states (nk = 4). The lower bound of the set of possible capital states is 0.84 and ∆k = 0.52.

State-dependent Parameters
Parameter Variable Recession Boom
Transition rates for aggregate states λZ 0.500 0.100
Productivity factor Z 1.100 1.200

State-invariant Parameters
Parameter Variable Values
Rate of time preference β 0.100
Coefficient of relative risk aversion γ 3.000
Capital share α 0.600
Labor supply when employed L̃ 1.000
Expected rate of depreciation δ 0.120
Transition rate of becoming unemployed λε=0 0.300
Transition rate of becoming employed λε=1 5.700

Before we present the exact solutions to the model, it is important to relay the two types of

cross-sectional heterogeneity that emerge. In this environment, the joint distribution of capital

and employment matters. The employment status does not directly pin down a group’s capital,
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as capital upgrades and downgrades occur stochastically, following the SLA technology, and

because agents optimally spread out efforts to adjust their capital over time (to smooth con-

sumption). Thus, even if the impact of investment on capital were deterministic (a limiting case

of our model where ∆k → 0), the joint distribution of capital and employment would matter.

To illustrate the relevance of this joint distribution, compare the histograms in Figure I. The

two histograms both represent an economy with the same aggregate capital stock K̄, the same

cross-sectional variation in the capital stock, and the same aggregate labor supply L̄. They only

differ in how capital and employment are related.

The second type of heterogeneity that the model features, is a standard one: two histograms

of capital that differ in shape but represent the same aggregate amount of capital K̄. Figure

II below illustrates two such capital distributions, which each have aggregate capital approxi-

mately equal to 14.7

7Note that due to the recombination properties of our equidistant log-capital grid, it is not possible to get exactly
the same amount of aggregate capital for any two distinct histograms. The amounts of aggregate capital are in fact
14.3 and 13.8, respectively.
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FIGURE I
Joint distribution of capital and employment. The histograms illustrate two identical capital distribu-
tions with identical aggregate employment in which the unemployed own differing amounts of capital.
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FIGURE II
Shape of the capital distribution. The two histograms illustrate two capi-
tal distributions that imply approximately the same amount of aggregate capital K̄.

We now discuss the solution to the model. We start considering the stationary distribution

of aggregate capital K̄, which is plotted in panel (a) of Figure III. With our modeling approach,

this distribution is available in closed-form, once the matrix Λ is determined. Despite the sim-

ple example, the shape of the stationary distribution is quite smooth; even a setting with just
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seven groups and four capital grid points leads to significant diversification effects at the ag-

gregate level. Roughly 80% of the probability mass is concentrated between K̄ = 1.8 and

K̄ = 2.8. Panel (b) of Figure III illustrates the stationary distribution of labor, which implies a

unconditional unemployment rate of 5%.

FIGURE III
Stationary distribution of aggregate capital and labor. The graph plots the station-
ary distribution of aggregate capital K̄ (panel (a)) and aggregate labor L̄ (panel (b)).
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Next, we consider plots that illustrate a group’s optimal consumption policy as a function of

the aggregate amount of capital in the economy (K̄). In each graph, we additionally condition

on a particular aggregate employment level L̄ and productivity Z, and an individual group’s

own employment status and capital. For ease of exposition, we focus on states that have a large

probability of occurring under the stationary distribution.8 As a consequence, we will focus on

cases where the aggregate labor supply L̄ is 0.86 or 1.9 Further, we focus on the case where the

individual group has capital intermediate levels of capital K.

8Needless to say that our method also provides exact solutions for low probability state realizations, they are
just less interesting to study when comparing solutions.

9For example, states with aggregate employment less than 0.86 have strictly positive probabilities, these prob-
abilities are extremely small given the parameter values and thus hardly affect the solution. This is not surprising
as those states correspond to aggregate unemployment rates of 29% or higher.
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FIGURE IV
Optimal consumption as function of aggregate capital. The graph plots the optimal consumption poli-
cies (blue circles) as well as the best linear approximation (solid black line) for states in which the in-
dividual is employed (ε = 1) and aggregate employment employment is L̄ = 1. The panels illus-
trate policies for different individual capital levels (K = 1.41 versus K = 2.38) and different ag-
gregate states (Z = G versus Z = B ). We fit linear curves (black lines) using a weighted least
squares minimization, where the weights are the conditional probabilities of a particular K̄-consumption
pair occurring under the stationary distribution. We report the corresponding R2 values in the graphs.
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(b) K = 1.41, Z = B
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(c) K = 2.38, Z = G
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(d) K = 2.38, Z = B
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In all panels of Figure IV the individual group is employed. Each blue circle in a graph rep-

resents a particular joint histogram of capital and employment, keeping aggregate employment

fixed (as illustrated in Figure I). The aggregate capital implied by such a distribution is plotted

on the x-axis. As discussed in reference to Figures I, even conditional on identical histograms

of capital and aggregate employment, the optimal consumption policy can still differ depending
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on how capital and employment are jointly distributed. As a result, two blue circles can have

the same value of K̄ but a different optimal consumption value (as the underlying states dif-

fer). Moreover, as highlighted in Figure II, a second source of variation in optimal consumption

given a particular level of K̄ stems from different possible shapes of the capital distribution.

The full employment states illustrated in Figure IV isolates this latter type of variation.

The panels on the left ((a) and (c)) of Figure IV condition on the aggregate boom state

(Z = G), whereas the panels on the right ((b) and (d)), condition on a recession (Z = B).

Finally, the top row conditions on a group with the capital level K = 1.41, whereas the bottom

row conditions on a group with a higher capital level of K = 2.38. At the lower capital level

(panels (a) and (b)), the relation between the group’s consumption and aggregate capital is

almost perfectly linear; the R2 of a linear fitted curve (black line), computed based on the

stationary probability distribution, is close to 1.

In contrast, at the higher capital level (panels (c) and (d)), the group starts to consume more

in states where the aggregate economy has little capital (K̄ < 1.5). When aggregate capital

is lower, the return on capital r is higher, and the group with K = 2.38 is a positive outlier

in the capital distribution. As a result, this group has a particularly high level of income (that

is, the group’s base consumption Cb increases as K̄ as decreased). While the group invests a

positive, increasing amount for low levels of K̄, this choice does not fully undo the increases

in total income for low levels of K̄, causing the U-shaped patterns in consumption shown in

panels (c) and (d) of Figure IV. A linear approximation to the conditional consumption policy

then provides a significantly worse fit — the R2 drops below 95%.

In Figure V, we provide similar graphs, but consider for the case in which a group is unem-

ployed. When the group’s own capital level is K = 1.41 (panels (a) and (b)), the group divests

positive amounts (for K̄ > 1.25 in panel (a) and K̄ > 1.1 in panel (b)) in order to obtain a con-

sumption level in excess of the income from capital. Once aggregate capital is very low and the

return on capital very high (for K̄ < 1.25 in panel (a) and K̄ < 1.1 in panel (b)), the group stops
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FIGURE V
Optimal consumption as function of aggregate capital. The graph plots the optimal consumption poli-
cies (blue circles) as well as the best linear approximation (solid black line) for states in which the in-
dividual is unemployed (ε = 0) and aggregate employment employment is L̄ = 0.86. The panels il-
lustrate policies for different individual capital levels (K = 1.41 versus K = 2.38) and different ag-
gregate states (Z = G versus Z = B ). We fit linear curves (black lines) using a weighted least
squares minimization, where the weights are the conditional probabilities of a particular K̄-consumption
pair occurring under the stationary distribution. We report the corresponding R2 values in the graphs.
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(c) K = 2.38, Z = G
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(d) K = 2.38, Z = B
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divesting and switches to simply consuming its income, that is, C = Cb. This switch occurs at

the kink that is visible in the consumption plots. This type of inaction region is a consequence

of granular adjustments in asset positions and linear adjustment costs.10 At a higher level of

capital (K = 2.38, see panels (c) and (d)), the individual group has a higher level of income

10In our environment where agents control hazard rates of lumpy adjustments, inaction regions can be eliminated
by specifying adjustment costs that start with zero marginal costs (e.g., a quadratic specification).
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Cb. With more disposable income, the group then has greater incentives to invest some of its

income, relative to the case where the group has less capital (that is, K = 1.41, see panels (a)

and (b)). As a result, when the return on capital is particularly high (for K̄ < 1.5 in panel (c)

and K̄ < 1.1 in panel (d)), the group invests positive amounts. For intermediate levels of ag-

gregate capital K̄ the group simply consumes its income, and finally, for high enough values of

K̄, it starts to divest (starting at the second kink). Given the inaction regions present in this en-

vironment, linear approximations to the conditional consumption policy provide a particularly

poor fit — the R2s are as low as 0.61 (see Panel (d)).

Overall, these results suggest that if agents were to approximate the aggregate capital dis-

tribution using the first moment (K̄) only, they would deviate substantially from the optimal

consumption policies. Thus, in the present environment, standard approximation techniques are

unlikely to provide accurate solutions.

4. Trading Financial Assets

In this section, we illustrate how our modeling approach can also be applied in economies

where agents can trade financial assets. In particular, we will consider the trading of perpetual

bonds.11 We present a centralized market clearing mechanism that features stochastic lumpy ad-

justments (SLA) in bond positions. An agent’s financial wealth takes the form of these bonds,

the stock of which is denoted by Aj,t. Agents can accumulate integer numbers of bonds; frac-

tions of bonds cannot be traded. Bonds are in zero net supply and pay a fixed coupon f > 0.

Here, the parameter f governs the granularity of bond position adjustments. The smaller f ,

the less lumpy are the adjustments in financial assets associated with changes in bond posi-

tions dAj,t = ±1. Each group of agents has an exogenous income process denoted by wj,t
11It is straightforward to adjust the setting to consider bonds with a finite expected maturity, or claims to risky

assets that are in positive net supply.
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that follows a continuous time Markov chain with lower bound w. Agents face a borrowing

constraint:

At ≥ A, (20)

with−w
f
< A < 0. The assumption thatA > −w

f
ensures that even absent default, consumption

can always take strictly positive values.

Trading and market clearing. Groups face an auctioneer that sets Poisson rates for changes

in bond positions. The auctioneer announces that if a group j invests a flow I+
j , it obtains in

return one extra bond with total Poisson arrival rate I+
j λ. Similarly, if a group asks to receive

a consumption flow I−j (i.e., borrow), it will incur an extra bond as a liability with arrival rate

I−j λ. The auctioneer sets the rate λ(s) in each aggregate state s to clear the market in borrowing

and lending flows:

ng∑
j=1

I+
j =

ng∑
j=1

I−j , (21)

that is, in equilibrium, the auctioneer’s budget for borrowing and investment flows balances in

each state s. We define Ī ≡
∑ng

j=1 I
+
j =

∑ng
j=1 I

−
j as the total arrival intensity of a change in

bond positions.

For a group j wishing to invest (i.e., I+
j > 0), the auctioneer announces the conditional

probability φ−j,k(s) with which group k 6= j will be group j’s counterparty, in case a lumpy

adjustment of a bond position occurs, that is,

φ−j,k(s) = Pr[dAk,t = −1|dAj,t = +1]. (22)

Equilibrium requires that, φ−j,k =
I−k∑
l 6=j I

−
l

, that is, the conditional probabilities announced by
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the auctioneer are consistent with the borrowing demands from all groups. Analogously, the

auctioneer announces the conditional probabilities φ+
j,k(s) with which group k 6= j will be

the counterparty that will accumulate a bond if group j incurs an extra debt position. Again,

equilibrium requires that, φ+
j,k =

I+k∑
l6=j I

+
l

.

A group’s bond holdings then evolve according to:

dAj,t = (dN+
Aj ,t
− dN−Aj ,t), (23)

where N+
Aj ,t

and N−Aj ,t are Poisson processes with the endogenous intensities I+
j,tλ and I−j,tλ,

implying that

Et[dAj,t] = (I+
j,t − I−j,t)λdt. (24)

Optimization. The HJB equation faced by a group is given by:

0 = max
C(A,w,s)≥0

I+(A,w,s)≥0

I−(A,w,s)≥0

{U(C(A,w, s))− βV (A,w, s) + Λ(A,w, s)V} , (25)

where the notation V denotes a vector that collects the values of V (A,w, s) for all possible

values of the state tuple (A,w, s), and where the ordering of states follows the same convention

as the one used for the matrix Λ. Note that the endogenous investment controls I+(A,w, s) and

I−(A,w, s)) enter the vector Λ(A,w, s). The budget constraint for an agent is now given by:

f · At + wt = Ct + I+
t − I−t . (26)
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As in the baseline setup presented in Section 2, it is convenient to define the amount of con-

sumption absent investment, that is, the base level of consumption

Cb(A,w) ≡ f · A+ w. (27)

The first-order conditions with respect to I+ and I− yield the optimal investment controls:

I+j (A,w, s) = max

Cb(A,w)−

λ(s)
∑
k 6=j

φj,k(s)
(
V (A+ 1, w, sA

+
j,k)− V (A,w, s)

)− 1
γ

, 0

, (28)

I−j (A,w, s) = max


λ(s)

∑
k 6=j

φj,k(s)
(
V (A,w, s)− V (A− 1, w, sA

−
j,k)
)− 1

γ

− Cb(A,w), 0

, (29)

where sA
+
j,k and sA

−
j,k denote the new aggregate state indices that obtain when the individual’s

group capital level is increased and decreased by one increment, respectively, while also affect-

ing the possible counterparties’ positions (which also changes the histogram of groups in the

economy). Optimal consumption is then given by:

C(A,w, s) = Cb(A,w)− I+(A,w, s) + I−(A,w, s). (30)

Solution approach. Conditional on the controls, the system of HJB equations (25) is again

linear in the value functions. As in Section 2, the model is thus again solved with policy function

iteration, making use of the closed-form solutions. Apart from inverting matrices, the solution

now also involves solving for λ(s) in each state. In each iteration, λ(s) is solved independently

for each state s to clear the market in that state (which is one equation and one unknown per

state), using the value function and φ+
j,k(s) and φ−j,k(s) from the previous iteration.
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5. Additional Computational Efficiency Gains

Further efficiency gains in computational speed can be obtained by employing the charac-

teristics of the particular economic problem. While the number of theoretically possible distri-

butional shapes of the state variables can be large (through the combinatorics in equation (11)),

the effective number of histograms that are relevant is typically much smaller, for two reasons.

First, historical data on the cross-sectional distribution of variables such as employment and

wealth provide evidence on the potential shapes that such distributions can plausibly assume.

For example, as unemployment rates above 50% have never been observed in U.S. data, it ap-

pears desirable to specify an aggregate employment distribution that satisfies this property. This

can be achieved by augmenting the Markov processes for each group’s employment status with

this aggregate restriction.

Second, apart from these data-based restrictions, many histograms are theoretically very un-

likely to occur in any given model economy. To illustrate this, consider the CDF of aggregate

labor in Figure IIIb. The figure shows that an employment rate above 50% has close to zero

probability of occurring. To be precise, full employment happens with a 69.8% probability,

one out of seven groups being unemployed happens with 25.7% probability, two out of seven

happens with 4.1% probability, and three out of seven with a 0.4% probability. The joint prob-

ability of an even higher unemployment rate is less than 0.0002%. It therefore seems unlikely

that the capital/employment histograms (as the ones illustrated in Figure I) that have more than

three groups unemployed will materially affect the solution of the specified economy.

Based on these insights, we propose the following approach to gradually increase the num-

ber of groups and/or capital grid points, in case such an increase seems desirable for the problem

at hand:

Step 1: Solve the model with a computationally feasible number of grid points and groups.
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Step 2: Evaluate the exact stationary distributions of the key aggregate variables (such as

capital and labor), and evaluate which states have a very small probability of occurring.

Step 3: Re-solve the model imposing the additional restriction that those states cannot

occur in the economy.

Step 4: Compare the solutions to these economies from Step 3 and Step 1.

Step 5: If the solutions are numerically close, increase the number of groups and/or grid

points while restricting the number of states as considered in Step 3.

Step 6: Repeat steps 3 through 5.

6. Conclusion

In this paper, we presented a tractable method to introduce heterogeneity in macroeconomic

models featuring granularity. The main computational operation needed to obtain exact global

solutions to this class of models is the inversion of large sparse matrices. To illustrate the

principles of our method, we recast a Krusell and Smith (1998) type setting augmented by

stochastic lumpy capital adjustments and discussed an incomplete markets economy in which

agents trade perpetual bonds. While our results from these analyses are very encouraging, in

future work, we intend to apply this method to economies with material non-linearities, which

are particularly challenging for existing solution methods.
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A. Relation to Continuous Variables Environments

In this appendix, we discuss limiting cases for the parameters ∆k and ng that correspond

to environments in which capital and the measures of agents in each state (capital and employ-

ment) are continuous variables. We note that this limiting case is generally not desirable from

a practical point of view, when aiming to match real world technologies and agents, which all

feature some degree of granularity. Yet, it may be useful to highlight the theoretical relation

between our setting and the continuous settings typically considered in the literature.

SLA investment technology. The growth rate for capital under the SLA technology is given

by:

dKt

Kt

= (e∆k − 1)dN+
k,t + (1− e−∆k)(dN−k,t + dN δ

k,t) (31)

For any given investment and depreciation rates (i+t , i−t , and δ), the expected growth of capital

(for kt > min{Ωk}) is independent of the choice of the parameter ∆k, which governs that

granularity of capital adjustments:

Et[dKt]

Kt

= (i+t − i−t − δ)dt. (32)

In contrast, the variance of the growth rate depends on the granularity parameter ∆k:

V art

[
dKt

Kt

]
=(e∆k − 1) · i+t dt+ (1− e−∆k) · (i−t + δ)dt. (33)

Thus, for any finite investment and divestment rates i+t and i−t , we obtain:

lim
∆k↘0

V art

[
dKt

Kt

]
= 0. (34)

That is, for lim∆k↘0, where the set of capital states Ωk approaches a continuum, the growth
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rate of capital becomes locally deterministic function of the chosen investment and divestment

rates i+t and i−t , consistent with standard specifications of investment technologies in continuous

time.

Groups vs. atomistic agents. The measure one of agents consists of ng groups of equal

measure. For limng→∞, each group becomes atomistic, as its measure 1/ng converges to zero.
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