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1 Introduction 

A central research question for economists and psychologists is how investors behave under 

uncertainty. Most of the existing theories are based on the assumption that investors evaluate 

uncertainty according to the expected utility framework. However, a large body of experimental 

evidence has shown that people usually depart significantly from the predictions of expected utility 

when making risky decisions. By contrast, cumulative prospect theory (Tversky and Kahneman, 

1992) can capture these behaviors, and can help understand puzzling asset pricing patterns from 

the financial market.  

Previous research on the pricing implications of prospect theory has mainly focused on the 

shape of the value function (e.g., Benartzi and Thaler, 1995; Barberis, Huang, and Santos, 2001; 

Barberis and Xiong, 2009; Li and Yang, 2013; An, 2015; Easley and Yang, 2015), or the negative 

expected returns from lottery-like (i.e., positively skewed) stocks (e.g., Boyer, Mitton, and 

Vorkink, 2010; Bali, Cakici, and Whitelaw, 2011; Barberis, Mukherjee, and Wang, 2016; An, 

Wang, Wang, and Yu, 2019). Here, I focus on a less-studied aspect: portfolio discounts. 

Specifically, I examine a new theoretical prediction concerning portfolio prices under cumulative 

prospect theory, and I test this prediction on closed-end fund (CEFs) discounts, combined 

announcement returns from mergers and acquisitions (M&A), and conglomerate discounts.1 

 
1 “Closed-end fund discount” refers to the phenomenon that closed-end fund shares are typically traded at prices lower than the 

per share market value of its underlying assets (e.g., Lee, Shleifer and Thaler, 1991; Chen, Kan, and Miller, 1993; Pontiff, 1996; 
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First, I extend cumulative prospect theory in a portfolio setting and show that, a portfolio 

consisting of lottery-like stocks should trade at a discount. This extension is based on Barberis and 

Huang (2008), who argue that, in an economy with cumulative prospect theory investors, a lottery-

like stock can become overpriced because investors overweight the small probability of a large 

payoff. I extend their model to examine multiple lottery-like stocks. These stocks can provide 

extreme positive payoffs with a small probability, but not necessarily at the same time. I analyze 

the asset pricing implication from this extended model by comparing two economies. In the first 

economy, investors can trade lottery-like stocks on their own. In the second economy, investors 

can only trade a portfolio consisting of these lottery-like stocks. I find that the portfolio price in 

the second economy is lower than the prices of lottery-like stocks in the first economy (the 

difference is referred as the portfolio pricing discount hereafter). More importantly, this discount 

depends on how likely the lottery-like stocks produce extreme payoffs at the same time. 

Specifically, when the stocks are more likely to produce extreme payoffs at the same time, the 

portfolio pricing discount is smaller. 

The intuition behind this theoretical prediction is based on cumulative prospect theory and 

the diversification in lottery-like features. Consider the following two cases. In the first case, the 

 
Hwang, 2011; Wu, Wermers, and Zechner, 2016; Hwang and Kim, 2017). Existing literature has shown that M&As often have 

negative combined announcement returns from acquirers and targets (e.g., Morck, Shleifer, and Vishny, 1990; Moeller, 

Schlingemann, and Stulz, 2005; Masulis, Wang, and Xie, 2007; Cai and Sevilir, 2012). “Conglomerate discount” refers to the 

empirical fact that a conglomerate is usually worth less than a portfolio of comparable single-segment firms in terms of market-to-

book ratio (e.g., Lang and Stulz, 1994; Berger and Ofek, 1995; Servaes, 1996; Lamont and Polk, 2001; Laeven and Levine, 2007; 

Hund, Monk, and Tice, 2010). These phenomena are puzzling and are suggestive evidence for market inefficiency. 
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lottery-like stocks have a low tendency of producing extreme payoffs together. When they are 

combined into a portfolio (e.g., a closed-end fund), the return distribution of this portfolio will 

become less lottery-like than each individual stock due to diversification. Under cumulative 

prospect theory, investors overweight small probabilities, and therefore exhibit a preference for 

lottery-like payoffs. Since the portfolio becomes less attractive to investors, it will trade at a lower 

price. On the other hand, when investors trade lottery-like stocks alone, the lottery-like feature 

makes them attractive and they will be traded at a higher price. Therefore, due to the diversification 

effect in lottery-like features, the portfolio will trade at a discount relative to its underlying stocks. 

Contrast this to a second case, in which lottery-like stocks always produce extreme payoffs 

together. In this case, when these stocks are combined into a portfolio, the portfolio obtains the 

same lottery-like feature. Investors will find the portfolio as attractive as its holdings and there will 

be no discount.  

Second, I test this new theoretical prediction using three empirical settings: CEFs, M&As, 

and conglomerates. I use CEFs as my main setting for the following reasons. First, a large body of 

literature has documented that a CEF is typically traded at a discount relative to the market value 

of its underlying assets. This discount has been a long-standing puzzle among academics and 

practitioners. Second, CEFs provide a clean setting to control for firm characteristics. Since stocks 

are combined and traded as a portfolio, the difference in value between a portfolio and the sum of 

its holdings should not be affected by firm characteristics, particularly those that are potentially 
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correlated with lottery-like features.2 Utilizing this advantage, CEFs provide a relatively clean and 

powerful approach to test the relevance of prospect theory and lottery-like features in determining 

asset prices by directly comparing the market price of the portfolio with its intrinsic value (i.e., the 

market value of its underlying stocks).  

In my empirical tests, I assume that when a typical CEF investor evaluates the holdings from 

a CEF, such an investor is more likely to look at a fund’s top-10 holdings. The average CEF in my 

sample holds around a hundred stocks. Obtaining the full holdings requires investors to go through 

a fund’s annual report, and it is impossible to keep all of them in mind. On the contrary, top-10 

holdings are readily observable from a fund’s website, factsheets, and financial media (such as 

Morningstar, Yahoo! Finance, etc.). They account for a substantial portion of the total portfolio 

value and represent the investment objectives of the fund. Therefore, focusing on top-10 holdings 

from each CEF is reasonable for investors when they evaluate a CEF, especially for retail investors, 

who are the primary investors for CEFs. Indeed, according to a survey by Huang, Hwang, Lou, 

and Yin (2019), almost all investors evaluate CEFs through sources which prominently display a 

fund’s top-ten holdings.3 

 
2 For example, Boyer, Mitton, and Vorkink (2010) use firm size (among others) to compute expected idiosyncratic skewness, 

making their measure mechanically correlated with size; Barberis, Mukherjee, and Wang (2016) report that their “prospect theory 

value” has a correlation of 36% with size and −34% with book-to-market ratio. 

3 Huang, Hwang, Lou, and Yin (2019) argues that investor disagreement and belief crossing can generate a wedge in valuation 

between the portfolio and the sum of its components. In my main results, I have controlled for analysts' forecast dispersion and 

idiosyncratic volatility as proxies for investor disagreement. In untabulated tests, I have also followed their paper to include belief 

crossing and its interaction with disagreement into the regressions. My results remain qualitatively similar. 
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To empirically test the model prediction, I follow Bali, Cakici, and Whitelaw (2011) and use 

the average top-5 daily returns within a month to proxy for the lottery-like feature (denoted as 

𝑀𝑎𝑥(5)).4 A high 𝑀𝑎𝑥(5) represents a large investment return, which directly captures the low 

probability and extreme payoff state that drives the pricing implication in cumulative prospect 

theory. Since investors mainly focus on top-10 holdings, I compute the overall lottery-like feature 

from a CEF’s holdings as the average 𝑀𝑎𝑥(5) from the top-10 holdings, weighted by their 

respective portfolio weights (denoted as 𝐻𝑜𝑙𝑑𝑖𝑛𝑔_𝑀𝑎𝑥(5)). A high 𝐻𝑜𝑙𝑑𝑖𝑛𝑔_𝑀𝑎𝑥(5) indicates 

a strong lottery-like feature from a CEF’s holdings.  

To directly show the diversification effect in lottery-like features among the top-10 holdings, 

I construct a proxy, 𝐶𝑜𝑀𝑎𝑥, to capture the tendency for lottery-like payoffs to be produced at the 

same time. Specifically, for every possible stock pair {𝑖, 𝑗} within a CEF’s top-10 holdings, I 

compute the percentage of the top-5 daily returns that are recorded in the same day, and denote it 

as 𝐶𝑜𝑀𝑎𝑥(5)քӴօ , where 𝐶𝑜𝑀𝑎𝑥(5)քӴօ ∈ [0,1] . The lottery-like feature of each stock pair, 

𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(5)քӴօ, is the average 𝑀𝑎𝑥(5) from the two stocks, weighted by their portfolio weights. 

Therefore, 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(5)քӴօ × 𝐶𝑜𝑀𝑎𝑥(5)քӴօ provides useful information about both the lottery-

like feature and the tendency of the stocks in each pair to pay out “jackpots” at the same time. 

 
4 Similar results can be obtained using top-i daily returns within a month as well (i = 2,3,4). I use 𝑀𝑎𝑥(5) for the main results to 

allow for more variation when I construct the variable to capture the tendency for lottery-like payoffs to be produced at the same 

time. Similar results can also be obtained by using extreme returns within a year. These additional results are reported in Table 6. 
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These variables are further integrated at the fund level based on holding weights (denoted as 

𝐶𝑜𝑀𝑎𝑥(5), 𝐻𝑜𝑙𝑑𝑖𝑛𝑔_𝑀𝑎𝑥(5), and 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(5) × 𝐶𝑜𝑀𝑎𝑥(5)).5 

Consistent with the theoretical prediction, my empirical results show that a strong lottery-like 

feature from a CEF’s holdings leads to a high CEF discount. My panel regression of CEF discount 

on 𝐻𝑜𝑙𝑑𝑖𝑛𝑔_𝑀𝑎𝑥(5), 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(5) × 𝐶𝑜𝑀𝑎𝑥(5), and a host of controls produces an estimate 

for 𝐻𝑜𝑙𝑑𝑖𝑛𝑔_𝑀𝑎𝑥(5)  of 1.94, suggesting that a one-standard-deviation increase in 

𝐻𝑜𝑙𝑑𝑖𝑛𝑔_𝑀𝑎𝑥(5)  comes with a 1.94% increase in the CEF discount (t-statistic = 4.33). 

Considering that the average CEF discount in my sample is 4.70%, this effect is not only 

statistically significant but also economically large. On the other hand, if a CEF’s holdings have 

strong lottery-like features and a high 𝐶𝑜𝑀𝑎𝑥(5), the discount on the CEF price can be partially 

mitigated. A one-standard-deviation increase in 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(5) × 𝐶𝑜𝑀𝑎𝑥(5) can help offset the 

CEF discount by 0.49% (t-statistic = 3.97).6  

An alternative proxy to capture the diversification in lottery-like features is to compare the 

difference in 𝑀𝑎𝑥(5) from a CEF (denoted as 𝐶𝐸𝐹_𝑀𝑎𝑥(5)) and 𝐻𝑜𝑙𝑑𝑖𝑛𝑔_𝑀𝑎𝑥(5). However, 

this is a noisy and indirect measure. First, in reality, CEFs can hold a very diversified portfolio 

consisting of equities, bonds, derivatives, and other securities in the US and in other countries. 

 
5 Note that when 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(5)քӴօ is taken as a weighted average across all stock pairs, it becomes 𝐻𝑜𝑙𝑑𝑖𝑛𝑔_𝑀𝑎𝑥(5) because 

every stock is counted twice. 
6 Further analyses show that the variation of limits-to-arbitrage has an impact on this effect. Specifically, my results are stronger 

(1) during periods when funding costs for arbitrageurs are high; (2) for CEFs with low average institutional ownership from holding 

stocks. For brevity, these results are available upon requests. 
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Price movements from all other assets may affect CEF returns. Second, it has been well 

documented that CEF prices can be affected by various factors, such as investor sentiment. Finally, 

this is an aggregated and indirect measure, while 𝐶𝑜𝑀𝑎𝑥 directly captures how lottery-like 

features are diversified away among top-10 holdings. Based on these reasons, I compute 

𝐶𝑜𝑀𝑎𝑥(5), which does not rely on the CEF itself, to mitigate potential noises and provide direct 

evidence on the mechanism. That being said, using the difference between 𝐶𝐸𝐹_𝑀𝑎𝑥(5) and 

𝐻𝑜𝑙𝑑𝑖𝑛𝑔_𝑀𝑎𝑥(5), or controlling 𝐶𝐸𝐹_𝑀𝑎𝑥(5) in all regressions can produce similar results. 

I extend my empirical tests to incorporate M&As and find similar results. In an M&A deal, 

the new joint firm can be regarded as a “portfolio” which has two “underlying stocks”: the acquirer 

and the target. The combined announcement return from both the acquirer and the target (denoted 

as 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝐶𝐴𝑅[−1, +1]) can proxy for the difference between the value of the “portfolio” 

(the new joint firm) and the total value of its “underlying assets” (the acquirer and the target as 

two separate firms) shortly after the news announcement. Similar to CEFs, the diversification in 

lottery-like features can help explain the combined announcement returns from M&As. 

As my final setting, a conglomerate can be regarded as a “portfolio” consisting of different 

business segments. Prior literature has shown that a conglomerate usually has a low market-to-

book ratio compared to its single-segment counterparts. Consistent with the previous two settings, 

I find that the diversification in lottery-like features can help explain the low market-to-book ratio 

of conglomerates. 
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A potential concern from these three sets of results is that 𝐶𝑜𝑀𝑎𝑥 simply captures return 

correlation. To address this concern, I conduct placebo tests by replacing 𝐶𝑜𝑀𝑎𝑥 with a return 

correlation constructed after excluding concurrent extreme returns.7 In all three sets of placebo 

tests, the interactions between the return correlation and the lottery-like feature become 

insignificant. These placebo tests further confirm that diversification in lottery-like features, not 

return correlation, contributes to the portfolio pricing discount. 

My paper contributes to the literature as follows. First, I extend cumulative prospect theory 

in a portfolio setting with multiple lottery-like stocks. Existing studies on the pricing implications 

of prospect theory has mainly focused on the implications of the kink in the value function (e.g., 

Benartzi and Thaler, 1995; Barberis, Huang, and Santos, 2001; Easley and Yang, 2015), the 

implications of the convex/concave portion of the value function (e.g., Frazzini, 2006; Barberis 

and Xiong, 2009; Li and Yang, 2013; An, 2015), or testing the theoretical prediction on the 

negative expected returns for lottery-like stocks (e.g., Boyer, Mitton, and Vorkink, 2010; Bali, 

Cakici, and Whitelaw, 2011; Barberis, Mukherjee, and Wang, 2016; An, Wang, Wang, and Yu, 

2019). Taking a different approach, my paper focuses on a novel and less-studied perspective: 

portfolio discounts. I show that, under cumulative prospect theory, when investors trade a portfolio 

 
7 Section 5.1 provides more details on how this return correlation is constructed. It requires excluding the concurrent extreme 

returns to avoid a mechanical relation between 𝐶𝑜𝑀𝑎𝑥 and correlation. 
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consisting of lottery-like stocks, the portfolio should trade at a discount. This discount depends on 

how likely these lottery-like holdings are to produce extreme payoffs at the same time.  

Empirically, my paper extends cumulative prospect theory to new territories to understand 

puzzling phenomena in the financial market. I utilize CEFs, M&As, and conglomerates to test my 

theoretical predictions and find consistent results. These empirical findings not only support 

prospect theory from a new perspective, but also provide a novel and unifying framework for three 

seemingly unrelated phenomena, i.e., the closed-end fund puzzle, the combined announcement 

return of a M&A deal, and the conglomerate discount. 

 

2 The Model 

2.1 Model Setup 

Following Barberis and Huang (2008), I consider a one-period economy with two dates, 𝑡 =

0 and 𝑡 = 1. In this economy, investors use cumulative prospect theory to evaluate risk. For each 

investor, suppose their wealth at 𝑡 = 0 is 𝑊Ј. They invest their wealth into the stock market and 

earn a gross return of 𝑟. Thus, their final wealth at 𝑡 = 1 becomes 𝑊φ = 𝑊Ј𝑟. Assume the 

economy contains a risk-free asset, which is in perfectly elastic supply and has a gross return of 

𝑟ց . The investor chooses 𝑊Ј𝑟ց  as their reference point. The gain (loss) the investor gets from 

𝑡 = 1 is defined as: 
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𝑥 = 𝑊Ј𝑟 − 𝑊Ј𝑟ց  (1) 

The investor has the following value function: 

𝑣(𝑥) = অ
𝑥ᆿ

−𝜆(−𝑥)ᇀ     
𝑥 ≥ 0
𝑥 < 0

 . (2) 

The coefficient of loss aversion, 𝜆, determines the degree of sensitivity to losses. For 𝛼 ∈

(0,1), 𝛽 ∈ (0,1), and 𝜆 > 1, this value function is concave over gains, convex over losses, and 

exhibits a greater sensitivity to losses than to gains. 

The investor applies probability weighting functions to the cumulative probability 

distribution of gains and losses. Specifically, the functional forms are: 

𝑤+(𝑃 ) =
𝑃 ᇁ

(𝑃 ᇁ + (1 − 𝑃)ᇁ)
φ
ᇁ
 , 𝑤−(𝑃 ) =

𝑃 ᇂ

(𝑃 ᇂ + (1 − 𝑃)ᇂ)
φ
ᇂ

 , (3) 

where 𝑤+ and 𝑤− are the probability weighting functions for gains and losses, respectively. 𝑃  

is the cumulative probability distribution function. For 𝛾 ∈ (0,1) and 𝛿 ∈ (0,1), the investor 

overweights small probabilities, i.e., for small and positive 𝑃 , 𝑤(𝑃) > 𝑃 . In other words, the 

investor exhibits a preference for lottery-like payoffs. 

The goal function for this investor is: 

𝑈(𝑊φ) ≡ 𝑉 (𝑥) = 𝑉 (𝑥+) + 𝑉 (𝑥−) (4) 

where 𝑥+ = max (𝑥, 0), and 𝑥− = min (𝑥, 0), and 
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𝑉 (𝑥+) = −௷ 𝑣(𝑥)𝑑𝑤+ॕ1 − 𝑃(𝑥)ॖ
∞

Ј

= ௷ 𝑤+ॕ1 − 𝑃(𝑥)ॖ
�

Ј

𝑑𝑣(𝑥) (5) 

𝑉 (𝑥−) = ௷ 𝑣(𝑥)𝑑𝑤−ॕ𝑃(𝑥)ॖ
Ј

−∞

= −௷ 𝑤−(𝑃(𝑥))
Ј

−�

𝑑𝑣(𝑥) (6) 

Assume the economy has a market portfolio and two lottery-like stocks. Investors choose to 

allocate 𝜙 to the lottery-like stocks relative to the amount allocated to the market portfolio. The 

excess return on the market portfolio, excluding the lottery-like stocks, is normally distributed: 

𝑟ֈ~𝑁(𝜇ֈ, 𝜎ֈ
ϵ ).  Each of the lottery-like stocks follows a binomial distribution: with a low 

probability 𝑣, the security pays out a large “jackpot” 𝐽 , and with probability 1 − 𝑣, it pays out 

nothing. For a very large 𝐽  and a very small 𝑣, this binomial distribution resembles a lottery 

ticket. The returns on the lottery-like stocks are independent of the market portfolio, and the 

payoffs from the lottery-like stocks are infinitesimal relative to the total payoff from the market 

portfolio. Since the two lottery-like stocks are identical, they must be priced equally in the 

equilibrium. I denote this price as 𝑝և, and the excess return of the lottery-like stocks, 𝑟ևӴք (𝑖 =

1 or 2), is distributed as 𝑟ևӴք ~ि𝐽 𝑝և⁄ − 𝑟ց , 𝑣; −𝑟ց , 1 − 𝑣ी.  

Based on Barberis and Huang (2008), this economy has an equilibrium with three global 

optima: a portfolio that combines the risk-free asset, the market portfolio, and a positive 𝜙∗ > 0 

in just the first (second) lottery-like stock; and a portfolio that holds only the risk-free asset and 

the market portfolio. Provided (𝛼, 𝛽, 𝛾, 𝛿, 𝜆) = (0.88, 0.88, 0.65, 0.65, 2.25)  and 

ि𝜎ֈ, 𝑟ց , 𝐽, 𝑣ी = (0.15, 1.02, 10, 0.09), the equilibrium price for the two lottery-like stocks and the 
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holding weight should be (𝑝և, 𝜙∗) = (0.925, 0.085). I consider this economy as a benchmark. The 

equilibrium price for the lottery-like stocks in this economy will be carried out to define the 

portfolio pricing discount that I will introduce in a second economy in Section 2.2. 

2.2 Portfolio Pricing 

Consider a second economy. It is identical to the benchmark economy described in Section 

2.1, except that investors can no longer trade the two lottery-like stocks directly. Instead, they can 

trade a portfolio which invests equally in the two lottery-like stocks. The excess return of the 

portfolio depends on the probability that both lottery-like stocks pay out “jackpots” at the same 

time. I denote: 

Joint Probability 
Lottery-like Stock 2 

𝑃𝑎𝑦𝑜𝑓𝑓 =  𝐽 𝑃𝑎𝑦𝑜𝑓𝑓 =  0 

Lottery-like Stock 1 
𝑃𝑎𝑦𝑜𝑓𝑓 =  𝐽 𝑢 𝑣 − 𝑢 

𝑃𝑎𝑦𝑜𝑓𝑓 =  0 𝑣 − 𝑢 1 − 2𝑣 + 𝑢 

I define 𝐶𝑜𝑀𝑎𝑥 = 𝑢/𝑣, and the excess return of the portfolio, 𝑟֎ , is distributed as: 

𝑟֎ ~ গ
𝐽

𝑝֎

− 𝑟ց , 𝑢; 
𝐽

2𝑝֎

− 𝑟ց , 2𝑣 − 2𝑢; −𝑟ց , 1 − 2𝑣 + 𝑢ঘ . (7) 

where 𝑝֎ is the market price of the portfolio. 

In this new economy, two types of equilibria may exist, depending on parameters. A 

homogeneous holdings equilibrium is an equilibrium in which all investors hold the same position. 
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In this equilibrium, each investor will hold an infinitesimal amount 𝜀∗ of the portfolio. The price 

of the portfolio, 𝑝֎, does not depend on 𝑢:8 

𝑝֎ =
𝑣𝐽

𝑟ց

 . (8) 

The other type of equilibrium is a heterogenous holdings equilibrium with two groups of 

investors (these investors are ex-ante homogeneous), where the first group holds a combination of 

the risk-free asset, the market portfolio, and the new portfolio; and the second group holds the risk-

free asset and the market portfolio but takes no position in the new portfolio. Markets are cleared 

by assigning each investor to one of the optima. The portfolio price does not have an analytical 

solution. It depends not only on the lottery-like feature from its holdings (𝑣), but also on the 

probability that both lottery-like stocks pay out “jackpots” at the same time (𝐶𝑜𝑀𝑎𝑥). Detailed 

descriptions for the conditions of these two types of equilibria are provided in Appendix 2. 

2.3 An Example 

I solve the equilibrium price of the portfolio for different levels of 𝐶𝑜𝑀𝑎𝑥 numerically 

under the same set of parameters adopted in the benchmark economy. I start from a special case: 

when 𝐶𝑜𝑀𝑎𝑥 = 1 (i.e., 𝑢 = 𝑣), the portfolio should be priced at 0.925, i.e., the price of the two 

lottery-like stocks from the benchmark economy. No discount is observed. However, as 𝐶𝑜𝑀𝑎𝑥 

decreases, the lottery-like feature of the portfolio drops while the expected payoff of the portfolio 

 
8 See Proposition 2 in Barberis and Huang (2008) 
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remains the same. Since investors only value the tails of their wealth distribution, the portfolio 

becomes less attractive and should be traded at a lower price.  

For example, when 𝑢 = 0.08, a heterogenous holdings equilibrium can exist. The red line 

from Figure 1a provides a graphical illustration of the value function. At 𝑝֎ = 0.922, the value 

function produces two global optima at 𝜙 = 0  and 𝜙∗ = 0.088 , where 𝜙  is the amount 

allocated to the new portfolio relative to the amount allocated to the market portfolio. The market 

is cleared by assigning each investor to one of the two global optima.  

[Figure 1 Here] 

The intuition of the heterogenous holdings equilibrium is as follows. When investors hold a 

small position in the new portfolio relative to their position in the market portfolio, their utility 

drops because the portfolio has a negative expected return (𝐸(𝑟֎) = 𝑣𝐽 𝑝֎⁄ − 𝑟ց = −4.39%). As 

the position on the portfolio increases, investors’ wealth distributions start to have significant 

lottery-like features. This increases investors’ utility under prospect theory because they 

overweight small probabilities and value lottery-like payoffs. At a price level of 𝑝֎ = 0.922, the 

benefit of adding lottery-like features to investors’ wealth distributions offsets the negative excess 

return from holding the portfolio, producing both 𝜙 = 0 and 𝜙∗ = 0.088 as global optima.  

Compared to the price of the lottery-like stocks in the benchmark economy, the portfolio is 

now traded at a 0.32% discount (1 − 0.922/0.925). The lesson from this example is that, when 
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𝐶𝑜𝑀𝑎𝑥 < 1, the portfolio starts to trade at a lower price relative to its underlying assets. However, 

since 𝐶𝑜𝑀𝑎𝑥 is still reasonably high, this discount is very small. 

For these parameter values, there exists no equilibrium in which all investors with access to 

the portfolio hold the same position. According to (8), in a homogeneous holdings equilibrium, 

𝑝֎ = 0.882. The blue line in Figure 1a shows that 𝑝֎ = 0.882 does not support an equilibrium, 

because all investors would prefer a substantial positive position in the portfolio to an infinitesimal 

one, making it impossible to clear the market.  

However, when 𝐶𝑜𝑀𝑎𝑥 is low, a homogeneous holdings equilibrium can exist. In Figure 

1b, the blue line shows that, when 𝑢 = 0.01, 𝜙∗ = 𝜀∗ → 0 is not only a local optimum but also 

a global optimum. Therefore, all investors would prefer to hold an infinitesimal positive position, 

and the portfolio is traded at 𝑝֎ = 0.882, or in other words, a 4.65% discount. This discount is a 

lot higher compared to the case when 𝑢 = 0.08, because 𝐶𝑜𝑀𝑎𝑥 is very low.  

The intuition for the homogenous holdings equilibrium is that, when 𝐶𝑜𝑀𝑎𝑥 is low, the 

portfolio does not have a sufficient lottery-like feature anymore. Therefore, any investment in this 

portfolio cannot add enough lottery-like feature to an investor’s wealth distribution to compensate 

for the negative expected returns received from holding the portfolio. Since investors only 

overweight the right-tail of the distribution, cumulative prospect theory assigns the portfolio the 

same expected return that a concave expected utility theory would assign, i.e., 𝐸(𝑟֎) = 0. 
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For these parameter values, a heterogeneous holdings equilibrium is not feasible. The red line 

in Figure 1b suggests that the utility becomes positive for a small 𝜙 > 0. Therefore, all investors 

would prefer a positive position in the portfolio, making it impossible to clear the market.  

For different levels of 𝐶𝑜𝑀𝑎𝑥, I search for the portfolio price that satisfies a heterogenous 

holdings equilibrium first, and if it does not exist, I switch to search for the price in a homogeneous 

holdings equilibrium. I plot the relation between 𝐶𝑜𝑀𝑎𝑥 and the portfolio discount in Figure 2.  

[Figure 2 Here] 

Figure 2 shows that, holding 𝑣 constant, the model predicts a negative relation between 

𝐶𝑜𝑀𝑎𝑥  and the portfolio discount. When 𝐶𝑜𝑀𝑎𝑥  decreases, the lottery-like feature of the 

portfolio declines. This negatively affects the price of the portfolio, making the portfolio trade at 

an increasing discount. As 𝐶𝑜𝑀𝑎𝑥 drops below 0.40, the portfolio cannot offer enough of a 

lottery-like feature to support a heterogeneous holdings equilibrium, and cumulative prospect 

theory assigns a price 𝑝֎ < 𝑝և regardless of 𝐶𝑜𝑀𝑎𝑥. 

2.4 𝑣, 𝐶𝑜𝑀𝑎𝑥, and Portfolio Discount 

In Figure 3a, I plot the portfolio discount as a function of 𝐶𝑜𝑀𝑎𝑥 for 𝑣 = 0.09 (red line), 

𝑣 = 0.07 (blue line), and 𝑣 = 0.05 (green line). In all three cases, a low 𝐶𝑜𝑀𝑎𝑥 leads to a high 

portfolio discount. Provided the same level of 𝐶𝑜𝑀𝑎𝑥, the discount on the portfolio is severe 
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when 𝑣 is low, i.e., when the portfolio holds stocks with strong lottery-like features. On the other 

hand, when 𝑣 is high, the effect of 𝐶𝑜𝑀𝑎𝑥 on the portfolio price is weak.  

[Figure 3 Here] 

In Figure 3b, I plot the portfolio discount as a function of 𝑣 for 𝐶𝑜𝑀𝑎𝑥 = 1.0 (red line), 

𝐶𝑜𝑀𝑎𝑥 = 0.7 (blue line), 𝐶𝑜𝑀𝑎𝑥 = 0.4 (green line), and 𝐶𝑜𝑀𝑎𝑥 = 0.1 (purple line). When 

𝐶𝑜𝑀𝑎𝑥 = 1.0 (no diversification), the portfolio is always traded at a price equal to the lottery-

like stocks regardless of 𝑣. In the other three cases, a low 𝑣 leads to a high portfolio discount. 

Provided the same level of 𝑣, the discount on the portfolio is severe when 𝐶𝑜𝑀𝑎𝑥 is low, i.e., 

when the two lottery-like stocks do not tend to pay off “jackpots” at the same time. On the other 

hand, if the two lottery-like stocks have a high 𝐶𝑜𝑀𝑎𝑥, the discount can be partially mitigated. 

Therefore, the model predicts an interaction effect: a portfolio pricing discount appears when 

the portfolio holds stocks with strong lottery-like features that do not tend to pay off “jackpots” at 

the same time. 

 

3 Data and Variables 

In this section, I introduce samples and variables to test the model prediction in three different 

settings: CEFs (Section 3.1), M&A (Section 3.2), and conglomerates (Section 3.3). 
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3.1 Closed-end Funds 

My main empirical tests focus on US equity closed-end funds.9 A CEF is a type of publicly 

traded mutual fund which invests in other publicly traded securities. This makes it possible to 

compare the market value of the fund with the total market value of its underlying assets. 

Following existing literature, I first extract a list of CEFs and their monthly prices from The 

Center for Research in Security Prices (CRSP) by selecting securities with share codes 14 and 44. 

The net asset value (NAV), i.e., the total market value of a fund’s underlying assets on a per-share 

basis, is from Compustat. The dependent variable is the CEF discount, which is defined as the 

difference between the a CEF’s NAV and its price, divided by its NAV: 

𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡քӴ֏ =
𝑁𝐴𝑉քӴ֏ − 𝑃𝑟𝑖𝑐𝑒քӴ֏

𝑁𝐴𝑉քӴ֏

 . (9) 

For example, a CEF traded at $4.9 but with a NAV of $5 is described to have a discount of 2%, or 

in other words, a premium of −2%. To avoid any unnecessary confusion, in this paper, I always 

describe results in terms of discounts hereafter, following the common convention and the fact that 

the majority of CEFs trade at discounts. I follow standard literature to exclude data (1) within the 

first six months after a fund’s IPO; and (2) in the month preceding the announcement of liquidation 

or open-ending (Chan, Jain, and Xia, 2008).10 I obtain CEFs’ holdings from Morningstar.  

 
9 A CEF is defined as a US equity CEF if at least 50% of its weight is invested in stocks listed in US stock exchanges. 

10 These exclusions do not affect my results. 
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In my empirical tests, I assume that when a typical CEF investor evaluates the holdings from 

a CEF, such an investor is more likely to look at a fund’s top-10 holdings. The average CEF in my 

sample holds around a hundred stocks. Obtaining the full holdings requires investors to go through 

a fund’s annual report, and it is impossible to keep all of them in mind. On the contrary, top-10 

holdings are readily observable from a fund’s website, factsheets, and financial media (such as 

Morningstar, Yahoo! Finance, etc.). They account for a substantial portion of the total portfolio 

value and represent the investment objectives of the fund. Therefore, focusing on top-10 holdings 

from each CEF is reasonable for investors when they evaluate a CEF, especially for retail investors, 

who are the primary investors for CEFs. Indeed, according to a survey by Huang, Hwang, Lou, 

and Yin (2019), almost all investors evaluate CEFs through sources which prominently display a 

fund’s top-ten holdings. 

Another reason for focusing on the top-10 holdings is that top-10 holdings are very persistent. 

In the model I described in Section 2, the holdings for the portfolio does not change over time. In 

my sample, most of the CEFs report their holdings on a quarterly basis. Therefore, when analyzing 

the monthly discounts between two quarterly reports, I implicitly assume that holdings do not 

change within the quarter. However, portfolio rebalancing within the quarter (not observable from 

the holding report) can affect prices and returns for both the CEF and its holdings. Because top-10 

holdings are very persistent, they do not change very much over time. Therefore, focusing on the 

top-10 holdings can capture the theory better and can reduce potential noise introduced by portfolio 
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rebalancing. Indeed, in my sample, top-10 holdings from a fund report have a 95% (80%) of chance 

of staying the fund (top-10) in the next fund report.  

The lottery-like feature is proxied by the average top-5 daily returns within a month (denoted 

as 𝑀𝑎𝑥(5)), following Bali, Cakici, and Whitelaw (2011). In other words, around the top 25% of 

the returns in a month are used to capture the right-tail of the return distribution. I will keep this 

top 25% rule to capture the right-tail in the other two settings and in robustness checks. Similar 

results can be obtained using top-i daily returns within a month as well (i = 2,3,4). I use 𝑀𝑎𝑥(5) 

for the main results to allow for more variation when I construct 𝐶𝑜𝑀𝑎𝑥. Similar results can also 

be obtained if I construct the variable on an annual basis. In robustness checks, I have considered 

using the top-60 daily return within the past year (denoted as 𝑀𝑎𝑥(60)). This is a variable that 

will also be adopted in the robustness checks for the other two settings. Since CEF discounts can 

be observed on a monthly basis, it is intuitive to follow Bali, Cakici, and Whitelaw (2011) and 

construct a proxy for lottery-like features using daily returns from each month. On the other hand, 

computing 𝑀𝑎𝑥(60)  in each month requires overlapping observation windows and brings 

unnecessary persistence to the independent variable. Therefore, 𝑀𝑎𝑥(5) is adopted for the main 

results. I compute the overall lottery-like feature from a CEF’s holdings as the average 𝑀𝑎𝑥(5) 

from a CEF’s top-10 holdings, weighted by their respective portfolio weights (denoted as 

𝐻𝑜𝑙𝑑𝑖𝑛𝑔_𝑀𝑎𝑥(5)).  
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To directly show the effect of the diversification in lottery-like features among holdings, I 

construct a proxy, 𝐶𝑜𝑀𝑎𝑥, to capture the tendency for lottery-like payoffs to be produced at the 

same time. This measure is computed within the top-5 daily returns.11 Specifically, for every 

possible stock pair {𝑖, 𝑗} within a CEF’s top-10 holdings, I compute the percentage of the top-5 

daily returns that are recorded in the same day, and denote it as 𝐶𝑜𝑀𝑎𝑥(5)քӴօ. For example, if the 

top-5 daily returns for Stock A come from the 1st, 4th, 9th, 11th and 15th day of the month, while the 

top-5 daily returns for Stock B come from the 2nd, 4th, 9th, 14th and 20th day of the month, then 

𝐶𝑜𝑀𝑎𝑥(5)բӴգ  equals 40%. By construction, 𝐶𝑜𝑀𝑎𝑥(5)քӴօ ∈ [0,1] . For each pair of stocks 

{𝑖, 𝑗}, the average lottery-like feature, 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(5)քӴօ, is the average 𝑀𝑎𝑥(5) of the two stocks, 

weighted by their respective portfolio weights. 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(5)քӴօ × 𝐶𝑜𝑀𝑎𝑥(5)քӴօ provides useful 

information about both the lottery-like feature and the tendency for each stock pair to pay out 

extreme returns at the same time. 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(5)քӴօ × 𝐶𝑜𝑀𝑎𝑥(5)քӴօ , 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(5)քӴօ , and 

𝐶𝑜𝑀𝑎𝑥(5)քӴօ are further averaged across all possible stock pairs, weighted by the total portfolio 

weights of each stock pair (denoted as 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(5) × 𝐶𝑜𝑀𝑎𝑥(5) , 𝐻𝑜𝑙𝑑𝑖𝑛𝑔_𝑀𝑎𝑥(5) , and 

𝐶𝑜𝑀𝑎𝑥(5)). Note that when 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(5)քӴօ is taken as a weighted average across all stock pairs, 

it becomes 𝐻𝑜𝑙𝑑𝑖𝑛𝑔_𝑀𝑎𝑥(5) because each stock is counted twice. Other versions of 𝐶𝑜𝑀𝑎𝑥 

are constructed in the same way in the robustness checks. 

 
11 In robustness, I also consider alternative 𝐶𝑜𝑀𝑎𝑥 variables constructed from top-i daily returns (i = 2, 3, 60). 
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I follow the literature and include the following control variables that may explain CEF 

discounts: 𝐶𝐸𝐹_𝑀𝑎𝑥(5)  (the average top-5 daily returns within a month for a CEF), 

disagreement (as proxied by analysts’ forecast dispersion), inverse price, dividend yield, expense 

ratio, and liquidity ratio. In addition, I control for the weighted average skewness and idiosyncratic 

volatility from the top-10 holdings. Detailed descriptions of these variables can be found in the 

Appendix. My final sample contains 101 CEFs from 2002 to 2014. The sample period is 

determined by the availability of data on Morningstar. 

Panel A of Table 1 reports summary statistics for the CEF sample. The average CEF discount 

is 4.7% with a standard deviation of 14.3%. The mean and standard deviation of the CEF discount 

is in line with those reported in prior studies (e.g., Lee, Shleifer and Thaler, 1991; Chen, Kan, and 

Miller, 1993; Bodurtha, Kim, and Lee, 1995; Pontiff, 1996; Klibanoff, Lamont, and Wizman, 1998; 

Chan, Jain, and Xia, 2008; Hwang, 2011; Wu, Wermers, and Zechner, 2016; Hwang and Kim, 

2017).  

[Table 1 Here] 

The holdings exhibit stronger lottery-like features compared to the CEF itself. On average, 

the lottery-like feature drops about 30% when these stocks are combined into a CEF. This shows 

that lottery-like features indeed get diversified away at the fund level. 

3.2 Mergers and Acquisitions 
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I extend my empirical tests to study M&As. I extract details on M&A deals from the 

Securities Data Corporation (SDC)’s U.S. M&A database. Following Masulis, Wang, and Xie 

(2007), I require that: (1) the status of the deal must be completed; (2) the acquirer controls less 

than 50% of the target shares prior to the announcement; (3) the acquirer owns 100% of the target 

shares after the transaction; (4) the deal value disclosed in the SDC dataset is more than 1 million 

USD.  

I obtain stock returns and accounting variables from CRSP and Compustat, respectively. The 

dependent variable is the combined announcement return, defined as the average cumulative 

abnormal return over days [−1, +1] across the acquirer and the target, weighted by their market 

capitalizations in the month prior to the announcement: 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝐶𝐴𝑅[−1,+1] = 𝑤բ × 𝐶𝐴𝑅բ[−1,+1] + 𝑤յ × 𝐶𝐴𝑅յ [−1,+1], (10) 

where 𝑡 =  0 is the announcement day, or the ensuing trading day if the deal is announced when 

the market is closed. 𝐶𝐴𝑅բ[−1,+1]  and 𝐶𝐴𝑅յ [−1, +1]  are cumulative abnormal returns 

over days [−1, +1] for the acquirer and the target, respectively; 𝑤բ and 𝑤յ  are weights based 

on market capitalizations for the acquirer and the target. I use DGTW-adjusted returns (Daniel, 

Grinblatt, Titman, and Wermers, 1997) to compute 𝐶𝐴𝑅բ[−1,+1]  and 𝐶𝐴𝑅յ [−1,+1] . 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝐶𝐴𝑅[−1,+1] captures the difference between the value of the joint firm (i.e., the 

“portfolio”) and the total value of the acquirer and the target operating separately (i.e., the 

“underlying assets”) around the announcement.  
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In the CEF setting, since CEF discounts are observed repeatedly at monthly frequency, it is 

intuitive to construct a proxy for lottery-like features using daily returns from each month. 

However, the M&A setting is very different, because the sample consists of unique takeover events. 

Therefore, to capture the lottery-like features from the acquires and the targets before the 

announcements, I first need to determine a time horizon before the deal announcement to analyze 

their return distributions. Considering that successful M&As are the results of long-term 

negotiations and that investors usually evaluate M&As in a long horizon, in the main results, I 

analyze the returns patterns from acquirers and targets from the past 12 months before the deal 

announcement. I consider alternative variable constructions in robustness checks. 

In my main results, the lottery-like feature of the acquirer (target) is proxied by the average 

of the acquirer’s (target’s) top-3 monthly returns within the past year before the announcement 

(𝑀𝑎𝑥(3)).12 This is similar to the variable I construct for CEFs because I still use the top 25% of 

the returns to capture the right-tail of the return distribution. In robustness checks, I also consider 

using top-12 weekly returns (𝑀𝑎𝑥(12)) and top-60 daily returns (𝑀𝑎𝑥(60)) within the past year 

to capture lottery-like features for acquires and targets. 𝑀𝑎𝑥(60) is constructed in the same way 

as in the CEF setting, and will be adopted for the conglomerate setting as well. I also consider 

expanding the time horizon to examine lottery-like features to 24 months before the deal 

 
12 Other studies utilize monthly returns to capture the skewness of a return distribution, for instance, Mitton and Vorkink (2007), 

Mitton and Vorkink (2010), and Barberis, Mukherjee, and Wang (2016). 
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announcements. All these alternative specifications produce consistent results and are reported in 

Table 6.  

For each M&A, I use 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑀𝑎𝑥(3), the weighted average 𝑀𝑎𝑥(3) from the acquirer 

and the target prior to the announcement, as a proxy for the overall lottery-like feature of the deal: 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑀𝑎𝑥(3) = 𝑤բ × 𝑀𝑎𝑥(3)բ + 𝑤յ × 𝑀𝑎𝑥(3)յ . (11) 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑀𝑎𝑥(3) only captures the lottery-like feature from the deal; it does not directly 

reflect the diversification in lottery-like features between the acquirer and the target. To explicitly 

show this, I construct a 𝐶𝑜𝑀𝑎𝑥 proxy similar to the CEF setting to captures the likelihood that 

both the acquirer and the target pay out extreme returns at the same time.13 Specifically, I define 

𝐶𝑜𝑀𝑎𝑥(3) as the percentage of the top-3 monthly returns that are recorded in the same month. 

For example, if the top-3 monthly returns for Stock A come from month −10, −5 and −2, while the 

top-3 monthly returns for Stock B come from month −9, −5 and −3 (the month that the deal is 

announced is month 0), then 𝐶𝑜𝑀𝑎𝑥(3)  equals 33% for this deal. By construction, 

𝐶𝑜𝑀𝑎𝑥(3) ∈ [0,1]. Weekly and daily versions of 𝐶𝑜𝑀𝑎𝑥 are constructed in the same way in the 

robustness checks. 

 
13 Unlike the CEF setting, the lottery-like feature of the new joint firm is unobservable around the deal announcement, therefore, 

𝐶𝑜𝑀𝑎𝑥 is the best proxy for the diversification in lottery-like features in an M&A deal. 
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I consider the following control variables for both acquirers and targets: market capitalization, 

market-to-book ratio, return on assets, leverage, and operating cash flows. I consider the following 

control variables from deals: disagreement, relative size, tender offer, hostile offer, competing 

offer, cash only, stock only, and same industry. In addition, I control for the combined skewness 

and combined idiosyncratic volatility from the acquirer and the target. Detailed descriptions of 

these variables can be found in the Appendix. 

My final sample contains 1,145 M&As from 1989 to 2014. Summary statistics are reported 

in Panel B of Table 1. The average 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑀𝑎𝑥(3) is 1.6% with a standard deviation of 

7.0%.  

3.3 Conglomerates 

My last empirical setting is on conglomerates. A conglomerate is a firm operating in multiple 

industry segments. My data on firm segments is from Compustat. Each business segment is 

assigned a four-digit SIC code. I define a conglomerate as a firm operating across at least two 

different segments; I define a single-segment firm as a firm operating in only one segment. 

Following the standard literature (Berger and Ofek, 1995; Lamont and Polk, 2001; Mitton and 

Vorkink, 2010), I discard firm-year observations if Compustat assigns any segment a 1-digit SIC 

code of 0 (Agriculture, Forestry and Fishing), 6 (Finance, Insurance and Real Estate), or 9 (Public 

Administration & Non-classifiable). I also drop firm-year observations that meet any of the 

following conditions: (1) total sales or total assets or book value of equity of the firm is missing 
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or non-positive; (2) net sales from any of the segments is missing or non-positive; (3) the sum of 

sales from all segments is not within one percent of the total sales of the firm; and (4) total sales 

of the firm is less than 20 million USD.  

After screening out defective observations, I match the rest of the data to CRSP. More 

specifically, I match book value from fiscal year 𝑡 − 1 to market value at June of calendar year 

𝑡 , and compute market-to-book ratios for both conglomerates and single-segment firms. The 

market-to-book ratio for a segment (denoted as 𝑆𝑒𝑔_𝑀𝐸𝐵𝐸) is defined as the sales-weighted 

average market-to-book ratio across all single-segment firms within the segment. The imputed 

market-to-book ratio (defined as 𝐼𝑚𝑝𝑢𝑡𝑒𝑑_𝑀𝐸𝐵𝐸 ) is defined as the average 𝑆𝑒𝑔_𝑀𝐸𝐵𝐸 

across a conglomerate’s segments, weighted by this conglomerate’s net sales from each segment. 

The conglomerate discount is defined as the difference between a conglomerate’s 

𝐼𝑚𝑝𝑢𝑡𝑒𝑑_𝑀𝐸𝐵𝐸 and its own market-to-book ratio (𝑀𝐸𝐵𝐸), scaled by 𝐼𝑚𝑝𝑢𝑡𝑒𝑑_𝑀𝐸𝐵𝐸: 

𝐷𝑖𝑠𝑐𝑜𝑢𝑛𝑡քӴ֏ =
𝐼𝑚𝑝𝑢𝑡𝑒𝑑_𝑀𝐸𝐵𝐸քӴ֏−𝑀𝐸𝐵𝐸քӴ֏

𝐼𝑚𝑝𝑢𝑡𝑒𝑑_𝑀𝐸𝐵𝐸քӴ֏

 . (12) 

I winsorize this variable at the 1st and 99th percentiles. Similar to the CEF setting, to avoid 

unnecessary confusion, I always describe the results in terms of discounts, following the common 

convention and the fact that the majority of conglomerates trade at discounts. This variable 

captures the difference between the market value of a conglomerate (i.e., the “portfolio”) and the 

overall market value of the segments related to this conglomerate (i.e., the “underlying assets”). 
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In contrast to the previous two samples, conglomerate discounts can be observed in each 

fiscal year, while CEF discounts are observed monthly and M&A announcements are unique 

events. Therefore, to capture the lottery-like feature for a conglomerate’s business segments, it is 

reasonable to construct a proxy at an annual frequency using returns within the fiscal year. In light 

of this, I use the average top-3 monthly returns within the fiscal year (denoted as 𝑀𝑎𝑥(3)) to 

capture lottery-like features in this setting. This is the same proxy adopted in the M&A setting, 

and it is consistent with the CEF setting since the top 25% of the returns are used to capture the 

right-tail of the return distribution. In robustness checks, I also consider using the top-12 weekly 

returns ( 𝑀𝑎𝑥(12) ) and the top-60 daily returns (𝑀𝑎𝑥(60) ) within the year. 𝑀𝑎𝑥(60)  is 

constructed in the same way as in the CEF and M&A settings. In addition, I also consider 

expanding the time horizon to observe return distributions within the past two fiscal years. All 

these alternative proxies produce similar results and are reported in Table 6. 

I construct lottery-like features for business segments from single-segment firms in the 

relevant business segments. When analyzing the lottery-like features of single-segment firms that 

are associated with a conglomerate, I only consider five single-segment firms from each segment 

that the conglomerate operates within, based on the closeness of SIC code first and then net sales.14 

The reasons are as follows. First, the full lists of single-segment firms as defined by SIC codes are 

 
14 If there are fewer than 5 single-segment firms found at the 4-digit SIC level, I proceed to the 3-digit SIC level, and to the 2-digit 

SIC level if necessary, until at least 5 single-segment matching firms are found. If less than 5 matching firms are found at the 2-

digit SIC level, the observation is excluded. 



29 
 

not readily available. Therefore, it is hard for investors to collect all the single-segment firms that 

may be potentially associated with a conglomerate. Second, some business segments do have a lot 

of single-segment firms.15 It is difficult for investors to keep all these firms in mind. Finally, to 

reduce potential noise associated with my empirical tests, I choose the single-segment firms that 

are comparable to the conglomerate within each respective business segment. 

The lottery-like feature for each segment (denoted as 𝑆𝑒𝑔_𝑀𝑎𝑥(3)) is defined as the sales-

weighted average 𝑀𝑎𝑥(3) across the five single-segment firms selected. 𝐼𝑚𝑝𝑢𝑡𝑒𝑑_𝑀𝑎𝑥(3) is 

defined as the average 𝑆𝑒𝑔_𝑀𝑎𝑥(3)  across a conglomerate’s segments, weighted by this 

conglomerate’s net sales from each segment.  

Similar to the construction in the first two settings, in order to directly show the effect of the 

diversification in lottery-like features among all business segments, I construct 𝐶𝑜𝑀𝑎𝑥 , to 

capture the tendency that lottery-like payoffs are produced together. Specifically, I construct 

𝐶𝑜𝑀𝑎𝑥(3) for all possible stock pairs {𝑖, 𝑗} from any two different segments {𝑚, 𝑛}.16 For 

example, consider a conglomerate that operates in three different segments, 𝐴, 𝐵, and 𝐶 . This 

conglomerate has three segment pairs: {𝐴,𝐵},  {𝐴, 𝐶} , and {𝐵, 𝐶} . Given segment pair 

{𝐴,𝐵}, I choose one of the five single-segment firms from Segment A, and one of the five single-

 
15  For example, “Services-Prepackaged Software” (SICCD = 7372) has around 90 single-segment firms on average, and 

“Semiconductors & Related Devices” (SICCD = 3674) has more than 50 single-segment firms on average 

16 The most obvious choice, which is using value-weighted average returns from each segment, does not serve the purpose here. 

Aggregating returns at the segment level diversifies away lottery-like features. 



30 
 

segment firms from Segment B. This exercise leaves me 25 (5×5) stock pairs {𝐴ք, 𝐵օ}. After 

computing the percentage of the top-3 monthly returns that are recorded in the same month for 

each stock pair (denoted as 𝐶𝑜𝑀𝑎𝑥բՎӴգՏ
), I take the sales-weighted average across the 25 pairs 

constructed between Segment A and Segment B (denoted as 𝑆𝑒𝑔_𝐶𝑜𝑀𝑎𝑥բӴգ ). I repeat the 

exercise for the other two segment pairs. Finally, I define 𝐶𝑜𝑀𝑎𝑥(3)  as the average of 

𝑆𝑒𝑔_𝐶𝑜𝑀𝑎𝑥ֈӴ։ (𝑚, 𝑛 ∈ {𝐴,𝐵,𝐶}) , weighted by this conglomerate’s net sales from each 

segment pairs. 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(3)ֈՎӴ։Տ
 and 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(3)ֈՎӴ։Տ

× 𝐶𝑜𝑀𝑎𝑥(3)ֈՎӴ։Տ
 are constructed 

using the same procedure and then aggregated to the conglomerate-level (denoted as 

𝐼𝑚𝑝𝑢𝑡𝑒𝑑_𝑀𝑎𝑥(3)  and 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(3) × 𝐶𝑜𝑀𝑎𝑥(3) ). Note that, after taking the weighted 

average of 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(3)ֈՎӴ։Տ
 across all stock pairs and then segment pairs, the result becomes 

exactly 𝐼𝑚𝑝𝑢𝑡𝑒𝑑_𝑀𝑎𝑥(3), because each stock is counted twice. This method is in the same spirit 

with Green and Hwang (2012), who pool returns from all stocks in each of the FF-30 industries to 

compute that industry’s skewness. My method is similar in spirit, as I pool a collection of 

individual stock returns to capture lottery-like features and 𝐶𝑜𝑀𝑎𝑥 for segments. 

Control variables for this setting include: 𝐶𝑜𝑛𝑔_𝑀𝑎𝑥(3) (the average top-3 monthly returns 

within a year for a conglomerate), disagreement, total assets, leverage, profitability, and 

investment ratio. In addition, I include excess skewness and excess idiosyncratic volatility. I also 

control for imputed skewness and imputed idiosyncratic volatility. Detailed descriptions of these 

variables can be found in the Appendix.  
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As reported in Panel C of Table 1, my final sample contains 15,907 firm-year observations 

from 1977 to 2014. The average conglomerate discount in my sample is 13.0%, which is in line 

with the figures reported in prior literature (Berger and Ofek, 1995; Lamont and Polk, 2001, Mitton 

and Vorkink, 2010).  

 

4 Main Results 

In this section, I document three sets of empirical evidence to support the model prediction 

in Section 2: CEFs (Section 4.1), M&A (Section 4.2), and conglomerates (Section 4.3). In all three 

settings, the diversification in lottery-like features help explain the portfolio pricing discount. 

4.1 Closed-end Funds 

My main tests focus on CEFs. I estimate pooled OLS regressions with fixed effects and with 

standard errors clustered along both fund and time dimensions. The dependent variable is the 

monthly CEF discount (in percentage). It captures the difference between the market value of the 

fund and the market value of its holdings.  

Control variables include: 𝐶𝐸𝐹_𝑀𝑎𝑥(5), disagreement, inverse CEF price, dividend yield, 

liquidity ratio, expense ratio, weighted average skewness and idiosyncratic volatility from holdings. 

Detailed descriptions of the control variables can be found in the Appendix. Hwang (2011) argues 

that inverse price and dividend yield have differential predictions on the CEF discount depending 
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on whether the fund trades at a discount or at a premium. Therefore, I follow his paper and separate 

inverse price into two variables: 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑃𝑟𝑖𝑐𝑒[𝑝𝑜𝑠], which equals the inverse price if the fund 

trades at a premium and zero otherwise; and 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑃𝑟𝑖𝑐𝑒[𝑛𝑒𝑔], which equals the inverse price 

if the fund trades at a discount and zero otherwise. 𝐷𝑖𝑣𝑖𝑑𝑒𝑛𝑑 𝑌𝑖𝑒𝑙𝑑[𝑝𝑜𝑠]  and 

𝐷𝑖𝑣𝑖𝑑𝑒𝑛𝑑 𝑌𝑖𝑒𝑙𝑑[𝑛𝑒𝑔] are defined in a similar fashion. All independent variables are standardized 

to have a mean of zero and a standard deviation of one. The results are reported in Table 2. 

[Table 2 Here] 

Table 2 confirms the model prediction in Section 2. First, in all columns, the coefficients on 

𝐻𝑜𝑙𝑑𝑖𝑛𝑔_𝑀𝑎𝑥(5) are positive and significant. In other words, if a CEF’s holdings exhibit strong 

lottery-like features, the CEF will be traded at a higher discount. On the other hand, the coefficients 

on 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(5) × 𝐶𝑜𝑀𝑎𝑥(5) are all negative and significant. This indicates that if a CEF’s 

holdings exhibit strong lottery-like features and they tend to produce extreme payoffs together, the 

CEF discount can be partially mitigated. In Column (6), after controlling for 𝐶𝐸𝐹_𝑀𝑎𝑥(5), other 

variables associated with CEF discounts, and fund and time fixed effects, a one-standard-deviation 

increase in 𝐻𝑜𝑙𝑑𝑖𝑛𝑔_𝑀𝑎𝑥(5) comes with a 1.94% increase in the CEF discount (t-statistic = 

4.33). Meanwhile, a one-standard-deviation increase in 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(5) × 𝐶𝑜𝑀𝑎𝑥(5) can help 

offset the diversification effect by 0.49% (t-statistic = −3.97). Considering that the average CEF 

discount in my sample is 4.70%, these results are both statistically significant and economically 

large. 
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The difference in prices between the portfolio and its components is potentially an arbitrage 

opportunity. Therefore, the variation of limits-to-arbitrage may have an impact on my results. To 

further investigate on this issue, I consider two proxies for limits-to-arbitrage. First, I use TED 

spread as a time-series proxy for arbitrageurs’ funding costs. A high TED spread indicates a worse 

arbitrage condition. I find that, during high TED spread periods, a one-standard-deviation increase 

in 𝐻𝑜𝑙𝑑𝑖𝑛𝑔_𝑀𝑎𝑥(5) comes with a 2.25% increase in the CEF discount (t-statistic = 4.15), while 

a one-standard-deviation increase in 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(5) × 𝐶𝑜𝑀𝑎𝑥(5)  can help offset the 

diversification effect by 0.52% (t-statistic = −3.20). On the other hand, during low TED spread 

periods, a one-standard-deviation increase in 𝐻𝑜𝑙𝑑𝑖𝑛𝑔_𝑀𝑎𝑥(5)  only comes with a 0.01% 

increase in the CEF discount (t-statistic = 0.01), while a one-standard-deviation increase in 

𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(5) × 𝐶𝑜𝑀𝑎𝑥(5)  can help offset the diversification effect by 0.07% (t-statistic = 

−0.17). 

Second, I use average institutional ownership from a CEF’s holding stocks as a cross-

sectional proxy for limits-to-arbitrage. I find that, among CEFs with low average institutional 

ownership, a one-standard-deviation increase in 𝐻𝑜𝑙𝑑𝑖𝑛𝑔_𝑀𝑎𝑥(5) comes with a 2.36% increase 

in the CEF discount (t-statistic = 3.45), while a one-standard-deviation increase in 

𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(5) × 𝐶𝑜𝑀𝑎𝑥(5)  can help offset the diversification effect by 0.49% (t-statistic = 

−5.07). Among CEFs with high average institutional ownership, a one-standard-deviation increase 

in 𝐻𝑜𝑙𝑑𝑖𝑛𝑔_𝑀𝑎𝑥(5) only comes with a 1.76% increase in the CEF discount (t-statistic = 2.63), 
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while a one-standard-deviation increase in 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(5) × 𝐶𝑜𝑀𝑎𝑥(5)  can help offset the 

diversification effect by 0.37% (t-statistic = −0.83). 

Both of these two tests suggest that the variation of limits-to-arbitrage have an impact on my 

proposed mechanism. The relation between diversification in lottery-like features and CEF 

discount is stronger when limits-to-arbitrage is high.17 

4.2 M&A 

I estimate pooled OLS regressions with time-fixed effects and with standard errors clustered 

by time across 1,145 M&A events that meet data requirements. The dependent variable is the 

combined announcement return (𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝐶𝐴𝑅 [−1,+1]) (in percentage), where 𝑡 =  0 is 

the announcement day, or the ensuing trading day if the deal is announced when the market is 

closed. I control characteristics from acquirers, targets and deals. Detailed description of all of the 

control variables can be found in the Appendix. All variables are standardized to have a mean of 

zero and a standard deviation of one. Results are reported in Table 3. 

[Table 3 Here] 

Table 3 provides results consistent with the model prediction. In all columns, the coefficients 

on 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑀𝑎𝑥(3) is negative and significant. That is, if a M&A deal has a stronger lottery-

like feature, the deal will have a lower combined announcement return. In other words, the market 

 
17 For brevity, these results are not tabulated and are available upon requests. 
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value of the new joint firm will be discounted. On the other hand, the coefficients on 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑀𝑎𝑥(3) × 𝐶𝑜𝑀𝑎𝑥(3) are all positive and significant. That is, if a M&A deal has a 

strong lottery-like feature and the acquirer and the target tend to provide extreme returns at the 

same time, the discount effect can be partially mitigated. In Column (4), after controlling for 

various factors associated with M&A announcement returns and time fixed effects, a one-standard-

deviation increase in 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑀𝑎𝑥(3)  comes with a 1.73% decrease in the combined 

announcement return (t-statistic = 3.03). Meanwhile, a one-standard-deviation increase in 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑀𝑎𝑥(3) × 𝐶𝑜𝑀𝑎𝑥(3) can help offset the diversification effect by 0.74% (t-statistic 

= 4.00). Considering that the mean 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝐶𝐴𝑅 [−1,+1] in my sample is about 1.60%, 

these results are both statistically significant and economically large.  

4.3 Conglomerate Firms 

I estimate pooled OLS regressions with time fixed effects and standard errors clustered by 

firm and time. The dependent variable is the conglomerate discount (not in percentage). This 

variable captures the difference between the market value of a conglomerate (i.e., the “portfolio”) 

and the average market value of the segments associated with the conglomerate’s business (i.e., 

the “underlying assets”).  

Control variables include: 𝐶𝑜𝑛𝑔_𝑀𝑎𝑥(3), disagreement, log total assets, the square of log 

total assets, leverage, profitability, investment ratio, imputed skewness, and imputed idiosyncratic 

volatility. Detailed descriptions of the control variables can be found in the Appendix. All 
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independent variables are standardized to have a mean of zero and a standard deviation of one. 

Regression results are reported in Table 4. 

[Table 4 Here] 

Table 4 confirms the model prediction in Section 2. First, in all columns, the coefficients on 

𝐼𝑚𝑝𝑢𝑡𝑒𝑑_𝑀𝑎𝑥(3)  are positive and significant. In other words, if a conglomerate’s business 

segments exhibit stronger lottery-like features, the conglomerate will have a lower market-to-book 

ratio. On the other hand, the coefficients on 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(3) × 𝐶𝑜𝑀𝑎𝑥(3) are all negative and 

significant. This indicates that if a conglomerate’s business segments exhibit strong lottery-like 

features and they tend to produce extreme payoffs together, the conglomerate discount can be 

partially mitigated. In Column (5), after controlling for 𝐶𝑜𝑛𝑔_𝑀𝑎𝑥(3), other variables associated 

with conglomerate discounts, and time fixed effects, a one-standard-deviation increase in 

𝐼𝑚𝑝𝑢𝑡𝑒𝑑_𝑀𝑎𝑥(3) comes with a 17.3% increase in the conglomerate discount (t-statistic = 4.55). 

Meanwhile, a one-standard-deviation increase in 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(3) × 𝐶𝑜𝑀𝑎𝑥(3) can help offset the 

diversification effect by 8.0% (t-statistic = 3.48). Considering that the average conglomerate 

discount in my sample is 13.0%, these results are both statistically significant and economically 

large. 

In a related study, Mitton and Vorkink (2010) show that the size of the conglomerate discount 

is related to the difference between the skewness of a conglomerate and the average skewness of 

matched single-segment firms. I find a similar result using the difference between 𝐶𝑜𝑛𝑔_𝑀𝑎𝑥(3) 
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and 𝐼𝑚𝑝𝑢𝑡𝑒𝑑_𝑀𝑎𝑥(3) . However, these two proxies are aggregated measures which do not 

directly capture the diversification effect in lottery-like features among different business segments, 

and they might be potentially driven by returns from conglomerates. Taking a different approach 

from Mitton and Vorkink (2010), My empirical design introduces 𝐶𝑜𝑀𝑎𝑥(3) to directly capture 

the diversification in lottery-like features among different business segments. More importantly, 

𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(3) × 𝐶𝑜𝑀𝑎𝑥(3)  does not rely on the prices and returns from a conglomerate. 

Through this unique empirical design and an explicit theoretical foundation to illustrate the 

economic intuition, my results build upon those of Mitton and Vorkink (2010) showing that if 

business segments have strong lottery-like features and a high tendency to producing extreme 

returns at the same time, the conglomerate discount will be partially mitigated.  

 

5 Robustness 

5.1 Placebo Tests 

A potential concern for the results documented in Sections 4 is that 𝐶𝑜𝑀𝑎𝑥 may simply 

capture return correlation. This is a fair challenge because 𝐶𝑜𝑀𝑎𝑥 and return correlation are 

mechanically correlated. To address this concern, I conduct three placebo tests (one for each 

setting). In each placebo test, I replace 𝐶𝑜𝑀𝑎𝑥  with a return correlation constructed after 

excluding the extreme returns that are recorded at the same time. 
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Take the CEF setting as an example. For each stock pair from a CEF’s top-10 holdings, I 

retrieve the daily return series for both stocks during the month, and exclude any of the top-5 

returns that are recorded in the same day. For example, if the top-5 daily returns for Stock A come 

from the 1st, 4th, 9th, 11th, and 15th day of the month, while the top-5 daily returns for stock B come 

from the 2nd, 4th, 9th, 14th, and 20th day of the month, then daily returns for Stock A and B on the 

4th & 9th day of the month are excluded. Then, I calculate the return correlation between the two 

stocks using the rest of the daily returns and denote this correlation as 𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟քӴօ . I 

compute 𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟քӴօ  and 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥5քӴօ × 𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟քӴօ  for all possible top-10 

stock pairs and take the weighted average (denoted as 𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟 and 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(5) ×

𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟 ). I replace 𝐶𝑜𝑀𝑎𝑥(5)  with 𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟 , replace 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(5) ×

𝐶𝑜𝑀𝑎𝑥(5) with 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(5) × 𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟, and reconduct the regressions in Table 2. I 

report these results in Panel A of Table 5. The interaction term 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(5) × 𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟 

becomes insignificant. 

[Table 5 Here] 

For the M&A sample, I first retrieve the monthly return series from the past year for both the 

acquirer and the target, and then exclude any of the top-3 monthly returns that are recorded in the 

same month. For example, if the top-3 monthly returns for Stock A come from month −10, month 

−5, and month −2 (the month that the deal is announced is month 0), while the top-3 monthly 

returns for Stock B come from month −9, month −5, and month −3, then the monthly returns for 
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Stock A and B on month −5 are excluded. I calculate the return correlation between the acquirer 

and the target using the rest of the monthly returns, and denote this correlation as 𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟. 

I replace 𝐶𝑜𝑀𝑎𝑥(3)  by 𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟 , replace 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑀𝑎𝑥(3) × 𝐶𝑜𝑀𝑎𝑥(3)  by 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑀𝑎𝑥(3) × 𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟, and reconduct the regressions in Table 4. I report these 

results in Panel B of Table 5. The interaction term 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑀𝑎𝑥(3) × 𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟 

becomes insignificant. 

Finally, I exploit the setting of conglomerates. For each of the two stocks {𝑖, 𝑗}  from 

segment pair {𝑚, 𝑛}, I retrieve the monthly return series within the fiscal year for both stocks and 

exclude any of the top-3 monthly returns that are recorded in the same month. I calculate the return 

correlation between the two stocks using the rest of the monthly returns, and denote this correlation 

as 𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟ֈՎӴ։Տ
. I compute 𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟ֈՎӴ։Տ

 and 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(3)ֈՎӴ։Տ
×

𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟ֈՎӴ։Տ
 for every two stocks {𝑖, 𝑗}  from segment pair {𝑚, 𝑛} , and take the 

weighted average to get 𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟ֈӴ։  and 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(3)ֈӴ։ × 𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟ֈӴ։ . I 

do this for every segment pairs and then take the weighted average to get 𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟 and 

𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(3) × 𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟  at the conglomerate level. I replace 𝐶𝑜𝑀𝑎𝑥(3)  with 

𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟 , replace𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(3) × 𝐶𝑜𝑀𝑎𝑥(3)  with 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(3) × 𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟 , 

and reconduct the regressions in Table 5. I report these results in Panel C of Table 5. The 

interaction term 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(3) × 𝑁𝑜𝑛_𝑀𝑎𝑥_𝐶𝑜𝑟𝑟 becomes insignificant. 
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These three tests all show that return correlations during non-𝐶𝑜𝑀𝑎𝑥 periods cannot explain 

CEF discounts, M&A announcement returns, or conglomerate discounts. All results reported in 

this section further support the model prediction that the diversification in lottery-like features, not 

return correlation, can help explain the portfolio pricing discount.  

5.2 Alternative Proxies for Lottery-like Features 

In this section, I examine the robustness of the results in Section 4 by considering alternative 

proxies for lottery-like features. In all three settings, using alternative proxies produces consistent 

results. 

First, in the CEF setting, the lottery-like feature is defined as the average top-5 daily returns 

within a month. This proxy uses the top 25% of the data to capture the right tail of the return 

distribution. To examine if my results are sensitive to this top 25% cut off, I consider using the 

average top-2 and top-3 daily returns within a month to proxy for lottery-like features, and denote 

them as 𝑀𝑎𝑥(2) and 𝑀𝑎𝑥(3).  

Since the time window to capture lottery-like features in Sections 4.2-4.3 is one year, I also 

consider another proxy for CEFs based on the top-60 daily returns in the past year and denote it as 

𝑀𝑎𝑥(60). 𝑀𝑎𝑥(60) is similar to 𝑀𝑎𝑥(5) as I still use about the top 25% of the data to capture 

the right tail of the return distribution.  
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𝐻𝑜𝑙𝑑𝑖𝑛𝑔_𝑀𝑎𝑥(𝑖) , 𝐶𝑜𝑀𝑎𝑥(𝑖) , 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(𝑖) , and 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(𝑖) × 𝐶𝑜𝑀𝑎𝑥(𝑖)  ( 𝑖 =

2, 3, 60) are constructed using the same procedure as outlined in Section 3.1. I use these alternative 

proxies to reconduct my analysis in Table 2 and report the results in Panel A of Table 6. I find 

consistent results similar to what I have documented in Section 4.1. 

In the M&A setting, the lottery-like feature is captured by the average top-3 monthly returns 

within the 12 months prior to the deal announcement. I consider three different ways to construct 

proxies for lottery-like features. First, I use an alternative observation window of 24 months prior 

to the announcement, and I use the average top-5 monthly returns (denoted as 𝑀𝑎𝑥(5)) to capture 

lottery-like features from the acquirer and the target. Second, I define 𝑀𝑎𝑥(12) as the average 

top-12 weekly returns within the 12 months prior to the announcement. Finally, I define 𝑀𝑎𝑥(60) 

as the average top-60 day returns within the 12 months prior to the announcement. In all three 

proxies, around the top 25% of the data is used to capture the right-tail of the return distribution, 

consistent with what I have adopted in the main results. 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑀𝑎𝑥(𝑖), 𝐶𝑜𝑀𝑎𝑥(𝑖), and 

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑_𝑀𝑎𝑥(𝑖) × 𝐶𝑜𝑀𝑎𝑥(𝑖) (𝑖 = 5,12,60) are constructed using the same procedure as 

outlined in Section 3.2. I use these alternative proxies to reconduct my analysis in Table 3 and 

report the results in Panel B of Table 6. I find consistent results similar to what I have documented 

in Section 4.2. 

In the conglomerate setting, the lottery-like feature is captured by the average top-3 monthly 

returns within the fiscal year. I consider three different ways to construct proxies for lottery-like 
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features. First, I use the past two fiscal years as an alternative observation window and the average 

top-5 monthly returns (𝑀𝑎𝑥(5)) to capture the lottery-like feature. Second, I define 𝑀𝑎𝑥(12) as 

the average top-12 weekly returns within the fiscal year. Finally, I define 𝑀𝑎𝑥(60) as the average 

top-60 daily returns within the fiscal year. In all three proxies, around the top 25% of the data is 

used to capture the right-tail of the return distribution, consistent with what I have adopted in the 

main results. 𝐼𝑚𝑝𝑢𝑡𝑒𝑑_𝑀𝑎𝑥(𝑖) , 𝐶𝑜𝑀𝑎𝑥(𝑖) , 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(𝑖)  and 𝑃𝑎𝑖𝑟_𝑀𝑎𝑥(𝑖) × 𝐶𝑜𝑀𝑎𝑥(𝑖) 

(𝑖 = 5,12,60) are constructed using the same procedure as outlined in Section 3.3. I use these 

alternative proxies to reconduct my analysis in Table 4 and report the results in Panel C of Table 

6. I find consistent results similar to what I have documented in Section 4.3. 

All three panels from Table 6 show that my main results are robust across alternative 

definitions for lottery-like features constructed from monthly returns, weekly returns, daily returns, 

and different time horizons. In all three settings, the diversification in lottery-like features 

contributes to the portfolio pricing discount, consistent with the predictions of cumulative prospect 

theory.  

 

6 Conclusion 

In this paper, I study a new asset pricing implication of cumulative prospect theory. Previous 

research on this topic mainly focused on the shape of the value function or the negative expected 
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returns from lottery-like stocks in the cross-section. My paper takes a novel and less-studied 

perspective: portfolio discounts. Specifically, I extend cumulative prospect theory based on 

Barberis and Huang (2008) in a portfolio setting and show that a portfolio consisting of lottery-

like stocks should trade at a discount. I solve and compare asset prices in two economies. In the 

first economy, investors can trade these lottery-like stocks freely. In the second economy, investors 

can only trade a portfolio consisting of these lottery-like stocks. I find that the portfolio price in 

the second economy is lower than the prices of these lottery-like stocks in the first economy. More 

importantly, this discount depends on how likely these lottery-like stocks are to produce extreme 

payoffs at the same time. Specifically, when the stocks are more likely to produce extreme payoffs 

at the same time, the portfolio pricing discount is lower. 

I utilize CEFs, M&As, and conglomerates to test this prediction and find consistent results. 

In all three settings, the diversification in lottery-like features can help explain the CEF discounts, 

the combined announcement returns of M&As, and the conglomerate discounts. On the other hand, 

when underlying assets have strong lottery-like features and are more likely to produce extreme 

payoffs at the same time, these portfolio pricing discounts can be partially mitigated.  

My paper extends cumulative prospect theory to new territories to evaluate three seemingly 

unrelated phenomena. My empirical analyses support cumulative prospect theory from a novel 

perspective by comparing the value of the portfolio and the total value of its underlying assets. 
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Finally, I provide a new and unifying explanation on the CEF puzzle, the M&A announcement 

return, and the conglomerate discount. 

My paper also has managerial implications. A CEF manager may be better off avoiding 

lottery-like stocks at fund inception. When evaluating potential M&A deals, a CEO should take 

advantage of the lottery-like feature of the firm by finding a lottery-like counterpart with a 

high 𝐶𝑜𝑀𝑎𝑥. Finally, it may be beneficial in terms of valuation for a conglomerate to unbundle 

its giant empire into smaller firms with more focused businesses.  
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Appendix 1. Variable Definitions 

A1.1. Closed-end Funds 

CEF_Max(5): The top-5 daily returns within a month for a closed-end fund. 

Disagreement: The portfolio-weighted average price-scaled earnings forecast dispersion of the 

top-10 stocks held by the CEF.  

Inverse Price: The inverse of the CEF’s market price.  

Dividend Yield: The sum of the dividends paid by the CEF over the past one year, divided by the 

CEF’s market price.  

Liquidity Ratio: The CEF’s one-month turnover, divided by the portfolio-weighted average one-

month turnover of the stocks held by the CEF. If the stock is listed on NASDAQ, I divide the 

number of shares traded by two.  

Expense Ratio: The expense ratio of the CEF. 

Holding Skewness: The portfolio-weighted average skewness from top-10 holdings. Return 

skewness is calculated using daily returns over a one-year window. 
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Holding Idiosyncratic Volatility: The portfolio-weighted average idiosyncratic volatility from 

top-10 holdings. Idiosyncratic volatility is estimated based on residuals from Fama-French 3-factor 

model over a one-year window using daily returns.  

A1.2. Mergers and Acquisitions 

Disagreement: The average price-scaled earnings forecast dispersion across the acquirer and the 

target, weighted by the acquirer’s and target’s market capitalization in the month prior to the 

announcement.  

Acquirer (Target) Market Capitalization: The acquirer’s (target’s) market capitalization in the 

month prior to the announcement.  

Acquirer (Target) Market-to-Book Ratio: The acquirer’s (target’s) market-to-book ratio.  

Acquirer (Target) ROA: The acquirer’s (target’s) earnings before interest and tax over total 

assets.  

Acquirer (Target) Leverage: The acquirer’s (target’s) long-term debt over total assets. 

Acquirer (Target) Operating Cash Flow: The acquirer’s (target’s) operating cash flows over 

total assets.  
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Relative Size: The market capitalization of the acquirer over the sum of market capitalization from 

the acquirer and the target. 

Tender Offer: A dummy variable that equals one if a tender offer is made, and zero otherwise.  

Hostile Offer: A dummy variable that equals one if the takeover is considered hostile, and zero 

otherwise.  

Competing Offer: A dummy variable that equals one if there are multiple offers made by various 

companies, and zero otherwise.  

Cash Only: A dummy variable that equals one if the acquirer only uses cash to purchase the target, 

and zero otherwise.  

Stock Only: A dummy variable that equals one if the acquirer only uses stocks to purchase the 

target, and zero otherwise.  

Same Industry: A dummy variable that equals one if the acquirer and target companies have the 

same two-digit SIC code, and zero otherwise.  

Combined Skewness: The weighted average return skewness from the acquirer and the target. 

Return skewness is calculated using daily returns over a one-year window before the 

announcement. 
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Combined Idiosyncratic Volatility: The weighted average idiosyncratic volatility from the 

acquirer and the target. Idiosyncratic volatility is estimated based on residuals from the Fama-

French 3-factor model using daily returns over a one-year window before the announcement.  

A1.3. Conglomerates 

Cong_Max(3): The average top-3 monthly returns from the past year for a conglomerate. 

Disagreement: For each of the conglomerate’s underlying segments, I calculate the average price-

scaled earnings forecast dispersion across single-segment firms in that segment. Disagreement is 

the sales-weighted average of the conglomerate’s underlying segment dispersions.  

Total Assets: The conglomerate’s total assets.  

Leverage: The conglomerate’s long-term debt over total assets.  

Profitability: The conglomerate’s earnings before interest and tax over net revenue.  

Investment Ratio: The conglomerate’s capital expenditure over net revenue.  

Imputed Skewness: The sales-weighted average skewness from a conglomerate’s business 

segments, where the skewness of each segment is computed as the weighted average skewness 

across single-segment firms in that segment. Return skewness is calculated using daily returns 

over a one-year window 
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Imputed Idiosyncratic Volatility: The sales-weighted average idiosyncratic volatility from a 

conglomerate’s business segments, where the idiosyncratic volatility of each segment is computed 

as the weighted average idiosyncratic volatility across single-segment firms in that segment. 

Idiosyncratic volatility is estimated based on residuals from the Fama-French 3-factor model over 

a one-year window using daily returns.  
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Appendix 2. Equilibrium Conditions for Economy II 

In the second economy in Section 2.2, two types of equilibria may exist, depending on 

parameters. A homogeneous holdings equilibrium is an equilibrium in which all investors hold the 

same position. In this equilibrium, each investor will hold an infinitesimal amount 𝜀∗  of the 

portfolio. Following Proposition 2 in Barberis and Huang (2008), the expected excess return on 

this portfolio should be zero, or more precisely, infinitesimally greater than zero. 

𝐸(𝑟֎) = 𝑢 গ
𝐽

𝑝֎

− 𝑟ցঘ + (2𝑣 − 2𝑢) গ
𝐽

2𝑝֎

− 𝑟ցঘ − (1 − 2𝑣 + 𝑢)𝑟ց = 0 . (13) 

i.e., 

𝑝֎ =
𝑣𝐽

𝑟ց

 . (14) 

Note that in a homogeneous holdings equilibrium, the price of the portfolio, 𝑝֎, does not depend 

on 𝑢. 

The other type of equilibrium is a heterogenous holdings equilibrium with two groups of 

investors (these investors are ex-ante homogeneous), where the first group holds a combination of 

the risk-free asset, the market portfolio, and the new portfolio; and the second group holds the risk-

free asset and the market portfolio but takes no position in the new portfolio. Markets are cleared 

by assigning each investor to one of the optima. According to Barberis and Huang (2008), a 

heterogeneous holdings equilibrium should satisfy the following conditions: 

𝑉 (𝑟ֈ) = 𝑉 (𝑟ֈ + 𝜙∗𝑟֎) = 0 , (15) 
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𝑉 (𝑟ֈ + 𝜙𝑟֎) < 0  𝑓𝑜𝑟  0 < 𝜙 ≠ 𝜙∗, (16) 

𝑉 (𝑟֎) < 0 , (17) 

where  

𝑉 (𝑟ֈ + 𝜙𝑟֎) = − ௷ 𝑤 ५𝑃𝜙(𝑟)६ 𝑑𝑣(𝑟) + ௷ 𝑤 ५1 − 𝑃𝜙(𝑟)६ 𝑑𝑣(𝑟)
�

Ј

Ј

−�

 , (18) 

and  

𝑃𝜙(𝑟) = Pr(𝑟ֈ + 𝜙𝑟֎ ≤ 𝑟) 

= Pr গ𝑟֎ =
𝐽

𝑝֎

− 𝑟ցঘ Prৃ𝑟ֈ ≤ 𝑟 − 𝜙 গ
𝐽

𝑝֎

− 𝑟ցঘৄ

+ Pr গ𝑟֎ =
𝐽

2𝑝֎

− 𝑟ցঘ Prৃ𝑟ֈ ≤ 𝑟 − 𝜙 গ
𝐽

2𝑝֎

− 𝑟ցঘৄ

+ 𝑃𝑟ि𝑟֎ = −𝑟ցीPrि𝑟ֈ ≤ 𝑟 + 𝜙𝑟ցी 

   = 𝑢𝑁

⎝

⎜⎛
𝑟 − 𝜙 ५𝐽

𝑝֎
− 𝑟ց६ − 𝜇ֈ

𝜎ֈ ⎠

⎟⎞ + 2(𝑣 − 𝑢)𝑁

⎝

⎜⎜
⎛

𝑟 − 𝜙 ঁ 𝐽
2𝑝֎

− 𝑟ցং − 𝜇ֈ

𝜎ֈ
⎠

⎟⎟
⎞

+(1 − 2𝑣 + 𝑢)𝑁 গ
𝑟 + 𝜙𝑟ց − 𝜇ֈ

𝜎ֈ

ঘ , (19)

 

Here, 𝜙 (𝜙∗) is the (optimal) fraction of wealth allocated to the new portfolio relative to the 

fraction allocated to the market portfolio for investors from the first group, and 𝑁(⋅) is the 

cumulative normal distribution function. In a heterogeneous holdings equilibrium, the price of the 

portfolio, 𝑝֎, does not have an analytical solution. It depends not only on the lottery-like feature 

from its holdings (𝑣), but also on the probability that both lottery-like stocks pay out “jackpots” at 

the same time (𝐶𝑜𝑀𝑎𝑥). 
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(a) 𝑢 = 0.08 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 𝑢 = 0.01 

 

Figure 1 Heterogeneous Holdings Equilibrium and Homogeneous Holdings Equilibrium 

This figure demonstrates the utility that investors with cumulative prospect theory preferences derives from adding a 

position in a portfolio which equally invests in two lottery-like stocks to their current holdings of a normally distributed 

market portfolio. The variable 𝜙 is the fraction of wealth allocated to the portfolio relative to the fraction of wealth 

allocated to the market portfolio. The variable 𝑢 is the probability that both lottery-like stocks pay out “jackpots” at 

the same time. In Figure 1a, 𝑢 = 0.08, while in Figure 1b, 𝑢 = 0.01. The price of the portfolio is denoted as 𝑝֎. 

Both figures use the following parameters: (𝛼, 𝛽, 𝛾, 𝛿, 𝜆) = (0.88, 0.88, 0.65, 0.65, 2.25)  and ि𝜎ֈ, 𝑟ց , 𝐽, 𝑣ी =

(0.15, 1.02, 10, 0.09). In both figures, the red line is based on the price of the portfolio from a heterogenous holdings 

equilibrium, and the blue line is based on the price of the portfolio from a homogenous holdings equilibrium.  
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Figure 2 Portfolio Discount and 𝑪𝒐𝑴𝒂𝒙 

This figure plots the price discount of a portfolio which equally invests in two lottery-like stocks as a function of 

𝐶𝑜𝑀𝑎𝑥. 𝐶𝑜𝑀𝑎𝑥 = 𝑢/𝑣 , where 𝑣 is the probability that each lottery-like stock pays out “jackpots”, and 𝑢 is the 

probability that both lottery-like stocks pay out “jackpots” at the same time. I use the following parameters to search 

the equilibrium prices for the portfolio: (𝛼, 𝛽, 𝛾, 𝛿, 𝜆) = (0.88, 0.88, 0.65, 0.65, 2.25)  and ि𝜎ֈ, 𝑟ց , 𝐽, 𝑣ी =

(0.15, 1.02, 10, 0.09). For each value of 𝐶𝑜𝑀𝑎𝑥, I search for a heterogeneous holdings equilibrium first, and if it 

does not exist, a homogenous holdings equilibrium. 
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(b) 

Figure 3 𝒗, 𝑪𝒐𝑴𝒂𝒙 and Portfolio Discount 

This figure plots the price discount of a portfolio which equally invests in two lottery-like stocks as a function of (a) 

𝐶𝑜𝑀𝑎𝑥, the tendency that both lottery-like stocks pay off “jackpots” at the same time; and (b) 𝑣, the degree of lottery-

like feature for each lottery-like stock. I use the following parameters to search the equilibrium prices for the portfolio: 

(𝛼, 𝛽, 𝛾, 𝛿, 𝜆) = (0.88, 0.88, 0.65, 0.65, 2.25)  and ि𝜎ֈ, 𝑟ց , 𝐽ी = (0.15, 1.02, 10) . For each 𝐶𝑜𝑀𝑎𝑥  and 𝑣 , I 

search for a heterogeneous holdings equilibrium first, and if it does not exist, a homogenous holdings equilibrium.  
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Table 1 Descriptive Statistics 

This table presents descriptive statistics for CEFs (Panel A), M&A deals (Panel B), and conglomerates (Panel C). In 

Panel A, CEF Discount is defined as the difference between a CEF’s NAV and the CEF price, divided by NAV. I use 

the average top-5 daily returns within a month (Max(5)) to proxy for lottery-like feature for the CEF and its holdings. 

I denote CEF_Max(5) as the Max(5) for a CEF and Holding_Max(5) as the average Max(5) from a CEF’s top-10 

holdings, weighted by holding percentage. For each possible stock pairs among the top ten holdings, CoMax(5)i,j is 

the percentage of top-5 daily returns that are recorded in the same day, and Pair_Max(5)i,j is the average Max(5) of 

the stock pair, weighted by holding percentage. Pair_Max(5)i,j, CoMax(5)i,j, and Pair_Max(5)i,j×CoMax(5)i,j are then 

taken weighted average across all stock pairs (denoted as Holding_Max(5), CoMax(5), and Pair_Max(5)×CoMax(5)). 

Note that after Pair_Max(5)i,j is taken weighted average across all stock pairs, it equals Holding_Max(5). In Panel B, 

Combined_CAR [−1,+1], i.e., the combined announcement return, is defined as the average cumulative abnormal 

return over days [−1,+1] across the acquirer and the target, weighted by their market capitalization in the month prior 

to the announcement, where t = 0 is the announcement day, or the ensuing trading day if the deal is announced when 

the market is closed. The degree of lottery likeness of the acquirer (target) is proxied by the average of the acquirer’s 

(target’s) top-3 monthly returns within the past year before the announcement (denoted as Max(3)A and Max(3)T). 

Combined_Max(3) is the average of Max(3)A and Max(3)T, weighted by their respective market capitalizations in the 

month prior to the announcement. CoMax(3) is the percentage of the top-3 monthly returns that are recorded in the 

same month. In Panel C, the conglomerate discount is defined as the difference between a conglomerate’s 

Imputed_MEBE and its own market-to-book ratio, scaled by Imputed_MEBE, where Imputed_MEBE is defined as the 

average Seg_MEBE across a conglomerate’s segments weighted by this conglomerate’s net sales from each segment, 

and Seg_MEBE is defined as the sales-weighted average market-to-book values across single-segment firms within 

each segment. The lottery-like feature for a firm is proxied by the average top-3 monthly returns within the fiscal year 

(Max(3)). Cong_Max(3) is the Max(3) from a conglomerate. Imputed_Max(3) is the average Seg_Max(3) across a 

conglomerate’s segments, weighted by this conglomerate’s net sales from each segment, and Seg_Max(3) is the sales-

weighted average Max(3) across five single-segment firms chosen similar to the conglomerate’s operation in that 

segment based on SIC code and sales. CoMax(3)m(i),n(j) is the percentage of top-3 monthly returns that are recorded in 

the same month for every possible stock pairs {i,j} constructed from any two different underlying segments {m,n}, and 

Pair_Max(3)m(i),n(j) is the average Max(3) from these two stocks. Pair_Max(3)m(i),n(j), CoMax(3)m(i),n(j), and 

Pair_Max(3)m(i),n(j)×CoMax(3)m(i),n(j) are then taken weighted average across all stock pairs and segment pairs (denoted 

as Imputed_Max(3), Pair_Max(3), and Pair_Max(3)×CoMax(3)). Note that after Pair_Max(3)m(i),n(j) is taken weighted 

average across all stock pairs and then segment pairs, it equals Imputed_Max(3). The definitions of all control variables 

are described in the appendix. 
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Panel A: Closed-end Funds       

Variables N Mean StdDev p25 p50 p75 

CEF Discount 2330 0.047  0.143  0.025  0.090  0.124  

Holding_Max(5) 2330 0.020  0.010  0.014  0.017  0.022  

Pair_Max(5)×CoMax(5) 2330 0.063  0.129  0.026  0.039  0.062  

CoMax(5) 2330 0.445  0.102  0.372  0.436  0.512  

CEF_Max(5) 2330 0.014  0.010  0.008  0.011  0.015  

Disagreement 2330 0.001  0.001  0.001  0.001  0.001  

Inverse Price 2330 0.094  0.068  0.055  0.075  0.107  

Dividend Yield 2330 0.083  0.048  0.061  0.083  0.100  

Expense Ratio 2330 0.013  0.007  0.010  0.012  0.014  

Liquidity 2330 0.460  0.384  0.244  0.380  0.576  

Holding_Tskew 2330 0.164 0.428 -0.085 0.086 0.320 

Holding_Ivol 2330 0.013 0.005 0.009 0.011 0.014 

Panel B: Mergers and Acquisitions      

Variables N Mean StdDev p25 p50 p75 

Combined_CAR [−1,+1] 1145 0.016  0.070  -0.017  0.010  0.047  

Combined_Max(3) 1145 0.154  0.099  0.091  0.129  0.186  

Combined_Max(3)×CoMax(3) 1145 0.062  0.068  0.023  0.046  0.081  

CoMax(3) 1145 0.380  0.256  0.333  0.333  0.667  

Disagreement 1145 0.002  0.007  0.000  0.001  0.002  

Acq_MktCap ($M) 1145 22543  49701  1378  4509  17441  

Acq_MEBE 1145 4.278  6.342  1.818  2.873  4.923  

Acq_ROA 1145 0.105  0.096  0.053  0.103  0.157  

Acq_Leverage 1145 0.538  0.210  0.378  0.545  0.672  

Acq_OCF 1145 0.101  0.091  0.048  0.105  0.153  

Tgt_MktCap ($M) 1145 1899  5755  173  464  1425  

(Continued) 
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(Continued) 

Variables N Mean StdDev p25 p50 p75 

Tgt_MEBE 1145 3.972  17.238  1.460  2.255  3.539  

Tgt_ROA 1145 0.047  0.160  0.016  0.070  0.122  

Tgt_Leverage 1145 0.484  0.245  0.271  0.483  0.667  

Tgt_OCF 1145 0.057  0.138  0.017  0.073  0.126  

Relative Size 1145 0.831  0.160  0.722  0.890  0.962  

Combined_Tskew 1145 0.244 0.816 -0.070 0.219 0.529 

Combined_Ivol 1145 0.022 0.011 0.014 0.019 0.027 

Panel C: Conglomerates       

Variables N Mean StdDev p25 p50 p75 

Conglomerate Discount 15907 0.130  0.981  -0.171  0.292  0.583  

Imputed_Max(3) 15907 0.157  0.111  0.092  0.129  0.187  

Pair_Max(3)×CoMax(3) 15907 0.027  0.014  0.017  0.024  0.032  

CoMax(3) 15907 0.329  0.087  0.270  0.320  0.380  

Cong_Max(3) 15907 0.143  0.053  0.109  0.133  0.166  

Disagreement 15907 0.050  0.052  0.015  0.032  0.066  

Total Asset ($M) 15907 3507  8402  89  342  1632  

Leverage 15907 0.201  0.156  0.071  0.183  0.299  

Profitability 15907 0.072  0.096  0.032  0.072  0.116  

Investment Ratio 15907 0.076  0.104  0.024  0.044  0.080  

Imputed_Tskew 15907 0.214 0.517 -0.001 0.247 0.472 

Imputed_Ivol 15907 0.022 0.008 0.017 0.021 0.026 
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Table 2 Closed-end Fund Discounts 

This table reports coefficient estimates from regressions of CEF discounts on measures of the lottery-like features. 

The dependent variable is the CEF discount, defined as the difference between a CEF’s NAV and its own market price, 

divided by NAV (expressed in %). I use the average top-5 daily returns within a month (Max(5)) to proxy for lottery-

like feature for the CEF and its holdings. I denote CEF_Max(5) as the Max(5) for a CEF and Holding_Max(5) as the 

average Max(5) from a CEF’s top-10 holdings, weighted by holding percentage. For each possible stock pairs among 

the top ten holdings, CoMax(5)i,j is the percentage of top-5 daily returns that are recorded in the same day, and 

Pair_Max(5)i,j is the average Max(5) of the stock pair, weighted by holding percentage. Pair_Max(5)i,j, CoMax(5)i,j, 

and Pair_Max(5)i,j×CoMax(5)i,j are then taken weighted average across all stock pairs (denoted as Holding_Max(5), 

CoMax(5), and Pair_Max(5)×CoMax(5)). Note that after Pair_Max(5)i,j is taken weighted average across all stock 

pairs, it equals Holding_Max(5). Detailed description of all control variables can be found in the appendix. All 

independent variables are standardized to have a mean of zero and a standard deviation of one. I estimate fixed effect 

regressions with standard errors (reported in brackets) clustered along both time and fund dimensions. Columns (1)-

(5) control for time fixed effects, column (6) controls both fund and time fixed effects. *, **, and *** denote 

significance at the 10%, 5%, and 1% level, respectively. 

  Dependent Variable: CEF Discount 

VARIABLES (1) (2) (3) (4) (5) (6) 

Holding_Max(5) 4.838** 5.924*** 2.481** 7.906*** 3.246*** 1.944*** 

 (2.420) (2.240) (0.970) (2.483) (0.997) (0.449) 

Pair_Max(5)×CoMax(5)  -1.910*** -1.463*** -1.170** -1.221*** -0.492*** 

  (0.325) (0.391) (0.468) (0.412) (0.124) 

CoMax(5)  -0.405 0.159 -0.073 0.240 0.611 

  (0.901) (0.492) (0.933) (0.490) (0.372) 

CEF_Max(5)    -6.256*** -1.938** -1.892*** 

    (1.895) (0.781) (0.681) 

Disagreement   0.273  0.290 -0.407 

   (0.598)  (0.595) (0.380) 

(Continued) 

 

(Continued) 
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  Dependent Variable: CEF Discount 

VARIABLES (1) (2) (3) (4) (5) (6) 

Inve_Price[pos]   -3.875**  -3.805* 0.370 

   (1.971)  (1.967) (1.590) 

Inv_Price[neg]   1.211**  1.346*** 3.783*** 

   (0.504)  (0.499) (1.449) 

Div_Yield[pos]   -5.957***  -5.794*** -1.330 

   (1.543)  (1.528) (1.461) 

Div_Yield[neg]   -0.803  -0.797 0.684 

   (0.641)  (0.632) (0.731) 

Liquidity   -1.098*  -0.947* 0.912* 

   (0.562)  (0.561) (0.487) 

Exp_Ratio   -1.362**  -1.224* 0.324 

   (0.637)  (0.629) (0.596) 

Holding_Tskew   0.072  0.106 0.384 

   (0.401)  (0.393) (0.481) 

Holding_Ivol   -0.270  -0.399 -1.122 

   (0.676)  (0.668) (1.247) 

       

Observations 2,330 2,330 2,330 2,330 2,330 2,330 

R-squared 0.200 0.213 0.687 0.262 0.691 0.855 
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Table 3 Combined M&A Announcement Returns 

This table reports coefficient estimates from regressions of combined M&A announcement returns on lottery-like 

features. The dependent variable is combined cumulative abnormal return (Combined CAR [−1,+1]) (expressed in %), 

where t = 0 is the announcement day, or the ensuing trading day if the deal is announced when the market is closed, 

weighted by the market capitalization of both the acquirer and the target. The degree of lottery likeness of the acquirer 

(target) is proxied by the average of the acquirer’s (target’s) top-3 monthly returns within the past year before the 

announcement (denoted as Max(3)A and Max(3)T). Combined_Max(3) is the average of Max(3)A and Max(3)T, 

weighted by their respective market capitalizations in the month prior to the announcement. CoMax(3) is the 

percentage of the top-3 monthly returns that are recorded in the same month. Detailed description of all control 

variables can be found in the appendix. All independent variables are standardized to have a mean of zero and a 

standard deviation of one. I estimate time-fixed effect regressions with standard errors (reported in brackets) clustered 

by time. *, **, and *** denote significance at the 10%, 5%, and 1% level, respectively. 

  Dependent Variable: Combined_CAR [−1,+1] 

VARIABLES (1) (2) (3) (4) 

Combined_Max(3) -0.990* -1.280** -1.268** -1.729*** 

 (0.513) (0.571) (0.542) (0.570) 

Combined_Max(3)×CoMax(3)   0.624*** 0.744*** 

   (0.189) (0.186) 

CoMax(3)   0.323 0.256 

   (0.211) (0.207) 

Disagreement  -0.011  -0.032 

  (0.340)  (0.343) 

Ln(Acq_MktCap)  -0.894*  -0.902* 

  (0.450)  (0.465) 

Ln(Acq_MEBE)  -0.013  0.007 

  (0.352)  (0.353) 

Acq_ROA  0.157  0.179 

  (0.509)  (0.475) 

Acq_Leverage  -0.215  -0.203 

  (0.327)  (0.318) 

Acq_OCF  -0.284  -0.273 

  (0.359)  (0.341) 
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  Dependent Variable: Combined_CAR [−1,+1] 

VARIABLES (1) (2) (3) (4) 

Ln(Tgt_MktCap)  0.320  0.286 

  (0.368)  (0.383) 

Ln(Tgt_MEBE)  -0.586**  -0.546** 

  (0.246)  (0.247) 

Tgt_ROA  -0.039  -0.043 

  (0.476)  (0.474) 

Tgt_Leverage  0.385  0.351 

  (0.226)  (0.231) 

Tgt_OCF  -0.011  0.004 

  (0.476)  (0.474) 

Relative Size  -0.987**  -0.996** 

  (0.395)  (0.385) 

Tender Offer  0.164  0.169 

  (0.207)  (0.204) 

Hostile Offer  0.389  0.373 

  (0.241)  (0.233) 

Competing Offer  -0.078  -0.043 

  (0.202)  (0.191) 

Cash Only  1.330***  1.288*** 

  (0.206)  (0.204) 

Stock Only  -0.031  -0.071 

  (0.295)  (0.294) 

Same Industry  0.148  0.098 

  (0.170)  (0.181) 

Combined_Tskew  -0.173  -0.151 

  (0.174)  (0.173) 

Combined_Ivol  0.356  0.497 

  (0.295)  (0.308) 

     

Observations 1,145 1,145 1,145 1,145 

R-squared 0.078 0.174 0.087 0.184 
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Table 4 Conglomerate Discounts 

This table reports coefficient estimates from regressions of conglomerate discounts on measures of lottery-like features. 

The dependent variable is conglomerate discount, defined as the difference between a conglomerate’s Imputed_MEBE 

and its own market-to-book ratio, scaled by Imputed_MEBE, where Imputed_MEBE is defined as the average 

Seg_MEBE across a conglomerate’s segments weighted by this conglomerate’s net sales from each segment, and 

Seg_MEBE is defined as the sales-weighted average market-to-book values across single-segment firms within each 

segment. The lottery-like feature for a firm is proxied by the average top-3 monthly returns within the fiscal year 

(Max(3)). Cong_Max(3) is the Max(3) from a conglomerate. Imputed_Max(3) is defined as the average Seg_Max(3) 

across a conglomerate’s segments, weighted by this conglomerate’s net sales from each segment, and Seg_Max(3) is 

defined as the sales-weighted average Max(3) across five single-segment firms chosen similar to the conglomerate’s 

operation in that segment based on SIC code and sales. CoMax(3)m(i),n(j) is the percentage of top-3 monthly returns that 

are recorded in the same month for every possible stock pairs {i,j} constructed from any two different underlying 

segments {m,n}, and Pair_Max(3)m(i),n(j) is the average Max(3) from these two stocks. Pair_Max(3)m(i),n(j), 

CoMax(3)m(i),n(j), and Pair_Max(3)m(i),n(j)×CoMax(3)m(i),n(j) are then taken weighted average across all stock pairs and 

segment pairs (denoted as Imputed_Max(3), Pair_Max(3), and Pair_Max(3)×CoMax(3)). Note that after 

Pair_Max(3)m(i),n(j) is taken weighted average across all stock pairs and then segment pairs, it equals Imputed_Max(3). 

All independent variables are standardized to have a mean of zero and a standard deviation of one. I estimate time-

fixed effect regressions with standard errors (reported in brackets) clustered by both firm and time. *, **, and *** 

denote significance at 10%, 5%, 1% level, respectively. 

  Dependent Variable: Conglomerate Discount 

VARIABLES (1) (2) (3) (4) (5) 

Imputed_Max(3) 0.066*** 0.097*** 0.147*** 0.121*** 0.173*** 

 (0.021) (0.025) (0.038) (0.026) (0.038) 

Pair_Max(3)×CoMax(3)  -0.052** -0.081*** -0.057** -0.080*** 

  (0.023) (0.024) (0.025) (0.023) 

CoMax(3)  0.044* 0.048** 0.042* 0.047** 

  (0.023) (0.022) (0.023) (0.022) 

Cong_Max(3)    -0.097*** -0.116*** 

    (0.020) (0.019) 

(Continued) 
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(Continued) 

  Dependent Variable: Conglomerate Discount 

VARIABLES (1) (2) (3) (4) (5) 

Disagreement   0.010  0.009 

   (0.019)  (0.018) 

Ln(Total Asset)   0.047  -0.047 

   (0.106)  (0.111) 

Ln(Total Asset)2   -0.030  0.031 

   (0.111)  (0.114) 

Leverage   -0.128***  -0.120*** 

   (0.024)  (0.024) 

Profitability   -0.087***  -0.097*** 

   (0.023)  (0.022) 

Investment Ratio   0.008  0.010 

   (0.019)  (0.019) 

Imputed_Tskew   -0.037*  -0.040* 

   (0.022)  (0.022) 

Imputed_Ivol   -0.082***  -0.087*** 

   (0.030)  (0.030) 

      

Observations 15,907 15,907 15,907 15,907 15,907 

R-squared 0.008 0.009 0.030 0.015 0.038 
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Table 5 Replacing CoMax with Non-Max Correlation 

This table conducts placebo tests by replacing CoMax with Non_Max_Corr on CEFs (Panel A), M&A deals (Panel 

B), and conglomerates (Panel C). In Panel A, the dependent variable is the CEF discount, defined as the difference 

between a CEF’s NAV and its market price, divided by NAV (expressed in %). For each stock pairs among a CEF’s 

top ten holdings, Non_Max_Corri,j is the return correlation excluding top-5 daily returns that are recorded in the same 

day. All other variables are defined in the same way as in Table 2. Pair_Max(5)i,j, Non_Max_Corri,j, and 

Pair_Max(5)i,j×Non_Max_Corri,j are taken weighted average across all stock pairs (denoted as Holding_Max(5), 

Non_Max_Corr, and Pair_Max(5)×Non_Max_Corr). I estimate fixed effect regressions with standard errors (reported 

in brackets) clustered along both time and fund dimensions. In Panel B, the dependent variable is combined cumulative 

abnormal return (Combined CAR [−1,+1]). For each deal, Non_Max_Corr is the return correlation excluding top-3 

monthly returns that are recorded in the same month. All other variables are defined in the same way as in Table 3. I 

estimate fixed effect regressions with standard errors (reported in brackets) clustered by time. In Panel C, the 

dependent variable is conglomerate discount, defined as the difference between a conglomerate’s Imputed_MEBE and 

its own market-to-book ratio, scaled by Imputed_MEBE. Non_Max_Corrm(i),n(j) is the return correlation excluding top-

3 monthly returns that are recorded in the same month for every stock pairs {i,j} constructed from any two different 

underlying segments {m,n}. All other variables are defined in the same way as in Table 4. Pair_Max(3)m(i),n(j), 

Non_Max_Corrm(i),n(j), and Pair_Max(3)m(i),n(j)×Non_Max_Corrm(i),n(j) are taken weighted average across all stock pairs 

and segment pairs (denoted as Imputed_Max(3), Non_Max_Corr, and Pair_Max(5)×Non_Max_Corr). I estimate fixed 

effect regressions with standard errors (reported in brackets) clustered by both firm and time. All independent variables 

are standardized to have a mean of zero and a standard deviation of one. *, **, and *** denote significance at 10%, 

5%, and 1% level, respectively. 

Panel A: Closed-end Funds 

  Dependent Variable: CEF Discount 

VARIABLES (1) (2) 

Holding_Max(5) 4.008** 1.837*** 

 (1.808) (0.577) 

Pair_Max(5)×Non_Max_Corr -0.593 -0.091 

 (0.370) (0.137) 

Non_Max_Corr -0.598 0.374 

 (0.922) (0.246) 

Controls No Yes 

Observations 2,330 2,330 

R-squared 0.133 0.839 
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Panel B: Mergers and Acquisitions 

  Dependent Variable: Combined CAR[−1,+1] 

VARIABLES (1) (2) 

Combined_Max(3) -1.036* -1.418** 

 (0.505) (0.522) 

Combined_Max(3)×Non_Max_Corr 0.126 0.238 

 (0.255) (0.253) 

Non_Max_Corr 0.221 0.251 

 (0.218) (0.205) 

   

Controls No Yes 

Observations 1,145 1,145 

R-squared 0.079 0.176 

Panel C: Conglomerates 

  Dependent Variable: Conglomerate Discount 

VARIABLES (1) (2) 

Imputed_Max(3) 0.059*** 0.118*** 

 (0.021) (0.032) 

Pair_Max(3)×Non_Max_Corr 0.054 0.031 

 (0.034) (0.032) 

Non_Max_Corr -0.024 -0.009 

 (0.031) (0.027) 

   

Controls No Yes 

Observations 15,907 15,907 

R-squared 0.009 0.037 
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Table 6 Alternative Proxies for Lottery-like Features 

This table reports robustness tests for CEFs (Panel A), M&A deals (Panel B), and conglomerates (Panel C), using alternative proxies for lottery-like features. In 

Panel A, I consider the average top-2/3 daily returns within a month and top-60 daily returns within a year (denoted as Max(i), i=2,3, or 60). I report coefficient 

estimates from regressions of CEF discounts on these alternative measures. The dependent variable is the CEF discount, defined as the difference between a CEF’s 

NAV and its market price, divided by NAV (expressed in %). CEF_Max(i), Holding_Max(i), CoMax(i), and Pair_Max(i)×CoMax(i) are defined in the same way 

as in Table 2, except that the top-i daily returns are used to compute these variables. I estimate fixed effect regressions with standard errors (reported in brackets) 

clustered along both time and fund dimensions. In Panel B, I consider three alternative proxies for lottery-like features: (1) the average top-5 monthly returns with 

24 months prior to the announcement; (2) the average top-12 weekly returns within a year prior to the announcement; (3) the average top-60 daily returns with in 

a year prior to the announcement. I report coefficient estimates from regressions of combined M&A announcement day returns on these three alternative proxies. 

The dependent variable is combined cumulative abnormal return (Combined CAR [−1,+1]). Combined_Max(i), CoMax(i), and their interactions (i = 5,12,60) are 

defined in the same way as in Table 3, except that top-5 monthly returns/top-12 weekly returns/top-60 daily returns are used to compute these variables. I estimate 

fixed effect regressions with standard errors (reported in brackets) clustered by time. In Panel C, I consider three alternative proxies for lottery-like features: (1) 

the average top-5 monthly returns with 24 months; (2) the average top-12 weekly returns within a year; (3) the average top-60 daily returns with in a year. I report 

coefficient estimates from regressions of conglomerate discounts on these alternative proxies. The dependent variable is conglomerate discount, defined as the 

difference between a conglomerate’s Imputed_MEBE and its own market-to-book ratio, scaled by Imputed_MEBE. Imputed_Max(i), Cong_Max(i), CoMax(i), and 

Pair_Max(i)×CoMax(i) are defined in the same way as in the main results (i = 5,12,60), except that top-5 monthly returns/top-12 weekly returns/top-60 daily 

returns are used to compute these variables. I estimate fixed effect regressions with standard errors (reported in brackets) clustered by both firm and time. Detailed 

description of control variables from all panels can be found in the appendix. All independent variables are standardized to have a mean of zero and a standard 

deviation of one. *, **, and *** denote significance at the 10%, 5%, and 1% level, respectively. 
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Panel A: Closed-end Funds 

VARIABLES (1)  VARIABLES (2)  VARIABLES (3) 

Holding_Max(2) 1.138**  Holding_Max(3) 1.655***  Holding_Max(60) 2.338** 

 (0.459)   (0.416)   (1.049) 

Pair_Max(2)×CoMax(2) -0.233**  Pair_Max(3)×CoMax(3) -0.425**  Pair_Max(60)×CoMax(60) -0.788** 

 (0.096)   (0.201)   (0.313) 

CoMax(2) 0.468  CoMax(3) 0.528*  CoMax(60) -0.338 

 (0.305)   (0.318)   (0.432) 

        

Controls Yes  Controls Yes  Controls Yes 
        

Observations 2,330  Observations 2,330  Observations 2,330 

R-squared 0.865  R-squared 0.854  R-squared 0.856 

Panel B: Mergers and Acquisitions 

VARIABLES (1)  VARIABLES (2)  VARIABLES (3) 

Combined_Max(5) -1.998***  Combined_Max(12) -2.526**  Combined_Max(60) -2.639** 

 (0.530)   (0.962)   (1.035) 

Combined_Max(5)×CoMax(5) 0.907***  Combined_Max(12)×CoMax(12) 1.541**  Combined_Max(60)×CoMax(60) 1.479* 

 (0.212)   (0.708)   (0.856) 

CoMax(5) 0.300  CoMax(12) -0.347  CoMax(60) -0.482 

 (0.218)   (0.404)   (0.439) 
        

Controls Yes  Controls Yes  Controls Yes 
        

Observations 1,145  Observations 1,145  Observations 1,145 

R-squared 0.186  R-squared 0.174  R-squared 0.17 

(Continued) 

 



74 
 

(Continued) 

Panel C: Conglomerates 

VARIABLES (1)  VARIABLES (2)  VARIABLES (3) 

Imputed_Max(5) 0.148***  Imputed_Max(12) 0.185***  Imputed_Max(60) 0.244*** 

 (0.043)   (0.048)   (0.072) 

Pair_Max(5)×CoMax(5) -0.068***  Pair_Max(12)×CoMax(12) -0.090***  Pair_Max(60)×CoMax(60) -0.114*** 

 (0.026)   (0.025)   (0.032) 

CoMax(5) 0.045*  CoMax(12) 0.039*  CoMax(60) 0.014 

 (0.025)   (0.020)   (0.027) 

        

Controls Yes  Controls Yes  Controls Yes 
        

Observations 15,907  Observations 15,907  Observations 15,907 

R-squared 0.035  R-squared 0.032  R-squared 0.029 

 


