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Abstract

We present a novel approach to nonparametric identi�cation and con-

sistent estimation in economic models using `proxy controls'. Our ap-

proach is particularly well-suited to the context of panel data with a �xed

time-dimension but also applies in cross-sectional settings. Proxy con-

trols are proxies for unobserved `perfect controls', where perfect controls

are variables that are su�cient for the association between potential out-

comes and treatments. Our identi�cation strategy requires that the set of

available proxy controls be split into two subsets, one subset acting as an

instrument for the other. In the panel case, observations from di�erent

periods can be used as proxy controls and our key identifying assump-

tions follow from restrictions on the serial dependence of the data and

confounding variables. We provide conditions under which our estimation

problem is `well-posed'. Our estimator is straight-forward to implement,

the key step is penalized sieve minimum distance estimation. We derive

simple convergence rates under high-level assumptions.

Like referee reports and ordinary conversations, confounding factors are fright-
ening but unavoidable challenges for the empirical economist. The threat of
confounding is familiar to quantitative researchers in all �elds, but it is of par-
ticular concern to economists, who are interested almost exclusively in causal
inference and whose data are usually drawn from observational studies. Con-
founding may be understood in terms of factors that impact both the assignment
of treatments (variables in whose causal impact we are interested) and potential
outcomes. These factors are often inherently unobservable, they are composed
of features like innate ability and socio-economic status. Suppose that con-
trolling for these factors the treatment assignments and potential outcomes are
independent, then we say that these factors are a set of `perfect controls'.

While perfect controls are often unobserved, the researcher may have access
to covariates that proxy for the perfect controls. These `proxy controls' could be
a set of test scores in place of a measure of innate ability or some demographic
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tion in Non-Separable Models Using Panel Data. The earlier version can be found at
https://arxiv.org/pdf/1810.00283.pdf.
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characteristics like self-reported wages and years in education in place of socio-
economic status. In the context of panel data, observations from other time
periods can be proxies for underlying confounding factors. To illustrate, suppose
that innate ability is a confounding factor. Then an individual's innate ability
is associated with both the individual's treatment assignments and potential
outcomes. It follows that the history of treatment assignments is informative
about innate ability. Therefore, the history of treatments may be a good proxy
for innate ability.

A naive approach would treat the proxies as if they are perfect controls.
For example, one could treat test scores as if they did in fact perfectly measure
ability. However, if the proxies mismeasure the perfect controls then controlling
for the proxies in the conventional manner would not remove all the confounding.
Therefore, the resulting estimates may be asymptotically biased.

A recent literature provides conditions in which causal e�ects are nonpara-
metrically identi�ed when only proxy controls are available. Notably Miao
et al. (2018) in the biometrics literature which in turn builds on Kuroki &
Pearl (2014). In the economics literature identi�cation with proxy controls is
achieved in the context of regression discontinuity in Rokkanen (2015).

Key to these results is the observation that the use of proxy controls can be
understood as a measurement error problem. The proxy controls mismeasure a
set of latent perfect controls. To account for the measurement error Rokkanen
(2015) and Miao et al. (2018) assume that the proxy controls can be split into
groups that satisfy a set of conditional independence and `completeness' con-
ditions. The assumptions resemble some of those in Hu & Schennach (2008)
which apply for general measurement error (i.e., in treatments rather than just
controls). Identi�cation with proxy controls is somewhat more amenable than
the problem of measurement error in treatment variables. We are not interested
in the causal e�ect of the perfect controls themselves and so we can weaken some
of the assumptions in Hu & Schennach (2008) and provide a simpler, construc-
tive identi�cation of causal objects and an uncomplicated estimation method.
Notably, we do not require a normalization like mean- or median-unbiasedness
of the mis-measured variables which is required by Hu & Schennach (2008).

In Miao et al. (2018), as in our work, the researcher divides the available
proxy controls into two groups and, in e�ect, uses one group of proxy controls
to instrument for the other. The validity of this approach does not require
that the proxy controls be valid instruments in the standard sense. Instead,
the proxy controls must satisfy an exclusion restriction which, loosely speaking,
states that the two sets of proxy controls are only related through their mutual
association with the unobserved perfect controls. In addition to this assumption
one requires that the proxy controls are su�ciently informative (de�ned in terms
of statistical completeness) about the latent perfect controls.

The assumption that the two sets of proxy controls are related only through
mutual association with underlying perfect controls must be assessed on a case-
by-case basis. If multiple sets of test scores are available one may reasonably
assume that the test scores re�ect only underlying academic ability and random
conditions on the day of the test. Therefore, if academic ability is the rele-
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vant perfect control, the scores on the di�erent tests are plausibly independent
conditional on this latent factor (this argument is made in Cunha et al. (2010)).

In the panel case where past and future observations are used as proxy
controls, the assumption can be understood in terms of the serial dependence
structure of the data. Suppose that treatment assignment at each period t de-
pends only on innate ability, the treatment assignment at period t−1 and some
exogenous, serially independent factors. In other words, conditional on innate
ability the treatment assignments follow a �rst-order Markov dependence struc-
ture. Let one set of proxy controls be the treatment assignments from periods
prior to t and let the other set contain treatments in the periods subsequent to
t+1. Then the two sets of proxy controls are related only through innate ability
and the treatment at period t+1, which together are su�cient for the confound-
ing and thus constitute a set of perfect controls. The use of observations from
other periods to account for confounding originates in the work of Hausman &
Taylor (1981) and is the basis of methods in Holtz-Eakin et al. (1988), Arellano
& Bond (1991) and others in the linear panel case.

The assumption that each of the two sets of proxy controls are su�ciently
informative about the perfect controls is analogous to an instrumental relevance
condition. The proxy controls should be relevant instruments for the unob-
served perfect controls. This generally places some restrictions on the number
of unobserved perfect controls compared to proxy controls analogous to the or-
der condition in linear instrumental variables. In the panel case the number of
available observations from di�erent time periods is limited by the panel length.
If the proxy controls are observations from periods other than t, then the order
condition implies a lower bound on the panel length.

We contribute new results on identi�cation and estimation with proxy con-
trols. With regards to identi�cation, we identify a richer set of counterfactual
objects than those identi�ed by Miao et al. (2018) under similar assumptions,
for example the average e�ect of treatment on the treated. We provide condi-
tions under which the estimation problem suggested by our identi�cation result
is `well-posed'. The well-posedness of our estimation problem is crucial for de-
riving simple rates of convergence comparable to those achieved in standard
nonparametric regression. We provide a nonparametric estimator that builds
on our identi�cation results and analyze its properties. Our estimation method
is, to the best of our knowledge novel. A key intermediate step is a Penal-
ized Sieve Minimum Distance procedure of the type analyzed by Chen & Pouzo
(2012) and others.

To summarize, our contribution is threefold. We add new results for iden-
ti�cation with proxy controls that apply to both the cross-sectional and panel
settings. We propose a novel estimation method based on our identi�cation re-
sults. We show that in dynamic panel settings our exclusion restrictions follow
from conditions on the serial dependence structure of the data.

The paper is structured as follows. In Section 1 we present a general model
and de�ne causal objects of interest. We de�ne proxy controls and provide
conditions under which our objects of interest are identi�ed, we compare the
relationship between our results and those of Rokkanen (2015) and Miao et al.
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(2018). In Section 2 we present our estimation method and provide conditions
for its consistency. In Section 3 we show how our identi�cation results apply in
panel settings with a �xed number of time periods. Section 4 concludes.

1 General Model and Identi�cation

Consider the following structural model:

Y = y0(X,U) (1)

Y is an observed dependent variable, X is a column vector of observables
that represents the levels of assigned treatments, and U is a (potentially in�nite-
dimensional) vector that represents unobserved heterogeneity. The `structural
function' y0 is not assumed to be of any particular parametric form.

The model above incorporates both cross-sectional and panel settings. In
the panel case the model applies for a particular period t, that is, for a particular
cross-sectional slice of the panel data. In Section 3 we consider the panel case
exclusively and add time-subscripts to Y , X, U and y0 to make explicit the
time-dependence of the model.

Throughout the discussion it is assumed that the structural function y0 in
(1) captures the causal e�ect of X on Y . For clarity, we situate our analysis in
the potential outcomes framework. If a unit has realization of the heterogeneity
U of u, then y0(x, u) is the `potential outcome' from treatment level x. That
is, the outcome that would have been observed had the treatment of that unit
been set to level x. Thus U captures all heterogeneity in the potential outcomes.
We assume (without loss of generality) that for any x and any u1 6= u2 that
y0(x, u1) 6= y0(x, u2).

We assume throughout that the random pairs (X,U) are independently and
identically distributed. The assumption that the distribution is identical across
units is not restrictive in this setting because the distribution of the treatment
variable X could depend strongly on the unobserved heterogeneity U .

The focus of this paper is on the identi�cation and estimation of conditional
average potential outcomes, where we condition on the assigned treatments X
and possibly some additional variables S. By incorporating additional covariates
S into our analysis we can de�ne counterfactual objects like the average treat-
ment e�ect for a particular demographic sub-group with S = s. The function
that returns the conditional average potential outcomes is sometimes referred
to as the `conditional average structural function'.

Conditional average potential outcomes are de�ned formally as follows. The
conditional average potential outcome from treatment level x1, conditional on
treatment assignment X equal to x2 and additional covariates S equal to s is:

ȳ(x1|x2, s) = E
[
y0(x1, U)|X = x2, S = s

]
In words, suppose we draw a unit at random from the sub-population with

additional covariates S = s who were assigned treatment X = x2. Then the
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expected counterfactual outcome had the unit instead received treatment level
x1 is ȳ(x1|x2, s).

1

Many counterfactual objects of interest can be written in terms of the condi-
tional average potential outcomes. For example, conditional average treatment
e�ects and the average e�ect of treatment on the treated can both be expressed
using the conditional average potential outcomes and the probability distribu-
tions of some observables. For a more involved example, consider the average
outcome among agents in demographic group S = s had they received treat-
ments ten percent larger than those that were actually assigned. This can be
written as:

E
[
y0(1.1X,U)|S = s] =

∫
X
ȳ(1.1x|x, s)FX|S=s(dx)

Where X denotes the support of assigned treatments X and FX|S=s is the
distribution of X conditional on S = s (we use this notation for conditional
probability laws throughout).

By transforming the model one can de�ne an even richer set of counterfactual
objects in terms of the conditional average potential outcomes of the transformed
model. For example, let y be some �xed scalar and consider the transformation
w 7→ 1{w ≤ y}. Let Ỹ be the transformed outcome variable, that is Ỹ =
1{Y ≤ y}, and let ỹ0 be the transformed structural function, that is ỹ0(x, u) =
1{y0(x, u) ≤ y}. The transformed model is:

Ỹ = ỹ0(X,U)

The conditional cumulative distribution function of the potential outcomes
in the original model can be written as:

P
(
y0(x1, U) ≤ y|X = x2, S = s

)
= E

[
1{y0(x1, U) ≤ y}|X = x2, S = s

]
= E[ỹ0(x1, U)|X = x2, S = s]

The right-hand side of the �nal equality above is the conditional average
structural function for the transformed model. Our identifying assumptions do
not refer to Y directly but instead to the latent variable U , and as such our
assumptions are invariant to transformations of the kind above. That is, if our
assumptions apply for the original model they also apply for the transformed
model. Thus if we can identify the conditional average potential outcomes
then we can also identify the conditional cumulative distribution function of
the potential outcomes. Note that identi�cation of the conditional cumulative
distribution implies identi�cation of the conditional quantiles.

Proxy Controls

The identi�cation of the conditional average structural function is challenging
when assigned treatments X may be associated with heterogeneity U . A com-
mon approach to identi�cation in the presence of confounding relies on the

1Note that if X or S is continuously distributed then ȳ(x1|x2, s) is only uniquely de�ned
for x2 and s up to a set of F(X,S)-measure 1, where F(X,S) is the joint law of X and S.
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presence of what we term `perfect controls'. A vector of perfect controls is an
observable random vector W ∗, so that conditioning on W ∗ and the additional
covariates S, the treatments X and the heterogeneity in potential outcomes are
independent. That is:

U ⊥ X|(W ∗, S)

Note that we use the notation above to denote conditional independence
throughout this paper. Variables W ∗ with the property above are sometimes
referred to simply as `confounders' but due to the lack of consensus over this
term (VanderWeele & Shpitser (2013)) we refer to them exclusively as `perfect
controls'.

Under the conditional independence assumption above and a full support
assumption, the conditional average structural function is identi�ed by:

ȳ(x1|x2, s) =

∫
W∗

E[Y |X = x1,W
∗ = w, S = s]FW∗|X=x2,S=s(dw)

WhereW∗ is the support of the perfect controlsW ∗ and FW∗|X=x2,S=s is the
conditional probability law of controls W ∗ given assigned treatments X = x2

and additional covariates S = s.
When perfect controls W ∗ are unavailable the researcher may have access

to proxy controls W . W need not be a vector of perfect controls (i.e., U 6⊥
X|(W,S)), however W may be informative about the perfect controls W ∗.

We present assumptions that imply identi�cation when only proxy controls
W are available. The assumptions refer to the vector of perfect controls W ∗ for
which W acts as a proxy. Since W ∗ is unobserved, the assumptions can be un-
derstood to state that a vector of latent variablesW ∗ exists that simultaneously
satis�es all the conditions in our assumptions. To argue persuasively that the
assumptions are plausible in a given setting, a researcher will generally have to
choose a particular set of unobserved perfect controls W ∗ and argue that the
assumptions hold for those controls. Our identi�cation results resemble those
of Miao et al. (2018) and, to a lesser extent, Rokkanen (2015). We provide a
detailed comparison later in this section.

As Rokkanen (2015) notes, the problem of identi�cation with proxy con-
trols can be understood as a measurement-error problem. The vector of proxy
controls W can be understood as a measurement of W ∗ that is subject to non-
classical (i.e., non-zero mean and non-additive) noise. Like Miao et al. (2018),
we propose that the researcher split the vector of proxy controls W into two
(possibly over-lapping) sub-vectors V and Z. The researcher in e�ect uses the
proxy controls in Z as instruments for the proxy controls in V .

The instruments Z must be valid in that they satisfy an exclusion restriction
involving the proxy controls V , the treatments X and the unobserved perfect
controls W ∗. We emphasize that, unlike in standard instrumental variables
analysis, Z implicitly acts as an instrument for W ∗ and not for the treatments
X. As such, Z is not required to be independent of W ∗. In fact, Z must satisfy
an informativeness assumption that is analogous to an instrumental relevance

6



condition and this generally precludes that Z and W ∗ be independent.2

We state our �rst two assumptions below. Assumption 1 is easily satis�ed
if W is a vector of perfect controls (i.e., U ⊥ X|(W,S)), in that case take the
relevant perfect controls to be W ∗ = W , setting V = Z = W the condition
holds trivially. If, in addition, W has full support conditional on X and S then
Assumption 2 holds with V = Z = W .

Assumption 1 (Conditional Independence)
i. U ⊥ (X,Z)|(W ∗, S) ii. V ⊥ (X,Z)|(W ∗, S)

Assumption 2 (Informativeness)
i. For F(X,S)-almost all (x, s), for any function δ ∈ L2(FW∗|X=x,S=s):

E
[
E[δ(W ∗)|Z,X, S]2|X = x, S = s] = 0 ⇐⇒ E[δ(W ∗)2|X = x, S = s] = 0

ii. For F(X,S)-almost all (x, s), for any function δ ∈ L2(FW∗|X=x,S=s):

E
[
E[δ(W ∗)|V,X, S]2|X = x, S = s] = 0 ⇐⇒ E[δ(W ∗)2|X = x, S = s] = 0

Assumption 1 makes two assertions of conditional independence. In words,
Assumption 1.i states that the perfect controls W ∗ and additional covariates S
explain all the association between the heterogeneity U on the one hand, and
the treatments X and proxy controls Z on the other. This assumption implies
that W ∗ is in fact a perfect control (it implies U ⊥ X|(W ∗, S)). Assumption
1.ii states that any dependence between V and (X,Z) is explained by their
mutual association with the perfect controls W ∗ and additional conditioning
variables S. We emphasize that the independence between V and (X,Z) in
Assumption 1.ii is conditional. Without conditioning on the perfect controls
W ∗ and additional covariates S, V could be strongly associated with both X
and Z. Again, note that neither Assumption 1.i nor 1.ii requires either V or Z
be independent of W ∗.

Assumption 2, loosely speaking, states that both V and Z are su�ciently in-
formative about the unobserved perfect controls W ∗. The informativeness con-
dition is in terms of `completeness', or more precisely, L2-completeness (Andrews
(2017)). Completeness is used to achieve identi�cation in the non-parametric
instrumental variables (NPIV) models of Newey & Powell (2003) and Ai &
Chen (2003). In the NPIV context, completeness is an instrumental relevance
condition analogous to the rank condition for identi�cation in linear IV (see
Newey & Powell (2003) for discussion). With this interpretation, 2.i states that
conditional on any given value of assigned treatments X and covariates S, Z
is a relevant instrument for W ∗, and 2.b. states that conditioning on X and
S, V is a relevant instrument for W ∗. Some su�cient conditions for statistical

2More precisely, Z and W ∗ must not be independent conditional on X and S (apart from
in the trivial case of W ∗ non-random).
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completeness can be found in D'Haultfoeuille (2011) and Hu & Shiu (2018). In
some settings L2-completeness is generic in a certain sense (Andrews (2017),
Chen et al. (2014)).

In the linear IV case, the rank condition can only hold if the number of
instruments exceeds the number of exogenous regressors for instrumental rele-
vance to be possible (this is known as the `order condition'). Such a condition is
not, strictly speaking, necessary for L2-completeness in nonparametric models.3

However, an order condition is necessary in certain special cases, for example
the conditional Gaussian case discussed in Newey & Powell (2003). As such, it
would seem prudent to require that V and Z be of a weakly larger dimension
than W ∗.

Finally, we introduce some regularity conditions. In Theorem 1 we char-
acterize the conditional average structural function as a limit of approximate
solutions to a conditional moment restriction. The regularity conditions im-
ply that this limit is well-de�ned and the estimation problem suggested by our
characterization is well-posed.

Some of the perfect controls in W ∗ may be observed and used as proxy con-
trols in Z, thus the vectors Z and W ∗ may have some components in common.
We denote the shared components by `W̄ ' and let Z̃ and W̃ ∗ respectively contain
the entries of Z and W ∗ other than those in W̄ . Thus we can decompose W ∗ =
(W̃ ∗, W̄ ) and Z = (Z̃, W̄ ). For each (x, s, w̄) in the support of (X,S, W̄ ) de�ne
a linear operator Ax,s,w̄ : L2(FZ̃|X=x,S=s,W̄=w̄)→ L2(FW̃∗|X=x,S=s,W̄=w̄) by:

Ax,s,w̄[δ](w̃∗) = E[δ(Z̃)|X = x, S = s, W̄ = w̄, W̃ ∗ = w̃∗]

For FW̃∗|X=x,S=s,W̄=w̄-almost all w̃∗.
Assumption 3
i. The joint distribution of W̃ ∗, Z̃, W̄ , X, and S is absolutely continuous

with respect to the product of their marginals. ii. For FX -almost all x1 and x2

and FS-almost all s and FW̄ -almost all w̄:

E

[
dFW∗|X=x2,S=s

dFW∗|X=x1,S=s
(W ∗)2

∣∣∣∣X = x1, S = s, W̄ = w̄

]
<∞

Where
dFW∗|X=x2,S=s

dFW∗|X=x1,S=s
is the Radon-Nikodym derivative of FW∗|X=x2,S=s

with respect to FW∗|X=x1,S=s.
4

iii. The following holds for FX -almost all x, FS-almost all s and FW̄ -almost
all w̄. Let `Fprod' denote the product measure of W̃ ∗ and Z̃ conditional on X =
x, S = s and W̄ = w̄.5 The conditional joint measure F(W̃∗,Z̃)|X=x,S=s,W̄=w̄ is
absolutely continuous with respect to Fprod:∫

W̃∗×Z̃

[
dF(W̃∗,Z̃)|X=x,S=s,W̄=w̄

dFprod
(w̃∗, z̃)

]2

Fprod(dw̃
∗, dz̃) <∞

3The methods of Andrews (2017) can be used to construct L2-complete distributions even
when the number of endogenous regressors exceeds the number of instruments.

4The absolute continuity in Assumption 3.i guarantees that the Radon-Nikodym derivative
exists.

5In more conventional notation Fprod is equal to FW̃∗|X=x,S=s,W̄=w̄⊗FZ̃|X=x,S=s,W̄=w̄.
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Where W̃∗ is the support of W̃ ∗ and Z̃ the support of Z̃.
iv. There exists a �nite constant C > 0 so that the following holds for FX -

almost all x1 and x2 , FS-almost all s and FW̄ -almost all w̄. Let {(uk, vk, µk)}∞k=1

be the singular system for Ax1,s,w̄. That is, µk is the k
th singular value of Ax1,s,w̄

and uk : W̃∗ → R and vk : Z̃ → R are the kth singular functions.6 Then:

∞∑
k=1

1

µ2
k

E[
dFW∗|X=x2,S=s

dFW∗|X=x1,S=s
(W ∗)uk(W̃ ∗)|X = x1, S = s, W̄ = w̄]2 ≤ C

The purpose of Assumptions 3.i, 3.ii and 3.iii is to ensure that the ex-
pansion in Assumption 3.iv is well-de�ned. Assumption 3.i ensures that the
Radon-Nikodym derivatives in 3.ii and 3.iii exist. Assumption 3.ii states that

the Radon-Nikodym derivative
dFW∗|X=x2,S=s

dFW∗|X=x1,S=s
lies in the relevant space of mean

square integrable functions. Assumption 3.iii guarantees that Ax,s,w̄ is Hilbert-
Schmidt and thus compact and so the singular system in Assumption 3.iv is
well-de�ned (see Darolles et al. (2011) for some discussion).

Assumption 3.iv is crucial to our analysis because it ensures our character-
ization of the conditional average structural function is well-de�ned and that
estimation of the conditional average structural function is not `ill-posed'. This
allows us to derive simple convergence rates for our estimation method that are
comparable to those in standard non-parametric regression. Loosely speaking,
Theorem 1 below characterizes the conditional average structural function as
a linear functional of a nonparametric instrumental variables (NPIV) regres-
sion function. Estimation of an NPIV regression function is generally ill-posed
but estimation of a su�ciently smooth linear functional of an NPIV regression
function is well-posed.

Assumption 3.iv (combined with Assumption 2), implies that there exists a
function ϕ so that:

E[ϕ(x1, x2, s, Z)|X = x1, S = s,W ∗ = w∗] =
dFW∗|X=x2,S=s

dFW∗|X=x1,S=s
(w∗)

And:
E
[
ϕ(x1, x2, s, Z)2|X = x1, S = s

]
≤ C

This in turn implies a special case of a condition of Lemma 4.1 from Sev-
erini & Tripathi (2012). Severini & Tripathi (2012) and Ichimura & Newey
(2017) show that a condition of this kind is closely related to root-n estimability.
Deaner (2019) shows the same condition is (under mild additional assumptions)
necessary and su�cient for robust estimation of the linear functional.

Theorem 1

Suppose Assumptions 1, 2, and 3 hold. Then the conditional average structural
function E[y0(x1, U)|X = x2, S = s] is identi�ed (for (x1, x2, s) up to a set of

6See, e.g., Kress (2014) Theorem 15.16 and associated discussion.
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F 2
X ⊗FS-measure 1). In particular, there exists a sequence of functions {γk}∞k=1

with γk(x, s, ·) ∈ L2(FV |X=x,S=s) so that:

lim
k→∞

E

[
E[Y − γk(X,S, V )|X,S,Z]2

∣∣X = x, S = s

]
= 0

And for any such a sequence:

ȳ(x1|x2, s) = lim
k→∞

E
[
γk(x1, S, V )|X = x2, S = s

]
In particular, for FX -almost all x1 and x2 and FS-almost all s:(

ȳ(x1|x2, s)− E[γk(x1, S, V )|X = x2, S = s]
)2

(2)

≤CE
[(
E[Y − γk(X,S, V )|X,S,Z]

)2∣∣∣∣X = x1, S = s

]
N
The characterization of the conditional average structural function in Theo-

rem 1 suggests a two-step approach to estimation. In a �rst stage, the researcher
�nds a function γ̂ that approximately satis�es an empirical analogue of the fol-
lowing moment condition (with parameter γ):

E[γ(X,S, V )− Y |X = x, S = s, Z = z] = 0 (3)

For F(X,S,Z)-almost all (x, s, z). Equation (3) is equivalent to a non-parametric
instrumental variables (NPIV) moment condition in which V is the vector of
endogenous regressors, X and S are vectors of exogenous regressors, and Z is
a vector of instruments. Thus we can attain an approximate solution using
standard NPIV methods.

Note that Theorem 1 does not state that there exists a γ that satis�es
the estimating equation (3) exactly. Instead it asserts that there is a γ that
makes the two sides arbitrarily close (in a particular mean squared sense). For
estimation this detail is of little consequence: an empirical analogue of the NPIV
estimating equation generally has an exact solution.

So suppose γ̂ solves an empirical analogue of the moment condition (3). In a
second step Theorem 1 suggests we estimate the conditional average structural
function by:

E[y0(x1, U)|X = x2, S = s] ≈ Ê
[
γ̂(x1, S, V )|X = x2, S = s

]
where `Ê' denotes some empirical analogue of the conditional expectation.

The �nal assertion of Theorem 1 implies that our estimation problem is not ill-
posed. In words, if γ̂ satis�es the population moment condition (3) with small
error, then E

[
γ̂(x1, S, V )|X = x2, S = s

]
is close to the conditional average

potential outcome ȳ(x1|x2, s). If, in addition, E
[
γ̂(x1, S, V )|X = x2, S = s

]
is close to the sample analogue Ê

[
γ̂(x1, S, V )|X = x2, S = s

]
, then the latter

provides a good estimate of the conditional average potential outcome. This
motivates our estimator in the next section.
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Relationship to Existing Results

Our results are closely related to those in Miao et al. (2018). Suppose there
are no additional covariates S. Then our Assumptions 2.i and 2.ii are similar
to Conditions 2 and 3 in Miao et al. (2018) and in fact if either our Assump-
tion 1 holds or their exclusion restriction (f) holds, then their Conditions 2
and 3 imply our Assumption 2. Our Assumption 1 is equivalent to their exclu-
sion restriction (f) plus the assumption that U ⊥ X|W ∗. Our characterization
of the conditional average potential outcomes in Theorem 1 somewhat resem-
bles their characterization of p(y|do(x)). Note that Miao et al. (2018) do not
assume that U ⊥ X|W ∗. They equate p(y|do(x)) with (for a binary Y ) the
object E

[
E[Y |X = x,W ∗]

]
. For this to equal the average potential outcome

E[y0(x, U)], one generally requires U ⊥ X|W ∗. Therefore it seems the assump-
tion is implicit in their analysis.

Our identi�cation result di�ers from Miao et al. (2018) in key ways. Firstly,
our analysis allows us to identify the conditional distribution of potential out-
comes (conditional on assigned treatments X and additional characteristics S).
This allows us to identify a richer set of counterfactual objects, for example the
average e�ect of treatment on the treated or the policy counterfactual discussed
earlier in this section in which units receive treatments a �xed percentage larger
than those observed. Furthermore, we provide a regularity condition, Assump-
tion 3, which ensures the well-posedness of estimators based on our characteri-
zation of the conditional average structural function. Well-posedness is crucial
for deriving transparent convergence rates. Note that our Assumption 3 also
replaces Conditions A1, A2 and A3 in Miao et al. (2018).

Rokkanen (2015) gives conditions for identi�cation in the setting of regres-
sion discontinuity design. Our Assumptions 1.i and 1.ii resemble but are slightly
weaker than the analogous Assumptions D.1 and C.2 in Rokkanen (2015). We
require only L2-completeness, compared to the bounded completeness in As-
sumptions D.2 and C.5 in Rokkanen (2015). Rokkanen (2015) applies the re-
sults of Hu & Schennach (2008) and correspondingly his Condition C.4 requires
that the mis-measured perfect controls satisfy a normalization like mean- or
median-unbiasedness. 7

2 Estimation

In this section we describe our estimation method. The key step in the procedure
corresponds to penalized sieve minimum distance (PSMD) estimation. PSMD
estimators and some of their properties are discussed in Chen & Pouzo (2012),
Chen & Pouzo (2015), and others. Because the estimation procedure is of the
�sieve� type, the practitioner must choose an appropriate sequence of linear sieve
spaces.

Let Kn be an increasing sequence of natural numbers. For each n let Φn be a

7However, we conjecture that a failure of Assumption C.4 does not lead to inconsistency
in the estimator suggested by Rokkanen (2015), his work does not consider this possibility.
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length-Kn column vector of basis functions de�ned on the support of (X,S, V ).
In a �rst stage the practitioner estimates the vector of regression functions Πn

de�ned by:

Πn(x, s, z) = E[Φn(X,S, V )|X = x, S = s, Z = z]

The practitioner also estimates the vector of regression functions αn de�ned
by:

αn(x1, x2, s) = E[Φn(x1, S, V )|X = x2, S = s]

And �nally, the practitioner estimates the function g given by:

g(x, s, z) = E[Y |X = x, S = s, Z = z]

Denote the estimates of Πn, αn and g by Π̂n, α̂n and ĝ respectively. The
estimation of each of these functions can be carried out using a standard non-
parametric regression method like local-linear regression, polynomial-series re-
gression or Nadaraya-Watson. For concreteness, consider the case of series least
squares estimation. Let Ψn be a column vector of basis functions de�ned on
X × S × Z. Let χn be a column vector of basis functions de�ned on X × S.
De�ne matrices Q̂n and R̂n by:

Q̂n =
1

n

n∑
i=1

Ψn(Xi, Si, Zi)Ψn(Xi, Si, Zi)
′

R̂n =
1

n

n∑
i=1

χn(Xi, Si)χn(Xi, Si)
′

Then the sieve estimators for Πn, αn and g are given below:

Π̂n(x, s, z) = Ψn(x, s, z)′Q̂−1
n

1

n

n∑
i=1

Ψn(Xi, Si, Zi)
′Φn(x, s, Vi)

α̂n(x1, x2, s) = χn(x2, s)
′R̂−1
n

1

n

n∑
i=1

χn(Xi, Si)
′Φn(x1, s, Vi)

ĝ(x, s, z) = Ψn(x, s, z)′Q̂−1
n

1

n

n∑
i=1

Ψn(Xi, Si, Zi)
′Yi

Let P be some penalty function (for example the l2 penalty). Let λn be a
positive scalar penalty parameter. In the second stage, the researcher evaluates
a vector of coe�cients θ̂ ∈ Θn ⊆ RKn that minimize the penalized least squares
objective below:

θ̂ ∈ arg min
θ∈Θn

[
1

n

n∑
i=1

(
ĝ(Xi, Si, Zi)− Π̂n(Xi, Si, Zi)

′θ
)2

+ λnP (θ)

]
(4)
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The estimate of the conditional average structural function is then given by:

ȳ(x1|x2, s) ≈ α̂n(x1, x2, s)
′θ̂ (5)

Note that for certain choices of the penalty function P and coe�cient space
Θn, the penalized least squares problem that is used to de�ne θ̂ has an analytical
solution. This is true, for example, if Θn = RKn and the squared l2 penalty is
used (i.e., P (θ) = θ′θ). Therefore, depending on the regression method used in
the �rst stage our procedure may not require any kind of numerical optimization.

Consistency and Convergence Rate

Below we provide simple high-level conditions that, when combined with As-
sumptions 1, 2 and 3 in the previous section, guarantee consistency and a con-
vergence rate for our estimator. We note that the convergence rate does not
depend on any `sieve-measure of ill-posedness' (Chen & Pouzo (2012)). The
well-posedness of our problem depends crucially on Assumption 3.

In the assumptions below, `ess sup' denotes the essential supremum, i.e., the
smallest almost sure bound on its argument.

Assumption 4 i. There exists a sequence κn ↓ 0 so that:

inf
θ∈Θn

ess supE

[(
g(X,S,Z)−Πn(X,S,Z)′θ

)2∣∣∣∣X,S] 1
2

= Op(κn)

ii. There exists a sequence ηn ↓ 0 and a constant c > 0 so that:

ess supE

[(
g(X,S,Z)−Πn(X,S,Z)′θ̂

)2∣∣∣∣X,S] 1
2

≤ c inf
θ∈Θn

ess supE

[(
g(X,S,Z)−Πn(X,S,Z)′θ

)2∣∣∣∣X,S] 1
2

+Op(ηn)

Where the estimator θ̂ is treated as a constant in the expectation on the LHS
above. iii. There exists a sequence bn ↓ 0 so that uniformly over x1, x2 ∈ X and
s ∈ S: ∣∣(α̂n(x1, x2, s)− αn(x1, x2, s)

)′
θ̂
∣∣ ≤ Op(bn)

Theorem 2 below gives a convergence rate for our estimator in terms of the
rates given in Assumption 4.

Theorem 2

Suppose Assumptions 1, 2, 3 and 4 hold, then uniformly over FX -almost all x1

and x2 and FS-almost all s:∣∣ȳ(x1|x2, s)− α̂n(x1, x2, s)
′θ
∣∣ = Op(κn + ηn + bn)

N
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Panel Models

The analysis in previous sections applies to the model (1) which may apply in
both cross-section and panel settings. In the previous sections we are agnostic
about the source of the proxy controls W and sub-vectors V and Z. In panel
settings, observations from previous and subsequent periods are a natural source
of proxy controls. Loosely speaking, if the same factors explain the confounding
in each period (there are time-invariant perfect controls), then treatment as-
signments in other periods are informative about the confounding. Thus we can
form vectors V and Z using treatments (and possibly outcomes) from di�erent
periods. Then the exclusion restriction in Assumption 1.ii can be understood
in terms of the serial dependence of the observables.

In the panel setting, the data have a `time' dimension and a `unit' dimension.
To apply our analysis in the panel case we rewrite the model (1) with time
subscripts:

Yt = y0,t(Xt, Ut)

Then for each group there is an associated draw of the random variables
(X1, ..., XT , U1, ..., Ut) and a resulting sequence of outcomes (Y1, ..., YT ). We
assume that the data are iid across groups but not necessarily within groups.
More precisely, we assume that draws of (X1, ..., XT , U1, ..., Ut) are independent
and identically distributed. However, within each group the random variables
(Xt, Ut) may exhibit various forms of serial-dependence.

In the panel setting our goal is to identify and estimate causal objects of the
form below for a particular value of t:

E[y0,t(x1, Ut)|Xt = x2, S = s]

The above is the conditional average potential outcome at period t from
treatment x1 conditional on assignment of treatment x2 at t and additional
characteristics s. As we discuss below, under some assumptions regarding the
serial dependence structure it may be possible to identify the object above for
some values of t and not others.

In this context Assumptions 1.i and 1.ii state that:

Ut ⊥ (Xt, Z)|(W ∗, S)

V ⊥ (Xt, Z)|(W ∗, S)

We will form the vectors of proxy controls V and Z using assigned treatments
and possibly outcomes from periods other than t. The use of observations from
previous and subsequent periods for V and Z is redolent of the use of lagged
variables as instruments in Arellano & Bond (1991) and Holtz-Eakin et al. (1988)
for linear dynamic panel models. The appropriate choices for V and Z depend
on the time-dependence structure of the data. A key case is that in which the
assigned treatments, and possibly the outcomes, follow a Markov dependence
structure.
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Markov Treatment Assignments

Fix some period t. Suppose that conditional on some (possibly period t-speci�c)
latent variables W̃ ∗, the following exclusion restriction holds:

Ut ⊥ (X1, ..., XT )|(W̃ ∗, S)

In words, the assumption above states that any association between the as-
signed treatments in all periods and heterogeneity in time-t potential outcomes,
is explained by some factors W̃ ∗ and the additional conditioning variables S.

We suppose that conditional on the latent variables W̃ ∗ and additional con-
ditioning variables S, the regressors satisfy a �rst-order Markov dependence
structure at time t+ 1. Formally:

(Xt+2, ..., XT ) ⊥ (X1, ..., Xt)|(W̃ ∗, Xt+1, S)

That is, conditional on the latent variables W̃ ∗, additional covariates S,
the treatment assignments for period prior to t + 1 are only only related to
treatments after t + 1 through the treatment at t + 1. In this case suppose we
set V and Z as follows:

V = (Xt+1, ..., XT )

Z = (X1, ..., Xt−1, Xt+1)

Let the perfect controls W ∗ consist not only of the latent factors W̃ ∗ but
also the treatment assignment at t+ 1. That is:

W ∗ = (W̃ ∗, Xt+1)

Note that V , Z and W ∗ all contain Xt+1. With the de�nitions above,
Assumption 1 holds. That is:

Ut ⊥ (Xt, Z)|(W ∗, S)

V ⊥ (Xt, Z)|(W ∗, S)

In fact, we can allow for greater order Markov processes. Suppose we make
the following kth order Markov assumptions:

(Xt+k+2, ..., XT ) ⊥ (X1, ..., Xt)|(ξ,Xt+1, .., Xt+k+1, S)

Then letting V , Z and W ∗ be de�ned as follows, Assumption 1 is satis�ed:

Z = (X1, ..., Xt−1, Xt+1, ..., Xt+k)

V = (Xt+1, ..., XT )

W ∗ = (W̃ ∗, Xt+1, ..., Xt+k)
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Note that the assumption Ut ⊥ X|W̃ ∗, S is unnecessarily strong. The fol-
lowing weaker, but less intuitive assumption would su�ce:

Ut ⊥ (X1, ..., Xt)|(W̃ ∗, Xt+1, ..., Xt+k, S)

Markov Treatment Assignments and Heterogeneity

We now give conditions under which Z and V may be composed not only of
treatment assignments from periods other than t, but also the outcomes from
other periods. We strengthen the exclusion restriction from the previous sub-
section:

(U1, ..., UT ) ⊥ (X1, ..., XT )|(W̃ ∗, S)

The above states that any dependence between treatment assignments in all
periods and heterogeneity in potential outcomes in all periods, is explained by
the (possibly period-t speci�c) factors W̃ ∗ and additional conditioning variables
S.

We suppose that conditional on the latent variables W̃ ∗ and additional con-
ditioning variables S, both the treatment assignments and heterogeneity are
�rst-order Markov process:

(Xt+2, ..., XT , Ut+2, ..., UT ) ⊥ (X1, ..., Xt, U1, ..., Ut)|(W̃ ∗, Xt+1, Ut+1, S)

Recall from the �rst section that we assume (without loss of generality) that
for any x and any u1 6= u2 that y0,t(x, u1) 6= y0,t(x, u2). Thus the condition
above is equivalent to:

(Xt+2, ..., XT , Yt+2, ..., YT ) ⊥ (X1, ..., Xt, Y1, ..., Yt)|(W̃ ∗, Xt+1, Yt+1, S)

Then set V , Z and W ∗ as follows:

V = (Xt+1, ..., XT , Yt+1, ..., YT )

Z = (X1, ..., Xt−1, Xt+1, Y1, ..., Yt−1, Yt+1)

W ∗ = (W̃ ∗, Xt+1, Yt+1)

Then Assumption 1 holds:

Ut ⊥ (Xt, Z)|(W ∗, S)

V ⊥ (Xt, Z)|(W ∗, S)

Again, we can allow for greater order Markov processes. Suppose we make
the following kth order Markov assumptions. De�ne Ct by:

Ct = (W̃ ∗, Xt+1, ..., Xt+k+1, Ut+1, ..., Ut+k+1, S)
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Then:

(Xt+k+2, ..., XT , Ut+k+2, ..., UT ) ⊥ (X1, ..., Xt, U1, ..., Ut)|Ct
Then letting V , Z and W ∗ be de�ned as follows, Assumption 1 is satis�ed:

Z = (X1, ..., Xt−1, Xt+1, ..., Xt+k, Y1, ..., Yt−1, Yt+1, ..., Yt+k)

V = (Xt+1, ..., XT , , Yt+1, ..., YT )

W ∗ = (W̃ ∗, Xt+1, ..., Xt+k, Yt+1, ..., Yt+k)

Assumption 2 in the Panel Case

Assumption 2 consists of two L2-completeness conditions. As discussed in Sec-
tion 1, these conditions can be understood as instrumental relevance conditions:
conditioning onXt and S, both V and Z must be relevant for the perfect controls
W ∗.

In the Markov treatment assignment case discussed above, both V and Z
are likely to be strongly associated with the perfect controls W ∗ = (W̃ ∗, Xt+1).
Both Z and V contain Xt+1 and in addition some treatment assignments for
periods other than t. Recall that W̃ ∗ is a vector of perfect controls, i.e., a vector
that explains confounding between (X1, ..., XT ) and Ut. If there is confounding
in each period that is explained by the presence of those same variables W̃ ∗

then each component of Z and V ought to be informative about W̃ ∗.
Note that the larger the time dimension T , the more numerous are available

treatments from di�erent periods from which one may form Z and V . Z and
V are then more likely to satisfy Assumption 2. As we discuss in Section 1,
it is prudent to require that an order condition hold, i.e., that V and Z each
be of a weakly larger dimension than W ∗. In the �rst-order Markov treatment
assignment example above when treatments are scalar, Z is of length t and V is
of length T − t. Therefore, the order condition requires that W̃ ∗ be of length at
most min{t, T−t}. In the kth order Markov case we need W̃ ∗ to be of dimension
weakly less than min{t, T − t− k + 1}.

Proofs

Proof Theorem 1

For each x ∈ X and s ∈ S de�ne the linear operator Bx,s : L2(FW∗|X=x,S=s)→
L2(FV |X=x,S=s) by:

Bx,s[δ](v) = E[δ(W ∗)|V = v,X = x, S = s]
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For FV |X=x,S=s-almost all v. Assumption 2.ii is then equivalent to the
statement that the operator Bx,s is injective. The adjoint operator B∗x,s :
L2(FV |X=x,S=s)→ L2(FW∗|X=x,S=s) is then given by:

B∗x,s[δ](w
∗) = E[δ(Z)|W ∗ = w∗, X = x, S = s]

For FW∗|X=x,S=s-almost all w∗. Injectivity of an operator implies that its
adjoint has dense range (see e.g., Kress (2014) Theorem 15.8). Therefore, there
exists a sequence of functions de�ned on X × S × V, {γk}∞k=1, so that for FX -
almost all x and FS-almost all s, γk(x, s, ·) is in L2(FV |X=x,S=s) and:

lim
k→∞

E

[
E[γk(X,S, V )− Y |X,S,W ∗]2|X = x, S = s

]
= 0

By iterated expectations and Assumption 1.b:

E[γk(X,S, V )|X,S,Z] = E
[
E[γk(X,S, V )|X,S,W ∗, Z]

∣∣X,S,Z]
= E

[
E[γk(X,S, V )|X,S,W ∗]

∣∣X,S,Z]
And by Assumption 1.a and iterated expectations implies:

E[Y |X,S,Z] = [y0(X,U)|X,S,Z]

= E
[
E[y0(X,U)|X,S,W ∗, Z]

∣∣X,S,Z]
= E

[
E[y0(X,U)|X,S,W ∗]

∣∣X,S,Z]
= E

[
E[Y |X,S,W ∗]

∣∣X,S,Z]
Using the above and noting that a conditional expectation operator has

operator norm weakly less than unity:

lim
k→∞

E

[
E[γk(X,S, V )− Y |X,S,Z]2|X = x, S = s

]
= 0

Recall the decompositions W ∗ = (W̃ ∗, W̄ ) and Z = (Z̃, W̄ ) and de�ni-
tion of the linear operator Ax,s,w̄ given in the main body of the paper. As-
sumption 2.i states that the adjoint operator A∗x,s,w̄ is injective and so Ax,s,w̄
has dense range. Thus using Assumption 2.i and Assumption 3, the function

w̃∗ 7→ dFW∗|X=x2,S=s

dFW∗|X=x1,S=s
(w̃∗, w̄) satis�es Picard's criterion to be in the range of

Ax,s,w̄ (see Kress (2014) Theorem 15.18). Thus there exists a function ϕ de-
�ned on X 2×S×Z with ϕ

(
x1, x2, s, (·, w̄)

)
∈ L2(FZ̃|X=x1,S=s,W̄=w̄) so that for

FX -almost all x1 and x2, FS-almost all s, FW̄ -almost all w̄ and FW̃∗ -almost all
w∗:

Ax,s,w̄[ϕ
(
x1, x2, s, (·, w̄)

)
](w̃∗) =

dFW∗|X=x2,S=s

dFW∗|X=x1,S=s
(w̃∗, w̄)

Equivalently, for FX -almost all x1 and x2, FS-almost all sand FW∗ -almost
all w∗:
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E[ϕ(x1, x2, s, Z)|X = x1, S = s,W ∗ = w∗] =
dFW∗|X=x2,S=s

dFW∗|X=x1,S=s
(W ∗) (6)

And further, given Assumption 3.iv, at least one function ϕ that satis�es the
above satis�es the following inequality (again see Kress (2014) Theorem 15.18).
For FX -almost all x1 and x2, FS-almost all s and FW̄ -almost all w̄:

E
[
ϕ
(
x1, x2, s, (Z̃, w̄)

)2|X = x1, S = s, W̄ = w̄
]
≤ C

This implies that for FX -almost all x1 and x2 and FS-almost all s:

E[ϕ(x1, x2, s, Z)2|X = x1, S = s] ≤ C

Now note that:

E[y0(x1, U)|X = x2, S = s]

=E
[
E[y0(x1, U)|X = x2, S = s,W ∗]

∣∣X = x2, S = s
]

=E
[
E[y0(X,U)|X = x1, S = s,W ∗]

∣∣X = x2, S = s
]

=E
[
E[y0(X,U)|X,S,W ∗]

dFW∗|X=x2,S=s

dFW∗|X=x1,S=s
(W ∗)|X = x1, S = s

]
=E
[
E[y0(X,U)|X,S,W ∗]E[ϕ(x1, x2, s, Z)|X,S,W ∗]|X = x1, S = s

]
=E
[
E[y0(X,U)|X,S,W ∗]ϕ(x1, x2, s, Z)|X = x1, S = s

]
=E
[
E[y0(X,U)|X,S,W ∗, Z]ϕ(x1, x2, s, Z)|X = x1, S = s

]
=E
[
E[Y |X,S,Z]ϕ(x1, x2, s, Z)|X = x1, S = s

]
Where the �rst equality follows by iterated expectations, the second by As-

sumption 1.i, the third by de�nition of the Radon-Nikodym derivative, the
fourth by 6, the �fth by iterated expectations, the sixth by Assumption 1.i,
and the �nal equality by iterated expectations and the de�nition of Y .

Moreover, following similar steps:

E
[
γk(x1, S, V )|X = x2, S = s

]
=E
[
E[γk(x1, S, V )|X,S,W ∗]|X = x2, S = s

]
=E
[
E[γk(X,S, V )|X = x1, S,W

∗]|X = x2, S = s
]

=E
[
E[γk(X,S, V )|X,S,W ∗]

dFW∗|X=x2,S=s

dFW∗|X=x1,S=s
(W ∗)|X = x1, S = s

]
=E
[
E[γk(X,S, V )|X,S,W ∗]E[ϕ(x1, x2, s, Z)|X,S,W ∗]|X = x1, S = s

]
=E
[
E[γk(X,S, V )|X,S,W ∗]ϕ(x1, x2, s, Z)|X = x1, S = s

]
=E
[
E[γk(X,S, V )|X,S,W ∗, Z]ϕ(x1, x2, s, Z)|X = x1, S = s

]
=E
[
E[γk(X,S, V )|X,S,Z]ϕ(x1, x2, s, Z)|X = x1, S = s

]
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Where the �rst equality follows by iterated expecations, the second by As-
sumption 1.ii, the third by the de�nition of the Radon-Nikodym derivative, the
fourth by 6, the �fth by iterated expectations, the sixth by Assumption 1.ii, and
the �nal equality by iterated expectations. Combining we get:

E[y0(x1, U)|X = x2, S = s]− E
[
γk(x1, S, V )|X = x2, S = s

]
= E

[(
E[Y − γk(X,S, V )|X = x1, S = s, Z]

)
ϕ(x1, x2, s, Z)

∣∣∣∣X = x1, S = s

]
And so, since E

[
ϕ(x1, x2, s, Z)2|X = x1, S = s

]
≤ C, by Cauchy-Schwartz:(

E[y0(x1, U)|X = x2, S = s]− E
[
γk(x1, S, V )|X = x2, S = s

])2
≤ CE

[(
E[Y − γk(X,S, V )|X,S,Z]

)2∣∣∣∣X = x1, S = s

]
And we already established that the RHS converges to zero.
�

Proof of Theorem 2

First we show that under Assumptions 1, 2, 3 and 4.iii for FX -almost all x:

ess sup |ȳ(x|X,S)− α̂n(x,X, S)′θ̂|

≤ess sup
√
CE

[(
g(X,S,Z)−Πn(X,S,Z)′θ̂

)2∣∣∣∣X,S] 1
2

+Op(bn) (7)

Where θ̂ is treated as a constant in the expectation on the RHS above. By
the triangle inequality:

∣∣ȳ(x1|x2, s)− α̂n(x1, x2, s)
′θ̂
∣∣

≤
∣∣ȳ(x1|x2, s)− αn(x1, x2, s)

′θ̂
∣∣

+
∣∣(αn(x1, x2, s)− α̂n(x1, x2, s)

)′
θ̂
∣∣

By Assumption 4.iii:

ess sup
∣∣(αn(x,X, S)− α̂n(x,X, S)

)′
θ̂
∣∣ ≤ Op(bn)

Applying Theorem 1 with γk(X,S, V ) = Φ(X,S, V )′θ̂:
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(
ȳ(x1|x2, s)− αn(x1, x2, s)

′θ̂
)2

≤CE
[(
g(X,S,Z)−Πn(X,S,Z)′θ̂

)2∣∣∣∣X = x1, S = s

]
Combining gives 7.
Next note that by Assumption 4.i and 4.ii:

E

[(
g(X,S,Z)−Πn(X,S,Z)′θ̂

)2∣∣∣∣X = x1, S = s

] 1
2

≤c inf
θ∈Θn

ess sup
x∈X ,s∈S

E

[(
g(X,S,Z)−Πn(X,S,Z)′θ

)2∣∣∣∣X = x, S = s

] 1
2

+Op(ηn)

=Op(κn + ηn)

Combining with 7 we get the result.
�
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