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Abstract

The objective of this paper is to show that the proposal by Froot and Thaler (1990)

of delayed portfolio adjustment can account for a broad set of puzzles about the

relationship between interest rates and exchange rates. The puzzles include: i) the

delayed overshooting puzzle; ii) the forward discount puzzle (or Fama puzzle); iii)

the predictability reversal puzzle; iv) the Engel puzzle (high interest rate currencies

are stronger than implied by UIP); v) the forward guidance exchange rate puzzle;

vi) the absence of a forward discount puzzle with long-term bonds. These results

are derived analytically in a simple two-country model with portfolio adjustment

costs. Quantitatively, this approach can match all targeted moments related to

these puzzles.



1 Introduction

Richard Thaler won the 2017 Nobel Prize in Economics. Thaler has focused his re-

search on behavior that he refers to as a deviation from “rational efficient markets.”

One example of this is the foreign exchange market. Focusing on the forward dis-

count puzzle, the fact that high interest rate currencies tend to appreciate, Froot

and Thaler (1990) argue that “a rational efficient markets paradigm provides no

satisfactory explanation for the observed results”. They suggest that gradual port-

folio adjustment could solve this puzzle. Their hypothesis is that “...at least some

investors are slow in responding to changes in the interest differential,” arguing

that “It may be that these investors need some time to think about trades before

executing them, or that they simply cannot respond quickly to recent informa-

tion.” In Bacchetta and van Wincoop (2010) we took this proposal seriously and

showed that it can indeed account for the forward discount puzzle.

The objective of this paper is to explore the role of gradual portfolio adjustment

for a broader set of features in the interaction between exchange rates and interest

rates. We find that gradual portfolio adjustment can account for as many as six

puzzles that have been identified in the literature. The puzzles that we address

are:

1. Delayed overshooting puzzle: a monetary contraction that raises the interest

rate leads to a period of appreciation, followed by gradual depreciation.

2. Forward discount puzzle (or Fama puzzle): high interest rate currencies have

higher expected returns over the near future.

3. Predictability reversal puzzle: high interest rate currencies have lower ex-

pected returns after some period of time.

4. Engel puzzle: high interest rate currencies are stronger than implied by un-

covered interest parity.

5. Forward guidance exchange rate puzzle: the exchange rate is more strongly

affected by expected interest rates in the near future than the distant future.

6. LSV puzzle: current interest differentials do not predict long-term bond re-

turn differentials.
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The delayed overshooting puzzle was first documented by Eichenbaum and

Evans (1995) for the US and Grilli and Roubini (1996) for other countries. It should

be pointed out that the subsequent studies have shown that the evidence depends

on identification strategies.1 The second puzzle, the forward discount puzzle, is the

best known on this list and continues to be a well established empirical fact.2 The

predictability reversal puzzle, first documented by Bacchetta and van Wincoop

(2010), is related to the forward discount puzzle. They show that while the excess

return over the next quarters is positive for higher interest rate currencies (forward

discount puzzle), after about 8 quarters the quarterly excess return is negative for

currencies whose current interest rate is relatively high. In other words, there is a

reversal in the sign of expected excess returns. Engel (2016) confirms that this is

a robust puzzle.

The fourth puzzle is documented in Engel (2016). The Engel puzzle says that

high interest rate currencies tend to have a stronger exchange rate than under UIP

(uncovered interest rate parity). This is because the sum of all expected future

excess returns is negative for high interest rate currencies. In other words, the

predictability reversal will ultimately dominate and investors demand a lower sum

of all future excess returns on currencies whose interest rate is currently high. Such

currencies are therefore strong relative to what they would be under UIP.

The forward guidance exchange rate puzzle is developed by Gaĺı (2019). Un-

der UIP the exchange rate is equal to the unweighted sum of all future expected

interest rate differentials. This implies that changes in expected interest rates in

the near future have the same effect on the exchange rate today as changes in the

expected interest differential in the more distant future. However, in the data Gaĺı

(2019) finds that expectations of interest differentials in the distant future have

a much smaller effect on the current exchange rate than expectations of interest

differentials in the near future.

The LSV puzzle stands for the puzzle developed by Lustig, Stathopoulos and

Verdelhan (2018) (henceforth LSV). It says that the forward discount puzzle has

no analogy in long-term bonds. While the international excess return on short-

term bonds tends to be positive for currencies with a relatively high interest rate

1See for example Cushman and Zha (1997), Faust and Rogers (2003), Scholl and Uhlig (2008)

or Bjørnland (2009).
2Notice, however, that the puzzle does not seem to hold when we include post-2008 data. See

Bussière et al. (2018).
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(forward discount puzzle), LSV find that this is not the case for long-term bonds.

They show that the local excess return of long-term bonds over short-term bonds

tends to be lower for high interest rate currencies and that this offsets the positive

expected excess return for short-term bonds.3 LSV find that no-arbitrage models

in international finance cannot account for this.

Our objective is to show that a single friction, associated with portfolio adjust-

ment costs, is able to account for each of these puzzles. An additional objective is

to do so in an analytically tractable way, which significantly facilitates the analysis

and makes the results more transparent. With the exception of the LSV puzzle, the

key results are summarized through a set of propositions that follow directly from

the closed form analytical solution of the model. We obtain analytic tractability

by assuming that agents can adjust their portfolio each period, but face a simple

quadratic portfolio adjustment cost.4 This also allows us to abstract from investor

heterogeneity. By contrast, the existing literature on gradual portfolio adjustment

has mostly assumed overlapping generations that make new portfolio decisions

every T periods,5 an assumption that has the disadvantage of both requiring a

numerical solution and leading to a wobbly impulse response of asset prices to

shocks.6

The role of a portfolio adjustment friction in accounting for these puzzles has

received limited attention in the literature so far. An exception is Bacchetta and

3The international excess return of long-term bonds can be written as the sum of the interna-

tional excess return for short-term bonds plus the difference in local excess returns of long-term

over short-term bonds.
4Vayanos and Woolley (2012) also introduce a cost of changing portfolios to model portfolio

inertia. They do so in a continuous time, closed economy model. There is also a finance literature

analyzing optimal portfolio allocation in partial equilibrium models with quadratic adjustment

costs, e.g., Gârleanu and Pedersen (2013). In a different context, Sutherland (1996) assumes

quadratic adjustment costs between domestic and foreign bonds.
5For examples, see Bacchetta and van Wincoop (2010), Bogousslavky (2016), Duffie (2010),

Henderschott et al. (2013) and Greenwood et al. (2015).
6The wobbly impulse response results from the fact that investors anticipate that agents who

changed their portfolio at the time of a shock will change their portfolio again T periods later.

Apart from a portfolio adjustment cost as we assume here, the impulse response can also be

smoothed by assuming that agents change their portfolio with a given probability each period, as

recently proposed in Bacchetta and van Wincoop (2017). But this approach, which is analogous

to Calvo price setting, is even less analytically tractable and requires a non-trivial numerical

solution technique.
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van Wincoop (2010), who address the first three puzzles in a model where agents

make a new portfolio decision every T periods. As Engel (2016) points out, the

Bacchetta and van Wincoop (2010) model “is complex and requires numerical

solution.” Our approach here differs in that it is analytically tractable, considers

a broader set of puzzles and leads to smooth impulse responses to interest rate

shocks.

While there is a vast literature on the forward discount puzzle, which we will

not review here, the other puzzles have received much less attention. A few papers

focus on delayed overshooting, e.g., Gourinchas and Tornell (2004) and Kim (2005).

Recently, several papers analyze the predictability reversal puzzle. Engel (2016),

Itshkoki and Mukhin (2017), and Vlachev (2017) propose explanations based on

liquidity shocks. Chernov and Creal (2018) and Dahlquist and Penasse (2017)

focus on the role of long-term real exchange rate adjustment. The forward guidance

exchange rate puzzle and LSV puzzle have only been recently documented and no

solution has been proposed yet.

Engel (2016) conjectures that a model with gradual portfolio adjustment cannot

account for the predictability reversal puzzle and the Engel puzzle. We show that

this is due to a misunderstanding about the response of the exchange rate relative

to the UIP exchange rate. Engel (2016) conjectures that a positive interest rate

shock leads the exchange rate initially to be weaker than the UIP exchange rate,

with the difference then gradually declining according to an AR(1) process. We

show that the first conjecture is correct, but the second is not. It is true that

immediately following a positive interest rate shock the currency is weaker than

under UIP as a result of the weak initial portfolio response, which may seem

inconsistent with the Engel puzzle. But we show that soon after the shock the

high interest rate currency is stronger than under UIP. It continues to appreciate

after a positive interest rate shock due to the gradual portfolio adjustment. The

Engel puzzle is about an unconditional moment, not about an immediate response

to an interest rate shock.

It should finally be pointed out that a gradual portfolio adjustment friction is

well motivated by evidence of delayed adjustment in investors’ portfolios. Ameriks

and Zeldes (2004) document that investors make changes to their TIAA-CREF

allocations very infrequently. Using data from the Panel Study of Income Dynam-

ics (PSID) and the Survey of Consumer Finances (SCF), Bilias et al. (2010) find

widespread inertia of portfolios in response to stock market fluctuations. Brunner-
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meier and Nagel (2008) use PSID data to conclude that “...one of the major drivers

of household portfolio allocation seems to be inertia: households rebalance only

very slowly following inflows and outflows or capital gains and losses.” Mitchell

et al. (2006) find that 401(k) plan participants are characterized by “profound

inertia”. Giglio et al. (2019) use data from wealthy Vanguard clients that com-

bines survey expectations of stock and bond returns by individual investors with

administrative data on their investment holdings and transactions at Vanguard.

They find that the equity portfolio share is not very sensitive to changes in ex-

pected returns and present evidence suggesting that this is the result of infrequent

trading, which they relate to infrequent attention. Duffie (2010) reviews a broad

range of evidence motivating models of gradual portfolio adjustment.

Evidence of gradual portfolio adjustment based on international portfolios is

limited. Bohn and Tesar (1996) and Froot et al. (2001) find that international

portfolio flows are highly persistent and strongly related to lagged returns. Bohn

and Tesar (1996) conclude: “we suspect that investors may adjust their portfolios

to new information gradually over time, resulting in both autocorrelated net pur-

chases and a positive linkage with lagged returns.” In the Online Appendix of the

paper we document evidence on US international equity portfolio shares that is

consistent with our theory and calibration.

The remainder of the paper is organized as follows. In Section 2 we discuss a

two-country model with short-term bonds and gradual portfolio adjustment. In

Section 3 we provide formal propositions related to the first five puzzles as well

as a numerical illustration. Section 4 extends the model to incorporate long-term

bonds to address the last puzzle. Section 5 concludes.

2 Model with Gradual Portfolio Adjustment and

Short-Term Bonds

The six puzzles can be written both in terms of real interest rates and exchange

rates and in terms of nominal interest rates and exchange rates. As Engel (2016)

points out, the forward discount rate puzzle applies equally when using real vari-

ables. Gaĺı (2019) also uses real interest rates and exchange rates to develop the

forward guidance exchange rate puzzle. An advantage of stating the puzzles in

terms of real variables is that the real exchange rate is stationary, while the nom-
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inal exchange rate is generally not stationary. We therefore use real variables,

although we should stress that the equations can easily be written in nominal

terms as well. In this section we first describe the model and then the solution for

the equilibrium real exchange rate and corresponding excess return predictability

coefficients. We also discuss a calibration of the model that is used to numerically

illustrate the puzzles in the next two sections.

There are two countries, Home and Foreign, with agents who invest in one-

period bonds of both countries. We adopt a simplifying overlapping generations

framework as in Bacchetta and van Wincoop (2007, 2010). But the model differs

in that we adopt a cost of changing the portfolio share instead of a fixed interval of

changing portfolios. Moreover, we focus on real variables and we consider investors

from both countries rather than just the Home country.

We treat interest rate shocks as exogenous to the model and consider the im-

pact on the exchange rate. In order to derive all the results we do not explicitly

model other shocks.7 Other shocks only matter for our results to the extent that

they affect exchange rate volatility, which affects the portfolio response to ex-

pected returns. In numerical illustrations we simply use the observed exchange

rate volatility.8

2.1 Model Description

There are overlapping generations of agents who live two periods and are born with

a unit wealth in real terms. Agents in the Home country born at time t maximize

Et
C1−γ
t+1

1− γ
− 0.5ψ (zt − zt−1)2 (1)

where the second term is a portfolio adjustment cost. It captures a utility cost

of choosing a different portfolio share zt invested in Foreign bonds than that of

“parents” one period ago. This reduced-form adjustment is more ad hoc than the

alternative ways to generate gradual portfolio adjustment, but this comes at a

7Itskhoki and Muhkin (2017) argue that financial shocks, in the form of portfolio shocks, are

the main drivers of exchange rates and can account for the exchange rate disconnect puzzle.
8We implicitly assume that other shocks that are important drivers of the exchange rate do

not affect interest rates themselves. In other words, shocks affect exchange rates (mostly) either

through interest rates or other channels (e.g. portfolio shift independent of interest rates).
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significant gain of analytical tractability that delivers key insights.9

Consumption is equal to the portfolio return:

Ct+1 = Rp
t+1 =

[
zt
St+1

St
ei

∗
t e−τ + (1− zt)eit

]
Pt
Pt+1

+ Tt+1 (2)

it and i∗t are the nominal interest rate on Home and Foreign bonds. St is the level

of the nominal exchange rate, measured in terms of the Home currency per unit of

the Foreign currency. Pt is the price level. We will assume that inflation over the

next period is known, so that Pt+1 is known. This captures the fact that there is

much more uncertainty about exchange rates than inflation over the near future.

We also allow for a cost τ of investing in Foreign bonds, which is an international

financial friction. The aggregate of this cost across agents is reimbursed through

Tt+1. Rp
t+1 is therefore the same in equilibrium as it would be when τ = 0, but

agents take Tt+1 as given, not under their control through portfolio choice.10

Define the gross real interest rates as Rt = eitPt/Pt+1 and R∗t = ei
∗
tP ∗t /P

∗
t+1

where P ∗t is the Foreign price level. The real exchange rate is defined as Qt =

StP
∗
t /Pt. The first-order condition for optimal portfolio choice is then

Ete
−γrpt+1+qt+1−qt+r∗t−τ − Ete−γr

p
t+1+rt − ψ(zt − zt−1) = 0 (3)

where lower case letters denote logs (except for the portfolio shares).

The first-order approximation of the log portfolio return is rpt+1 = ztert+1 + rt,

where the excess return is

ert+1 = qt+1 − qt + r∗t − rt (4)

Substituting the first-order approximation of the log portfolio return into the first-

order condition, assuming log-normality, and using the approximation ex = 1 + x,

9One can also draw a comparison to the price stickiness literature. Our specification (1) is

analogous to the Rotemberg (1982) cost of changing prices. The specification most frequently

adopted in the gradual portfolio adjustment literature is one where the portfolio is adjusted

every T periods, which is analogous to Taylor price setting. Bacchetta and van Wincoop (2017)

consider a model where agents change their portfolio with a given probability p each period,

which is analogous to Calvo price setting. Applying the Rotemberg (1982) cost of price changes

to portfolio changes significantly simplifies the solution of the model and allows us to better

understand the mechanisms at work.
10See Bacchetta and van Wincoop (2017) and Davis and van Wincoop (2017) for the same

approach.
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we have

Etert+1 − τ + 0.5var(ert+1)− γztvar(ert+1)− ψ(zt − zt−1) = 0 (5)

Define the steady state fraction invested in Foreign bonds as

z̄ =
0.5

γ
− τ

γvar(ert+1)
(6)

We take z̄, which is related to τ , as a parameter that is given. The frictionless

optimal portfolio in the absence of adjustment costs is

zft = z̄ +
Etert+1

γσ2

where σ2 = var(ert+1). The optimal portfolio with adjustment costs can then be

written as

zt =
ψ

ψ + γσ2
zt−1 +

γσ2

ψ + γσ2
zft (7)

Expression (7) shows that the portfolio share zt is a weighted average of the previ-

ous period’s portfolio share and the frictionless optimal portfolio share. The port-

folio share therefore gradually adjusts to the frictionless optimal portfolio share.

However, in equilibrium zft is not a fixed target as the expected excess return is

endogenous and changes over time.

Substituting the expression for zft into (7), we obtain some results regarding

the key parameters ψ and γ that will help interpret the results in the next section.

We get

zt − z̄ =
ψ

ψ + γσ2
(zt−1 − z̄) +

1

ψ + γσ2
Etert+1 (8)

The parameters ψ and γ play two roles. First, a larger ψ and lower γ increase the

weight on the lagged portfolio. This increases the persistence of the response to a

shock. A larger ψ and lower γ lead to a more gradual portfolio response. Second,

as can be seen from the last term, a larger ψ and γ both lead to a weaker portfolio

response to changes in the expected excess return. We will refer to these two

effects as portfolio persistence and return sensitivity. A higher γ leads to both less

portfolio persistence and weaker return sensitivity, while a higher ψ raises portfolio

persistence, but weakens return sensitivity.11

11See effects are similar to Gârleanu and Pederson (2013).
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There is an analogous solution for the Foreign country giving the optimal frac-

tion invested in Foreign bonds by Foreign investors z∗t . By symmetry, the steady

state fraction invested in Foreign bonds for Foreign investors is z̄∗ = 1− z̄. We will

focus on the average portfolio share invested in Foreign bonds zAt = 0.5(zt + z∗t ).

The real supply of bonds is assumed fixed at 1 in terms of the purchasing power

of the respective countries. As a result of Walras’ Law it is sufficient to focus on

the Foreign bond market equilibrium. Taking the perspective of the Home country,

the Foreign bond market equilibrium condition in real terms is

zt + z∗tQt = Qt (9)

It is useful to introduce a home bias parameter h. Home bias is usually defined as

one minus the ratio of the share invested abroad and the share of the foreign asset

in the world asset supply. The home bias parameter in steady state in our model

is therefore h = 1 − 2z̄. Using this, and linearizing the market clearing condition

around the log of the real exchange rate q = 0, and portfolio shares z̄ and z̄∗, gives

zAt = 0.5 + bqt (10)

where b = (1− h)/4 is a parameter between 0 and 0.25. Substituting this into the

average of equation (7) and its foreign counterpart and using expression (4) for

the excess return, we have

Etqt+1 − θqt + bψqt−1 + rDt = 0 (11)

where rDt = r∗t − rt is the Foreign minus Home real interest rate differential and

θ = 1 + ψb+ γσ2b, with θ > 1.

Equation (11) is a second-order difference equation in qt. The presence of qt−1

comes from the adjustment cost and vanishes when ψ = 0. Notice that we can

rewrite equation (11) as:

Etert+1 = γσ2bqt + ψb(qt − qt−1) (12)

The expected excess return depends on two terms. The first is a standard risk

premium γσ2bqt and will play a marginal role in the analysis. It is the second

term, ψb(qt − qt−1), generated by the adjustment cost, that is playing the key

role.12

12Chernov and Creal (2018) and Dahlquist and Penasse (2017) argue that there is a missing

risk premium that should be related to the real exchange rate. Their proposed specification is

however different from ours in equation (12).
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For the sake of brevity and analytic simplicity, we have adopted some shortcuts

in deriving equation (11). These are addressed in the Online Appendix. We have

not explicitly modeled the goods market and associated price setting (assuming

that inflation over the next period is known). We have introduced bonds with

a constant supply in real terms, without specifying who issues these bonds and

how the supply can be constant. We have also ignored drivers of the exchange

rate other than interest rate shocks. In the Online Appendix we develop a full

general equilibrium model, where the goods market and price setting are explicitly

modeled and there is a goverment that issues the bonds. The real supply of the

bonds is held constant through tax policy. We show that it leads to the same

second-order difference equation (11) for the real exchange rate.13 We also show

that in an extension that allows for exogenous portfolio shifts, there will be an

additional exogenous term on the right hand side of (11) associated with financial

shocks. Itskhoki and Muhkin (2017) argue that such financial shocks are the main

driver of exchange rates. As long as they are uncorrelated with interest rate shocks,

it does not affect the analysis that follows.

2.2 Solution Real Exchange Rate

Using equation (11) we can solve for the equilibrium qt as a function of the lagged

real exchange rate and expected future interest rate differentials. Using standard

solution techniques for second-order stochastic difference equations, we have

qt = αqt−1 + Et

∞∑
i=0

1

Di+1
rDt+i (13)

where α and D are the roots of the characteristic equation of (11):

α =
θ −

√
θ2 − 4ψb

2
(14)

D =
θ +

√
θ2 − 4ψb

2
(15)

It is easily verified that 0 ≤ α < 1 and D > 1. The equilibrium real exchange rate

therefore depends on the lagged real exchange rate and a present discounted value

of expected future real interest rate differentials. Since D > 1, it is immediate that

13Relative inflation is proportional to qt, with the proportionality factor dependent on the

speed of price adjustment.

10



expected real interest rates in the more distant future have a smaller effect on the

equilibrium real exchange rate than expected real interest rates in the near future.

This addresses the forward guidance exchange rate puzzle. We will explore this

more, and develop the intuition behind it, in the next section.

A couple of comments about the parameters α and D are in order as they are

key to the solution. Appendix B derives the following Lemma:

Lemma 1. The following properties describe the relationship between α, D and

the portfolio adjustment cost parameter ψ:

• As ψ rises from 0 to ∞, α rises monotonically from 0 to 1.

• As ψ rises from 0 to ∞, D rises monotonically from 1 + γσ2b to ∞.

Higher portfolio adjustment costs imply that the real exchange rate depends to

a greater extent on the value of the real exchange rate during the last period and

future expected real interest rates are discounted more heavily in the equilibrium

real exchange rate.

We will focus on the case where the real interest differential follows a simple

AR(1) process:

rDt = ρrDt−1 + εt (16)

In that case (13) gives us

qt = αqt−1 +
1

D − ρ
rDt (17)

We can also write this as a function of current and past real interest rate shocks:

qt =
1

D − ρ

∞∑
i=0

νiεt−i (18)

where

νi =


αi+1 − ρi+1

α− ρ
if α 6= ρ

(i+ 1)ρi if α = ρ

(19)
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2.3 Excess Return Predictability Coefficients

Consider the following regression:

ert+k = α + βkr
D
t + εert+k (20)

Several of the puzzles are related to the excess return predictability coefficients

βk. The coefficient βk tells us the effect of the current real interest differential

on the expected excess return k periods from now. The forward discount puzzle

focuses on k = 1, with one period usually being a month or a quarter. For the

predictability reversal puzzle and the Engel puzzle we are also interested in βk for

k > 1, which relates to the effect of the current interest differential on the excess

return further into the future.

In the model, the value of βk is equal to

βk =
cov(ert+k, r

D
t )

var(rDt )
(21)

Using the solution for the real exchange rate under the assumed AR(1) process for

the real interest differential, Appendix C shows that this can be written as14

βk =


λ1ρ

k−1 + λ2α
k−1 if α 6= ρ

ρk−1

D − ρ

(
D − 1

1 + ρ
− (1− ρ)(k − 1)

)
if α = ρ

(22)

where

λ1 =
1

D − ρ

(
D − ρα− 1

α− ρ

)
(23)

λ2 =
α− 1

D − ρ

[
ρ

α− ρ
+

1

1− αρ

]
(24)

Lemma 2 in Appendix F characterizes the signs of λ1 and λ2. Both are positive

for low values of ψ, but turn negative as ψ increases.

2.4 Numerical Illustrations

We provide numerical illustrations for each of the puzzles. We calibrate the pa-

rameters as follows. Parameters other than γ and ψ are calibrated to interest rates

14βk is a continuous function of α (and therefore of ψ), but λ1 and λ2 are not defined at α = ρ,

which is why the expression for βk at α = ρ is reported separately.
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and exchange rates of the remaining G-7 countries relative to the United States

(as in Engel, 2016). The real interest rate is computed as the monthly nominal

interest rate minus the expected monthly inflation rate (estimated from annual

inflation). We find ρ = 0.9415.15 The standard deviation σ of the monthly excess

return is computed as the average standard deviation of the monthly change in the

real exchange rate, which is 0.0271. We set the home bias parameter h equal to

0.66, which is the average for the countries during Q2, 2017.16 Details regarding

the data for this calibration can be found in Appendix A.

Regarding ψ and γ, we set them at respectively 15 and 50 in the benchmark and

will vary them over a large range to consider sensitivity.17 These benchmark values

are consistent with evidence regarding both the second-order difference equation

(11) for the exchange rate and the portfolio expression (8). Regarding (11), Adolf-

son et al. (2008) estimate a second-order exchange rate equation similar to (11).

Our parameters imply coefficients on qt and qt−1 of respectively -2.28 and 1.28.

The point estimates in Adolfson et al. (2008) imply that these are respectively

-2.57 and 1.57, with a 90 percent confidence interval of respectively [-3.50,-2.03]

and [1.03,2.51]. The values under the benchmark parameterization are close to

the point estimates in Adolfson et al. (2008) and consistent with the 90 percent

confidence interval based on their reported standard error.

The portfolio expression (8) relates the portfolio share at time t to the portfolio

share at t − 1 and the expected excess return, with coefficients of respectively

0.998 and 0.066 under the benchmark paramaterization. In the Online Appendix

we provide results when estimating (8). Unfortunately it is impossible to do so

for short term bonds as monthly data on the currency composition of short term

external US bond holdings is limited and so are data on carry trade activity (e.g.

Curcuru et al. (2010)).18 In Online Appendix C we estimate (8) for US external

15The average standard deviation of the relative real interest rate innovation is 0.000342. This

is only used in the impulse response of the real exchange rate to a one standard deviation interest

rate shock in Figure 1. It does not affect any of the other results.
16We combine BIS data on debt securities outstanding with external assets and liabilities for

debt securities from the IMF International Investment Position Statistics.
17A rate of risk aversion of 50 may seem very large, but analogous to the equity premium,

which requires a very high rate of risk aversion to explain, currency premia are very small for

low rates of risk aversion. One could alternatively introduce other features to introduce large

premia, such as disaster risk, but that would distract from the topic of the paper and the analytic

transparency.
18The Treasury publishes the market value of U.S. holdings of foreign debt securities by cur-
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equity portfolios in 44 countries, using monthly data from 1994 to 2017. To avoid

problems with a trend in external portfolio shares, we use US external equity

holdings in a foreign country as a share of US external equity holdings as the

portfolio share. The excess return is then the equity return in the country minus

the weighted average of the equity return in other foreign countries. We find a

point estimate on the lagged portfolio share that varies from 0.9871 to 0.9999,

dependent on specification (month/country fixed effects, month/country standard

error clustering) and a standard error of at most 0.0042. The point estimate on the

expected excess return varies from 0.058 to 0.065, with a standard error of about

0.01. These results are closely in line with the coefficients under our benchmark

parameterization. If instead we set ψ = 0 (no gradual portfolio adjustment),

the theory would imply a coefficient of zero on the lagged portfolio share and a

coefficient of 27.2 on the expected excess return.19

3 Explaining Five Puzzles

We now use the simple model introduced above to address the first five puzzles.

We do so by discussing a series of propositions and provide numerical illustra-

tions. When describing the intuition behind the results, we will always consider

an increase in the relative Foreign interest rate (rise in rDt ), which leads to an ap-

preciation of the Foreign currency (rise in qt). We will always refer to the Foreign

currency, so a depreciation refers to a Foreign depreciation or drop in qt.

3.1 Delayed Overshooting Puzzle

First define

t̄ =


ln(1− ρ)− ln(1− α)

ln(α)− ln(ρ)
if α 6= ρ

ρ

1− ρ
if α = ρ

(25)

rency of denomination in the publication “US Portfolio Holdings of Foreign Securities,” but these

data are annual and mix both short and long-term debt.
19It should also be pointed out that the welfare cost associated with gradual portfolio adjust-

ment under the benchmark parameterization is very small. When raising the interest differential

by two standard deviations, the welfare loss from the portfolio cost with ψ = 15 is 0.005 percent

of consumption during the month of the shock (and less during subsequent months).

14



Using equation (18), Appendix D proves the following proposition:

Proposition 1. Consider the impulse response of the real exchange rate to a pos-

itive shock to the relative Foreign interest rate rDt .

• if α < 1− ρ : the real exchange rate appreciates at the time of the shock and

subsequently gradually depreciates back to the steady state.

• if α > 1−ρ : there is delayed overshooting. The real exchange rate appreciates

at the time of the shock and keeps appreciating until time t > t̄ > 1. Then it

gradually depreciates back to the steady state.

Since Lemma 1 tells us that α rises from 0 to 1 as we raise the gradual portfolio

adjustment parameter ψ, Proposition 1 implies that for sufficiently large ψ, and

assuming ρ > 0, there is delayed overshooting of the type reported by Eichenbaum

and Evans (1995) and others. They show that after a monetary policy tightening,

the currency continues to appreciate for another 25-39 months before it starts to

depreciate. With less gradual adjustment, such that α < 1−ρ, there is no delayed

overshooting.

To understand the intuition, consider an increase in the Foreign interest rate.

There will be an immediate appreciation of the Foreign currency as investors shift

to Foreign bonds. Subsequent to the shock, there are two opposing forces at work.

On the one hand, the Foreign interest rate gradually declines again, which leads to

a shift away from Foreign bonds and a gradual depreciation. On the other hand, to

the extent that portfolios are slow to adjust, there will be a continued flow towards

Foreign bonds, which leads to a continued appreciation. When ψ is sufficiently

large, the second force dominates and there will be delayed overshooting.

Expression (25) indicates how long the real appreciation will last in the case

of delayed overshooting. Appendix D shows that the derivative of t̄ with respect

to α is positive. A larger gradual portfolio adjustment parameter ψ, which raises

α (Lemma 1), will then lead to a longer duration of the delayed overshooting. In

the extreme case where α approaches 1, t̄ approaches infinity.

Figure 1 provides a numerical illustration. The chart on the left shows the

impulse response of the real exchange rate under the benchmark parameterization.

The chart on the right shows the time to maximum overshooting for ψ varying from

0 to 20 and γ taking on the values 10, 50 and 100.
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Chart A of Figure 1 shows that the real exchange rate overshoots, reaching

a maximum after 35 months. This is consistent with the results in Eichenbaum

and Evans (1995). Chart B shows that except for very small values of ψ, the

model implies delayed overshooting. Consistent with Proposition 1, the time to

maximum impact rises significantly with ψ. It is also larger the lower the rate of

risk-aversion. Both of these effects are associated with the portfolio persistence.

A higher ψ and lower γ raise the persistence of the portfolio response. The more

gradual portfolio response leads to a more gradual appreciation, which increases

the time t̄ to maximum overshooting.

3.2 Forward Discount Puzzle

While UIP implies that the Fama coefficient β1 is zero, empirical evidence typically

finds a positive number. Proposition 2 characterizes the sign of β1 in the model:

Proposition 2. The Fama predictability coefficient β1 is positive, and larger when

there is gradual portfolio adjustment (ψ > 0).

The proof is given in Appendix E. Since β1 > 0, a positive excess return is

expected on the high interest rate currency, consistent with the forward discount
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puzzle. Moreover, Proposition 2 says that β1 is larger when we introduce a cost of

adjusting portfolios (ψ > 0). Even without this cost, there is some excess return

predictability in the model through a risk premium channel.20

Proposition 1 on delayed overshooting is a useful starting point to understand

the role of gradual portfolio adjustment in accounting for the forward discount

puzzle. When α > 1−ρ, so that there is delayed overshooting, the Foreign currency

is expected to appreciate for at least one more period after the initial appreciation.

The Foreign currency will then have a positive expected excess return both due

to the higher interest rate and the expected appreciation. Therefore the portfolio

adjustment parameter ψ, which causes a gradual portfolio shift to the Foreign

currency that leads to continued appreciation, increases the Fama predictability

coefficient β1.
21

Under the benchmark parameterization the excess return predictability coeffi-

cient β1 is equal to 3.26. Figure 2 shows how β1 varies with ψ and γ. It rises until

ψ is about 12 and then gradually declines. When ψ is low, portfolio persistence

is weak, leading to less delayed overshooting and less excess return predictability.

On the other hand, when ψ is very high, return sensitivity is weak. Agents then

respond very little to changes in expected returns, so that the real exchange rate

does not change much. This also weakens excess return predictability because

the strength of the appreciation after the initial shock is weak. Therefore the

predictability coefficient β1 is largest for an intermediate value of ψ.

Figure 2 also shows that the excess return predictability coefficient β1 is larger

when risk aversion γ is smaller. A smaller γ increases both portfolio persistence

and return sensitivity, both of which lead to a larger appreciation subsequent to

the initial shock that enhances predictability.

20Specifically, a higher Foreign real interest rate leads to a real appreciation of the Foreign

currency, which increases the relative value of the Foreign bond supply. To invest a larger

portfolio share in Foreign bonds, investors demand a positive expected excess return on the

Foreign bond.
21Even when α < 1− ρ, so that there is no delayed overshooting, gradual portfolio adjustment

leads to a higher Fama coefficient β1 because the rate of depreciation subsequent to the shock

is smaller due to gradual portfolio adjustment. The weaker subsequent depreciation implies a

higher expected excess return on the Foreign currency and therefore a larger Fama coefficient β1.
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Figure 2: Forward Discount Puzzle: Predictability Coefficient β1
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3.3 Predictability Reversal Puzzle

Define ψ̄ = ργσ2/(1−ρ). Excess return predictability at longer horizons, measured

by βk, is described in the following proposition:

Proposition 3. The following holds for βk:

• if ψ ≤ ψ̄: βk is positive for all k and drops monotonically to zero as k →∞

• if ψ > ψ̄: there is a k̄ > 1 such that βk is positive for k < k̄ and negative for

k ≥ k̄. It converges to zero as k →∞.

The proof is given in Appendix F. Proposition 3 implies that when the gradual

adjustment parameter is low, the Foreign currency continues to have positive ex-

pected excess returns in all future periods, although the predictability βk vanishes

to zero over time. But when the gradual adjustment parameter is sufficiently high

(ψ > ψ̄), there will be a predictability reversal. While initially, after the increase

in the Foreign interest rate, the Foreign currency is expected to have a positive ex-

pected excess return, after a certain period of time it is expected to have a negative

expected excess return. Bacchetta and van Wincoop (2010) first documented this

reversal in the sign of predictability for nominal interest rates and exchange rates.

They find that a high interest rate currency has a positive expected excess return

for about 5-10 quarters, after which it has a negative expected excess return. Engel

(2016) reports similar findings for real interest rates and exchange rates.
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The excess return on the Foreign currency is driven both by the higher Foreign

interest rate and the change in the value of the Foreign currency. Under delayed

overshooting the Foreign currency will at first appreciate and therefore have a

positive excess return. But after time t̄ it will start to depreciate, which contributes

to a negative excess return. If t̄ is large, by the time the Foreign currency starts to

depreciate, the interest differential will be small. The excess return is then mainly

driven by the Foreign currency depreciation and is therefore negative.22

Engel (2016) claims that models with gradual portfolio adjustment cannot ac-

count for the predictability reversal. To understand this, we first need to introduce

the concept of the UIP exchange rate. Taking the expectation of (4), integrating

forward and assuming long-run PPP (lims→∞Etqt+s = 0), we get an expression

analogous to that in Engel (2016)23:

qt = qIPt −
∞∑
i=1

Etert+i (26)

where

qIPt =
∞∑
i=0

Etr
D
t+i (27)

is the UIP exchange rate. It is the real exchange rate when expected future excess

returns are zero. When the sum of future expected excess returns is positive,

investors demand positive risk premia on the Foreign currency and we see that

qt < qIPt . In other words, the Foreign currency is weak.

Engel conjectures that

qt − qIPt = δ
(
qt−1 − qIPt−1

)
+ µεt (28)

with δ between 0 and 1, µ negative and εt the interest rate shock. There are

two aspects to this conjectured AR(1) process. The first is that qt < qIPt at the

time of the shock as µ < 0. This conjecture in indeed correct. Abstracting from

shocks prior to time t, the immediate response to a positive shock εt at time t is

qt = εt/(D − ρ) < εt/(1 − ρ) = qIPt . The real exchange rate is less than the UIP

exchange rate because the gradual portfolio adjustment implies an initial weak

portfolio response to the interest rate shock.

22Delayed overshooting is not a necessary condition for predictability reversal. Dependent on

parameters, predictability reversal can also happen when α+ ρ < 1.
23See also Dahlquist and Penasse (2017).
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The problem with the conjecture (28) is the assumed AR(1) process for qt−qIPt .

It may seem logical at first. It implies that after the real exchange rate is initially

weaker than the UIP exchange rate, it gradually catches up to the UIP exchange

rate due to the gradual portfolio adjustment. If it were true, it would always remain

the case that qt < qIPt , although the gap would decline over time. (26) then implies

that the sum of expected excess future returns on the Foreign currency will remain

positive indefinitely (although declining). This is inconsistent with predictability

reversal, where expected excess returns on the Foreign currency will turn negative

beyond a certain horizon.

One way to see that (28) is not correct is to inspect the response of qt and qIPt
to a positive relative interest rate shock under the benchmark parameterization.

This is shown in Figure 3A. While initially qt < qIPt as a result of the weak initial

portfolio adjustment, not long after that qt > qIPt . After two years the gap has

grown very significantly with the real exchange rate much stronger than the UIP

real exchange rate. The UIP exchange rate gradually declines over time due to

the declining interest rate differential, while the actual real exchange rate keeps

appreciating as a result of delayed overshooting. Once qt > qIPt in Figure 3A, the

sum of expected excess returns on the Foreign currency is negative. As can be seen,

this will remain the case from thereon, which is consistent with the predictability

reversal.24

We can also see algebraically that qt − qIPt does not follow an AR(1) process.

From (11) the real exchange rate is driven by an AR(2) process. The same is the

case for qt − qIPt , which is described by the process

Et
(
qt+1 − qIPt+1

)
− θ

(
qt − qIPt

)
+ bψ

(
qt−1 − qIPt−1

)
+

1− θ
1− ρ

rDt +
bψ

1− ρ
rDt−1 = 0 (29)

Figure 3B reports βk for k from 1 to 180 for the benchmark case. The reversal

of the predictability coefficient from positive to negative occurs after 30 months.

This is not too far from the reversal after 5-10 quarters reported in Bacchetta and

24It would be of interest to check empirically if a positive shock to rDt initially leads to qt <

qIPt and eventually qt > qIPt . The results will generally depend on the VAR specification and

identification and will be subject to imprecise parameter estimates. A casual inspection of Figure

1 in Eichenbaum and Evans (1995) suggests that it consistent with their findings. For most

currencies the initial real appreciation is very small. After about a year the interest differential

is insignificantly different from zero, so that qIPt is zero, but the real exchange rate has continued

to appreciate, so that qt > qIPt .
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van Wincoop (2010). It is also consistent with results reported in Engel (2016).25

Figure 3C considers the impact of ψ and γ on the time k where βk reverses sign

from positive to negative. This rises with a higher ψ and lower γ. Both enhance

the portfolio persistence, which leads to a later date t̄ of maximum overshooting.

A longer period of appreciation after the shock delays the predictability reversal.

Figure 3: Sign Reversal of Predictability Coefficient βk
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3.4 Engel Puzzle

The Engel puzzle says that high interest rate currencies tend to be strong relative

to the UIP exchange rate. More formally:

cov(qt − qIPt , rDt ) > 0 (30)

Engel (2016) provides evidence that this condition holds in the data for 6 curren-

cies. We will refer to it as the Engel condition. Using (26), we can also write it

25Engel (2016) reports results of regressions of both the ex-post and ex-ante excess return on

the interest differential. The ex-ante excess return relies on a VAR to compute expected returns

and delivers a somewhat shorter time to reversal of about 12 months on average.
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as
∞∑
k=1

βk < 0 (31)

which is an equivalence used by Engel (2016) as well. Predictability reversal is

a necessary condition for this to hold, so that ψ > ψ̄ is a necessary, but not a

sufficient condition. Negative expected excess returns on the Foreign currency for

k ≥ k̄ must more than offset the positive expected excess returns when k < k̄.

Define (ψE1 , ψ
E
2 ) as positive values of ψ, with ψE1 < ψE2 , where cov(qt−qIPt , rDt ) =

0. Appendix G describes these values and proves the following proposition:

Proposition 4. Necessary and sufficient conditions for the Engel condition to hold

are

1. ψE1 < ψ < ψE2 .

2. γσ2b < 1−ρ
ρ

(
1−
√

1− ρ
)2

.

Proposition 4 imposes several restrictions on parameters for the Engel condition

to be satisfied. While the conditions may seem restrictive, we will see that they

will hold under a broad range of realistic parameters.

Before discussing the intuition for these parameter constraints, it is useful to

first explain why the Engel condition generally holds at all as Engel (2016) argues

that it cannot hold under gradual portfolio adjustment. This is related to the

discussion in the previous subsection. Initially, at the time of the shock, qt < qIPt .

So the high interest rate currency is weak relative to the UIP exchange rate. At

first this seems inconsistent with cov(qt − qIPt , rDt ) > 0, which says that the high

interest rate currency tends to be strong relative to the UIP exchange rate. But

the Engel condition refers to an unconditional moment, not to the strength of the

currency immediately after a positive interest rate shock. We can see from Figure

3A that not long after the shock, qt − qIPt > 0, while rDt remains positive as well.

This contributes to a positive unconditional correlation that can offset the initial

opposite signs of qt − qIPt and rDt right after the shock. Engel (2016) conjectured

that qt − qIPt follows the AR(1) process in (28), in which case qt − qIPt would have

remained negative in all periods after the shock, which would be inconsistent with

the positive unconditional covariance between rDt and qt−qIPt . But this conjecture

was not correct and the Engel condition is satisfied for a broad range of parameters

in our model.
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Proposition 4 tells us that the Engel condition is satisfied for intermediate

values of ψ, for risk aversion γ that is not too large and for interest rate persistence

ρ that is not too close to 0 or 1. The role of ψ and γ can again be related to portfolio

persistence and return sensitivity. A very low value of ψ implies weak portfolio

persistence. The lack of appreciation after the initial shock (or weak appreciation)

implies that qt − qIPt will remain negative or not become very positive. On the

other hand, a very high ψ implies that return sensitivity is weak. The portfolio

will respond very little to the higher interest rate, so that qt − qIPt again remains

negative. For intermediate values of ψ we see a significant appreciation after the

shock, leading to a sustained positive qt − qIPt for high interest rate currencies.

When γ is very large, portfolio persistence and return sensitivity are both weak,

so that qt − qIPt either remains negative or not be very positive and the Engel

condition does not hold.

Finally consider the persistence ρ of the real interest rate. If the interest differ-

ential is very persistent, the Foreign currency continues to experience high interest

rates for a very long time, which by itself causes positive excess returns for a long

time. This is inconsistent with the Engel condition. On the other hand, when ρ is

very small, the real exchange rate does not respond very much. We do not see a

sustained appreciation that leads to a large positive qt − qIPt after the shock.

Figure 4 shows that the Engel result holds quite generally in the model as long

as ψ is not too close to zero. Consistent with Proposition 4, the Engel result is

stronger the lower the rate of risk-aversion γ and peaks for an intermediate value

of ψ. For the benchmark parameterization the Engel coefficient
∑∞

k=1 βk is equal

to -25. This is similar to the estimate in Engel (2016), who finds a -31 coefficient

for the G6 average exchange rate against the dollar and an average of -21 for the

individual G6 currencies against the dollar.26

3.5 Forward Guidance Exchange Rate Puzzle

The following proposition addresses the forward guidance puzzle posed by Gaĺı

(2019):

26Engel (2016) also reports a regression of the level of the real exchange rate qt on rDt . The

model implies a coefficient of 42 for the benchmark parameterization, which represents the fact

that a high interest rate currency tends to be strong. Engel (2016) reports a coefficient of 43.7

when using the G6 average exchange rate against the dollar.
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Figure 4: Engel Puzzle
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Proposition 5. The current real exchange rate qt discounts expected interest dif-

ferentials in the distant future more than in the near future. The higher the gradual

portfolio adjustment parameter ψ, the more future expected interest differentials are

discounted.

Proposition 5 follows directly from equation (13) and Lemma 1. Future ex-

pected interest differentials are discounted at the rate D, which is larger than 1

and rises with ψ.

Under UIP the real exchange rate is given by (27), where there is no discounting.

Even when ψ = 0, the discount rate is larger than 1 when we allow for exchange

rate risk, which leads to a deviation from UIP. Specifically, we have D = 1 + γσ2b.

But as we shall see, the discount rate D is very close to 1 when ψ = 0.

To see the role of ψ, assume that we are currently at time t and consider

an expected one-period increase in the interest rate differential at t + k. The

only reason the real exchange rate appreciates prior to t + k is an expectation of

subsequent appreciation. The response of qt+k−1 to a given higher qt+k is reduced

as a result of a positive ψ as portfolios are less sensitive to expected returns. For

the same reason the response of qt+k−2 to a given expected higher qt+k−1 is reduced

as a result of the positive ψ. When going back all the way to time t, the response

of qt can be very small when k is large. There are multiple rounds of discounting

as each period the real exchange rate response to an expected higher real exchange
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rate next period is reduced by the positive portfolio adjustment parameter ψ.27

The monthly discount rate D under our benchmark parameterization is 1.29.

Future expected interest rates are therefore heavily discounted. This is consistent

with results reported by Gaĺı (2019), which imply that expected interest rates more

than two years into the future have an effect on the current real exchange rate that

is very small compared to the impact of expected interest rates over the next two

years.28 For comparison, when ψ = 0 (holding all other parameters the same), the

discount rate is D = 1.0031. In that case the expected interest rate two years into

the future has an effect on the current exchange rate that is only 7 percent less

than the effect of the current interest rate.

4 Lack of Predictability with Long Term Bonds

LSV show that excess return predictability vanishes when considering monthly

returns of long-term bonds. In order to address this last puzzle we extend the

model by introducing long-term bonds. In that case we need to solve not only

for the equilibrium real exchange rate, but also long-term bond prices in both

countries. In this extension an analytical solution is no longer feasible. We describe

the extended model, leaving all algebraic details to a separate Online Appendix.

4.1 Model description

There are now four assets: one-period bonds and long-term bonds in both coun-

tries. Agents in the Home country maximize

Et
C1−γ
t+1

1− γ
− 1

4
ψ

4∑
i=1

(zit − zi,t−1)2 (32)

27While this broadly captures the intuition, the actual response of the real exchange rate is

somewhat complicated by the fact that the real exchange rate not only responds to the expected

real exchange rate next period, but also to the lagged real exchange rate.
28Gaĺı (2019) regresses qt on

∑23
i=0Etr

D
t+i and

∑∞
i=24Etr

D
t+i. We cannot do so in our model

as both are proportional to rDt and therefore collinear. They would no longer be collinear if we

adopted an AR(2) process. More generally, the precise coefficients that we would obtain for a

Gali type regression depend on what we assume about the information about future expected

interest differentials, which is auxiliary to the gradual portfolio adjustment aspect of the model.
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z1t is the fraction of wealth invested in Foreign short term bonds. z2t is the fraction

invested in Foreign long term bonds and z3t is the fraction invested in Home long

term bonds. The remaining fraction z4t = 1 − z1t − z2t − z3t is invested in Home

short term bonds. The adjustment cost term in (32) is the same as in (1) when

we set the long term bond portfolio shares equal to 0. In that case z1t = zt and

z4t = 1− zt.
Let RL

t+1 be the real return on Home long-term bonds from the perspective

of Home agents and RL,∗
t+1 the real return on Foreign long-term bonds from the

perspective of Foreign agents. The gross real interest rates on one-period bonds

will continue to be denoted as Rt and R∗t . Consumption of Home agents is equal

to the portfolio return:

Ct+1 = Rt + z1t

(
Qt+1

Qt

R∗t e
−τ −Rt

)
+ z2t

(
Qt+1

Qt

RL,∗
t+1e

−τL −Rt

)
+

z3t
(
RL
t+1 −Rt

)
+ Tt+1 (33)

As before, we introduce costs of investing abroad: it is τ for short-term bonds and

τL for long-term bonds. The aggregate of these costs is reimbursed through Tt+1.

Long-term bonds in both countries earn real coupons of κ, (1− δ)κ, (1− δ)2κ,

and so on. A smaller δ implies a longer maturity of debt. The real returns on

Home and Foreign long-term bonds, from the perspective of respectively Home

and Foreign agents, are then

RL
t+1 =

(1− δ)PL
t+1 + κ

PL
t

(34)

RL,∗
t+1 =

(1− δ)PL,∗
t+1 + κ

PL,∗
t

(35)

Here PL
t and PL,∗

t are the prices of newly issued bonds at time t, measured in real

terms from the perspective of Home and Foreign agents.

As before, denote logs with lower case letters. Log excess returns are defined as

log real asset returns from the perspective of Home agents minus the real interest

rate rt of the Home country. The vector of excess returns on the first three assets,

not including the cost of investing abroad, is

ert+1 =

 er1,t+1

er2,t+1

er3,t+1

 =

 qt+1 − qt + r∗t − rt
qt+1 − qt + rL,∗t+1 − rt

rLt+1 − rt

 (36)
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Define Σ as the variance of ert+1. Using log normality of consumption and

returns, the Online Appendix shows that the first-order conditions of Home agents

can be written as

Etert+1 −

 τ

τL

0

+ 0.5diag(Σ)− γΣzt =
ψ

2R
(ẑt − ẑt−1) (37)

where zt = (z1t, z2t, z3t)
′ and ẑt subtracts z4t from each element of zt. R is the

steady state gross real interest rate. The analogous first-order conditions for For-

eign agents are

Etert+1 +

 τ

τ

τ − τL

− (1− γ)Σ1 + 0.5diag(Σ)− γΣz∗t =
ψ

2R
(ẑ∗t − ẑ∗t−1) (38)

where z∗t = (z∗1t, z
∗
2t, z

∗
3t)
′ is the vector of portfolio shares of Foreign agents and ẑ∗t

subtracts z∗4t from each element of z∗t . Σ1 is the first column of Σ.

The asset market equilibrium conditions can be written

z1t +Qtz
∗
1t = Qtb

S (39)

z2t +Qtz
∗
2t = QtP

L,∗
t bt (40)

z3t +Qtz
∗
3t = PL

t bt (41)

z4t +Qtz
∗
4t = bS (42)

Here bS is the real supply of short-term bonds in terms of the purchasing power

of each country and bt is the quantity of long-term bonds. Define bL = P̄Lb̄ as the

steady state real value (in local purchasing power) of long-term bonds. We assume

that bS + bL = 1 and in deviation from steady state

bt = −pL,At (43)

where pL,At = 0.5(pLt + pL,∗t ) is the average log long-term bond price. This assures

that when we add up all (log-linearized) market clearing conditions we get an

identity, which must be the case due to Walras’ Law (the last market clearing

condition is redundant). Equation (43) is not important in what follows as excess

returns depend on relative log bond prices, not average log bond prices.29

29The reason we assume (43) is a bit technical. One can think of the bonds as issued by
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Assuming (43), linearizing the first three market clearing conditions, we have

zAt = 0.5

 bS

bL

bL

+ 0.5

 bS

bL

0

 qt − 0.5z̄∗qt + 0.25bLpL,Dt

 0

−1

1

 (44)

where zAt is the average of zt and z∗t, z̄∗ is the steady state of z∗t and pL,Dt = pLt −p
L,∗
t

is the relative log long term bond price.

By symmetry z̄∗1 + z̄∗4 = bS and z̄∗2 + z̄∗3 = bL. We can choose τ and τL to set z̄∗4
and z̄∗3 at any value. We will assume that these values are such that they generate

the same home bias h for short and long-term bonds. This happens when

z̄∗4 = 0.5(1− h)bS (45)

z̄∗3 = 0.5(1− h)bL (46)

We then also have z̄∗2 = 0.5(1 + h)bL and z̄∗1 = 0.5(1 + h)bS.

After substituting the market clearing conditions (44) into the average of the

Home and Foreign first-order conditions (37)-(38), we obtain a dynamic system of

three equations in qt, p
L,D
t and pL,At in deviation from steady states. We assume

that both Home and Foreign interest rates rt and r∗t follow an AR(1) processes

with AR coefficients ρ. This is therefore also the case for the average interest rate

rAt = 0.5(rt + r∗t ) and the interest differential rDt = r∗t − rt. The Online Appendix

shows that one of the three equations of the dynamic system can be used to solve

for the average long term bond price:

pL,At = − 1

1− λρ
rAt (47)

with λ = (1− δ)/R. A higher average world real interest rate reduces the average

long term bond price.

The two remaining equations of the dynamic system can be written as

A1Et

(
qt+1

pL,Dt+1

)
+ A2

(
qt

pL,Dt

)
+ A3

(
qt−1

pL,Dt−1

)
+ A4r

D
t = 0 (48)

Home and Foreign governments. Since there is no investment in the model, it must be the case

that world saving (private plus government) is zero in equilibrium. Since there is no endogenous

mechanism in the model to equate world saving to zero, we assume that world government saving

adjusts to make world saving equal to zero. This happens when equation (43) is satisfied, which

implies that the average world real bond supply remains constant.
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The matrices A1 through A4 are described in the Online Appendix. They have

coefficients that depend on model parameters as well as the variance Σ of excess

returns. This dynamic system can be used to solve for (qt, p
L,D
t )′:(

qt

pL,Dt

)
=
∞∑
k=0

Mk
1M2r

D
t−k (49)

where M1 and M2 are two-by-two matrices and M0
1 is the identity matrix.

4.2 Numerical Illustration

For numerical analysis, we need to make assumptions about the parameters h, γ, ψ,

ρ, δ, R and the variance Σ of excess returns. As in the benchmark parameterization

of Section 3, we set h = 0.66, ρ = 0.9415, γ = 50 and ψ = 15. We set R = 1.0033

for monthly data, corresponding to a 4 percent anual interest rate. LSV consider

the returns on 10-year coupon bonds. A 10-year bond with face value of 1 and

coupons of R − 1 = 0.0033 has a Macauley duration of 99.3 months or 8.3 years.

We set δ = 0.0071, which yields a Macauley duration of 99.3 months. We use data

on real exchange rates and long term bond returns to compute Σ (see Appendix

A for data details).30 Using the symmetry of the model we can write

Σ =

 σ2
1 σ2

1 − σ13 σ13

σ2
1 − σ13 σ2

1 + σ2
3 − 2σ13 σ23

σ13 σ23 σ2
3

 (50)

where σ2
i = var(eri,t+1) and σij = cov(eri,t+1, erj,t+1). We therefore compute four

moments: the variance of the real exchange rate σ2
1, the covariance between the

real exchange rate and Home real long-term bond return σ13, the variance of real

long-term bond returns σ2
3 and the covariance between the Home and Foreign real

long-term bond returns σ23. We use the same standard deviation 0.0271 of the real

exchange rate as in the benchmark parameterization of Section 3. For the other

three moments we find σ3 = 0.0206, σ13 = 0.0000538 and σ23 = 0.000267.

Using this parameterization, we can regress excess returns on the interest dif-

ferential r∗t − rt as in LSV. Table 1 compares the results of three regressions from

30As mentioned at the start of Section 2, while we focus on interest rate shocks, asset returns

are also driven by other shocks that we do not explicitly model. These other shocks only affect

the response to interest rate shocks to the extent that they affect Σ.
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LSV based on the data to the theoretical regression coefficients from our model.

The first column shows the predictability coefficient for the one-month excess FX

return er1,t+1 = qt+1−qt+r∗t −rt. The coefficient of 1.97 in the model is very close

to that in LSV based on the data. The second column shows the regression of the

one-month excess return on the Foreign long-term bond minus the Home long-term

bond er2,t+1 − er3,t+1 = qt+1 − qt + rL,∗t+1 − rLt . The coefficient of 0.34 is slightly

lower than LSV. But their coefficient of 0.65 is statistically insignificant. The last

column of Table 1 considers the regression coefficient for the monthly excess return

of long-term bonds over short-term bonds in the Foreign country minus that in

the Home country, (rL,∗t+1 − r∗t )− (rLt+1 − rt). The coefficient is -1.64, again similar

in magnitude to LSV.31 The model with gradual portfolio adjustment therefore

delivers results consistent with the puzzle uncovered by LSV.

Table 1: Predictability with Long Term Bonds

Regressions on rDt

Currency Bond Bond local currency
excess return excess return return diff.

qt+1 − qt + r∗t − rt qt+1 − qt + rL,∗t+1 − rLt (rL,∗t+1 − r∗t )− (rLt+1 − rt)
Benchmark
model 1.97 0.34 -1.64

LSV panel
estimate 1.98 0.65 -1.34

Note : The table shows the slope coefficient of a regression of the dependent variable on the

interest differential rD. The benchmark model is described in the text and the LSV panel

estimates are from Lustig, Stathopoulos and Verdelhan (2018), Table 1.

Figures 5 and 6 show some impulse response functions that help shed light on

these results. They show the response to a one standard deviation increase in rDt .

We observe the same delayed overshooting for the real exchange rate that we saw

in Section 3. What is new is the response of the relative long-term bond price,

shown in chart B of Figure 5. The relative Home bond price pL,Dt rises in response

to the shock and then continues to rise for 32 months before it starts to fall. This

delayed overshooting for the relative bond price is critical to understanding the

31These three coefficients are consistent with each other as we can write qt+1−qt +rL,∗
t+1−rLt =

(qt+1 − qt + r∗t − rt) +
(

[rL,∗
t+1 − r∗t ]− [rLt+1 − rt]

)
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results reported above. The higher Foreign interest rates causes especially Foreign

investors to reallocate their portfolio from Foreign long-term bonds to Foreign

short-term bonds. This lowers the price of Foreign long-term bonds, explaining the

increase in the relative price pL,Dt of Home long-term bonds in Figure 5B. However,

the process of reallocating from Foreign long-term bonds to Foreign short-term

bonds continues over time as a result of gradual portfolio adjustment, leading to a

continued decline in the relative price of Foreign bonds. This generates a positive

Home minus Foreign excess return of long-term bonds over short-term bonds, as

can be seen also in Figure 6B. Even though the Foreign currency is appreciating

over time, this is offset by the negative Foreign local excess return of long-term

bonds over short-term bonds. The latter dominates from month 5 to 50, as can be

seen from Figure 6A.

Figure 5: Impulse Response Real Exchange Rate and Relative Bond

Price
                 Figure 5 Impulse Response Real Exchange Rate and Relative Bond Price 
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A couple of other aspects of this result are worth emphasizing. First, the

real exchange rate overshoots earlier than in the benchmark model of Section 3.

This is because the continued negative long-term Foreign bond return weakens the

shift towards Foreign assets that is caused by the higher Foreign short-term rate.

This also explains the somewhat lower one-month FX excess return predictability
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Figure 6: Impulse Response Excess Returns
                 Figure 6 Impulse Response Excess Returns 
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coefficient in the model with long-term bonds (1.98 versus 3.26). Second, the Engel

coefficient in this parameterization is -34, which again closely matches the results

reported in Engel (2016).

5 Conclusion

We have explored the implications of delayed portfolio adjustment for exchange

rate dynamics. We have shown that when adjustment is sufficiently gradual it can

solve the forward premium puzzle, as suggested by Froot and Thaler (1990). More-

over, it can explain five other puzzles related to the relationship between exchange

rates and interest rates. Not surprisingly, gradual adjustment is consistent with

delayed overshooting. More strikingly, and contrary to the claim of Engel (2016),

it can explain excess return predictability reversal and the fact that high interest

rate currencies are stronger than implied by UIP. Gradual portfolio adjustment can

also explain why there is no forward premium puzzle for long-term bond returns,

as documented by Lustig et al. (2018). Finally, it implies that interest rates in the

far future have a smaller impact on the current exchange rate than interest rates

in a near future, thereby giving an explanation to the forward guidance exchange

rate puzzle raised by Gaĺı (2019).
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The model is stylized in order to derive basic insights and analytical results.

Gradual adjustment has been modeled with an adjustment cost. Our conjecture

is that using more complex alternative modeling approaches, such as a constant

probability of portfolio adjustment, would yield similar results. The analysis has

focused on short-term excess returns. An interesting extension would be to con-

sider returns over longer horizons. This would allow an analysis of longer term

relationships (Chinn and Meredith, 2004), as well as the link between the yield

curve and exchange rates.
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Appendix

A Data Description

To calibrate the model, we use monthly data for G7 countries over the interval

December 1992 to December 2017 (the interval for which all data is available

for all countries). Nominal exchange rates are end-of-period from FRED. Prices

come from OECD CPI series. Nominal interest rates are end-of-period one-month

Eurorates from Datastream. Long-term bond returns come from Benchmark 10Y

Datastream Government Total Return Index. The monthly return is computed as

ln(TRI it/TRI
i
t−1) where TRI it is the total return index for country i.

To compute real returns, we compute monthly inflation expectations using a

regression of monthly inflation rate on lagged annual inflation. We compute short-

term and long-term real return differentials and log real exchange rates for the six

countries with respect to the US. We compute the moments of interest for each

country pair and take the simple average of these moments.

B Proof of Lemma 1

It is immediate from the definitions of α and D that they are respectively equal

to 0 and 1 + γσ2b when ψ = 0. To show that they both monotonically rise with

ψ, we take their derivatives:

∂α

∂ψ
=

0.5b√
θ2 − 4ψb

(√
θ2 − 4ψb− (θ − 2)

)
(B.1)

∂D

∂ψ
=

0.5b√
θ2 − 4ψb

(√
θ2 − 4ψb+ (θ − 2)

)
(B.2)

It is easy to see that
√
θ2 − 4ψb is larger than both θ − 2 and 2 − θ. This is

automatic when these are negative. When they are positive, it follows because

θ2−4ψb > (θ−2)2. The latter can be written as −ψb > −θ+1, which holds when

substituting θ = 1 + ψb+ γσ2b.

Next consider the limit of ψ →∞. We can write

lim
ψ→∞

α = 0.5 lim
ψ→∞

1−
√

1− 4ψb
θ2

1/θ
(B.3)
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Since both the numerator and denominator approach 0 when ψ →∞, we can use

L′Hopital′s rule:

lim
ψ→∞

α = −0.5 lim
ψ→∞

0.5(1/θ2)(1− 4ψb
θ2

)−0.5(−4b+ 8ψb2/θ)

−b/θ2
= 1 (B.4)

It is immediate that D →∞ as θ →∞ and D/θ → 1 when ψ →∞.

C Excess Return Predictability Coefficients

We will now derive the excess return predictability coefficients

βk =
cov(ert+k, r

D
t )

var(rDt )
(C.1)

From qt = αqt−1 + 1
D−ρr

D
t , we have

qt =
1

D − ρ
(
rDt + αrDt−1 + α2rDt−2 + ...

)
(C.2)

Therefore

ert+k = qt+k − qt+k−1 + rDt+k−1 = (C.3)

1

D − ρ
rDt+k +

1

D − ρ
(α− 1)

(
rDt+k−1 + αrDt+k−2 + α2rDt+k−2 + ...

)
+ rDt+k−1

Then

cov(qt+k − qt+k−1 + rDt+k−1, r
D
t ) =

1

D − ρ
ρkvar(rDt ) + ρk−1var(rDt ) +

1

D − ρ
(α− 1)var(rDt )

(
ρk−1 + αρk−2 + ...+ αk−2ρ+

αk−1

1− αρ

)
(C.4)

It follows that

βk =
1

D − ρ
ρk + ρk−1 +

1

D − ρ
(α− 1)

(
ρk−1 + αρk−2 + ...+ αk−2ρ+

αk−1

1− αρ

)
(C.5)

Consider the last term, but not including the ratio at the end of the large bracketed

term. We can rewrite this as

α− 1

D − ρ
αk−1

(( ρ
α

)k−1
+ ...+

( ρ
α

))
(C.6)
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When α 6= ρ, we can write it as

α− 1

D − ρ
αk−1

(
ρ
α

)
−
(
ρ
α

)k
1−

(
ρ
α

) (C.7)

which can be written as

α− 1

D − ρ
ρ

α− ρ
αk−1 − α− 1

D − ρ
1

α− ρ
ρk (C.8)

Adding to this the remaining terms of (C.5), we obtain the expression (22) for βk

in the text when α 6= ρ. When α = ρ, (C.6) is equal to

α− 1

D − ρ
(k − 1)αk−1 (C.9)

Adding to this the remaining terms of (C.5), we obtain the expression (22) for βk

when α = ρ.

D Proof of Proposition 1

Equation (18) shows the impulse response to an interest rate shock. First assume

α 6= ρ. If the interest rate shock starts at time t = 0, and we normalize the shock

to D − ρ > 0 without loss of generality, it implies that in response to this shock

qt − qt−1 =
(1− ρ)ρt − (1− α)αt

α− ρ
(D.1)

This implies that q1 − q0 = α + ρ− 1. More generally, qt < qt−1 when

t > t̄ =
ln(1− ρ)− ln(1− α)

ln(α)− ln(ρ)
(D.2)

while qt > qt−1 when t < t̄. Below we show that ∂t̄/∂α > 0. Since t̄ = 1 when

α = 1− ρ, it follows that t̄ < 1 when α + ρ < 1. The condition (D.2) is therefore

satisfied for all t ≥ 1, so that qt < qt−1 for all t ≥ 1. This proves the first part of

Proposition 1. When α + ρ > 1, ∂t̄/∂α > 0 implies that t̄ > 1. Therefore the real

exchange rate continues to appreciate for at least one additional period after the

shock (t = 1), and will start to depreciate once t > t̄ > 1. Finally, when α = ρ,

we have qt − qt−1 = ρt−1(ρ − (1 − ρ)t) and the same results as those above apply

with t̄ = ρ/(1 − ρ). In this case α + ρ < 1 corresponds to ρ < 0.5, where t̄ < 1,

and α + ρ > 1 implies ρ > 0.5, so that t̄ > 1.
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It remains to show that ∂t̄/∂α > 0 when α 6= ρ. We have

∂t̄

∂α
=

1

α(1− α)

α(lnα− lnρ) + (1− α)(ln(1− α)− ln(1− ρ))

[ln(α/ρ)]2
(D.3)

The sign is determined by the numerator in the large fraction. Note that it is

positive for α = 0 and α = 1. The derivative of the numerator with respect to α

is ln(α/ρ)− ln(1−α)/(1− ρ), which is positive when α > ρ, zero when α = ρ and

negative when α < ρ. The numerator of the large expression in (D.3) is therefore

smallest when α = ρ, where it is zero. It is therefore positive for all α 6= ρ.

E Proof of Proposition 2

We have

β1 = λ1 +λ2 =
1

D − ρ

(
D − 1− α

1− αρ

)
=

1

D − ρ
1

1− αρ
(D − αDρ− 1 + α) (E.1)

Using that αD = ψb and α +D = θ, we have

β1 =
1

D − ρ
1

1− αρ
(θ − 1− ρψb) =

1

D − ρ
1

1− αρ
(
(1− ρ)ψ + γσ2

)
b > 0 (E.2)

Next consider the second part of Proposition 2. When ψ = 0, we have α = 0,

θ = 1 + γσ2b and D = θ. The second part of Proposition 2 then holds when

1

D − ρ
1

1− αρ
(
γσ2 + (1− ρ)ψ

)
>

1

1 + γσ2b− ρ
γσ2 (E.3)

This implies

(D − ρ)(1− αρ)γσ2 < (γσ2 + (1− ρ)ψ)(1 + γσ2b− ρ) (E.4)

Collecting terms multiplying γσ2 and using Dα = ψb, we have

(D − ψbρ+ αρ2 − 1− γσ2b− (1− ρ)ψb)γσ2 < (1− ρ)2ψ (E.5)

Using D = θ − α = 1 + ψb+ γσ2b− α, this becomes

−α(1− ρ2)γσ2 < (1− ρ)2ψ (E.6)

which clearly holds.
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F Proof of Proposition 3

It first useful to characterize the signs of λ1 and λ2. The value of ψ where λ1 = 0

is ψ̄ defined in the text. Moreover, the value of ψ where α = ρ, is ψ̄+ ρ/b. We can

write the following Lemma:

Lemma 2. There are three regions that determine the sign of λ1 and λ2:

• 0 < ψ < ψ̄ : λ1 > 0 and λ2 > 0

• ψ̄1 < ψ < ψ̄ + ρ/b : λ1 < 0 and λ2 > 0

• ψ > ψ̄ + ρ/b : λ1 > 0 and λ2 < 0

When ψ = 0, λ1 > 0 and λ2 = 0. When ψ = ψ̄, λ1 = 0 and λ2 > 0.

Proof. First consider λ1. Since D − ρ > 0, the sign is determined by

D − ρα− 1

α− ρ
(F.1)

ψ̄ is defined such that this term is equal to 0. To see this, setting (F.1) equal to

zero and substituting the expressions (14) and (15) for α and D, we have

θ +
√
θ2 − 4ψb

2
= ρ

θ −
√
θ2 − 4ψb− 2

θ −
√
θ2 − 4ψb− 2ρ

(F.2)

Cross multiplying delivers

ψb = ρθ − ρ (F.3)

Substituting θ = 1 + ψb+ γσ2b gives ψ = (ρ/(1− ρ))γσ2 = ψ̄.

Now go back to (F.1). It is immediate that this term is positive when α > ρ, so

that λ1 > 0. This happens when ψ > ψ̄+ρ/b. So we need to consider ψ < ψ̄+ρ/b,

so that α < ρ. Consider D and ρ(α − 1)/(α − ρ) as functions of ψ. It follows

from Lemma 1 that both rise monotonically with ψ. At ψ = 0, so that α = 0,

D > ρ(α − 1)/(α − ρ). But ρ(α − 1)/(α − ρ) rises to infinity as α approaches ρ

from below, which happens when ψ approaches ψ̄+ρ/b from below. Therefore the

schedule for ρ(α−1)/(α−ρ) must cross that for D between ψ = 0 and ψ = ψ̄+ρ/b.

This happens at ψ = ψ̄. It follows that λ1 > 0 when ψ < ψ̄, λ1 = 0 when ψ = ψ̄

and λ1 < 0 when ψ̄ < ψ < ψ̄ + ρ/b.
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Next consider λ2. It is immediate from (24) that λ2 < 0 when α > ρ, which

happens when ψ > ψ̄ + ρ/b. So consider ψ < ψ̄ + ρ/b, so that α < ρ. (24) then

implies that λ2 > 0 when 1/(1 − αρ) < ρ/(ρ − α). Cross multiplying, this gives

α > αρ2. This holds as long as α > 0 or ψ > 0. When ψ = 0, α = 0 and

λ2 = 0.

The first part of Proposition 3 follows immediately from Lemma 2. When

ψ = 0, we have βk = λ1ρ
k−1, which is positive (λ1 > 0) and monotonically declines

to zero as k rises. When 0 < ψ < ψ̄, Lemma 2 says that both λ1 and λ2 are

positive. Since 0 < α < 1, it follows that βk = λ1ρ
k−1 + λ2α

k−1 is positive and

monotonically declines to zero with an increase in k. Finally, when ψ = ψ̄, Lemma

2 implies that βk = λ2α
k−1, with λ2 > 0 and 0 < α < 1. It again follows that βk

is positive and declines monotonically to zero as k rises.

Next consider the second part of Proposition 3, where ψ > ψ̄. It is immediate

from (22) that limk→∞ βk = 0. When ψ 6= ψ̄ + ρ/b, so that α 6= ρ, we can write

βk
αk−1

= λ1

( ρ
α

)k−1
+ λ2 (F.4)

βk
ρk−1

= λ2

(
α

ρ

)k−1
+ λ1 (F.5)

The sign of βk corresponds to the sign of either of the two right hand side expres-

sions. Assume first that ψ̄ < ψ < ψ̄ + ρ/b, so that α < ρ, λ1 < 0 and λ2 > 0

(Lemma 2). Then (F.4) implies that βk > 0 when k < k̄1 and βk < 0 when k > k̄1

with

k̄1 = 1 +
ln(−λ2/λ1)
ln(ρ/α)

(F.6)

We know from Proposition 2 that β1 = λ1 + λ2 > 0, so that λ2 > −λ1, which

implies that k̄1 > 1. The k̄ in Proposition 3 is the first whole number larger than

k̄1.

A similar reasoning applies to the case where ψ > ψ̄ + ρ/b, so that α > ρ,

λ1 > 0 and λ2 < 0 (Lemma 2). Then (F.5) implies that βk > 0 when k < k̄2 and

βk < 0 when k > k̄2 with

k̄2 = 1 +
ln(−λ1/λ2)
ln(α/ρ)

(F.7)

From Proposition 2, λ1 > −λ2, so that k̄2 > 1. Again the k̄ in Proposition 3 is the

first whole number larger than k̄2.
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Finally consider the special case of ψ = ψ̄ + ρ/b, so that α = ρ. In that case

(22) implies that βk > 0 when k < k̄3 and βk < 0 when k > k̄3 with

k̄3 = 1 +
D − (1/(1 + ρ))

1− ρ
> 1 (F.8)

Again the k̄ in Proposition 3 is the first whole number larger than k̄3.

G Proof of Proposition 4

The Engel condition is
∑∞

k=1 βk < 0. We will focus here on α 6= ρ, which is

sufficient as the βk are continuous at α = ρ. Then

∞∑
k=1

βk = λ1
1

1− ρ
+ λ2

1

1− α
=

1

1− ρ
− 1

(D − ρ)(1− αρ)
(G.1)

The Engel condition can therefore be written as (D − ρ)(1 − αρ) < 1 − ρ. Using

that Dα = ψb and D = θ − α, we can also write it as

α >
ψb

1 + ρ
+

φ

1− ρ2
(G.2)

where φ = γσ2b. Using θ = 1 + ψb+ φ and the definition of α, this becomes√
(1 + ψb+ φ)2 − 4ψb < 1− (1 + ρ2)φ

1− ρ2
− 1− ρ

1 + ρ
bψ (G.3)

We can, for convenience, refer to the left and right hand sides of (G.3) as f(ψ)

and g(ψ). f(ψ) is a convex function, which is always positive and is symmetric

around the axis ψ = (1 − φ)/b, where it reaches a minimum. g(ψ) is a line with

a negative slope. Moreover f(0) > g(0). These properties imply that there are

only two possibilities. Either f(ψ) remains above g(ψ) for all ψ and therefore

the Engel condition is never satisfied, or f(ψ) crosses g(ψ) twice and the Engel

condition is satisfied for an intermediate range of ψ that we will refer to as the

interval (ψE1 , ψ
E
2 ), with the boundaries of the interval equal to the solutions to

f(ψ) = g(ψ).

To consider the solutions of f(ψ) = g(ψ), we square both sides. We need to

be careful doing so. If f 2(ψ) = g2(ψ) has two solutions, it is either the case that

f(ψ) = g(ψ) for both solutions or f(ψ) = −g(ψ) for both solutions. We know that

f(ψ) is convex with an axis of symmetry ψ = (1−φ)/b. If it crosses the symmetric
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f(ψ) twice, there will be two solutions that average to less that (1 − φ)/b since

g(ψ) is a negatively sloping line.

We can write f 2(ψ) = g2(ψ) as

Aψ2 +Bψ + C = 0 (G.4)

where

A = ρb2 (G.5)

B = bρ(φ− 1− ρ) (G.6)

C =
φ

(1− ρ)2
(
1− ρ2 − ρ2φ

)
(G.7)

In order for the Engel condition to be satisfied over some intermediate range

(ψE1 , ψ
E
2 ) for ψ, two conditions need to hold. First, as discussed above, it must be

the case that the average of these solutions is less than (1 − φ)/b, which implies

φ < 1 − ρ. Second, it must the case that two solutions to f 2(ψ) = g2(ψ) exist,

which requires B2 − 4AC > 0, which can be written as

ρφ2 − 2(2− ρ)(1− ρ)φ+ ρ(1− ρ)2 > 0 (G.8)

This is a quadratic that is positive when φ = 0, then turns negative and then

positive again. When φ = 1− ρ, the quadratic is negative, so that both φ < 1− ρ
and (G.8) will be satisfied when φ is between zero and the smaller of the two

solutions to (G.8) as an equality. The latter is equal to

φ̄ =
1− ρ
ρ

(
1−

√
1− ρ

)2
(G.9)

To summarize, the Engel condition is satisfied if and only if φ < φ̄ and ψE1 < ψ <

ψE2 ), where ψ̄E1 and ψE2 are the solutions to the quadratic (G.4).
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