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1 Introduction and motivation

Since the global �nancial crisis, policymakers have designed macroprudential policies that help stabilise

debt and prevent or lessen the impact of future �nancial shocks. However, with many of these policies still

untested, policymakers are facing the challenge of understanding their interactions with monetary policy

or with the rest of the macroprudential toolkit. The task is even harder when, unlike for monetary policy,

the objectives of macroprudential policy are much broader in nature and cannot be de�ned numerically.

For example, in the UK the objectives of the macroprudential policymaker, the Financial Policy Committee

(FPC), is to identify and address all risks to �nancial stability while remaining mindful to the e�ects it has

on the wider economy.

The ample range of potential risks to be monitored and addressed as well as the availability of multiple

macroprudential tools adds complexity to the task of choosing optimal policy by central bankers. Addition-

ally, setting policy is even more complicated if, as in the UK, the remit of the macroprudential policymaker

includes risks from both the �nancial sector and household balance sheets. As household behaviour can

a�ect both the resilience of �nancial intermediaries and the wider economy via aggregate demand e�ects,

they will also be of interest to the monetary policymaker. Thus, these risks could be addressed by both

monetary and macroprudential tools. This raises the importance of optimal policy interaction to achieve

both �nancial and price stability.

This paper contributes to the existing literature on the optimal use of monetary and macroprudential

policy by considering a comprehensive macroprudential toolkit that includes collateral constraints, capital

requirements for banks and a�ordability constraints on mortgage borrowers. Our setup allows us to explore

a rich set of interactions between policies acting on bank balance sheets, household balance sheet and �rms'

production decisions. To the standard DSGE model of Smets and Wouters (2007), we follow Iacoviello (2015)

and add household borrowing subject to a collateral constraint in the form of a loan-to-value (LTV) limit.

We also add an endogenous leverage constraint on banks, resulting from the possibility of bank runs a la

Gertler and Karadi (2105). The �nancial and real frictions in the model give rise to meaningful roles for

macroprudential policy and monetary policy. However, unlike the existing academic literature we model the

actual policy toolkit used by central banks at the moment. We do this by augmenting the model in two

important ways.

First, we add capital requirements on banks. We do this via a maximum leverage ratio set by the policy

maker. Further, we assume that banks see leverage limits as an absolute maximum and they will expend

e�ort (ie, incur costs) to avoid reaching it. This approach ties in with the data, as in practice banks keep

excess capital bu�ers over and above their capital requirements.

Second, in addition to the LTV limit, we examine the role of a�ordability constraints on mortgage lending

and their interaction with monetary policy. Most of the existing literature on household and bank leverage
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has considered the policy design of either LTV limits or capital requirements. But a�ordability constraints

can be used to stress test households' debt levels. We follow the current macroprudential framework in the

UK and model a�ordability constraints as stressed debt-service ratios (DSR)2 on households' balance sheets.

We augment the standard DSR measure which captures debt repayments as a proportion of labour income,

by adding a �xed bu�er on top of the mortgage interest rate. This tests whether borrowers can still a�ord

their mortgage payments should credit conditions tighten. Additionally, a change in the monetary policy

rate will have a direct e�ect on DSR ratios by increasing interest repayments. As such, adding this tool in

the model introduces an additional channel of monetary and macroprudential policy interaction, which is

missing in the literature with just collateral constraints.

A�ordability constraints were introduced in the UK in June 2014 (Financial Stability Report, 2017).

The FPC argued that this tool allows them to guard against an increase in the number of highly-indebted

households. A high proportion of highly leveraged households can lead to demand externalities if they are

forced to deleverage following a negative aggregate shock, cutting back on spending and amplifying the

economic bust. The FPC did not expect their recommendation to restrain housing market activity unless

lending standards declined. We interpret this as implying that the LTV limit will be the usual binding

constraint on lending but that the a�ordability constraint would `kick in' if lending rose too strongly relative

to income.

There are two key issues we examine in this paper. First, we investigate the interaction of macroprudential

tools with each other and with monetary policy. Second, we examine the gains from adding each policy to

the macroprudential toolkit in terms of reducing the volatility of key macroeconomic variables. In order

to assess the impact of the di�erent macroprudential policy tools and their interaction with each other, we

adopt the following approach. We �rst develop a baseline model in which we have frictions in the banking

and the housing sectors. We then consider the impact of adding a maximum leverage ratio on banks imposed

by the macroprudential policymaker. Next, we examine the impact of introducing DSR limits on household

borrowing either as a sole macroprudential policy, or together with capital requirements. In each case we

examine the volatilities of household borrowing, house prices, output and in�ation as well as welfare. To

understand the interaction between di�erent tools, we examine the responses of macroeconomic variables to

productivity, housing demand and monetary policy shocks.

The remainder of the paper is structured as follows. In the next section, we brie�y review the literature

that is most relevant to our paper before going on to describe the model in Section 3. Section 4 derives a

welfare-based loss function against which we can assess our macroprudential policy tools. Section 5 describes

our quantitative experiments, starting with a description of the calibration and the simulation methodology

before describing our results. Section 6 concludes.

2We use a�ordability constraints and debt-service ratios limits interchangeably throughout the paper
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2 Literature review

In this section, we review some of the existing literature on macroprudential policy tools that is most relevant

to this paper.

A substantial corpus of evidence establishes the existence of quantitatively relevant channels through

which macroprudential tools might in�uence aggregate demand and through which monetary policy might

in�uence bank pro�tability and risk-taking (eg, Woodford (2011), Curdia and Woodford (2009), Korinek

and Simsek (2014) and Farhi and Werning (2016)). In particular some authors (Angelini et al (2014),

Rubio and Carrasco-Gallego (2015), Rubio and Yao (2019), De Paoli and Paustian (2017) and Carrillo,

Mendoza, Nuguer and Roldan-Pena (2017)) have explicitly turned to the question of how monetary and

macroprudential policies should be coordinated in a world featuring both nominal rigidities and �nancial

frictions. These papers evaluate the optimal policy response of monetary policy and macroprudential actions

either on LTV limits or on capital requirements when the economy is faced with aggregate shocks, such as

to productivity or monetary policy. In most of these papers, the objective of the macroprudential policy is

to avoid excessive lending, that is, to minimize the variances of total lending or the ratio of loans to output.

The extent to which policies are complementary or substitutes for each other, depends on the nature of the

shock. For example, shocks to net worth or productivity create no tension between policies targeting output

and in�ation on the one side and bank lending on the other. However, there are welfare losses when the

committees are non-cooperative in the case of cost-push shocks. In this case monetary and macroprudential

policies become strategic complements with both policies tightened more than in the case of coordination.

Our model contributes to this literature in two important ways. First, we introduce DSR limits on

household balance sheets to limit mortgage borrowing. This tool acts to reduce the overall indebtedness of

the household sector relative to nominal income. It is di�erent from collateral constraints because it is not

related to house prices. By modeling this tool as a regulatory stress rate bu�er on existing mortgage rates

rather than a standard loan-to-income limit, we introduce additional interactions between macroprudential

and monetary policy. Second, we consider the interaction of monetary policy with a rich macroprudential

toolkit. This allows us to examine not only the coordination between macroprudential and monetary policy

tools, but also the optimal interaction of policies within the macroprudential toolkit.

To our knowledge, a�ordability constraints have not been addressed in the literature so far, although some

authors have examined tools acting on limiting household debt relative to income. Ingholt (2017) compares

LTV limits on mortgage lending with LTI limits in terms of smoothing responses to shocks. Greenwald

(2018) also examines a mortgage-payments-to-income limit in a DSGE model, and �nds that it ampli�es the

transmission mechanism from policy rates to debt, house prices and economic activity. The paper also �nds

that a relaxation of payments-to-income standards is essential to match the recent boom. Fazio et al. (2019)

study the impact of debt limits on housing markets and �nd that they might have distributional e�ects.
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However, unlike our model, neither of these papers has a banking sector.

In terms of model setup, there are two papers that use a similar model to ours in the literature on

policy coordination. First, Ferrero, Harrison and Nelson (2017) introduce a DSGE model with housing,

heterogeneous households, macroprudential loan-to-value and capital tools on �nancial intermediaries, to

study how monetary and macroprudential policies should optimally respond to shocks. The authors derive

a welfare-based loss function containing �ve (quadratic) terms. Two of them stem from the standard NK

model where the policymaker seeks to stabilize the output gap and in�ation. The remaining terms stem

from the desire of the policymaker to stabilize the distribution of non-durable consumption and housing

consumption between borrowers and savers. Monetary policy is constrained by the zero bound. In a similar

fashion, Rubio and Yao (2019) also study optimal macroprudential and monetary policy in a low interest-rate

environment.

Second, Gelain and Ilbas (2017) study the implications of macroprudential policy in the context of

an estimated Smets and Wouters (2007) type DSGE model for the United States, featuring a �nancial

intermediation sector, subject to Gertler and Karadi (2011) �nancial frictions. Macroprudential policy

aims at stabilizing nominal credit growth and the output gap by setting a lump-sum levy on bank capital.

Monetary policy pursues a standard in�ation targeting mandate using the short term interest rate. The paper

focuses on testing how the variations in the macroprudential objectives a�ect the coordination between macro

and monetary policies. In addition, the paper derives optimal policy rules and optimal weights under the

assumption that the two policy makers have no possibility to coordinate. In both papers macroprudential

policy is always binding and the interaction between various macroprudential policy tools is not considered.

3 Model

We start by describing our baseline model. The household and housing sectors follows Iacoviello (2015).

We have two types of households: patient ones, who save via bank deposits, and impatient ones, who

borrow from banks against a housing collateral. Patient households have a higher discount factor than

impatient households. Hence, they value future consumption relative to current consumption by more than

the impatient households. Both types of households obtain utility from consumption, housing and leisure. In

line with typical DSGE models (eg, Smets and Wouters (2007)), we have a perfectly competitive �nal-goods

sector whose �rms combine intermediate goods to produce the �nal good. Intermediate-goods-producing

�rms combine labour and capital to produce intermediate goods. They face investment adjustment costs

and price adjustment costs and have to borrow from banks to �nance their investment and working capital (ie,

wage payment) needs. Finally, we have a banking sector that accepts deposits from the patient households

and lends money to impatient households and �rms. Following Gertler and Karadi (2011), banks face a

costly enforcement problem. Speci�cally, we assume that banks are able to divert a fraction of their assets
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to their owners, albeit at the expense of not being able to continue as a bank. To stop this from happening,

it must always be more pro�table for the banks to continue operating than to divert funds. This incentive

constraint acts as a friction in the banking sector that limits leverage and creates a spread between loan and

deposit rates.

3.1 Patient Households

We start by describing the problem faced by patient households. We assume that there is a unit continuum

of these households and that they maximise the present discounted value of their current and future streams

of utility subject to a budget constraint. They obtain utility from consumption, housing and leisure - ie.

obtain disutility from working. We can write the problem facing patient household i mathematically a

Maximise E0

∞∑
t=0

βtP

[
ln(cP,i,t) + jAH,tln(Hi,t)−

1

1 + ξ
h1+ξi,t

]

Subject to : Di,t +QtHP,i,t = QtHP,i,t−1 +Rt−1Di,t−1 +WP,thP,i,t + Πt − PtcP,i,t − PtTP − τHQtHP,i,t

Where ci denotes consumption of household i, Hi denotes housing held by household i, hi denotes hours

worked by household i, Di denotes bank deposits held by household i, Q denotes the price of a unit of

housing, R denotes the interest rate paid on bank deposits (which will be equal to the central bank's policy

rate),WP denotes the wage paid to patient households, P denotes the aggregate price level, Π denotes pro�ts

of the �rms and banks returned to the patient households, who we assume own them, net of money used

by patient households to provide initial capital to new banks, and TP denotes lump-sum taxes. In order

to deliver an e�cient steady state in the housing market, we introduce a constant tax/subsidy on saver's

housing denoted by τH . In order to generate volatility in house prices, we introduce a `housing demand'

shock common to all (ie, both patient and impatient) households, denoted by AH .

Assuming all patient households are identical, the �rst-order conditions for this problem imply:

1

cP,t
= βPRtEt

1

(1 + πt+1)cP,t+1
(1)

(1 + τH)qt
cP,t

− jAj,t
HP,t

= βPEt
qt+1

cP,t+1
(2)

wP,t = hξP,tcP,t (3)
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Where cP denotes aggregate consumption by patient households, HP denotes the aggregate housing stock

owned by patient households, π denotes the rate of in�ation, q denotes real house prices and wP denotes

the real wage paid to patient households. Equation (1) is the familiar patient household's intertemporal

Euler equation, relating consumption today to the real interest rates and expected consumption tomorrow.

Equation (2) is the housing demand equation for patient households, which shows that the higher is the real

cost of housing, the less housing will be demanded. Finally, equation (3) is the labour supply equation for

patient households, which shows that the higher is the real wage paid to patient households, the more hours

of labour they will supply.

3.2 Impatient households

We assume that there is a unit continuum of impatient households who also maximise the present discounted

value of their current and future streams of utility. Again, they obtain utility from consumption, housing

and leisure (ie, obtain disutility from working). In addition to a budget constraint, however, they also face

both a collateral (loan-to-value) constraint on their borrowing. Following Iacoviello (2015), we assume that

impatient households discount the future at a greater rate than the patient households, ie, βI<βP . We can

write the problem facing impatient household i mathematically as:

Maximise E0

∞∑
t=0

βtI

[
ln(cI,i,t) + jAH,tln(Hi,t)−

1

1 + ξ
h1+ξi,t

]

Subject to : LM,i,t = Qt(HI,i,t −HI,i,t−1) +RL,t−1LM,i,t−1 −WI,thI,i,t + PtcI,i,t + PtTI (4)

LM,j,t = ρLLM,i,t−1 + (1− ρL)LTV HI,i,tEtQt+1 (5)

Where ci denotes consumption of impatient household i, Hi denotes housing held by household i, hi

denotes hours worked by household i, LM,i denotes bank lending to household i, RL,i denotes the interest

rate charged on bank loans, wI denotes the wage paid to impatient households, LTV is the loan-to-value

limit targeted by the banks on their lending, and TI denotes lump-sum taxes, including those used to achieve

an e�cient allocation of consumption in steady state.3Note that, following Iacoviello (2015), we assume

that impatient households only adjust slowly to their borrowing limits. There are, at least, two intuitive

justi�cations for allowing impatient consumers to adjust slowly to the mortgage borrowing limits. The �rst

is that these limits are typically imposed when mortgages are taken out; thus they will not e�ectively apply

3In the United Kingdom, the Financial Policy Committee has the power to direct banks to set LTV limits at levels of their
choosing for owner-occupier and/or buy-to-let mortgages. But, as the Committee has not used these powers yet, we set the
LTV ratio at the average across all UK owner-occupied mortgage lending between 2005-2018.
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to all mortgage lending. Since, in our model, there are only one-period loans, imposing the LTV limit at all

times would mean that the limit was applying counterfactually to all mortgage lending. Given this intuition,

we can interpret ρL as the proportion of existing mortgages and 1− ρL as the proportion of new mortgages.

A second justi�cation is that we can think of the banks as setting a range of LTVs across their lending

to households based on other (unobservable) household and bank characteristics. So, we can think of the

LTV constraint applying on average across the banks' mortgage books. And it would seem reasonable to

suggest that banks adjust slowly towards these limits on their `average' lending, as forcing them to adjust

immediately every period would lead to too much volatility in lending. Given this intuition, we can interpret

ρL as capturing the speed of adjustment of banks towards their LTV target.

The �rst-order conditions for this problem imply:

1

cI,t
(1− µt) = βIEt

RL,t − ρtµt+1

(1 + πt+1)cI,t+1
(6)

jAj,t
HI,t

=
qt
cI,t
− µt(1− ρt)LTV Et[qt+1(1 + πt+1)]

cI,t
− βIEt

qt+1

cI,t+1
(7)

wI,t = hξI,tcI,t (8)

Where cI denotes aggregate consumption by impatient households, HI denotes the aggregate housing

stock owned by impatient households and wI denotes the real wage paid to impatient households. Equation

(6) is the intertemporal Euler equation for impatient households. Note that in addition to the real interest

rate they pay on their borrowing and their expected future consumption, the consumption of impatient

households will also depend on the tightness of the loan-to-value constraint on their borrowing, as picked

up by the Lagrange multiplier, µ. Equation (7) is the housing demand equation for impatient households.

This equation shows that in addition to its utility value, a marginal unit of housing yields extra value to

impatient households by loosening their collateral constraint, enabling them to borrow and consume more.

This e�ect is picked up by the term: µt(1−ρt)LTV Et[qt+1(1+πt+1)]
cI,t

. Equation (8) is the labour supply equation

for impatient households showing that the higher is the real wage, the more hours of labour they will supply.

3.3 Firms

As is standard in the New Keynesian literature, we assume that there is a unit continuum of monopolistically-

competitive intermediate-goods-producing �rms and a representative perfectly-competitive �rm that com-

bines intermediate goods to produce a �nal good. We assume that the intermediate-goods-producing �rm

faces costs of adjusting prices a la Rotemberg (1982). They also have to borrow to �nance their working

capital needs. In what follows we present the optimisation problem for the two types of �rms.
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3.3.1 Final-goods-producing �rms

The representative �nal goods �rm operates in a perfectly-competitive market and produces a �nal good by

combining inputs of intermediate goods. These �nal goods are then consumed or invested. We can write the

problem for this �rm mathematically as follows:

MaximisePtyt −
∫ 1

l=0

Pl,tyl,tdl

Subject to : yt = (

∫ 1

l=0

y
ε−1
ε

l,t )
ε
ε−1

Where y denotes �nal goods output, yl denotes output of intermediate �rm l and Pl denotes the price of

output for intermediate �rm l.

The �rst-order condition for this �rm gives the demand function for the output of individual �rms:

yl,t = (
Pt
Pj,t

)εyt (9)

3.3.2 Intermediate-goods-producing �rms

We assume a unit continuum of �rms producing di�erentiated intermediate goods in a monopolistically-

competitive market. These �rms face costs of adjusting prices. In addition, they have to borrow to �nance

their wage bill (what we think of as working capital). Since the �rms are owned by the patient households,

they discount their pro�ts using the patient households' stochastic discount rate. We can write the problem

facing intermediate �rm l mathematically as:

Maximise

∞∑
t=0

βtP
PtcP,t

[(1 + τP )Pl,tyl,t −WP,thP,l,t −WI,thI,l,t

+ LE,l,t −RL,t−1Ll,t−1 −
χ

2

(
Pl,t
Pl,t−1

− 1

)2

Ptyt)]

Subject to:

LE,l,t = WP,thP,l,t +WI,thI,l,t (10)

yl,t = Az,th
(1−σ)
P,l,t h

σ
I,l,t (11)
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yl,t =

(
Pt
Pl,t

)ε
yt

Where τP is a subsidy to make steady-state production e�cient, hP,l is the labour input of patient

households within �rm l, hI,l is the labour input of impatient households within �rm l and LE,l is borrowing

by �rm l. All intermediate �rms are subject to an aggregate technology shock, AZ .

If we assume a symmetric equilibrium, the �rst-order conditions for this problem imply:

(1− σ)yt
hP,t

rmct =
RL,t
Rt

wP,t (12)

σyt
hI,t

rmct =
RL,t
Rt

wI,t (13)

πt(1 + πt) =
(1− ε)(1 + τp)

χ
+
ε

χ
rmct +

1

Rt
Etπt+1(1 + πt+1)2

yt+1

yt
(14)

Equations (12) and (13) represent the demand for each type of labour; in each case, the lower is the wage,

the more labour is demanded. Note that the wage is multiplied by the interest rate spread, re�ecting the

fact that �rms have to borrow to pay their wage bill. Equation (14) is the New Keynesian Phillips curve,

which relates in�ation today to expected future in�ation, expected future output growth and real marginal

cost.

3.4 Banks

Our modeling of the banking sector follows Gertler and Karadi (2011) with an endogenously-generated

interest rate spread and leverage ratio. We assume that banks issue loans to �rms and �nance these out of

patient household deposits and their own net worth, n. To ensure that banks cannot accumulate retained

earnings to achieve full equity �nance, we follow Gertler and Karadi (2011) and assume that each period

banks have an iid probability 1 − ζ of exiting. Hence, the expected lifetime of a bank is 1/(1 − ζ). When

banks exit, their accumulated net worth is distributed as dividends to the patient households. Each period,

exiting banks are replaced with an equal number of new banks which initially start with a net worth of Lν,

where L is the steady state value of the banking sector's assets, provided by the patient households. A bank

that survived from the previous period � bank b, say � will have net worth, nb, given by:

nb,t = RL,t−1Lb,t−1(1 + τb)−Rt−1Db,t−1 (15)
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where τb is a subsidy which ensures a steady-state spread of zero (the e�cient level), Lb is the total

lending of bank b to impatient households and �rms and Db are deposits from patient households held at

bank b.

Total net worth, n of the banking sector will be given by:

nt = ζ(RL,t−1Lt−1(1 + τb)−Rt−1Dt−1) + (1− ζ)Lν (16)

Each period banks (whether new or existing) �nance their loan book with newly issued deposits and net

worth:

Lb,t = Db,t + nb,t (17)

Following Gertler and Karadi (2011) we introduce the following friction into the banks' ability to issue

deposits. After accepting deposits and issuing loans, banks have the ability to divert some of their assets

for the personal use of their owners. Although the patient households are both the owners of the banks and

the depositors in the model, we assume that each household is `large' enough that we could imagine the

banks owners and depositors being separate individuals, with the owners prepared to divert assets towards

their own personal use. Speci�cally, they can sell up to a fraction θ of their loans in period t and spend the

proceeds during periodt. But, if they do, their depositors will force them into bankruptcy at the beginning

of period t + 1. When deciding whether or not to divert funds, bank b, will compare the franchise value of

the bank, Vb, against the gain from diverting funds, θLb. Hence, depositors will ensure that banks satisfy

the following incentive constraint:

θLb,t < Vb,t (18)

The problem for bank b is to choose Lb and Db each period to maximise its franchise value subject to its

incentive constraint, equation (18), its balance sheet constraint (17) and the evolution of its net worth (15).

Maximise Vb,t = PtEt

∞∑
j=1

(
βjP ζ

j−1(1− ζ)
1

cP,t+jPt+j
(RL,t+j−1Lb,t+j−1(1 + τb)−Rt+j−1Dt+j−1

)
We can note that both the objective and constraints of the bank are constant returns to scale. As a

result, we can rewrite the optimisation problem for bankb in terms of choosing its leverage ratio, ϕb = Lb
nb

,

to maximise the ratio of its franchise value to net worth, ψb = Vb
nb
. Given constant returns to scale, we can

aggregate up across all bank. Doing so, we obtain the aggregate Bellman equation for the franchise value of

the banking sector as a whole:
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ψt = βHEt(
Pt
Pt+1

)
cP,t
cP,t+1

(1− ζ + ζψt+1)((RL,t(1 + τb)−Rt)ϕt +Rt)) (19)

Subject to : θϕt ≤ ψt (20)

where we note that constant returns to scale implies that all banks will choose the same leverage ratio,

ϕ.

3.5 Monetary policy

The central bank operates a Taylor Rule of the form:

lnRt = (1− ρR)ln(R) + ρRlnRt−1 + (1− ρR)[φππt + φyln(
yt
y

)] + εR,t (21)

where y denotes the steady-state level of output and εR is a white-noise shock.

3.6 Market clearing

Aggregating the budget constraints for each sector implies the goods market clearing condition:

yt =
ct

1− χ
2π

2
t

(22)

We assume a �xed stock of housing equal to unity:

HP,t +HI,t = 1 (23)

And:

LM,t + LE,t = Lb,t (24)

3.7 Augmenting the baseline model with additional macroprudential tools

Relative to the baseline model described above, we add two more macroprudential policies.

First we consider the e�ects of adding a maximum leverage ratio constraint on banks as a way of capturing

capital requirements. Speci�cally, we suppose that the macroprudential policy maker sets a maximum

leverage ratio Lev. Banks regard Lev as an absolute maximum expending e�orts which incur costs in
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order to avoid reaching it. These costs get larger the closer the bank gets to the maximum leverage limit.

Speci�cally, we suppose that banks face the following cost function:

(
φb

(Lev − φt)
− φb

(Lev − φ)

)
nt (25)

where ϕt is their leverage in period t and ϕ is steady-state leverage.

Banking sector net worth will evolve according to:

nt = ζ

(
RL,t−1Lt−1(1 + τb)−Rt−1Dt−1 −

(
φb

(Lev − φt)
− φb

(Lev − φ)

)
nt−1

)
+ (1− ζ)ν (26)

And the Bellman equation for the banking sector will now be given by:

ψt = βPEt (27)(
Pt
Pt+1

cP,t
cP,t+1

(1− ζ+ ζψt+1)

(
(RL,t(1 + τb)−Rt)φt +Rt −

φb
(Lev − φt)

+
φb

(Lev − φ)

))

Subject to equation (20).

The �rst-order conditions for this problem imply:

ϕt = Lev −

√
φb

RL,t(1 + τb)−Rt
and θϕt < ψt (28)

We assume that the imposition of a maximum leverage ratio (with associated penalty cost function)

results in the diversion risk constraint always being slack.

Second, we add an a�ordability constraint on household lending, which in essence is a debt-service-ratio

(DSR) limit on impatient households' balance sheets. Speci�cally, we assume that impatient households face

the following constraint:

LM,j,t = ρLLM,j,t−1 + (1− ρL)
DSRhI,twI,t

RL,t − 1 + stress
(29)

where DSR is a measure of a debt service ratio - i.e. the proportion of impatient households' wage income

being used to pay back the principal and interest on a loan. stress denotes the assumed stress interest rates

set by the macroprudential policymaker at which the debt-service ratio is being stressed. Intuitively, the

constraint checks whether a borrower would still be able to a�ord the interest payments on their loan if the

interest rate they had to pay were to rise by the amount implied by the stress parameter.
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In this paper we assume that either the LTV constraint from equation 5 binds or the a�ordability

constraint binds. There are no occasionally binding constraints. As such, we assume that the imposition of

an a�ordability constraint on household lending renders the LTV limit slack in all periods.

The addition of an a�ordability constraint and the assumed slackness of the LTV constraint results in

the following �rst-order conditions for the impatient households:

1

cI,t
(1− µt) = βIEt

RL,t − ρLµt+1

(1 + πt+1)cI,t+1
(30)

jAj,t
HI,t

=
qt
cI,t
− βIEt

qt+1

cI,t+1
(31)

wI,t(1 +
µt(1− ρL)DSR

RL,t − 1 + stress
) = hξI,t (32)

Where µ is now the lagrange multiplier on the a�ordability constraint. The housing demand equation is

now simpli�ed as impatient borrowers no longer bene�t from having more housing to relax their collateral

constraint. Against that, impatient households are now prepared to supply more labour for a given wage

since doing so will relax their a�ordability constraint.

4 Loss function

In this section, we derive the welfare-based loss function for our model, which we use in Section 5, to

evaluate di�erent macroprudential policy tools . Our discussion of the loss function follows Ferrero et al.

(2018) and Rubio and Yao (2019). We derive the loss function by taking a weighted-average of the per-

period utility functions of patient and impatient households where the savers are given an arbitrary weight

of βP . We assume that the planner discounts the future at the discount rate of the savers, wP . A second-

order approximation of the resulting objective function around a zero-in�ation steady state in which the

loan-to-value constraint is assumed to bind gives:

L ≈ 1

2
E0

∞∑
t=0

βtP (ŷ2t + λππ
2
t + λcc̃

2
t + λHH̃2

t ) (33)

whereŷ denotes the log deviation of output from its e�cient steady-state level, c̃ denotes the consumption

gap, de�ned as the log di�erence in consumption between patient and impatient households relative to the

log di�erence between their consumption levels in the e�cient steady state, and H̃ denotes the housing gap,

de�ned as the log di�erence in housing held by patient and impatient households relative to the log di�erence
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between their housing levels in the e�cient steady state. The e�cient steady state is de�ned and derived in

Annex 1 of this paper.

The weights on in�ation, the consumption gap and the housing gap are derived in Annex 2 of this paper

and are given by:

λπ =
χ

1 + ξ
, λc =

1 + ξ − 4σ(1− σ)

4(1 + ξ)2
and λH =

j

4(1 + ξ)

As in Ferrero et al. (2019), the loss function adds terms in the consumption and housing gaps to

the standard output gap and in�ation terms found in standard New Keynesian macroeconomic models.

These terms are generated by incomplete �nancial markets where households are unable to completely share

consumption and housing risk between them. Risk-sharing is further limited by the collateral constraint

faced by impatient households. The goal of the macroprudential policy is to limit the welfare losses that

arise out of the incomplete risk-sharing.

5 Quantitative experiments

Before discussing our quantitative experiments, we �rst discuss our calibration and what this means for the

implied steady-state relationships in our model.

5.1 Calibration

We calibrate the parameters of the model either to match the previous literature or to hit steady-state

targets. Our parameter choices for the baseline model are shown in Table A.

Table 1: Parameter values

Parameter Description Value

βP Discount rate for patient households 0.9925

βI Discount rate for impatient households 0.985

j Weight on housing in utility function 0.1062

ξ Inverse Frisch elasticity of labour supply 1.83

σ Proportion of total wage bill going to impatient households 0.33

ε Elasticity of demand for di�erentiated intermediate goods 6

χ Size of price adjustment costs 70.4225

ρ Inertia in loan-to-value constraint 0.7

θ Proportion of assets that can be diverted 0.1262

ζ Bank survival rate 0.975

ν Capital of newly-formed banks as a fraction of bank assets 0.05

ϕ Steady-state leverage ratio 10

ϕmax Maximum leverage ratio 20
qH
y

Housing wealth to GDP 10
L
y

Mortgage debt to GDP 3

DSR Debt-service ratio 0.14

stress Stress rate 3
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The discount rates for patient households is 0.9925 implying a risk-free rate of 3% per annum. The

discount rate for impatient households is set to 0.985, following Ferrero et al. (2018). The steady-state

version of equation (6), implies the following steady-state value for the Lagrange multiplier on the impatient

households' borrowing constraint:

µ =
1− βIRL
1− βIρL

(34)

Given the calibration of the two discount factors, the impatient households will be constrained in their

ability to borrow. However, we set the banking subsidy, τb, to ensure a zero spread in steady state.

Based on the estimation results reported in Smets and Wouters (2007), we set the inverse Frisch elasticity

to 1.83. Following Iacoviello (2015), we set the inertia in the LTV constraint equal to 0.7 and the share of

the total wage bill going to impatient households equal to 0.33. We set the elasticity of substitution, ε, equal

to 6. Absent the production subsidy, this would imply a mark-up of 1.2 in the intermediate goods sector,

in line with the results in Macallan et al. (2008). We then set the size of the price adjustment costs, χ,

such that the coe�cient on real marginal cost in the New Keynesian Phillips curve, εχ , was equal to 0.0852.

This is the value that would be obtained in a Calvo (1982) model of price-setting with prices assumed to

be adjusted once a year on average. We set the survival rate for banks equal to 0.975, implying an average

expected life for a retail bank of 10 years, and the amount of capital that new banks start o� with equal

to 1/20 of the steady-state assets of the banking sector. Finally, we used standard values for the Taylor

rule. The remaining parameters ensure that the steady-state of our model implies targeted values for the

steady-state leverage ratio and housing wealth to GDP ratio. In particular, we target a steady-state leverage

ratio of 10, roughly in line with the average leverage in the UK banking sector. We turn to the data to

choose a target for the steady-state housing wealth to output ratio. Panel (a) of Figure 1 shows that this

ratio has risen over time from around 3 ½ to 4 in the 1960s to around 10 over the past few years. Hence, we

target a steady-state value for the housing wealth to output ratio of 10. These choices imply values for the

parameters θ and j in the model.
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Figure 1: UK Data

(a) Ratio of housing wealth to GDP (b) Ratio of mortgage borrowing to GDP

Panel (b) of Figure 1 shows that in the UK, the ratio of mortgage borrowing to GDP is currently around

3. Given that, we set the LTV ratio to 0.6 ensuring that the steady-state ratio of mortgage borrowing to

GDP in our model is also equal to 3. This is roughly in line with the average LTV ratio on the outstanding

stock of mortgages in the UK. Over 2005 to 2018, the average LTV ratio on new owner-occupied loans was

approximately 0.65.

To calibrate the macroprudential tools, we ensure that the steady-state is identical across four versions

of the model we consider later on in our results � ie. baseline, baseline plus capital requirements, baseline

plus capital requirements and the DSR ratio and baseline with the DSR ratio only. We set the maximum

leverage ratio to 20, implying a minimum capital requirement of 5%.

Next, the steady-state version of equation (28) implies:

φb =
τb(Lev − ϕ)2

βP
(35)

where the subsidy, τb, has been set to ensure a zero spread in steady state. Hence, setting Lev to

20 implies a value for φb of 0.0526. As we mentioned earlier, once capital requirements are imposed, the

`diversion risk' constraint does not bind. To ensure that this is the case, we assume that θ is set low enough

for this to hold.

For the a�ordability constraint, we set the stress bu�er to 0.0075. This applies a 3% bu�er per annum

on top of the current interest rate when assessing principal and interest repayments for mortgage borrowing

relative to labour income. Given that we set the subsidy to �rms so as to ensure that real marginal cost is

unity in steady state and the subsidy to banks to ensure that the interest rate spread is zero in steady state,

the steady-state versions of equations (13) and (29) imply:
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LM
y

=
σDSR

1
βP
− 1 + stress

(36)

Given our other parameters, we set DSR limit to ensure that the steady-state ratio of mortgage borrowing

to GDP, LMy , is equal to 3 as in the baseline model. This implies a value for DSR of 0.1369. This value for

DSR is low relative to the value of 0.4 that is applied in the United Kingdom in practice. However, this is

a result of having only one-period loans in our model. For a long-term mortgage, the DSRs fall over the

lifetime of the mortgage as income rises.

5.2 Estimation of shock processes

In order to simulate tour model, we need to calibrate the two shock processes: productivity, Az and housing

demand, AH . In each case, we assume that the shock follows an AR(1) process. We estimate the standard

deviations and �rst-order autocorrelation coe�cients of the shocks using Bayesian techniques and quarterly

UK data for GDP growth, real house prices and the spread of e�ective mortgage interest rates over 1999

� 2018. Table 2 shows the priors and the full results from the estimation. We set parameter values in line

with mean estimated values. As such, the standard deviation of the productivity shock is set to 1.41% and

its autocorrelation to 0.97, which is in line with existing literature (e.g. Smets and Wouters, 2007). We set

the standard deviation of the housing demand shock to 8.16% and its autocorrelation to 0.98.

Table 2: Estimation of shock processes

Prior Estimated

Max

Posterior

Posterior

Parameter Type Mean Std.

error

Mode Std.

error

Mean

σ productivity shock Inv gamma 0.01 ∞ 0.0136 0.0014 0.0141

σ housing demand shock Inv gamma 0.035 ∞ 0.0586 0.0291 0.0816

ρ productivity shock Beta 0.5 0.2 0.9718 0.0151 0.9662

ρ housing demand shock Beta 0.5 0.2 0.9855 0.0119 0.9761

5.3 Results

We simulate four versions of the model with 4 macroprudential policies in place: i) an LTV ratio of 60%

(the baseline model); ii) an LTV ratio of 60% and capital requirements (or a maximum leverage constraint);

iii) capital requirements and a�ordability constraints; and iv) a version with a�ordability constraints only.

In each case, we use Dynare to calculate the volatilities of key macroeconomic variables and their impulse

responses to aggregate shocks.
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5.3.1 The interaction of housing tools with capital requirements and monetary policy

The key question in this paper is how di�erent macroprudential tools interact with each other and with

monetary policy. To investigate this question we gradually switch on di�erent policies and examine their

impact on output, lending, in�ation, house prices and the interest rate following a housing demand shock, a

technology shock and a monetary policy shock.

Figure 2 plots the impulse response functions to a housing demand shock that leads to an approximately

3% rise in house prices. There are two important results coming out of this experiment. First, when mortgage

lending is constrained by DSR limits (the blue and magenta dotted lines), the economy does not respond to

the housing demand shock, except for an increase in house prices. A�ordability constraints disconnect the

housing market from mortgage borrowing, thus ensuring that housing demand shocks are not transmitted

to the real economy. This result is intuitive. When borrowing is not backed by housing wealth, a shock to

house prices does not in�uence credit constraints or how much households can borrow.

Second, capital requirements interact di�erently with monetary policy compared to LTV limits, as shown

in plot 5 of Figure 2. Monetary policy responds less to the housing demand shock when capital requirements

are switched on, compared the the baseline case with a 60% LTV ratio. That occurs because, capital

requirements dampen the e�ect of the house price shock on lending, which decreases the e�ect of the shock

on GDP and in�ation. Hence, macroprudential policy acting through capital requirements contributes to

price stability in the face of a housing demand shock, helping monetary policy achieve its primary objective.
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Figure 2: Responses to a housing demand shock (≈3% rise in prices)

Next we investigate the impulse response functions of variables to a positive technology shock, shown in

Figure 3. The plots show that LTV ratios and DSR limits on mortgage borrowing deliver di�erent responses

of variables to the shock, but that adding capital requirements leads only to additional marginal changes.

In the models with LTV ratios in place (black and red dotted lines), the productivity shock leads to positive

responses of output and consumption. This incentivises borrowers to purchase more housing and leads to

a rise in house prices and lending. However, when a�ordability constraints are switched on (the blue and

magenta lines), the link between house price movements and borrowing is muted, leading to very modest

e�ects of the productivity shock on the economy.

Plot 5 of Figure 3 shows the interaction of macroprudential tools with monetary policy. When a�ordability

constraints are switched on, interest rates respond very little to a productivity shock. This suggests that,

when faced with a technology shock, macroprudential DSR policy implemented via DSR ratios may also

support the objectives of the monetary policymaker. However, if �nancial policy is instead introduced via

LTV ratios, monetary policy has to be more active and responds by decreasing interest rates in order to

bring in�ation back to normal.
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Figure 3: Technology shock (1.41%)

To further examine the interaction of macroprudential and monetary policies, we plot the impulse re-

sponses of macro variables to a monetary policy shock which leads to a 1% annual rise in rates. Figure 4

shows that, the introduction of capital requirements increases the persistence of interest rate movements on

output and in�ation and reduces the maximum e�ect of the monetary policy shock on in�ation. Additionally,

the monetary policy shock leads to a large contraction in lending when a�ordability constraints are switched

on (blue and magenta dotted lines) . This e�ect occurs for two reasons. First, the monetary policy contrac-

tion leads to a drop in GDP which results in lower household income. As borrowing is backed by household

earnings, a loss of income leads to an immediate tightening of credit constraints and of overall lending. Sec-

ond, the rise in risk-free rates leads to a subsequent rise in the mortgage lending rate. This further tightens

households' credit constraints by increasing the proportion of interest payments that households have to pay

back for any given loan size - i.e. increases the denominator in equation (29).

However, despite the more signi�cant contraction in lending, output and in�ation do not fall by more in

the presence of a�ordability constraints relative to other policies. That occurs because DSR limits raise the

shadow value of work, since working an additional hour will relax the constraint. This leads to hours worked

falling by less in response to the monetary policy tightening when a�ordability constraints are switched on.

These results suggests that capital requirements, DSR limits and monetary policy can have important

spill-overs on each other, highlighting the importance of coordination between policymakers.
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Figure 4: Monetary policy shock (1% rise in rates)

5.3.2 The interaction of housing tools with each other

The previous section described the interaction of our two housing tools - i.e. LTV ratios and a�ordability

constraints - with capital tools and with monetary policy. This section provides more details on how the two

housing tools may interact with each other.

To understand how LTV and DSR ratios evolve following economic shocks and how imposing macropru-

dential limits on one a�ects the other, we conduct the following experiment. For the versions of the model

where the LTV limit is switched on - i.e the baseline with and without capital requirements, we calculate the

unconstrained DSR ratio. Similarly, for the versions of the model where the DSR is switched on, we calculate

the unconstrained LTV ratio. For each shock, we then examine how the unconstrained ratios compare to

the macroprudential limits we calibrate in Section 5.1 - i.e. a 60% limit for the LTV ratio and a 0.14 limit

for the DSR ratio. This exercise allows us to investigate whether di�erent housing tools are complements

to each other - i.e. they are both binding or tightener at the same time, or substitutes to each other - i.e.

when one is looser the other one is tightener. This is an important excercise for policymaking. For instance,

if we �nd that the two housing tools are complements, then a collateral constraint (DSR limit) will interact

with and have spill-overs for borrowers' debt-service ratios (LTV ratios) in which case the macroprudential

policymaker can address risks coming from the housing market using only one housing tool. However, if

collateral constraints and a�ordability tools are substitutes, then they will respond to boom-bust cycles
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di�erently and hence the policymaker may need to assess the e�ectiveness of each tool separately. This

case is more likely to occur in boom periods, when a relaxation in house prices relaxes LTV but not DSR

constraints, since the latter is linked to the borrowers' incomes rather than collateral values. For instance,

Greenwald (2018) �nds that a cap on debt-to-income ratios, not LTV ratios, is the more e�ective policy for

limiting boom-bust cycles and that debt-to-income limits would have reduced the size of the 2007 boom by

nearly 60%. And Ingholt (2019) �nds that a lower LTV limit could not have prevented the 2007 boom since

soaring house prices slackened the constraint.

The implied unconstrained DSR ratio for models where the LTV tool is switched on, is calculated using

equation 29. Ignoring the slow adjustment of loans in the economy gives:

DSR =
LM,j,t(RL,t − 1 + stress)

hI,twI,t
(37)

The implied unconstrained LTV ratio for the models where the DSR is switched on, is determined using

equation 5 which, ignoring the slow adjustment of loans in the economy gives:

LTV =
LM,j,t

HI,i,tEtQt+1
(38)

Figure 5 shows the results for the housing demand shock. The blue lines use equation 37 to compute the

implied DSR ratios in the models with the LTV limit switched on, given the responses of borrowing, interest

rates and labour income to the shock. The red lines use equation 38 to compute the implied LTV ratio

when the a�ordability constraint is switched on, given the e�ects of the shock on housing wealth. The �gure

shows that DSR ratios increase to 0.3 in the top-left panel, when macroprudential policy is implemented

solely through a collateral constraint. The response of the DSR ratio is nearly twice as big as the 0.14

macroprudential DSR limit we impose in the version of the model where the a�ordability constraint is

switched on. The impact on DSRs is explained by a larger increase in borrowing and mortgage rates relative

to income in the baseline model, following the shock. As shown in Figure 2, the house prices appreciate

by nearly 3%, which relaxes LTV constraints and allows households to access more debt. The LTV limit

remains constant over time, due to the adjustment in borrowing, but the additional debt in the economy

raises debt service ratios. As a result, a macroprudential LTV tool is not su�cient on its own to constrain

debt levels when the economy is hit by a housing demand shocks. The feedback mechanism between house

prices and borrowing imply that the LTV tool acts procyclically. Instead, a macroprudential constraint on

DSR ratios would lean against the wind in a countercyclical manner.

The role for a macroprudential DSR limit on top of a collateral constraints is less important however when

capital requirements on banks are also in place. The top-right panel shows that implied DSR ratios increase

by very little when capital requirements are added as an additional macroprudential policy in the baseline
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model. As shown in Figure 2, lending and interest rates respond less to the shock when capital is added,

which lead DSR ratios to respond only modestly to the shock. This suggests that capital requirements, if

calibrated correctly, could make a DSR tool obsolete. However, increasing capital requirements in the face

of a housing demand shock could be costly since it is a blunt tool that a�ects all types of lending, not just

mortgage lending. A�ordability tools are a more natural substitute to LTV limits when dealing with housing

booms as they are speci�cally targeted at mortgage credit and have fewer spillovers on other sectors of the

economy.

The bottom two panels of Figure 5 show the unconstrained LTV ratio when in the versions of the

model where macroprudential policy operates through an a�ordability constraints and capital requirements.

The red lines show that LTV ratios decrease following the house price shock. This result occurs because

macroprudential DSR tools break the link between collateral values and mortgage borrowing. As a result,

the LTV ratios decrease since its numerator - i.e. loan amount - remains unchanged, while its denominator

- i.e. house prices - increases by approximately 3%.
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Figure 5: Behaviour of housing tools following a housing demand shock

Figure 6 follows the same rationale as Figure 5 for a technology shock. Similar to before, the DSR nearly

doubles and becomes very volatile in the baseline case. This occurs because, the technology shock increases

household borrowing and decreases hours worked by the impatient household. Thus, higher debt serviced

by lower labour incomes leads to a rise in debt-service ratios. However, when adding capital requirements to

the baseline model in the top-right panel, the DSR ratio actually decreases. Compared to the baseline case,

adding capital requirements leads to a larger loosening in the monetary policy rate and to a more muted

decrease in labour supply, both of which outweigh the increase in borrowing. As shown in equation 37, these

e�ects weigh down on debt-service ratios. This suggests that a capital requirement may constrain household

leverage in the face of a technology shock. Similar to Figure 5, the LTV ratios remain mostly stable over
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time when a�ordability constrains are imposed in the bottom panels.

Figure 6: Behaviour of housing tools following a technology shock

5.3.3 The impact of macroprudential tools on the volatility of key macroeconomic variables

Another question we are interested in, is the extent to which the adoption of macroprudential policy tools

can improve welfare by stabilising output, in�ation, lending and house prices. In particular, we are interested

in examining which tool is better for smoothing lending and house prices, as broad measures of �nancial

stability and how these tools a�ect the ability of monetary policy makers to smooth output and in�ation,

which are the monetary policy targets.

Table 3 shows the results of our stochastic simulations. For each policy tool we show the standard

deviations of total bank lending, L, output, y, in�ation, π and real house prices, q in response to technology
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and housing demand shocks. In addition, we show the implications on the welfare loss. Relative to the

baseline model, imposing capital requirements leads to marginal reductions in the volatilities of macro

variables, including on welfare loss. This suggests that, when LTV ratios in the economy remain at relatively

low levels - i.e. 60% in our calibration - capital requirements have very little additional bene�t. Nonetheless,

switching on a�ordability constraints on mortgage lending leads to an increase in the volatility of real house

prices, and to a large decrease in the volatilities of lending, in�ation and output. This results in a substantial

improvement in welfare.

Table 3: Volatility of macro variables

σHouse Prices (%) σLending (%) σπ (%) σy (%) Welfare loss

Baseline: 60% LTV ratio 15.48 14.88 5.67 5.19 0.070

Baseline and CR 15.29 14.66 5.66 5.16 0.069

CR and DSR 17.69 2.61 0.24 0.31 0.00

To investigate these results further we decompose the variance in lending, real house prices, output and

in�ation into the proportions driven by each our shocks. The results are shown in Table 4. The introduction

of capital requirements reduces the e�ect of the housing demand shocks on house prices, output and in�ation

and the e�ects of productivity shocks on the lending. The introduction of a�ordability constraints wipes

out any e�ect of the housing demand shocks on all variables other than house prices. This is because

a�ordability constraints ensure that borrowing is no longer linked to house prices via the LTV constraint.

Housing demand shocks result in volatile house prices with no impact on borrowing and, hence, on the rest

of the economy.

Table 4: Variance decomposition

LTV LTV and CR CR and DSR

technology housing demand technology housing demand technology housing demand

Lending 13.24 86.76 12.67 87.33 100.00 0.00

Output 98.50 1.50 99.64 0.36 99.96 0.04

In�ation 96.73 3.27 98.75 1.25 99.99 0.01

House prices 14.67 85.33 15.14 84.86 0.03 99.97

6 Conclusion

In this paper, we examine three macroprudential policies: LTV ratios, capital requirements on banks and

a�ordability constraints on mortgage borrowing. We consider the interaction of macroprudential policies

with each other as well as with monetary policy. Additionally, we assess the e�ects of each policy on macroe-

conomic stability, as measured by the standard deviations of output and in�ation, on �nancial stability, as

measured by the standard deviations of bank lending and house prices, and on welfare.

We �nd that both capital requirements and DSR limits reduce the need for monetary policy to react to
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a housing demand shock, and that DSR limits also contribute to monetary stability when the economy is

hit by technology shocks. Additionally, we �nd that introducing capital requirements on banks reduces the

volatility of lending, house prices, output and in�ation only marginally relative to an LTV ratio. Finally, we

show that DSR limits lead to an increase in the volatility of real house prices and to a signi�cant decrease in

the volatility of lending, consumption and in�ation, since they disconnect the housing market from the real

economy. Overall, DSR limits are welfare improving relative to any other macroprudential tool.

In future versions of this paper, we intend to allow our policy tools to vary over the cycle and work out

the welfare implications of optimal simple macroprudential policy rules. For instance, we plan to examine

the optimal degree of countercyclicality in capital requirements or the DSR stress bu�er holding the Taylor

rule coe�cients �xed. This would allow us to assess the impact of di�erent calibrations of macroprudential

tools and to better inform macroprudential policymakers on the e�ectiveness of di�erent tools in smoothing

aggregate shocks over the business cycle.
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Annex 1: The e�cient steady state

In this annex, we de�ne the conditions under which a zero-in�ation steady state is e�cient and show that

we can obtain an e�cient steady state in our decentralised economy by setting taxes and subsidies.

Consider a social planner who maximises a weighted average of patient and impatient households' period

utility function, subject to the aggregate resource constraint and market clearing in the housing and labour

markets. Price adjustment costs are zero in a zero in�ation steady state.

Maximise:

U = ωU(cP , HP , hP ) + (1− ω)U(cI , HI , hI)

Subject to

h
(1−σ)
P hσI = cP + cI

And

HP +HI = 1

Let µ1 and µ2 be the Lagrange multipliers on the resource and housing constraints, respectively. Then

the �rst-order conditions will imply:

ωUc,P = µ1 (39)

(1− ω)Uc,I = µ1 (40)

ωUH,P = µ2 (41)

(1− ω)UH,I = µ2 (42)

ωUh,P = −µ1(1− σ)
y

hP
(43)
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(1− ω)Uh,I = −µ1
σy

hI
(44)

Where Uc, UH and Uh are the marginal utilities of consumption, housing and hours worked, respectively,

for household type j. Combining equations 37,38, 39 and 40 gives:

Uc,P
UH,P

=
Uc,I
UH,I

=
µ1

µ2
(45)

In addition, equations 41 and 42 imply that the marginal rate of substitution between consumption and

each type of labour is equal to the marginal rate of transformation between each type of labour and output.

Uh,P
Uc,P

= (1− σ)
y

hP
(46)

Uh,I
Uc,I

= σ
y

hI
(47)

Furthermore, if Pareto weights are set to match the population weights, i.e. ω= 1/2 then in the e�cient

steady state:

cP = cI =
y

2
(48)

HP = HI =
1

2
(49)

Next, we show that by choosing taxes and subsidies we can achieve the e�cient steady state in the

decentralised economy. We set the subsidy to �rms, τP , equal to
1

(ε−1) . The zero-in�ation steady-state

version of the New Keynesian Phillips curve now implies:

rmc =
(ε− 1)(1 + τp)

ε
= 1 (50)

This implies:

RL =
1

βP

(βP + ζ(ϕ− 1)− (1− ζ)ϕνβP )

ζϕ(1 + τb)
(51)

If we set the subsidy to banks, τb, equal to
βP
ζϕ∗ (1− ζ

βP
− (1− ζ)ϕ∗ν) where ϕ∗ is the degree of leverage

in the e�cient steady state, then:
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R = RL =
1

βP
(52)

And:

θϕ∗ = (1− ζ + ζθϕ∗)

(
βP
ζ

(1− ζ

βP
− (1− ζ)ϕ∗ν) + 1

)
(53)

Which can be used to solve for ϕ∗.

The steady-state versions of equations 3, 8, 12 and 13 imply:

Uh,P
Uc,P

= wP = (1− σ)
y

hP
(54)

Uh,I
Uc,I

= wI = σ
y

hI
(55)

Evaluating the Euler equation for impatient households at the e�cient steady state gives:

µ =
1− βI

βP

1− βIρL
(56)

The Lagrange multiplier will be positive in the e�cient steady state so long as βP > βI . Hence, the

housing demand equation for impatient households in steady state implies:

cI
HI

=
(1− βI − µ(1− ρL)LTV ) q

j
=

(
1− βI −

1− βI
βP

1−βIρL (1− ρL)LTV

)
q

j
(57)

Similarly, for patient households we obtain:

cP
HP

=
(1 + τH − βP )q

j
(58)

Equation 43 then implies that to obtain an e�cient steady state, we need to set the housing tax equal

to:

τH = βP − βI −
(1− βI

βP
)

(1− βIρL)
(1− ρL)LTV (59)

The LTV constraint then implies the e�cient household debt to GDP ratio:
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LM
y

= LTV
q

2y
(60)

From the steady-state budget constraint for the impatient households we have:

σ =
1− βP
βP

LM
y

+
cI
y

+
TI
y
⇒TI

y
= −(

1− βP
βP

LTV
q

2y
+

1

2
− σ) (61)

The impatient households need to receive a subsidy (net of taxes) proportional to GDP given by the

term in brackets on the right-hand side of equation 59. Given such a subsidy, they will enjoy the same

consumption and housing as the patient households, in line with our e�ciency conditions 46 and 47.

Annex 2: Derivation of the loss function

This annex describes the derivation of the loss function shown in Section 4 of the paper. Following Ferrero

et al. (2018), the welfare objective of the policymaker is de�ned as the present discounted value of the of

the utility of the two types of household, weighted by arbitrary weights, ω and 1− ω, and discounted at the

patient households' discount rate, βP :

W0 = E0

∞∑
t=0

βtP (ωUP,t + (1− ω)UI,t)

Given the functional forms:

UP,t = lncP,t + jlnHP,t −
1

(1 + ξ)
h1+ξP,t

UI,t = lncI,t + jlnHI,t −
1

(1 + ξ)
h1+ξI,t

A second order approximation of U around the e�cient steady state gives:

Ut − U≈ωUc
(
cP,t −

y

2
+

1

2

Ucc
Uc

(cP,t −
y

2
)2
)

+ (1− ω)Uc

(
cI,t −

y

2
+

1

2

Ucc
Uc

(cI,t −
y

2
)2
)

+

ωUH

(
HP,t −

1

2
+

1

2

UHH
UH

(HP,t −
1

2
)2
)

+ (1− ω)UH

(
HI,t −

1

2
+

1

2

UHH
UH

(HI,t −
1

2
)2
)

+

ωUh

(
hP,t − hP +

1

2

Uhh
Uh

(hP,t − hP )2
)

+ (1− ω)Uh

(
hI,t − hI +

1

2

Uhh
Uh

(hI,t − hI)2
)

Using the �rst-order conditions for the e�cient steady state derived in Annex 1 we obtain:
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Ut − U≈µ1

(
cP,t −

y

2
+

1

2

Ucc
Uc

(cP,t −
y

2
)2
)

+ µ1

(
cI,t −

y

2
+

1

2

Ucc
Uc

(cI,t −
y

2
)2
)

+

µ2

(
HP,t −

1

2
+

1

2

UHH
UH

(HP,t −
1

2
)2
)

+ µ2

(
HI,t −

1

2
+

1

2

UHH
UH

(HI,t −
1

2
)2
)
−

µ1(1− σ)
y

hP

(
hP,t − hP +

1

2

Uhh
Uh

(hP,t − hP )2
)
− µ1σ

y

hI

(
hI,t − hI +

1

2

Uhh
Uh

(hI,t − hI)2
)

Given the functional form for preferences, we note that:

Ucc
Uc

= −2

y

UHH
UH

= −2

Uhh
Uh

=
ξ

h

Substituting in gives:

Ut − U≈µ1

(
cP,t −

y

2
− 1

y
(cP,t −

y

2
)2
)

+ µ1

(
cI,t −

y

2
− 1

y
(cI,t −

y

2
)2
)

+

µ2

(
HP,t −

1

2
− (HP,t −

1

2
)2
)

+ µ2

(
HI,t −

1

2
− (HI,t −

1

2
)2
)
−

µ1(1− σ)
y

hP

(
hP,t − hP +

1

2

ξ

h
(hP,t − hP )2

)
− µ1σ

y

hI

(
hI,t − hI +

1

2

ξ

h
(hI,t − hI)2

)
(62)

Now the aggregate resource constraint is given by:

cP,t + cI,t = yt(1−
χ

2
π2
t ) (63)

We approximate any variable x using xt = x(1 + x̂t + 1
2 x̂t

2). Taking a second-order approximation of

equation 61 and ignoring terms independent of policy gives:

cP,t + cI,t − y = y(ŷt +
1

2
ŷt

2 − 1

2
χπ2

t ) (64)

We can also note that:
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HP,t −
1

2
+HI,t −

1

2
= 0 (65)

Substituting equations 62 and 63 into equation 60 gives:

Ut − U≈µ1y

(
ŷt +

1

2
ŷt

2 − 1

2
χπ2

t

)
− µ1

y

(
(cP,t −

y

2
)2 + (cI,t −

y

2
)2
)
−

µ2

(
(HP,t −

1

2
)2 + (HI,t −

1

2
)2
)
− µ1(1− σ)y

(
hP,t − hP

hP
+
ξ

2
(
hP,t − hP

h
)2
)
−

µ1σy

(
hI,t − hI

hI
+
ξ

2
(
hI,t − hI

hI
)2
)

(66)

To eliminate the remaining �rst order terms from equation 64, we express variables in terms of log-

deviations from the e�cient steady-state values and drop terms of order 3 and higher:

Ut − U≈µ1y

(
ŷt +

1

2
ŷt

2 − 1

2
χπ2

t

)
− µ1y

4
(ĉ2P,t − ĉ2I,t)−

µ1y
(

(1− σ)ĥP,t + σĥI,t

)
− µ1y

(
(1− σ)

2
ĥ2P,t +

σ

2
ĥ2I,t

)
−

µ1ξy

2

(
(1− σ)ĥ2P,t + σĥ2I,t

)
− µ2

4
(Ĥ2

P,t + Ĥ2
I,t) (67)

Log-linearising the production function around the e�cient steady state implies:

ŷt = Âz,t + (1− σ)ĥP,t + σĥI,t

Substituting into equation 65 and dropping the term in Âz,t, as it is independent of policy, implies:

Ut − U≈
µ1y

2
(ŷ2t − χπ2

t )− µ1y

4
(ĉ2P,t + ĉ2I,t)−

µ1(1 + ξ)y

2

(
(1− σ)ĥ2P,t + σĥ2I,t

)
− µ2

4
(Ĥ2

P,t + Ĥ2
I,t) (68)

The log-linearised version of the housing market equilibrium condition around the e�cient steady state

implies:

ĤP,t = −ĤI,t ⇒ Ĥ2
P,t + Ĥ2

I,t =
1

2
(ĤP,t − ĤI,t)

2

Substituting back into equation 66 and collecting the output, consumption and labour terms implies:
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Ut − U≈
−µ1y

2

(
1

2
(ĉ2P,t + ĉ2I,t)− ŷ2t + (1 + ξ)

(
(1− σ)ĥ2P,t + σĥ2I,t

))
−µ2

8
(ĤP,t − ĤI,t)

2 − (µ1yχ)

2
π2
t (69)

Next, use:

1

2
(ĉ2P,t + ĉ2I,t)− ŷ2t =

1

2
(ĉ2P,t − ŷ2t ) +

1

2
(ĉ2I,t − ŷ2t )

=
1

2
((ĉP,t + ŷt)(ĉP,t − ŷt) + (ĉI,t + ŷt)(ĉI,t − ŷt))

=
1

2

(
(
3

2
ĉP,t +

1

2
ĉI,t)(

1

2
ĉP,t −

1

2
ĉI,t)− (

3

2
ĉI,t +

1

2
ĉP,t)(

1

2
ĉP,t −

1

2
ĉI,t)

)
=

1

4
(ĉP,t − ĉI,t)2

Substituting back into equation 67 implies:

Ut − U≈
−µ1y

2

(
1

4
(ĉP,t − ĉI,t)2 + (1 + ξ)

(
(1− σ)ĥ2P,t + σĥ2I,t

))
−µ2

8
(ĤP,t − ĤI,t)

2 − µ1yχ

2
π2
t (70)

Next, the labour supply equations imply:

wP,thP,t
wI,thI,t

=
1− σ
σ

Combining implies:

hI,t = (
σ

1− σ
)

1
1+ξ hP,t(

cP,t
cI,t

)
1

1+ξ

Combining with the production function implies:

yt = Az,thP,t(
σ

1− σ
cP,t
cI,t

)
σ

1+ξ

⇒ĥP,t = ŷt − Âz,t −
σ

1 + ξ
(ĉP,t − ĉI,t)

⇒ĥI,t = ŷt − Âz,t −
1− σ
1 + ξ

(ĉP,t − ĉI,t)

Hence:
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(1− σ)ĥ2P,t + σĥ2I,t

= (1− σ)

(
ŷt − Âz,t −

σ

(1 + ξ)
(ĉP,t − ĉI,t)

)2

+ σ

(
ŷt − Âz,t −

1− σ
(1 + ξ)

(ĉP,t − ĉI,t)
)2

= (ŷt − Âz,t)2 +
σ(1− σ)

(1 + ξ)2
(ĉP,t − ĉI,t)2

Substituting back into equation 68 and ignoring terms independent of policy gives:

Ut − U≈
−µ1y

2

(
1 + ξ + 4σ(1− σ)

4(1 + ξ)
(ĉP,t − ĉI,t)2 + (1 + ξ)ŷ2t

)
−µ2

8
(ĤP,t − ĤI,t)

2 − µ1yχ

2
π2
t (71)

Using the �rst-order conditions for the e�cient steady state to express µ2 in terms of µ1y:

µ2 =
µ1UH,I
UC,I

= µ1yj

Substituting into equation 69 gives:

Ut − U≈
−µ1y

2

(
1 + ξ + 4σ(1− σ)

4(1 + ξ)
(ĉP,t − ĉI,t)2 + (1 + ξ)ŷ2t

)
− j

4
(ĤP,t − ĤI,t)

2 − χπ2
t

The welfare-based loss function can be expressed in terms of quadratic and gap variables as:

W0 =
−µ1y

2
(1 + ξ)E0

∞∑
t=0

βtP

(
ŷ2t + λ1π

2
t + λ2(ĉP,t − ĉI,t)2 + λ3(ĤP,t − ĤI,t)

2
)

Where λ1 = χ
(1+ξ) , λ2 = (1+ξ+4σ(1−σ))

4(1+ξ)2 and λ3 = j
4(1+ξ) .

Annex 3: Log-linear equations of the model

This annex presents the log-linearised version of the model based on a Taylor series expansion of the equations

of the model around the e�cient non-stochastic steady state derived in Annex 2.

ĉP,t = EtĉP,t+1 − (R̂t − Etπt+1)

ĤP,t =
βP

(1 + τH − βP )
Et(q̂t+1 − ĉP,t+1)− (1 + τH)

(1 + τH − βP )
(q̂t − ĉP,t) + Âj,t
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ŵP,t = ξĥP,t + ĉP,t

σ(ŵI,t + ĥI,t) +
LM
y

(
L̂M,t −

1

βP
(L̂M,t−1 + R̂L,t−1 − πt)

)
− q

2y
(ĤI,t − ĤI,t−1) =

1

2
ĉI,t

L̂M,t = ρL(L̂M,t−1 − πt) + (1− ρL)Et(q̂t+1 + πt+1 + ĤI,t)

ĉI,t = EtĉI,t+1 −
(

1

1− βP ρLµ
R̂L,t −

βP ρLµ

(1− βP ρLµ)
µ̂t+1 − Etπt+1 +

µ

(1− µ)µ̂t

)

ĤI,t =
βI

(1− µ(1− ρL)LTV − βI)
Et(q̂t+1 − ĉI,t+1)

+
µ(1− ρL)LTV

(1− µ(1− ρL)LTV − βI)
Et(µ̂t + q̂t+1 + πt+1 − ĉI,t)

− 1

(1− µ(1− ρL)LTV − βI)
(q̂t − ĉI,t) + Âj,t

ŵI,t = ξĥI,t + ĉI,t

L̂E,t = (1− σ)(ŵP,t + ĥP,t) + σ(ŵI,t + ĥI,t)

ŷt = Ât + (1− σ)ĥP,t + σĥI,t

ŵP,t = ˆrmct + ŷt − ĥP,t + R̂t − R̂L,t

ŵI,t = ˆrmct + ŷt − ĥI,t + R̂t − R̂L,t

πt = βPEtπt+1 +
ε

χ
ˆrmct
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n̂t =
ζϕ(1 + τb)

βP
(R̂L,t−1 + L̂t−1)− ζ (ϕ− 1)

βP
(R̂t−1 + D̂t−1)− ζ

βP
(1 + ϕτb)πt

n̂t = ϕL̂t − (ϕ− 1)D̂t

ϕ̂t = L̂t − n̂t

ψ̂t = ϕ̂t

ψ̂t =
ϕτb

(ϕτb + 1)
ϕ̂t +

ϕ(1 + τb)

(ϕτb + 1)
(R̂L,t − R̂t) +

ζψ

(1− ζ + ζψ)
ˆψt+1

R̂t = ρRR̂t−1 + (1− ρR)(νππt + νy ŷt) + εR,t

ŷt =
1

2
(ĉP,t + ĉI,t)

ĤP,t + ĤI,t = 0

L

y
L̂t =

LM
y
L̂M,t + L̂E,t
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