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1 Introduction

The financial sector witnessed a massive restructuring of its balance sheet during the Great

Recession: over the period from the first quarter of 2008 to the fourth quarter of 2009, which includes

the most dramatic episode of the crisis in the fall of 2008, (i) broker-dealers drastically reduced

asset holdings by approximately $1.7 trillion (a 35% drop) while commercial banks increased total

asset by nearly $1 trillion (a 7.5% rise), and (ii) broker-dealers reduced leverage by about 47%

while bank holding companies increased leverage by approximately 72%. This evidence is at odds

with canonical intermediary asset pricing models which feature a representative financial sector.

This paper makes two main contributions. First, I extend the existing frameworks to explain these

massive asset flows. Second, I apply my model to study its empirical asset pricing implications for

time-series predictability and the cross-section of assets.

To explain these large asset flows and resolve the puzzling evidence presented above, I present a

parsimonious dynamic asset pricing model with two key features: (i) intermediaries heterogeneous

in their risk-bearing capacity, and (ii) state-dependent margin constraints. I show that the compo-

sition of the intermediary sector has important asset pricing implications beyond the health of the

overall financial sector previously considered in the literature. I quantify the importance of this

heterogeneity for the level and variation of the risk premium.

Guided by my model, I present two main empirical results that transcend the specific 2008 crisis

episode. First, the wealth share of broker-dealers in the financial sector, a measure of the compo-

sition of the intermediary sector, strongly forecasts future market excess returns with additional

predictive power beyond many popular forecasting variables in the literature. Second, this measure

of heterogeneity has strong explanatory power for the cross-section of asset: shocks to the relative

wealth share of broker-dealers in the financial sector, explain the cross-section of equity and bond

returns about as well or better than existing intermediary asset pricing models.

As a corollary, my model reconciles seemingly contradictory asset pricing evidence from recent

empirical evaluations of representative intermediary-based models. In particular, Adrian, Etula,

and Muir (2014a) (henceforth, AEM) and He, Kelly, and Manela (2017) (henceforth, HKM) find

opposite signs for the price of intermediary leverage shocks in the cross-section of assets (positive and
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negative, respectively). Importantly, AEM and HKM measure intermediary leverage in different

parts of the financial sector: security broker-dealers, and bank holding companies, respectively.

The economic mechanism of my model, presented below, implies opposite leverage dynamics for

different parts of the financial sector, resolving this puzzling evidence.

The model features two main ingredients. First, I assume agents differ in their attitudes toward

risk: two financial intermediaries (labeled A and B) and a household sector (C agents) in order of

increasing risk aversion. I think of A and B intermediaries as broker-dealers and banks, respectively.

This is consistent with the evidence that more aggressive hedge fund and broker-dealers have higher

leverage on their balance sheets compared to more passive commercial banks. In equilibrium, both

intermediaries hold levered positions in the risky asset financed by borrowing from more risk averse

agents. Second, investors face financial frictions in the form of occasionally binding state-dependent

margin constraints.1

While I extend a heterogeneous-agent model with occasionally binding leverage constraints to a

setting with three agents (households and two levered intermediaries) and recursive preferences, the

main contributions of this work are: (i) presenting a dynamic framework to quantitatively analyze

the importance of heterogeneity in the financial sector, (ii) showing its ability to match patterns of

heterogeneity observed in the data, and, (ii) empirically validating its asset pricing predictions.

Although all agents face margin constraints, in equilibrium, only more aggressive A type in-

termediaries face constraints that occasionally bind.2 This calibration assumption has empirical

support in the data: hedge funds and broker-dealers primarily rely on collateralized repo financing

with haircuts, while the commercial banking sector has access to more stable funding sources, such

as insured deposits and discount window lending from a central bank.3 This is consistent with

findings of Gorton and Metrick (2012) that repo haircuts tend to rise during financial crises leading

1In the dynamic model, the margin constraint does not bind in non-distress states and binds only after a sequence
of sufficiently negative aggregate shocks.

2In the baseline calibration of the model, the margin constraint does not bind for moderately risk-averse B
intermediaries (banks) in equilibrium and only occasionally binds for A-types (dealers). This assumption can be
relaxed by allowing the margin constraint to bind for B agents as well without affecting the main results of the
model. In a very severe financial crisis where both intermediaries face a binding leverage constraint, the C agents
(households) need to hold the excess supply of the risky asset that intermediaries have to sell to reduce leverage.

3In the second quarter of 2018, approximately 36% of total financial assets and 50% of total liabilities for security
broker-dealers are due to lending and borrowing in the repo market, respectively. For private depository institutions,
approximately 73% of total liabilities are comprised of checkable, time and savings deposits. Source: Financial
Accounts of the United States (Flow of Funds).
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to binding margin constraint for broker-dealers. Begenau, Bigio, Majerovitz, and Vieyra (2019)

provide cross-sectional evidence suggesting that neither regulatory nor market leverage constraints

bind strictly for most banks.

My model features occasionally binding, time-varying margin constraints: the level of margin

required in the model is state-dependent; and (inversely) linked to endogenously determined return

volatility resembling an approximate Value-at-Risk (VaR) rule. Since there is empirical evidence

that return volatility is higher in bad times (Schwert, 1989, for example), such an approach is

consistent with findings of Gorton and Metrick (2012) that haircuts tend to rise in financial crises

tightening the constraint.

The primary economic mechanism of the model is as follows: following a negative shock, more

aggressive A type intermediaries face tighter and eventually binding margin constraints and are

forced to reduce leverage by selling assets. To clear the risky asset market, the less aggressive

B intermediaries have to take on a larger portion of the asset than they would in the absence of

constraints. The risk premium must increase to compensate them for bearing more risk. Since

constraints are more likely to bind in high marginal utility states where intermediary wealth shares

are low, consistent with empirical evidence, the model generates opposite cyclical dynamics for

leverage of different intermediaries: procyclical for more aggressive and countercyclical for less

aggressive intermediaries.4

Heterogeneity in intermediaries’ risk appetite and margin constraints are both necessary to

match and understand asset reallocations within the financial sector that are consistent with ob-

served patterns. In a model with representative intermediaries, only the aggregate wealth share

of the financial sector matters for asset prices. Thus, in the absence of heterogeneity among in-

termediaries, models are unable to match asset flows within the financial sector. Similarly, in a

setting with no financial frictions, an adverse shock reduces intermediaries’ risk-bearing capacity

and results in a fall in prices and a direct increase in leverage for both regardless of their degree of

risk tolerance. Therefore, without margin constraints, both intermediaries would counterfactually

lever up and down at the same time, and the model would be inconsistent with empirical evidence

4As mentioned above, one can think of aggressive and passive intermediaries as broker-dealers (BDs) and banks,
respectively, consistent with the observation that BDs are more likely to face binding borrowing constraints in bad
times than banks.
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on balance sheet adjustments in the financial sector.

I show that the model’s equilibrium dynamics can be described by two endogenous state vari-

ables: (i) total wealth share of the financial sector (i.e. A and B agents) in the economy, and

(ii) the more aggressive intermediary’s (A types) wealth share as a fraction of the total financial

sector.5 The former is the main state variable in many recent representative intermediary-based

models (e.g., He and Krishnamurthy, 2012, 2013, and Brunnermeier and Sannikov, 2014). The

unique feature of the model is the second state variable: it emphasizes that the composition of the

financial sector is a key factor in determining asset prices. Models with a representative financial

sector are silent about the composition of intermediaries and its asset pricing implications.

Risk tolerant intermediaries (A and B agents) have levered balance sheets by borrowing from

more risk averse households. Leverage increases intermediaries’ exposure to aggregate shocks:

positive shocks result in their wealth share to increase. Following a negative aggregate shock,

the wealth of levered intermediaries falls faster than that of households, and hence their share of

total wealth, the first state variable in the model, declines. Moreover, since more risk tolerant

intermediaries (i.e., A agents) have higher leverage than more risk averse ones, they are more

likely to face binding margin constraints in bad times when they become tighter. As such, their

wealth share in the financial sector, the second state variable of my model, declines as well. A

key takeaway from model’s economic mechanism is that both state variables exhibit procyclical

dynamics: in high marginal utility states, wealth share of the aggregate financial sector and more

aggressive intermediary’s net worth share in the financial sector will both be low.

I then examine two quantitative implications of my model. First, I show that the composition

of the financial sector is responsible for a significant fraction of risk premia variation beyond the

wealth share of the aggregate financial sector. With the model’s independent and identically dis-

tributed (i.i.d.) aggregate endowment, variation in risk premia is only due to the aggregate wealth

share as well as the composition of the financial sector, model’s two state variables. I show that

5This representation is not the only way one can construct the state variables in the model. I argue my construction
is a natural and valid way to do so: measuring the wealth share of the financial sector in the economy (which I denote
as state variable x) and that of A intermediaries relative to the financial sector (denoted by y). In many representative
intermediary-based models, x is the main state variable. Moreover, with the choice of y presented here, in the absence
of heterogeneity, my model collapses to one with x as the only state variable similar to the models with a representative
financial sector.
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approximately 20% of the variation in risk premia can be attributed to the wealth distribution

among intermediaries, which is a measure of the composition of the financial sector. Thus, failing

to account for heterogeneity among intermediaries can lead to missing a substantial portion of risk

premia variation. This result implies a novel empirical prediction of the model: the composition

of the financial sector should strongly forecast future excess returns. I later document that this is

indeed the case, empirically.

Second, I use the model to quantify the asset pricing implications of massive financial flows

between intermediaries observed in the 2008 crisis. As mentioned above, during 2008–2009, broker-

dealers drastically reduced asset holdings and leverage (by $1.7 trillion and 47%, respectively),

while banks increased both (by $1 trillion and 72%, respectively). My model implies that a dealer

deleveraging episode comparable in magnitude to the one observed during the crisis leads to an

approximately 55% increase in the risk premia and a 5% increase in volatility. These balance sheet

adjustments have no impact on asset prices in existing models with representative intermediaries.

Next, I study the empirical implications of the model for time-series predictability and the cross-

section of assets. I show that in addition to wealth share of the aggregate financial sector, keeping

track of the composition of intermediaries is also crucial for determining risk premia. I define an

empirical proxy for measuring this composition: the ratio of the equity of security broker-dealers to

sum of equities of broker-dealers and commercial banks from the Financial Accounts of the United

States (Flow of Funds).

I emphasize that A agents in the model are not meant only to represent broker-dealers (BDs).

BDs are good proxies for a set of intermediaries that face tightening leverage constraints in bad

times (e.g., hedge funds) whose actions resemble these agents in the model. Moreover, unlike hedge

funds, broker-dealers are intermediaries for which I have access to a relatively long time-series of

aggregate balance sheet data. Similarly, B agents are meant to describe intermediaries who face

equity capital constraints. Commercial banks are good proxies for these intermediaries: for them,

equity is hard to raise, but given their access to more stable funding sources, they can attract

deposits even during financial crises.

It is also important to point out that many major broker-dealers (such as primary dealers) are
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subsidiaries of large bank holding companies. If the internal capital markets represent an important

funding source for these dealer subsidiaries, it may seem unnecessary to treat them separately form

BHCs.6 For instance, if the commercial banking affiliate of a BHC experiences large deposit inflows

during a crisis (as documented in Gatev and Strahan (2006), for example), the access to internal

capital markets may substantially mitigate the financial distress in the broker-dealer subsidiary.

Federal Reserve’s Regulation W prohibits BHCs from freely using deposits in their commercial

banking arm to fund the broker-dealer subsidiary when repo markets collapse.7 Moreover, Gupta

(2018) documents that the internal capital markets are not frictionless and do not behave very

differently from the external ones during the financial crisis. He shows that although the aggregate

size of the dealer internal capital markets quadrupled from $300 billion in 2001 to $1.2 trillion by

2007, these inter-affiliate repo and securities loans collapsed by 37% in 2008.

Consistent with my model’s prediction, the composition of the financial sector strongly and

negatively predicts future excess return. Model’s second state variable, which captures this wealth

distribution in the financial sector, exhibits procyclical dynamics: times when broker-dealers are

relatively more impaired in the financial sector, coincide with high marginal utility states where

prices are low and future expected returns are high. I show that this measure of the composition

of the financial sector is a strong predictor of future excess returns leading to additional predictive

power beyond many established return forecasting variables in the literature.

Moreover, shocks to the composition of intermediaries, which I denote the heterogeneous in-

termediary factor (HIFac), are priced in the cross-section of asset returns with a positive price of

risk: the HIFac alone exhibits strong explanatory power for the cross-section of equity and bond

returns about as well or better than existing intermediary asset pricing factors in AEM and HKM.

I further document that including aggregate intermediary leverage as a second asset pricing factor

increases cross-sectional fit by at least ten percentages points, depending on whether the factor is

6For large BHCs, BD subsidiaries hold, on average, between 15 to 20% of total assets. For example, from FOCUS
reports and 10K filings to the SEC, in 2018, total assets of J.P. Morgan Securities LLC (the BD subsidiary of J.P.
Morgan Chase & Co, the BHC) represented approximately 17.6% of BHC’s total assets. Similarly, Citigroup Global
Markets Inc. (the BD arm) accounted for 15.6% of Citigroup’s total assets in 2018.

7Sections 23A and 23B of Federal Reserve’s Regulation W set limits on the amount of covered transactions between
a bank and its affiliates and require these transactions to be collateralized and on market terms and conditions.
Covered transactions include loans and other extensions of credit to an affiliate, investments in the securities of a
subsidiary, purchases of assets from an affiliate, and certain other transactions that expose the bank to the risks of
its affiliates. See Appendix D for more details on Regulation W.
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leverage shocks for broker-dealers or bank holding companies.

In addition, I reconcile seemingly contradictory evidence in AEM and HKM by proposing a

unifying general equilibrium framework with heterogeneous intermediaries. Pricing kernels in AEM

and HKM measure marginal utilities of different financial intermediaries: broker-dealers and bank

holding companies, respectively. Given the economic mechanism presented above, different parts

of the financial sector exhibit opposite leverage dynamics. Therefore, it does not seem surprising

that the literature with a representative financial sector arrives at conflicting asset pricing results.

I provide further evidence that heterogeneity in the financial sector is an important risk factor.

Stock portfolios sorted on their exposure to HIFac (shocks to dealers’ wealth share in the financial

sector) exhibit monotonically increasing excess returns: the highest-beta quintile has approximately

5% higher annualized excess return relative to the lowest-beta portfolio. Existing representative

intermediary asset pricing models are unable to capture these results.

I finally construct a mimicking portfolio for the heterogeneous intermediary factor from my

model. Mimicking portfolios for representative intermediary factors in AEM and HKM are unable to

fully span the heterogeneous intermediary factor-mimicking portfolio (FMP): I find large and highly

significant alphas when I regress my model’s FMP on AEM’s and HKM’s FMPs both individually

and in bivariate regressions. This result corroborates my earlier findings: the composition of the

financial sector is an important source of risk and has pricing information beyond representative

intermediary asset pricing factors.

Related Literature

My paper extends macroeconomic models with a financial sector (e.g., He and Krishnamurthy,

2012, 2013, Brunnermeier and Sannikov, 2014, and Gertler and Kiyotaki, 2010) to a framework with

heterogeneous intermediaries. This literature builds on financial accelerator models of Bernanke

and Gertler (1989), Kiyotaki and Moore (1997), and Bernanke, Gertler, and Gilchrist (1999) which

emphasize the importance of financial frictions and leverage for persistence and amplification of

aggregate shocks.8 The literature traditionally modeled intermediaries as one representative sector.

Such an approach does not allow for the heterogeneity in financial intermediaries, documented in

8See Brunnermeier, Eisenbach, and Sannikov (2012) for a survey of macro-based models with financial frictions.
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the data, to play a role in equilibrium.9

A few recent papers focus on the importance of a heterogeneous financial sector. The paper

closest to this work is Ma (2017). In independent, contemporaneous work, he shows that an SDF

estimated from a model with intermediaries heterogeneous in the tightness of their constraints

exhibits higher cross-sectional R2 than AEM and HKM factors. In contrast to this paper where I

show asset reallocations within the financial sector are quantitatively important for both level and

variation of risk premia, Ma (2017) focuses exclusively on explaining the cross-sectional variation of

asset returns. Moreover, unlike his model where financing constraints are always binding, I study

occasionally binding state-dependent leverage constraints.10 I also fully characterize the whole

dynamic system instead of merely a log-linearized representation around the steady-state in Ma

(2017). Coimbra and Rey (2017) develop a model with intermediaries heterogeneous in their Value-

at-Risk constraints and limited liability resulting in risk-shifting. Gertler, Kiyotaki, and Prestipino

(2016) extend Gertler and Kiyotaki (2010)’s framework by incorporating a shadow banking sector

alongside retail banks and allow the possibility of runs. The latter papers do not study the asset

pricing implications of heterogeneous intermediaries. I contribute to this literature by showing that

the composition of the financial sector has strong predictive power for excess returns of many assets

and it is also priced in the cross-section of equity and bond returns.

This paper also contributes to the recent empirical intermediary asset pricing literature. As

noted above, two recent papers, Adrian et al. (2014a) and He et al. (2017), evaluate the explanatory

power of models where representative intermediaries face, respectively, debt and equity constraints

for cross-sectional variations in expected returns. They find opposite signs for the estimated price of

risk (and thus conflicting cyclical dynamics) for intermediary leverage. I reconcile these seemingly

contradictory evidence in a unifying general equilibrium framework where the financial sector is

modeled as two sectors heterogeneous in risk-bearing capacity facing margin constraints.

Finally, this work relates to the extensive literature on asset pricing implications of investor

9A few other recent models with explicit roles for financial intermediaries include Danielsson, Shin, and Zigrand
(2012), Adrian and Shin (2014), Adrian and Boyarchenko (2015), Moreira and Savov (2017), and Drechsler, Savov,
and Schnabl (2018).

10Although the presence of occasionally binding financial constraints makes solving the model considerably more
challenging, as discussed in He and Krishnamurthy (2019), this is a necessary step to study systemic risk because
financial crises are rare, and in most cases, we are interested in understanding the transitional dynamics of the
economy from non-crisis states into crisis states.
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heterogeneity and portfolio constraints. Dumas (1989), Wang (1996), Bhamra and Uppal (2009),

Bhamra and Uppal (2009), Longstaff and Wang (2012), Gârleanu and Panageas (2015), and Santos

and Veronesi (2016) study equilibrium in frictionless economies with two heterogeneous agents and

different preference assumptions. Basak and Cuoco (1998), Kogan, Makarov, and Uppal (2007),

Gârleanu and Pedersen (2011), Danielsson et al. (2012), He and Krishnamurthy (2012, 2013),

Chabakauri (2013), and Rytchkov (2014) examine asset pricing implications of exogenous and

endogenous portfolio constraints in economies populated by two heterogeneous agents with one or

many assets where constrained agent have logarithmic or CRRA preferences. I use this general

framework to study the asset pricing implications of large flows within the intermediary sector. I

present a general equilibrium model in an economy populated by three heterogeneous agents with

recursive preferences who face state-dependent borrowing constraints.

The rest of the paper is organized as follows. Section 2 presents motivating evidence for the

heterogeneity in the financial intermediary sector. Section 3 provides the theoretical framework

for the general equilibrium heterogeneous-intermediary model. Sections 4 and 5 present model

solution and parameter values used for calibrating the model. Section 6 provides model results. In

Section 7, I study the empirical implications of the model for time-series return predictability and

the cross-section of asset returns. Section 8 concludes.

2 Motivating Evidence

Before presenting the theoretical framework, in this section, I provide motivating evidence on

heterogeneity of the intermediary sector. Empirical evidence from asset reallocations within the

financial sector recorded during the Great Recession seem puzzling through the lens of represen-

tative intermediary-based models.11 Depending on the type of frictions considered, models with a

representative financial sector can only describe intermediaries who are either buyers or sellers of

11Evidence of intermediary heterogeneity during the crisis has also been recently documented in the literature.
He, Khang, and Krishnamurthy (2010) and Begenau et al. (2019) document flows of financial assets within the
intermediary sector during the Great Recession and show that broker-dealers and hedge funds reduced leverage by
selling securitized assets to commercial banks who have access to stable deposits. Ang, Gorovyy, and van Inwegen
(2011) document that hedge funds decreased leverage prior to the onset of the financial crisis while the leverage of
banks and the financial sector continued to increase. Ben-David, Franzoni, and Moussawi (2012) provide additional
evidence of hedge fund deleveraging during the crisis.
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assets during a crisis, but not both, implying opposite cyclical dynamics for intermediary leverage:

countercyclical in models with equity constraints (He and Krishnamurthy, 2012, 2013 and Brun-

nermeier and Sannikov, 2014) or procyclical if intermediary faces a debt constraint (Brunnermeier

and Pedersen, 2009 and Adrian and Shin, 2014).

Intermediaries exhibit heterogeneous behavior in the cyclical properties of their leverage. Fig-

ure 1a presents time-series of leverage for different financial intermediaries: security brokers and

dealers (BDs), and bank holding companies of New York Fed’s primary dealers (BHCs), inter-

mediaries recently studied in AEM, and HKM, respectively.12 Broker-dealer’s (book) leverage is

calculated from balance sheet data in Table L.130 of the Financial Accounts of the United States

(Flow of Funds) from the Federal Reserve and is defined as the ratio total financial assets to to-

tal equity (total financial assets minus total liabilities). BHC leverage is defined as the ratio of

total market assets (book debt plus market equity) to total market equity constructed for publicly-

traded holding companies of the New York Fed’s primary dealer counterparties using data from

CRSP/Compustat and Datastream. Over the period from the first quarter of 2008 to the fourth

quarter of 2009, which includes the Lehman bankruptcy in the fall of 2008, broker-dealers reduced

leverage by approximately 47% (from 35 to 19) while holding companies increased leverage by ap-

proximately 72% (from 22 to 38) during the same period.13 We observe opposite cyclical leverage

patterns for different financial intermediaries: BD leverage is procyclical, while BHC leverage is

countercyclical. Over the sample period from 1970Q1 to 2017Q4, shocks to broker-dealer leverage

exhibit a positive correlation of 0.12 (t-stat of 1.82) to innovations in the real GDP, while BHC

leverage shocks have a negative correlation of −0.19 (t-stat of −2.62). Correlations with GDP

innovations become stronger post 2000 with coefficients of 0.37 (t-stat of 3.27) and −0.39 (t-stat of

−3.56) for broker-dealer and holding company leverage, respectively.14

12A bank holding company (BHC) is a corporation which controls one or more banks. A typical U.S. prents BHC
owns a number of deposit-taking bank subsidiaries and also other non-banking and foreign subsidiaries engaged in
securities dealing, underwriting, insurance, real estate, etc. For example, Citibank is a commercial bank owned by
Citigroup, which is its parent BHC that also owns a broker-dealer subsidiary (Citigroup Global Markets Inc.) among
other non-banking and foreign subsidiaries. See Avraham, Selvaggi, and Vickery (2012) for more details.

13According to He et al. (2010), book leverage of commercial banks rose from 10 to between 20 and 32 over the
period from 2007Q4 to 2009Q1.

14As discussed in HKM, observed opposite cyclical properties for leverage of different intermediaries above are
unlikely to be entirely attributed to the differences between book- and market-based values for calculating BD and
BHC leverage, respectively. To see this, I calculate holding company book leverage by simply replacing market equity
with book equity in the calculation above. I find that book and market BHC leverage are in fact strongly positively
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In Figure 1b, I plot the quarterly change in total financial assets for security broker-dealers

and private depository institutions (commercial banks) from Tables L.130 and L.110 of the Flow

of Funds, respectively. Over the period from the first quarter of 2008 to the fourth quarter of

2009, broker-dealers, who mainly depend on collateralized repo financing, massively reduced asset

holdings by approximately $1.7 trillion (from $4.9 to $3.2 trillion), while commercial banks, who

have access to more stable deposit financing, increased total asset by nearly $1 trillion (from $13.4

to $14.4 trillion). This evidence is consistent with findings of He et al. (2010) who document

that during the 2008 crisis, hedge funds and broker-dealers reduce holdings of securitized assets by

approximately $800 billion and commercial banks increase holdings of these assets by approximately

$550 billion.15

Models with representative intermediaries are unable to capture this heterogeneity within the

financial sector and study its implications for asset prices and the real economy. In the next section, I

present a general equilibrium model with heterogeneous intermediaries and financial frictions that

is consistent with opposite cyclical dynamics of leverage within the financial sector. My model

implies that a dealer deleveraging episode comparable to one observed during the recent financial

crisis, leads to an approximately 55% increase in the risk premia and a 5% increase in endogenous

volatility. I then study model’s asset pricing implications for time-series predictability and the

cross-section of expected returns.

3 Model

In this section I present a general equilibrium model featuring heterogeneous intermediaries

and financial constraints. My model reconciles seemingly contradictory results for the sign of price

of intermediary leverage shocks from recent empirical evaluations of representative intermediary-

based models. The model nests key forces behind Brunnermeier and Pedersen (2009) and He and

Krishnamurthy (2012) with two main ingredients: (i) agents differ in their attitudes toward risk,

correlated over the sample period (1970Q1 to 2017Q4) with correlation coefficient of 0.64 (t-stat of 11.64). Also, both
market and book leverage for BHCs are strongly negatively correlated with book leverage of broker-dealers over the
sample period with correlation coefficients of −0.50 (t-stat of −7.89) and −0.24 (t-stat of −3.47), respectively.

15From the fourth quarter of 2007 to the first quarter of 2009, the Federal Reserve and the GSEs increased holdings
of securitized assets by approximately $350 billion. See He et al. (2010) for more details.
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and (ii) different intermediaries face state-dependent leverage constraints that occasionally bind,

while equity issuance is ruled out by assumption.16

To study the implications of heterogeneity in the financial sector, I augment a heterogeneous-

agent asset pricing model to develop a parsimonious dynamic framework that represents the dif-

ferences between these two intermediaries in a simple way. In the model, different intermediaries

are represented by agents, heterogeneous in their risk-bearing capacity, who run these institutions.

Ideally, one would prefer a richer framework which features the institutional details of these in-

termediaries. In my model, I abstract away from many of these institutional details for two main

reasons: (i) solving such a model proves to be an extremely challenging task, and more impor-

tantly, (ii) the publicly available aggregate intermediary balance sheet data that I use do not help

shed light on the asset pricing implications of these institutional features. I believe addressing the

implications of these features in a richer framework with detailed institutional data sets is a fruitful

area for future research.

I consider an endowment economy in continuous time populated by a continuum of agents

whose total mass is one.17 There are three types of agents: A,B, and C with recursive preferences

and different levels of risk aversion who face state-dependent margin constraints. While I extend

a heterogeneous-agent model with occasionally binding leverage constraints to a setting with three

agents (with two levered intermediaries) and recursive preferences, the main contribution of my

paper is: (i) presenting a dynamic framework to quantitatively analyze the importance of hetero-

geneity in the financial sector, (ii) showing it is able to match patterns of heterogeneity observed

in the data, (ii) finally empirically validating its asset pricing predictions.

To ensure the existence of a non-degenerate stationary wealth distribution, I assume each agent

faces an exogenous constant mortality rate κ > 0. New agents are born at the same rate κ per unit

of time with a fraction ū as type A, a fraction v̄ as type B, and a fraction 1− ū− v̄ as type C. So,

the total population is kept constant (normalized to one).18 In aggregate, the newborns inherit the

16As mentioned above, in the baseline calibration of the model, leverage constraint only occasionally bind for the
most risk-tolerant agent.

17The model can be easily extended to an AK production economy which allows for capital accumulation, invest-
ment, and real effects.

18By the law of large numbers, at time t a fraction κe−κ(t−s) of agents born at time s ≤ t survive and thus the
total population at time t is equal to

∫ t
−∞ κe

−κ(t−s)ds = 1.
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wealth of their deceased parents on a per capita basis. Gârleanu and Panageas (2015) show that

under these conditions, the possibility of exit makes agents more impatient: their effective time

preference is increased by κ (i.e., from ρ to ρ+ κ).19

3.1 Endowment and Agents

The aggregate endowment Dt evolves according to

dDt

Dt
= µD dt+ σD dZt, (1)

where µD and σD are constant parameters and Zt is a standard Brownian motion defined on a fixed

probability space (Ω,F , P ) and a filtration {Ft, t ≥ 0} of sub-σ-algebras of F satisfying the usual

conditions, as defined by Protter (2004).20 The shock dZt is the only source of uncertainty in the

model representing a permanent shock to the aggregate dividend. I assume that the growth rate

of the endowment is positive, µD − σ2
D/2 > 0. Without loss of generality I set D0 = 1. Similar to

He and Krishnamurthy (2013) and Brunnermeier and Sannikov (2014), I assume agents are unable

to hedge the aggregate risk.21

To separate the effects of elasticity of intertemporal substitution (EIS) and risk aversion, I

assume all agents have stochastic differential utility as in Duffie and Epstein (1992), the continuous-

time analog of recursive preferences of Epstein and Zin (1989). In particular, an agent of type i

has the lifetime utility Ui,t at time t given by

Ui,t = Et
[∫ ∞

t
fi (Ci,s , Ui,s) ds

]
, (2)

where

fi(Ci,t, Ui,t) =

(
1− γi

1− 1/ψi

)
Ui,t

( Ci,t

[(1− γi)Ui,t]1/(1−γi)

)1−1/ψi

− (ρ+ κ)

 . (3)

Function fi aggregates over current consumption Ci,t and future utility Ui,t. Parameters γi and ψi

19The only purpose of introducing the OLG framework and mortality risk is to make the model stationary.
20The filtration represents the resolution over time of information commonly available to investors.
21Di Tella (2017) provides a moral hazard framework where aggregate uncertainty shocks lead to balance sheet

recessions even though agents can write complete contracts on the aggregate state of the economy.
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denote agent i’s coefficient of relative risk aversion and EIS, respectively. These preferences reduce

to standard power utility when ψi = 1/γi. All agents are assumed to have a common subjective

discount factor ρ increased by κ as mentioned above.

Agents are heterogeneous in their attitudes toward risk γi. A agents are the most risk tolerant

and C agents are the most risk averse. B agents are more risk tolerant than C types: γA < γB < γC .

I think of A agents representing shadow banks (broker-dealers, hedge funds, etc.) and B agents

as traditional banks, and C agents representing the household sector. In equilibrium A and B will

have levered balance sheets by borrowing from C agents. The financial sector (A and B agents)

face time-varying margin constraints, which I discuss later in detail.

3.2 Financial Markets and Budget Constraints

All agents can trade a risky asset in fixed supply (normalized to one) and an instantaneous (from

t to t+ dt) risk-free bond in zero net supply which pays the endogenously-determined interest rate

rt. The risky asset is a claim on the aggregate endowment {Dt}, so, the total return on the risky

claim is

dRt =
dPt +Dt dt

Pt
≡ µt dt+ σt dZt, (4)

where Pt is the price of the risky claim, µt is its expected return, and σt is its volatility, all

determined in equilibrium. I use the consumption good as the numeraire. I also denote the

dividend-price ratio of the risky asset by Ft = Dt/Pt.

Let Wi,t denote agent i’s wealth and assume Wi,0 > 0 for i ∈ {A,B,C}.22 Let wis be the share of

agent i’s wealth invested in the endowment claim. Then agent i’s financial wealth evolves according

to the following standard dynamic budget constraint

dWi,t

Wi,t
=
(
rt + wis,t (µt − rt)− ci,t

)
dt+ wis,tσtdZt, (5)

where ci ≡ Ci/Wi is agent i’s consumption-wealth ratio. The agent earns the risk-free rate, earns

the risk premium on the risky asset, and pays for consumption. The intermediary leverage is

22Throughout the paper, I use terms net worth and equity interchangeably.
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defined as the ratio of asset over equity. Thus, when portfolios weights wAs or wBs exceeds one, the

intermediaries operate with leverage by raising debt from households C.

3.3 Financial Constraints

I assume agent face a occasionally binding state-dependent margin constraint: at each moment

in time, borrowers are restricted on how much leverage they can use on their balance sheets.

In other words, lenders impose margin requirements to protect themselves against losses caused

by adverse price movements.23Margins are set to shield lenders against adverse price movements

and are widely used in the financial sector to fund levered balance sheets. They have also been

previously studied in the asset pricing literature (see Brunnermeier and Pedersen, 2009, Gârleanu

and Pedersen, 2011, Chabakauri, 2013, and Rytchkov, 2014 for some recent examples).

The tightness of the margin constraint can be determined by the regulators (e.g. Federal Reserve

Regulation T) or by security broker-dealers (e.g. overcollaterlization of repos by a hedge fund’s

prime brokerage).

At any time t, I assume margin constraints restricts agent i’s portfolio weight wis to be below a

certain state-dependent threshold θ̄t

wis,t ≤ θ̄t, (6)

where, θ̄t determines the form of margin constraints, which is linked to endogenously-determined

equilibrium objects (e.g. volatility of risk asset returns). Since equilibrium objects also depend on

the state of the economy, margin requirements are state-dependent as well.

In particular, I assume margin requirements depend on the volatility of the risky asset return

σt, and have the following functional form

θ̄t = m̄

(
1

m̄ασt

)ν
, (7)

where ν, α, and m̄ are parameters that determine the type and tightness of the constraint, respec-

23In this paper I abstract from the question of why the intermediaries face dynamic margin constraint and do not
model the contracting problem among agents. Adrian and Shin (2014) provide a microfoundation for the Value-at-
Risk constraint using a moral hazard problem in a static partial equilibrium setting.
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tively. When ν = 0, agents face a constant margin requirement: θ̄ = m̄. When ν = 1, equation (7)

resembles a Value-at-Risk rule.24 In the latter case, the level of margin constraint is endogenous

since it is inversely linked to the return volatility, which is an equilibrium object.25

As mentioned earlier and consistent with empirical evidence, although all agents face mar-

gin constraints, in equilibrium, only more aggressive A type intermediaries face constraints that

occasionally bind.26

3.4 Agents’ Optimization Problems

Since agents are identical within each type and have homothetic preferences, I consider the

problem faced by a representative agent i for i ∈ {A,B,C}. Each agent solves a standard Merton

(1973) dynamic portfolio choice problem subject to margin constraints: agent i starts with initial

wealth Wi,0 > 0, decides how much to consume as a fraction of her wealth, ci,t, and what fraction of

her net worth to invest in risky asset, wis,t, in order to maximize her value function in (2), subject

to the dynamic budget constraint (5) and endogenous margin constraints (6). So, agent i’s problem

is

Vi,t = max
(ci≥0,wis)

Ui,t

s.t.: dynamic budget constraint (5) and margin constraint (6) (8)

and a solvency constraint Wi,t ≥ 0.

3.5 Equilibrium

The definition of the competitive equilibrium is standard and is given below.

Definition 1. A competitive equilibrium is the set of aggregate stochastic processes adapted to

the filtration generated by Zt: the price of claim on the aggregate endowment P , and the risk-free

24Value-at-Risk constraints aim at limiting downside risk and maintaining an equity cushion large enough so
that the default probability is kept below some benchmark level. They are common for banks and other leveraged
financial institutions and are embedded in Basel II and Basel III regulatory frameworks. See Danielsson et al. (2012)
and Adrian and Shin (2014) for recent examples.

25In equilibrium, more risk averse C agents lend to levered intermediaries. Thus, given the my calibration, the
constraint can potentially bind only for A and B types.

26This assumption can be relaxed by allowing the margin constraint to bind for B agents (banks) as well without
affecting the main results of the model.
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interest rate r; and a set of stochastic processes for each agent i: net worth Wi, consumption Ci,

and stock holdings wis; such that:

i. Given the aggregate stochastic processes (Pt, rt), choices
(
Ci,t, w

i
s,t

)
solve agent i’s optimization

problem in (8).

ii. Markets clear

CA,t + CB,t + CC,t = Dt (goods market) (9)

wAs,tWA,t + wBs,tWB,t + wCs,tWC,t = Pt (stock market) (10)

The bond market clears by Walras’ law. Note that bond market clearing implies that the

aggregate wealth in the economy is equal to the value of the endowment claim, i.e.

WA,t +WB,t +WC,t = Pt .

4 Model Solution

In order to solve the model, I need to determine how prices, portfolio choices, and consumption

processes for all agents depend on the historical paths of the aggregate shock Zt. The equilibrium

can be characterized in a recursive formulation where all equilibrium objects are functions of two

endogenous state variables, defined below. The computation of equilibrium requires solving the

Hamilton-Jacobi-Bellman (HJB) partial differential equations of A,B, and C agents simultaneously.

Unfortunately, the system of nonlinear PDEs does not admit a closed-form solution and I have to

rely on numerical techniques. In this section, I first define my model’s two endogenous state

variables and derive their dynamics. I then characterize agents’ value functions and provide some

intuition for their optimal portfolio and consumption policy functions. I define a recursive Markov

equilibrium and finally briefly discuss the numerical algorithm used to solve the PDEs.
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4.1 Endogenous State Variables

Because Epstein-Zin preferences are homothetic, the optimal control variables for an agent are

all linear in her wealth. The linear property allows me to simplify the endogenous state space, from

an infinite-dimensional into a two-dimensional space. More precisely, I only need to keep track of

the share of aggregate wealth that belongs to types A and B (the financial sector), as well as, the

wealth share of A agents in the financial sector. I can derive equilibrium conditions as functions of

the following endogenous state variables:

xt ≡
WA,t +WB,t

Pt
, yt ≡

WA,t

WA,t +WB,t
. (11)

Since the risk-free asset is in zero net supply, the aggregate wealth in the economy is equal to

the risky asset price Pt. The state variable x is the share of aggregate wealth that belongs to the

financial sector (i.e. A and B agents), and y is the type A intermediaries’ wealth share as a fraction

of the total financial sector.27

The state variable x (total wealth share of the financial sector in the economy), is the key state

variable in recent intermediary asset pricing models with a representative financial sector (see He

and Krishnamurthy, 2013, Brunnermeier and Sannikov, 2014, and Gertler and Kiyotaki, 2010, for

example) If only intermediaries can invest in the risky asset, state variable x represents the equity

capital ratio of the financial sector.28 HKM show shocks to capital ratio of intermediaries price

the cross-section of expected return with a positive price of risk: intermediary’s marginal value of

wealth rises when capital ratio x falls.

State variable y, on the other hand, captures the wealth distribution within the intermediary

sector. It represents heterogeneity among intermediaries in the sense that it would not be present in

models with a representative financial sector. Distribution of wealth among different intermediaries

clearly plays no role in the models with a representative financial sector. In contrast, in Section 7,

I show that the distribution of wealth between broker-dealers and bank holding companies (proxies

for A and B agents, respectively) can negatively forecasts future returns for many asset classes. I

27Note that the definitions in equation (11) ensure that the domain of both state variables is [0, 1].
28In this case, because riskless bonds are in zero net supply and the risky asset is assumed to be in unit supply,

total assets of the intermediary sector is equal to the risky asset price P .
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also demonstrate that shocks to y are a priced risk factor in the cross-section of equity and bond

returns with a positive estimated price of risk.

The representation above is not the only way one can construct the state variables in the

model. My choice of state variables x and y however, presents a natural way to do so: in many

representative intermediary-based models, x is the main state variable. Moreover, with the choice

of y presented here, in the absence of heterogeneity, my model collapses to one with x as the only

state variable similar to the models with a representative financial sector. So this presents a natural

way to construct the state variables in the model.

I restrict my attention to a Markov equilibrium (defined below) in the state space (x, y) ∈

[0, 1] × [0, 1], where all processes are functions of (xt, yt) only. Proposition 1, characterizes the

dynamics of the two endogenous state variables (x, y).

Proposition 1. The laws of motion for endogenous state variables x and y are given by

dxt = κ (x̄− xt) dt+ xt (µx,t dt+ σx,t dZt) , (12)

dyt = κ (ȳ − yt) dt+ yt(1− yt) (µy,t dt+ σy,t dZt) (13)

where x̄ = ū+ v̄ and ȳ = ū/(ū+ v̄).

i. The drifts of x and y are given by

µx =
[
ywAs + (1− y)wBs − 1

]
(µ− r − σ2)− ycA − (1− y)cB + F (14)

µy =
(
wAs − wBs

)
(µ− r)− cA + cB −

[
ywAs + (1− y)wBs

] (
wAs − wBs

)
σ2 (15)

ii. The diffusions of x and y are given by

σx =
[
ywAs + (1− y)wBs − 1

]
σ (16)

σy =
(
wAs − wBs

)
σ (17)

Proof. See Appendix A.

Given the dividend-price ratio F , the return process for the endowment claim in equation (4)
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can be rewritten as

dR =
d(D/F )

D/F
+ F dt = µdt+ σ dZ,

where time subscripts are dropped for notational simplification.

Using Ito’s lemma, the expected return and volatility of the risky asset will be

µ = µD + F − Fx
F

[κ(x̄− x) + x(µx + σDσx)]− Fy
F

[κ(ȳ − y) + y(1− y)(µy + σDσy)]

+

[(
Fx
F

)2

− 1

2

Fxx
F

]
x2σ2

x +

[(
Fy
F

)2

− 1

2

Fyy
F

]
y2(1− y)2σ2

y

+

[
2

(
Fx
F

)(
Fy
F

)
− Fxy

F

]
xy(1− y)σxσy (18)

σ = σD −
Fx
F
xσx −

Fy
F
y(1− y)σy (19)

Note that from (19), a part of the risk from holding the risky asset is fundamental, σD dZt, and a

part is endogenous,
(
−Fx

F xσx −
Fy
F y(1− y)σy

)
dZt. Equation (19) also implies that the volatility

of returns σ exceeds the fundamental volatility σD when price-dividend ratio, 1/F , and the state

variables x and y are procyclical, i.e. Fx > 0, Fy > 0, σx > 0, and σy > 0, which is the case in

equilibrium.

The following proposition provides the boundary conditions that the state variable diffusions

satisfy.

Proposition 2. The diffusion for state variables (xt, yt) satisfy the following boundary conditions:

lim
x→0

xσx,t = lim
x→1

xσx,t = 0, ∀y ∈ [0, 1]

lim
y→0

y(1− y)σy,t = lim
y→1

y(1− y)σy,t = 0, ∀x ∈ [0, 1]

Proof. See Appendix A.

These boundary conditions will be used later to solve agents’ HJB equations discussed below.
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4.2 Hamilton-Jacobi-Bellman Equations

The recursive formulation of agent i’s optimization problem is given by the following HJB

equation

0 = max
ci,wis

fi(ciWi, Vi(Wi, x, y))dt+ Et [dVi(Wi, x, y)] , (20)

where Vi is agent i’s value function. With homothetic preferences, the value functions have the

power form. The Following proposition characterizes agents’ value functions.

Proposition 3. The value function of agent i ∈ {A,B,C} has the form

Vi(W,x, y) =
W 1−γi
i

1− γi
Ji(x, y)

1−γi
1−ψi , (21)

where Ji is agent i’s consumption-wealth ratio, ci = Ji.

Furthermore, Ji solves the following second-order partial differential equation (PDE)

ρ+ κ =
1

ψi
Ji +

(
1− 1

ψi

)[
r + wis(µ− r)−

γi
2

(
wis
)2
σ2
]

− 1

ψi

{
Ji,x
Ji

[κ(x̄− x) + xµx] +
Ji,y
Ji

[κ(ȳ − y) + y(1− y)µy]

+(1− γi)
(
Ji,x
Ji
xσx +

Ji,y
Ji
y(1− y)σy

)
wisσ

}
− 1

2ψi

[(
ψi − γi
1− ψi

)(
Ji,x
Ji
xσx +

Ji,y
Ji
y(1− y)µy

)2

+
Ji,xx
Ji

x2σ2
x

+2
Ji,xy
Ji

xy(1− y)σxσy +
Ji,yy
Ji

y2(1− y)2σ2
y

]
(22)

Proof. See Appendix A.

Functions Ji capture agent i’s investment opportunity set. In particular, note that from (21) if

1− γi
1− ψi

> 0 (which holds in my calibration), marginal utility of wealth is increasing in Ji.

The first-order conditions of agent’s recursive problem gives the optimal consumption and port-

21



folio choice

ci =
Ci
Wi

= Ji (23)

wi,∗s =
µ− r
γi σ2

+
1

γi

(
1− γi
1− ψi

)(
Ji,x
Ji
x
σx
σ

+
Ji,y
Ji
y(1− y)

σy
σ

)
(24)

The optimal unconstrained portfolio wi,∗s is the standard ICAPM result of Merton (1973): the first

term in (24) is the myopic demand of a one-period mean-variance investor and the second term

is the hedging demand capturing the variations in the agent’s investment opportunity set. The

optimal consumption-wealth ratio in (23) comes from the standard envelope condition.

So, from the optimal portfolio in the absence of constraints in (24) and the margin constraint

in equation (6), the optimal portfolio is

wis,t = min
(
θ̄t, w

i,∗
s,t

)
, (25)

where the leverage upper bound θ̄t is defined in (7).

4.3 Recursive Markov Equilibrium

I derive a Markov equilibrium in state variables xt and yt. That is, I look for an equilib-

rium where all equilibrium objects (prices, consumption, and portfolio choices) can be written as

functions of these two state variables. Next I define the Markov equilibrium in state space (x, y).

Definition 2. A Markov equilibrium in state variables (xt, yt) is the set of functions: marginal

value of wealth Ji(x, y), dividend-price ratio F (x, y), real interest rate r(x, y) and policy func-

tions ci(x, y), wis(x, y) for i ∈ {A,B,C}, and laws of motion for endogenous state variables

µx(x, y), µy(x, y) and σx(x, y), σy(x, y) such that

i. marginal value of wealth Ji solves agent i’s HJB equation, and ci and wis are corresponding

policy functions, taking F, r and laws of motion for x and y as given.

ii. Markets for consumption good and risky asset clear
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xy cA + x(1− y) cB + (1− x) cC = F (goods market) (26)

xy wAs + x(1− y)wBs + (1− x)wCs = 1 (stock market) (27)

iii. The laws of motion for x and y satisfy (14)–(17).

4.4 Numerical Solution

The model is analytically tractable: the equilibrium dynamics can be fully characterized by a

system of partial differential equations that are solved numerically. The computation of equilib-

rium requires solving the HJB equations of the three types of agents simultaneously. Functions

JA(x, y), JB(x, y), and JC(x, y) can be found by solving a system of second-order partial differential

equations (PDEs) in (x, y). To do so, all equilibrium objects (e.g. F, σ, µ, σx, µx, σy, µy, etc.) need

to be expressed in terms of functions Ji and their derivative. Unfortunately, the system of nonlinear

differential equations does not admit a closed-form solution and I have to rely on numerical tech-

niques. This is particularly challenging in the presence of model’s two endogenous state variables.

I use projection methods, specifically orthogonal collocation using Chebyshev polynomials (Judd,

1992, 1998), to solve for equilibrium. Unlike a log-linearized representation around the steady state,

this method provides a global solution and a full characterization of the whole dynamic system. In

Appendix B, I explain the numerical procedure in detail.

5 Calibration and Parameters Choices

Table 1 lists the parameter choices used in calibrating the model. While my main goal is to

illustrate the mechanisms of the model, I pick parameter values that I view as reasonable. Note

that since my model is set in continuous time, the parameter values in Table 1 correspond to annual

values rather than the typical quarterly values used in calibrating discrete-time macro models. I

choose the drift and diffusion of the aggregate endowment (µD and σD) so that time-integrated

data from the model can roughly match the first two moments of annual U.S. consumption growth.

I set µD = 0.022 and σD = 0.035 consistent with the long historical sample of Campbell and

Cochrane (1999). Parameter κ, which controls the entry and exit of agents, is set to 0.0154. This

23



number is close to the US birth rate from 1970 to 2015.29 The value of κ implies that agents on

average live for 65 years after they start making economic choices. Assuming this age is about 20,

κ = 0.0154 implies an average lifespan of 85 years, consistent with the calibration in Gârleanu and

Panageas (2015). The subjective discount rate ρ is set to 0.001 which results in real interest rates

of between 2.5% and 3% annually. Note that with this value of ρ, the investors’ effective discount

rate is ρ+ κ = 0.016, comparable to calibrations used in the asset pricing literature.30

The parameter m̄ in equation (7) determines the constant margin requirements (when ν = 0),

and I set m̄ = 4, the same order of magnitude as Rytchkov (2014). When ν = 1, equation (7)

resembles a Value-at-Risk constraint. In this case, parameter α determines the tightness of the

constraint. I set α = 10 which is approximately equal to the one-month Value-at-Risk at the 99%

level.

I set a common value of EIS for all agent types of ψi = ψ = 1.5, similar to the values in Bansal

and Yaron (2004) and Bansal, Kiku, and Yaron (2012) and others. I treat the risk aversion of

A intermediaries as a free parameter and use the remaining parameters to approximately match

leverage and asset pricing moments. To match the ratio of broker-dealer leverage (A intermediaries)

to that of banks (B intermediaries), unconditional Sharpe ratio, and create substantial demand for

risk sharing and leverage, I set the risk aversions of A, B, and C agents to 2.5, 5.5, and 15,

respectively. From the Flow of Funds, in my sample period (1970Q1-2017Q4), the average leverage

of broker-dealers is approximately 2.2 times higher than that of banks, roughly what I get in the

model when state variables are at their unconditional means. The choice of risk aversion coefficients

gives an average Sharpe ratio of the model of 38%, which is in the range of typical consumption-

based asset pricing calibrations.

The values of γi and ψi imply agent i’s preference for the early resolution of uncertainty and

have been extensively used in the asset pricing literature to address a number of asset pricing

puzzles.31 A value of EIS greater than one implies a decline in asset prices when the effective risk

aversion in the economy increases. The shares of type A and B agents in the population, ū and

29Source: National Vital Statistics Report, Volume 66, Number 1, January 5, 2017.
30For instance, agents’ effective discount rate in this paper is close to the calibrations in Gârleanu and Panageas

(2015) and Drechsler et al. (2018).
31See, for example, Bansal and Yaron (2004), Hansen, Heaton, and Li (2008), and Bansal and Shaliastovich (2013)

for resolution of equity premium, value premium, and uncovered interest rate parity puzzles, respectively.
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v̄, are chosen to target share of intermediaries net worth as well as dealer’s net worth share in the

financial sector.

6 Model Results

In this section, I first present additional properties of the equilibrium with margin constraints

and compare them with the unconstrained economy with the same fundamentals and degree of het-

erogeneity among agents. The economy with margin constraints simultaneously exhibits higher risk

premium and lower risk-free rate and volatility, compared to the frictionless benchmark. Although

some of these effects have been previously documented in the literature, my analysis extends these

results to an economy with three agents (households and two heterogeneous intermediaries) and

recursive preferences.32 The equilibrium with three heterogeneous agents and two endogenous state

variables is considerably more challenging to solve numerically.

In Section 6.2, I show, consistent with empirical evidence, the model can generate different

cyclical dynamics for different intermediaries (i.e. A and B agent). Implications of heterogeneity in

the financial sector (captured by the wealth distribution among intermediaries) for variation is risk

premia are discussed in Section 6.3. Section 6.4 studies the impact of a dealer deleveraging episode

comparable to the one observed during the recent financial crisis, for risk premia and volatility.

Finally, in Section 6.6, I show how the model reconciles seemingly contradictory evidence for the

sign of price of intermediary leverage shocks in AEM and HKM.

6.1 Constrained versus Unconstrained Economy

Unconstrained Benchmark

As a benchmark, I first consider an economy without margin constraints, that is θ̄(xt, yt)→∞.

In the absence of constraints, investors face complete markets and their Euler equations hold with

equality in equilibrium: an economy is very similar to Gârleanu and Panageas (2015) but with three

heterogeneous agents.

32For example, Rytchkov (2014) adds margin constraints to an endowment economy with two heterogeneous agents
and CRRA preferences (similar to the models in Longstaff and Wang, 2012 and Bhamra and Uppal, 2014) to show
binding constraints reduce return volatility and risk-free rate, but increase expected returns and Sharpe ratio.
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Figures 2 presents various equilibrium variables (price-dividend ratio 1/F , volatility of the risky

asset return σ, Sharpe ratio (µ−r)/σ, and risk premium on the endowment claim µ−r) as a function

of the state variable x while the state variable y is fixed at (its stochastic steady state). Three-

dimensional plots for equilibrium objects are provided in Appendix C.2. In both figures solid blue

lines correspond to the frictionless economy. Along the horizontal axis in each panel is the state

variable xt (the wealth share of types A and B), which ranges from 0 to 1.

The top right panel of Figure 2 shows the volatility of returns. Even though fundamental

volatility is constant (σD = 3.5% in my calibration), return volatility is time varying and it exceeds

fundamental volatility in a hump-shaped pattern. As mentioned above and shown in equation (19),

a part of the risk from holding the risky asset is fundamental and a part is endogenous. From

equation (11), wealth shares of agents A,B, and C in the aggregate economy are equal to x y, x(1−y)

and 1 − x, respectively. Thus, when (x, y) = (1, 1), (x, y) = (1, 0), or (x = 0,∀y), the economy is

populated by one type of agent (A,B, and C, respectively) and the volatility of the endowment

claim coincides with the fundamental volatility σD.33 The Sharpe ratio and expected excess return

µ− r both show countercyclical behavior as expected: higher risk premium and price of risk during

distressed states when the intermediary sector is undercapitalized (low-x states) and/or broker-

dealers deleverage (when y is low) are low.

The bottom right panel of Figure 2 shows that the risk premium largely tracks the Sharpe ratio.

Note that this is the risk premium on a claim to the aggregate endowment, which has a relatively

low volatility (3.5% in the baseline calibration). By comparison, equity volatility is around 16%.

Therefore, the equity premium implied by the model is about five to six times larger than that of

the endowment claim, putting it in the range of standard estimates in the literature.

When the EIS exceeds one, the substitution effect dominates the income effect so that greater

risk aversion reduces asset demand and valuations fall. In this case the rise in the risk premium

exceeds the fall in the real rate. In contrast, if the EIS is less than one, greater risk aversion

counter-intuitively causes the valuations of risky assets to increase.

Figure 3 shows optimal portfolio weights in the risky asset for all three agents. For the most

risk tolerant type A investors it always exceeds one and for the most risk averse type C agents

33This can be validated from three-dimensional plots in Figure G.3 in the Appendix.
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it is always less than one. B’s optimal portfolio is greater than one for most of the state space.

Thus, without constraints, financial intermediaries (type A and B agents) borrow from type C

investors (households) to take a levered positions in the endowment claim. As the wealth share of

the financial sector get bigger and A agents have more relative wealth in the financial sector, they

borrow from traditional banks (B agents) as well.

Importantly, in the absence of constraints, the optimal leverage of A and B investors are both

countercyclical : they are higher in bad states when investment opportunities are more attractive,

which is counterfactual. This means when margin constraints are imposed to limit leverage, they

are more likely to bind in high marginal utility states.

The relationship between portfolio weights and the wealth shares of the financial sector (x)

and wealth share of broker-dealers in the financial sector (y) in Figure 3 is the result of market

clearing for the risky asset in equation (27). When x is close to zero or both x and y are close to

one, a single type of agent (type C in the first case and type A in the second case) dominates the

economy, which reduces the opportunity for risk sharing. In the absence of constraints, agents of

the dominant type must hold all their wealth in the risky asset, whereas agents of the vanishing

type can be satisfied with only a small amount of borrowing or lending. Thus, when x is near zero,

households (C agents) set prices and intermediaries (A and B types) take high leverage.

Equilibrium with Dynamic Margin Constraints

To study the impact of financial constraints on the equilibrium, I solve the baseline model where

face margin requirements in the form given in equation (7). As noted earlier, margin constraints

are occasionally binding and state-dependent. Although all agents face the margin constraints in

their optimization problems, in my calibration, the wedge between risk aversions γA and γB is such

that constraints occasionally bind only for the most risk tolerant A types and more risk averse

agents (i.e. types B and C) do not face binding leverage constraints, in equilibrium.

Consistent with Kogan et al. (2007) and Rytchkov (2014), the economy with margin constraints

simultaneously exhibits higher risk premium and Sharpe Ratio and lower risk-free rate and volatility,

compared to the frictionless benchmark.34

34Both papers study a two-agent economy with CRRA preferences, whereas my model has three heterogeneous
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I focus on two cases: (i) a constant margin constraint with θ̄t = m̄ (ν = 0 in equation 7),

and (ii) the case where type A agents face endogenous time-varying constraints (ν = 1) in the

form θ̄t = 1/(ασt), where parameter α determines the tightness of the constraint. In the second

case, margin requirements are determined by a Value-at-Risk-type rule and the level of margins is

endogenous because it is (inversely) related to the return volatility, an equilibrium object.

Figures 2 and 3 present various objects for equilibria with constant (dash-dotted purple line) and

state-dependent Value-at-Risk-type (dashed red line) margin constraints. There are few important

observations from these figures. First, the impact of both types of constraints are qualitatively

similar and the only difference is the magnitude. With the choice of parameters presented in

Table 1, the time-varying margins are more restrictive and the effects are stronger with ν = 1 in

equation (7).

The top left panel of Figure 2 shows the impact of margin constraints on the price-dividend

ratio. In my calibration, margin constraints do not substantially decrease asset’s valuation ratio

when they bind, reducing the price-dividend ratio by less than 1% at steady state relative to the

complete-market benchmark.

The top right panel of Figure 2 plots the return volatility σ. The impact of constraints on

volatility is unambiguous: portfolio constraints reduce the volatility of the risky asset return relative

to the unconstrained economy. Also the volatility decreases in states where the constraint actually

binds, although the point at which the constraint starts to bind depends on the form and severity

of the constraint. The intuition behind this effect is as follows. In equilibrium, less risk averse

A and B investors (the financial sector) borrow from more risk averse households and operate

with leverage. It is well established in the macro-finance literature that leverage makes returns

more volatile than the fundamental volatility: levered balance sheets amplify an aggregate shock to

dividends.35 Binding margin constraints reduce dynamic risk sharing and leverage in equilibrium,

thereby reducing the return volatility. In my calibration, binding dynamic margin constraints

results in the reduction of the return volatility by approximately 6% at model’s stochastic steady

state.

agents with recursive preferences and two endogenous state variables which is considerably more challenging to solve.
35See Kiyotaki and Moore (1997), Bernanke et al. (1999), and Brunnermeier and Sannikov (2014), for example.
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The bottom panels of Figure 2 demonstrate that portfolio constraints increase the Sharpe ratio

and risk premium of the endowment claim. This is again a general effect and does not depend on the

form of the constraints. The intuition is straightforward: because the leverage of the risk tolerant

agent (A type) is bounded in the part of the state space where the margin constraints bind, to clear

the market, the more risk averse investors (B and C types) are forced to take on a larger portion of

the risky asset that they would without constraints. To induce them to buy more, the risk premium

should increase. Following negative risky asset returns, margin constraints bind and broker-dealers

(A types) are forced to sell assets. As a result, to clear the market, the expected returns must

increase enough to entice more risk averse agents to take on a larger supply of the risky asset than

before the shock. Since banks (B types) are not facing binding constraints, as discussed above, they

increase leverage following a negative shock. Thus the model can qualitatively match the empirical

evidence on opposite cyclical patterns of intermediary leverage in the financial sector documented

in Figure 1a. At model’s stochastic steady state, binding margin time-varying constraints causes

the Sharpe ratio and risk premium to rise by approximately 39% and 36%, respectively.

Figure 3 also shows the effect of margin constraints on optimal portfolio weights. As explained

above, because A’s leverage is countercyclical in the unconstrained economy, the margin constraints

will bind in states where x and y are low. In the model with margin constraints, type A agents

operate with leverage in all states of the economy, however when margin constraints bind, leverage is

restricted by θ̄t. In other words, the presence of binding leverage constraints makes broker-dealers’

leverage countercyclical : they are forced to sell assets and delever in bad states of the economy

where constraints bind. To clear the risky asset market, both B and C investors need to absorb

this additional supply and increase their portfolio weights as we see from dashed and dotted lines

in the top right and bottom left panels of Figure 3. Note that the model has difficulties generating

substantial movements in and matching the level of intermediary leverage we observe during the

crisis (see Figure 1a).

Finally, the middle right panel of Figure 3 also shows that margin constraints (regardless of the

form) reduce the risk-free rate. This result is also intuitive. In the absence of constraints, A and

B investors operate with leverage by borrowing from type Cs. The upper bound for leverage for
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type As reduces the demand for credit, thus lowering the risk-free rate. In my calibration, when

margin constraint binds, the risk-free rate decreases by approximately 8% in the stochastic steady

state (xss, yss) = (0.36, 0.56).

Figure 4 illustrates the evolution of model’s two endogenous state variables x and y in the

constrained and frictionless economies. The drift of xt(yt) is positive for low levels and becomes

negative for high values of xt(yt). The points where the drift crosses zero is the stochastic steady

state of the endogenous state variable, the point of attraction of the system in the absence of

shocks. Importantly, from the right panels in Figure 4, notice that the diffusion terms σx and σy

are always positive. This implies that following a negative aggregate shock, both state variables

decline, i.e. x and y both exhibit procyclical dynamics in the model. In Section 7.1 below, I verify

this also holds in the data. As shown in Proposition 2, at the boundary points of the state space

(x = 0, x = 1, y = 0, and y = 1), the diffusion of state variables x and y are zero. This can be

verified from the top- and bottom-right panels of Figure 4.

The left panels of Figure 4 also illustrate that portfolio constraints of both types reduce the

volatility of the state variables. Because the impact of the constraints on the sensitivity of the

price-dividend ratio to the state variables is very small (as shown in the top left panel of Figure 2),

a decrease in σx and σy translates into a decrease in the return volatility σ as presented in the

top-right panel of Figure 2 (this follows directly from equation (19)).

6.2 Cyclical Properties of Intermediary Leverage

Countercyclical Holding Company and Financial Sector leverage, Procyclical leverage

for Broker-Dealers

In this section, I show that the model is able to generate leverage patterns for different inter-

mediaries that are consistent with the empirical evidence presented earlier. As mentioned above

and illustrated in Figure 3, in the absence of margin constraints, broker-dealers and bank holding

companies both exhibit countercyclical leverage: their optimal leverage is higher in bad states.

However, when broker-dealers face state-dependent margin constraints inversely dependent on re-

turn volatility, their leverage exhibit an (almost) opposite cyclical behavior. Since return volatility
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is hump-shaped (see the top right panel of Figure 2), margin constraints cause A type’s leverage

to be ∪-shaped when constraints bind. When the constraints are sufficiently tight, shadow bank

leverage is procyclical, consistent with the empirical evidence from broker-dealers leverage presented

in Figure 1a (the solid blue line) and also documented in AEM.

Leverage of the financial sector (types A and B in the model), wFSs , is defined as the share of

sector’s wealth held in the risky assets:

wFSs =
wAs WA + wBs WB

WA +WB
= ywAs + (1− y)wBs (28)

where state variable y = WA/(WA +WB) is the wealth share of A types in the financial sector as

defined in equation (11). We see that the financial sector leverage is the weighted average of A

and B types’ optimal leverage with a time-varying weight equal to the state variable y ∈ [0, 1]: the

wealth share of broker-dealers (A types) in the financial sector.

The left panel of Figure 5 presents financial sector’s leverage in the unconstrained equilibrium

and in the model with endogenous margin constraints. As discussed above, margin constraints

reduce financial sector’s leverage when they bind: binding constraints reduce A type’s leverage

causing the return volatility to decrease relative to the frictionless benchmark.

The right panel of Figure 5 presents intermediary leverage in the equilibrium with a Value-

at-Risk-type state-dependent margin constraint. In the model with margin constraints, financial

sector and banks both exhibit countercyclical leverage, while broker-dealers could have procyclical

leverage when constraints bind. This is again consistent with the evidence presented in Figure 1a

(dashed red line for holding company leverage and solid blue line for broker-dealer leverage) and

also recently documented in the empirical intermediary asset pricing literature in AEM and HKM.

6.3 Heterogeneous versus Representative Intermediaries

Since the aggregate endowment in equation (1) is i.i.d. with constant volatility, variation in risk

premia is only due to wealth distributions and intermediation frictions captured by state variables

x and y. State variable x, representing the wealth share of the aggregate financial sector in the

economy, is the primary determinant of time-varying risk premia in representative intermediary
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models. In my model with a heterogeneous financial sector, however, the wealth distribution among

intermediaries (captured by state variable y) also contributes to the variation in risk premia. In

this section, I answer the following question: What fraction of the variation in risk premia can be

attributed to the state variable y, a measure of the composition of the financial sector?

To answer this question and investigate the role of heterogeneity in the financial sector, I

compare the main results of the three-sector model from above with the ones from an economy

with identical fundamentals but two heterogeneous agents instead: a household sector (C types

identical to the main model) and a representative intermediary sector (I), where I agents face the

same endogenous margin constraints as in the original model (equation 7 with ν = 1).

Most of the parameters in the two-agent representative intermediary model are identical to the

ones in the main model listed in Table 1: household’s risk aversion γC = 15, EIS for household

and the representative intermediary ψC = ψI = 1.5, rate of time preference ρ = .001, growth

rate and volatility of the aggregate endowment µD = .022, σD = .035, and agents birth and

death rates κ = .0154 (exactly as in the original three-sector model). I set risk aversion of the

representative intermediary sector to γI = 3.3: the wealth-weighted “harmonic average” of relative

risk aversion for the financial sector (A andB intermediaries) in the main model (with heterogeneous

intermediaries) evaluated at the stochastic steady state.36 Population share of the representative

intermediary sector is set to x̄ = .12: sum of population shares of two intermediary sectors in the

main model, ū and v̄ from Table 1. Note that with a representative intermediary, there is only one

endogenous state variable x: the wealth share of the intermediary sector.37

I simulate representative- and heterogeneous-intermediary models for 3,000 quarters 20,000

times and examine the distribution of risk premium volatility.38 As expected, the model with het-

erogeneous intermediaries exhibits more variation in risk premia than the one with a representative

financial sector. Since the aggregate intermediary sectors in both models are (almost) identical,

36The wealth-weighted harmonic mean of risk aversions for the intermediary sector in main three-agent model is

γI =
(
y
γA

+ 1−y
γB

)−1

. Using values for γA = 2.5 and γB = 5.5 from Table 1, at the stochastic steady state yss = 0.56,

we get γI,ss = 3.3.
37The wealth share of the financial sector is the key state variable in existing models with a representative interme-

diary sector. See He and Krishnamurthy (2013), Brunnermeier and Sannikov (2014), Di Tella (2017), and Drechsler
et al. (2018), for example.

38Figure G.1 in Appendix C shows these distributions.
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any excess variation in risk premia in the heterogeneous intermediary model has to be due to state

variable y. In my calibration, approximately 20% of the variation in risk premia can be attributed

to heterogeneity in the financial sector (state variable y).39 Therefore, failing to account for het-

erogeneity among intermediaries can lead to missing a substantial portion of the variation in risk

premia.

6.4 Implications of Financial Sector’s Balance Sheet Adjustments

As discussed in Section 2 and documented in Figures 1a and 1b, during the height of the financial

crisis, broker-dealers substantially delevered (reduced leverage by approximately 47% relative the

previous quarter), while during the same period, holding companies increased leverage by 72%. In

this section, I measure the impact of this balance sheet adjustments within intermediaries on risk

premia and endogenous risk.

When the least risk averse A types face binding margin constraints, they are forced to reduce

leverage by selling assets. To clear the risky asset market, the more risk averse agents (B and C

types) need to take on a larger portion of the asset than they would in the absence of constraints.

In order to entice them to buy more, the risk premium must increase.

As mentioned the model has difficulties matching the high level and substantial variation of in-

termediary leverage during the Great Recession. To study the impact of balance sheet adjustments

within the financial sector, I perform the following exercise: I try to match the aforementioned

increase and decrease in leverage of broker-dealers and holding companies, respectively, by tight-

ening the margin constraint faced by A types in baseline calibration in Table 1. This is consistent

with empirical evidence that the contraction in repo market financing during the recent financial

crisis hit broker-dealers (represented by A agents in the model) particularly hard and forced them

to deleverage (see Gorton and Metrick, 2012 and He et al., 2010, for example). As noted earlier

in Section 6.1, tighter margin constraints lead to a decrease in total leverage and thus a lower

volatility, which is counterfactual. To achieve an increase in volatility consistent with the empirical

39Notice that the horizontal axis in Figure G.1 is the standard deviation of the risk premium for the endowment
claim, which has relatively low volatility (3.5% in my calibration) relative to the market (approximately 16%).
Therefore, equity premium volatility implied by the model is about five to six times larger than that of the endowment
claim (approximately 1% for the heterogeneous intermediary model, for example).
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evidence, I also make households relatively more risk averse than intermediaries.

Figure 6 presents results of this exercise. Tighter margin constraints is implemented by an

increase in the parameter α. I also increases risk aversion of households relative to the intermediary

sector (lower γI/γC) to obtain an increase in volatility. The top left panel shows that at model’s

stochastic steady state, increasing parameter α by 50% (consistent with the rise in repo-haircuts

index during the 2008 crisis from Gorton and Metrick (2012)’s Fig. 4) and reducing γI/γC by 26%

(from 0.61 to 0.45), results in approximately 48% decline in A types’ leverage. This deleveraging

is very close to what broker-dealers experienced during the crisis.

To clear the risky asset market, the risk premium must increase enough to entice more risk

averse agents to take on a larger supply of the asset than before the shock. More risk averse

holding companies increase leverage as a result of dealers’ deleveraging (the top right and middle left

panels): B type leverage rises by 79% and households’ holding of the risky asset remain relatively

unchanged (see the middle left panel of Figure 6). As the middle right and bottom left panels

of Figure 6 show, this dealer deleveraging results in an approximately 55% increase in the risk

premium and Sharpe ratio a 5% rise in endogenous volatility.

More importantly, asset reallocations between intermediaries do not impact the aggregate wealth

share of the financial sector, and thus do no affect risk premia and volatility in a model featur-

ing representative intermediaries. My model with a heterogeneous financial sector captures the

implications of these balance sheet adjustments for equilibrium objects.

6.5 Empirical Predictions of the Model

In this section I present two main empirical predictions of the model which I test in the data:

(1) The composition of the financial sector, captured in the state variable y, negatively predicts

returns, and (2) shocks to this measure of composition is priced in the cross-section of assets with

a positive price of risk

State variables load Positively on aggregate shocks. Figure 7 presents the diffusions of

state variables x and y (σx and σy in equation 16 and 17) in the equilibrium with state-dependent

margin constraint. From equation 16, σx always remains positive. Since, in my calibration, σy is
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also positive in the entire state space, both state variables are procyclical : following a negative dZ

shock, both state variables go down.

The empirical prediction of the model is that state variables negatively predict future excess

returns. In particular, times when the more aggressive intermediaries are relatively more impaired

in the financial sector (i.e., when state variable y is low), coincide with high marginal utility states

when the risk premia is high.

Price of Risk is decreasing in x and y. The left (right) panel of Figure 8 plots the Sharpe

ratio of the risky asset as a function of state variable x (y) for three different values of the other

state variable: Its unconditional mean, and its unconditional mean ±3 standard deviations. We

see that the Sharpe ratio is decreasing in both sate variables x and y. In Assets that pay

The empirical prediction of the model is that shocks to state variables are priced in the cross-

section of expected returns with a positive price of risk. In particular, asset that pay well when the

more aggressive intermediaries are relatively more impaired in the financial sector (i.e., when state

variable y is low), are valuable hedges and demand lower excess returns.

6.6 Reconciling Empirical Evidence in AEM and HKM

In this section, I argue that my model featuring heterogeneous intermediaries and leverage

constraints can reconcile the conflicting cross-sectional asset pricing evidence, recently documented

in AEM and HKM.40 As mentioned earlier, AEM and HKM find opposite signs for the price

of intermediary leverage shocks in the cross-section of asset returns and thus conflicting cyclical

dynamics of the intermediary leverage.41

Importantly, in reaching these seemingly contradictory results, AEM and HKM measure in-

termediary leverage in different parts of the financial sector: broker-dealers and bank holding

40He et al. (2017) present a simple, one-period model in their appendix which was originally suggested by Alexi
Savov in a conference discussion of the paper. The model can reconcile the contradiction between HKM’s results and
the ones documented in AEM. This static framework, however, is unable to capture implications of balance sheet
adjustments within the financial sector for risk premium, the price of risk, and volatility discussed above.

41As mentioned above, the data for security brokers-dealers are from Table L.130 of the Financial Accounts of the
United States (Flow of Funds). The underlying source for this data comes from FOCUS and FOGS quarterly reports
filed with the SEC by these broker-dealers in isolation from other parts of their holding companies which are not
publicly available. Data for publicly-traded holding companies of primary dealers are from CRSP/Compustat and
Datastream. For a more detailed description of data sources, see Appendix E.
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companies, respectively. AEM use shocks to book leverage of broker-dealers to construct an inter-

mediary stochastic discount factor (SDF) and show that it prices equity and bond portfolios with

a positive price of risk implying procyclical intermediary leverage. HKM, on the other hand, find

that shocks to leverage of bank holding companies for the New York Fed’s primary dealers price the

cross-section of returns for many asset classes with a negative price of risk. In contrast to AEM,

HKM’s negative price of risk suggests that intermediary leverage is countercyclical.

A direct implication of the opposite flows and leverage dynamics within the financial sector

in my model with heterogeneous intermediaries is that measuring the price of risk for shocks to

leverage of different intermediaries will result in opposite signs. Thus, these seemingly contradictory

asset pricing results can be reconciled in a model where the intermediary sector is modeled as two

heterogeneous sectors facing financial constraints. Moreover, in Section 7, I will show that the

composition of the financial sector plays an important role for time-series predictability and also

has significant explanatory power for the cross-section of expected returns.42

7 Empirical Implications of the Model

In this section, I study empirical implications of the model discussed in Section 6.5 and show

that the composition of the intermediary sector, measured by the wealth share of broker-dealers

in the financial sector, matters for time-series return predictability and is also priced in the cross-

section of expected returns. I focus on asset pricing implications of the model with time-varying

margin constraints (ν = 1 in equation 7). I show that consistent with model’s predictions, an

empirical measure of the state variable y, which measures the composition of the financial sector,

has strong forecasting power for returns on various asset classes beyond factors already established

in the literature to predict returns. Moreover, innovation in this wealth distribution prices the

cross-section of equity and bond portfolios.

42It is important to note that the intermediary leverage is endogenous, and the fact that shocks to leverage are
priced does not necessarily mean that intermediaries are the marginal investors. It could well mean that leverage is
proxy for aggregate risk aversion. See Santos and Veronesi (2016) and Haddad and Muir (2018) for more details.
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7.1 Measuring Heterogeneity in the Intermediary Sector

As mentioned earlier, potentially there are other ways to construct model’s two state variables.

A valid way to construct them in the data is by measuring the wealth share of the financial sector

in the aggregate economy (for x) and that of BDs in the financial sector (for y). In many recent

representative intermediary-based models (e.g., He and Krishnamurthy, 2013 and Brunnermeier

and Sannikov, 2014), x is the main state variable. Moreover, with this choice of y, in the absence of

heterogeneous intermediaries, my model collapses to one with x as the only state variable similar

to the recent intermediary-based models. Thus, I believe this presents a natural way to construct

the state variables of my model.

The price of risk in my model is time-varying and depends on wealth share of the financial sector,

state variable x, as well as, broker-dealers’ wealth share in the intermediary sector, state variable

y in the model. Since financial sector’s wealth share, x, is the key state variable in many existing

models with a representative intermediary sector, in this section, I emphasize the importance of

wealth distribution within the intermediary sector, captured by state variable y, for forecasting

future returns.43

Since risk premium is decreasing in y (see Figure 8 in the Appendix), an asset that pays well

when y is low is less risky. Thus, my model predicts that a higher wealth share for BDs in the

financial sector forecasts higher prices and thus, negatively predicts future returns.

In the data, I compute wealth share of the financial sector as the ratio of their market equity

of to the total market value of firms in the CRSP universe:

xdatat =
Market capitalization of the financial sectort

Total market capitalization of the CRSP universet
. (29)

I use monthly equity data from CRSP to compute xdata. The financial sector is identified as firms

in the CRSP universe for whom the first two digits of the header standard industry classification

(SIC) code equals 60 through 67.44

43Adrian, Moench, and Shin (2014b) study return predictability in representative intermediary models and show
book leverage of broker-dealers negatively forecasts future equity and bond returns. He et al. (2017) also run time-
series predictive regressions and show the squared reciprocal of capital ratio for bank holding companies of NY Fed’s
primary dealers positively predicts future returns for many asset classes.

44This definition of the financial sector has been commonly used in the literature. See Giglio, Kelly, and Pruitt
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Since I don’t have access to market data for broker-dealers, model’s second state variable, y

(wealth share of broker-dealers in the financial sector), is computed as the ratio of BD’s book equity

to the sum of commercial bank and BD book equities from the Flow of Funds Tables L.110 and

L.130, respectively:

ydatat =
Book equity of BDst

Book equity of Commercial Bankst + Book equity of BDst
, (30)

where equity is computed by subtracting total liabilities (excluding miscellaneous liabilities) from

(mark-to-market) total financial assets.45 For a detailed description of the data, see Appendix E.

As mentioned earlier, A agents in the model are not meant only to represent broker-dealers

(BDs). BDs are good proxies for a set of intermediaries that face tightening leverage constraints

in bad times, and their actions resemble these agents in the model (e.g., hedge funds). Moreover,

BDs are intermediaries for which I have access to aggregate balance sheet data from the Flow of

Funds. Unfortunately, I cannot measure the hedge fund sector as well as I can do BDs. Similarly,

B agents are meant to describe intermediaries who face equity capital constraints (e.g., commercial

banks and insurance companies). Although this simple classification ignores potentially important

institutional details, it goes one step further than the existing literature to study the asset pricing

of implications of heterogeneous intermediaries.

It is also important to point out that many of the primary broker-dealers are subsidiaries of

large US bank holding companies, If the internal capital markets represent an important source of

funding for these broker-dealer subsidiaries, it may seem unnecessary to treat BDs separate form

BHCs. For instance, if the commercial banking affiliate of a BHC experiences large deposit inflows

during a crisis (as documented in Gatev and Strahan (2006), for example), the access to internal

capital markets may greatly mitigate the financial distress in the broker-dealer subsidiary.

(2016), for example.
45In unreported results, using 49 Fama-French industry definitions, I identify publicly-traded broker-dealers as all

US firms in the CRSP universe with standard industry classification (SIC) codes 6211 (Security brokers, dealers &
flotation companies) or 6221 (commodity contracts brokers & dealers). I then equivalently define state variable y using
market data as ydata,mktt = Market cap of dealerst

Market cap of the financial sectort
. During the sample period (1971Q1-2010Q4), time series of

ydata,mkt is highly positively correlated with ydata computed from book values (in equation 30) with correlation
coefficient of 0.55 (t-stat of 8.88). Prior to 2010, book and market series are even more strongly positively correlated
(correlation coefficient of 0.68 with t-stat of 11.74). Post 2010, however, the two series become negatively correlated
with coefficient of −0.5 (t-stat of −2.92).
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Federal Reserve’s Regulation W prohibits BHCs from freely using deposits in their commercial

banking arm to fund the broker-dealer subsidiary when repo markets collapse.46 Moreover, Gupta

(2018) documents that the internal capital markets are not frictionless and do not behave very

differently from the external ones during the financial crisis. He shows that although the aggregate

size of the dealer internal capital markets quadrupled from $300 billion in 2001 to $1.2 trillion by

2007, these inter-affiliate repo and securities loans collapsed by 37% in 2008.

Table 2 reports the mean, standard deviation, and autocorrelation of the state variables in the

data, both in levels and innovations. The factors are autocorrelated in levels but not in changes.

Figure 9 shows the time-series of xdata and ydata using the CRSP and Flow of Funds data

confirming the dramatic growth of the sector from 1980 to the onset of the recent financial crisis.

Consistent with the model, xdata and ydata are both procyclical : innovations in xdata and ydata are

both positively correlated with the innovations in the real GDP with correlation coefficients of 0.24

(t-stat of 2.05) and 0.21 (t-stat of 2.99), respectively.47

7.2 Intermediary Heterogeneity and Time-Series Predictability

The risk premium in my model is time-varying due to its association with wealth share of the

financial sector, state variable x, as well as, broker-dealers’ wealth share in the intermediary sector,

state variable y in the model. As a result, expected returns are time-varying in the model and are

predictable using lagged state variables as predictors. Since financial sector’s wealth share, x, is

the key state variable in existing models with a representative intermediary sector, in this section, I

emphasize the importance of wealth distribution within the intermediary sector, captured by state

variable y, for forecasting future returns.48

46Sections 23A and 23B of Federal Reserve’s Regulation W set limits on the amount of covered transactions between
a bank and its affiliates and require these transactions to be collateralized and on market terms and conditions.
Covered transactions include loans and other extensions of credit to an affiliate, investments in the securities of a
subsidiary, purchases of assets from an affiliate, and certain other transactions that expose the bank to the risks of
its affiliates. See Appendix D for more details on Regulation W.

47It is worth pointing out that the decline in ydata post 2009 is because two of the largest broker-dealers (Goldman
Sachs and Morgan Stanley) became bank holding companies in 2009Q1. Two other broker dealers were also acquired
by bank holding companies: J.P. Morgan purchased Bear Sterns and Merrill Lynch became part of Bank of America.

48Adrian et al. (2014b) study return predictability in representative intermediary models and show book leverage
of broker-dealers negatively forecasts future equity and bond returns. He et al. (2017) also run time-series predictive
regressions and show the squared reciprocal of capital ratio for bank holding companies of NY Fed’s primary dealers
positively predicts future returns for many asset classes.
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Due to the presence of a single aggregate dividend shock, the two state variables are positively

correlated in the model. As a result, one might be concerned about multicollinearity when both

x and y are included as forecasting variables in predictive regressions. However, the model with

occasionally binding margin constraints exhibits highly nonlinear dynamics. In particular, running

predictive regressions unconditionally using very long sample of simulated data in the model (I

used 300-year long sample and 20,000 simulations), results in negative and significant coefficients

on both state variables x and y.

Another concern in the empirical results that follows may be the presence of time-series trend

in the state variable y in Figure 9. In Appendix F, I consider various ways to detrend the state

variables and perform additional robustness checks with the cyclical components. The main pre-

dictive regression results, which use the levels of state variables as predictors, are also robust to

using the detrended variables.

As discussed above, state variable y is procyclical (see Figure 7 in Appendix C.2): times when

the more aggressive intermediary is relatively more impaired in the financial sector, i.e. when y is

low, coincide with high marginal utility states where the risk premia is high. As such, my model

predicts that a higher wealth share for BDs in the financial sector forecasts higher prices (lower

returns) thus, negatively predicting future returns. To test this hypothesis, I regress one-year-ahead

holding period excess return (from quarter t+ 1 to t+ 4) for asset i on the lagged wealth share of

BDs in the financial sector, ydata defined in equation (30), and controls:

Rit+1→t+4 − r
f
t = γi0 + γiy yt + γiCtrl Ctrlt + εit+1→t+4 (31)

where Ri − rf is the average excess return on asset i, and Ctrl represents the vector of con-

trol variables that are known in the literature to forecast returns. I use the following control

variables: wealth share of the aggregate financial sector (x from the model), fluctuations in the

aggregate consumption-wealth ratio (cay variable) defined in Lettau and Ludvigson (2001), real

price-dividend (PD) and cyclically adjusted price-earnings (CAPE) ratios from Robert Shiller’s

website, and variance risk premium (VRP) from Bollerslev, Tauchen, and Zhou (2009).

The model predicts a negative and significant coefficients γiy: times when wealth share of broker-
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dealers in the financial sector is high are associated with low marginal utility states where asset

prices are high and future expected returns are low. As test assets, I use value- and equally-weighted

CRSP portfolios, mean excess return of 25 size/book-to-market and 10 momentum portfolios from

Ken French’s data library, as well as, an equally-weighted portfolio of assets within each non-equity

class studied in HKM available form Asaf Manela’s website.49 The sample is quarterly starts in

1970Q1 and ends in 2017Q4 for equity portfolios and in 2012Q4 for non-equity assets (limited by

data availability).

Table 3 presents results of the univariate predictive regressions in (31), with state variable

y as the only predictor, for different test assets mentioned above. In Column (1), where the

dependent variable is the market excess return, I can directly verify model’s prediction that state

variable y should negatively predict future aggregate risk premia: an increase in the measure of the

composition of the financial sector (state variable y) of 1 percentage point in deviation from its mean

decreases the expected excess return by 1.16 percentage points (per quarter). Consistent with model

predictions, we observe negative and significant γ̂y for Market, size/book-to-market, momentum,

sovereign bonds, and options portfolios. For most asset classes γ̂y is negative, as expected: this

measure of the composition of the financial sector negatively forecast future returns.50

To examine whether forecasting relationships are stable over time, and an investor could have

profited from observing the predictor variable y, I follow Goyal and Welch (2008) and Campbell

and Thompson (2008) to evaluate the out-of-sample performance of the predictive regressions. I

compute an out-of-sample R2 statistic (R2
OOS) as:

R2
OOS = 1−

∑T
t=1 (rt − r̂t)2∑T
t=1 (rt − r̄t)2

,

where r̂t is the fitted value from a predictive regression estimated through period t − 1, and r̄t

is the historical average return estimated through period t − 1. The R2
OOS for market excess

49Non-equity assets in HKM are mostly from previous studies. See Appendix E and He et al. (2017) for more
details on test assets.

50The predictor variable yt is very persistent with AR(1) coefficient around 0.96 in quarterly data. I verify (in
unreported regressions) that the absolute value of the regression coefficient γ̂y and the R2 both rise with the forecast
horizon (see Cochrane (2005)’s Chapter 20 for more details). The estimates in Table 3 and Table G.3 in the Appendix
are corrected for the Stambaugh (1999) bias. Moreover, if I use growth rate of variable y (I used one- and five-year
growth rates) as predictors, I still observe negative and significant coefficients γy.
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return, Column (1) of Table 3, is approximately 4%. To assess the economic significance of return

predictability, I use Campbell and Thompson (2008)’s simple metric: the increase in expected

returns of a one-period mean-variance (MV) investor from observing the predictor variable y. A

quarterly out-of-sample R2 of 4% leads to an increase in expected returns of approximately 3% per

year for a MV agents with a risk-aversion coefficient of 5.

Table 4 provides results of the predictive regression in (31) adding several control variables

mentioned above to regressions in Table 3.51 In Column (1), as a benchmark, I report the forecasting

regression for the market risk premium using only aforementioned control variables as predictors.

In Column (2), I add dealer wealth share in the financial sector, y, as an additional predictor.

Comparing Columns (1) and (2), it is particularly important to point out that the composition

of the financial sector, captured in wealth distribution y, leads an additional 15 percentage points

predictive power for future market excess returns over variables already known in the literature

to forecast returns: the R2 of the predictive regression on the market excess return goes from

0.28 to 0.43 when y is included in the regression in Column (2) of Table 4.52 It similarly reports

negative and significant γ̂y for Market, size/book-to-market, momentum, sovereign bonds, and

options portfolios.

In Appendix F, I provide series of additional robustness checks for the time-series predictability

regressions above. I first show that the predictive regression results are robust to excluding the

Great Recession (years 2007 to 2009) from the sample. So, it is not just the financial crisis that

drives this predictability results. As mentioned above, one also might be worried about time-series

trends in state variable y. I show that the main predictive regressions in Table 4 are robust to

using the cyclical component of state variable y in the data. I also rerun the forecasting regression

in Table 4 by adding AEM’s broker-dealer leverage ratio, HKM’s intermediary capital ratio for

different asset classes. Adding these additional predictors, however, does not change the sign and

significance of the coefficient γ̂y.

In summary, in this section, I provided strong empirical evidence that the composition of the

51The sample is now shorter and starts in 1990Q1 due to data availability for Bollerslev et al. (2009)’s variance
risk premium, one of the control variables used in return forecasting regression in equation (31).

52In one-quarter ahead predictive regressions, the incremental R2 increases by 5 percentages points (from 0.22 to
0.27) when intermediary composition variable y is added to the regression.
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financial sector, captured by state variable y, matters for prices, beyond the health of the aggregate

financial sector: it has strong predictive power for excess return on many assets beyond variables

from representative intermediary asset pricing models, as well as, the ones already known in the

literature to predict return.

7.3 Intermediary Heterogeneity and the Cross-Section of Asset Returns

As mentioned above, the model with heterogeneous financial intermediaries can reconcile seem-

ingly contradictory evidence for the sign of estimated price of risk for intermediary leverage shocks

documented in AEM and HKM. In this section, I explore the implications of a heterogeneous

financial sector for the cross-section of returns.

As shown in Figure 2 (and also in the bottom right panel of Figure G.3 in Appendix C.2), risk

premium on the endowment claim is decreasing in both state variables x and y.53 This suggests

assets that pay poorly when: (i) the financial sector is less capitalized (i.e. when x is low), and/or

(ii) wealth share of broker-dealers in the financial sector is small (i.e. when y is low), are riskier

and should command higher expected returns. I emphasize that point (ii) can only be made in a

model with heterogeneous financial intermediaries.

7.3.1 Cross-sectional Asset Pricing Tests

Similar to He et al. (2017), I construct the growth rate to dealers’ wealth share in the financial

sector, denoted y∆
t , as follows. I estimate a shock to dealer wealth share in levels, ςt, as an AR(1)

innovation in the regression: yt = φ0 + φyt−1 + ηt. I then convert these innovations to a growth

rate by dividing them by the lagged wealth share:

HIFac = y∆
t =

ηt
yt−1

(32)

I call this wealth share growth rate the heterogeneous-intermediary factor (HIFac) and use it to

perform cross-sectional asset pricing tests. For each asset i, I first estimate betas from time-series

53This is true even in the absence of margin constraints as shown in the bottom right panel of Figure G.2.
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regressions of portfolio excess returns on the risk factors:

Rei,t = ai + β′i,f ft + ϑi,t, i = 1, . . . , N, (33)

where f represents the K × 1 vector of risk factors. I consider four cases: (1) ft = HIFact, (2)

ft = [HIFact MktRFt]
′, (3) ft = [HIFact AEMt]

′, and (4) ft = [HIFact HKMt MktRFt]
′, where

AEM is the broker-dealer leverage factor from Adrian et al. (2014a), HKM is the intermediary

capital risk factor from He et al. (2017), and MktRF represents the market risk premium. For

comparison, I also report the pricing performance of AEM and HKM factors.

Next, in order to estimate factor risk prices, λf , I run a cross-sectional regression of average

excess returns on the estimated risk exposures β̂i,f :

E
[
Rei,t
]

= αi + β̂′i,fλf + ζi, i = 1, . . . , N, (34)

As mentioned above, the model predicts a positive and significant sign for the estimated price of

risk λHiFac.

I test the ability of the heterogeneous intermediary factor in pricing the cross-section of 55 equity

and bond portfolios: the test assets are 25 size and book-to-market and 10 momentum portfolios

from Ken French’s website, 10 maturity-sorted US government bond portfolios from CRSP’s Fama

Bond dataset with maturities up to five years in six month intervals, and 10 US corporate bond

portfolios sorted on yield spreads from Nozawa (2017) obtained from Asaf Manela’s website. I

choose equity and bond portfolios as test assets due to the availability of longer time-series than

others such as options and CDS. Since I use many test assets beyond size and book-to-market

portfolios, my model avoids the typical criticisms of asset pricing tests discussed in Lewellen, Nagel,

and Shanken (2010).

Table 5 presents the main asset pricing results. Below estimated risk prices I report Shanken

(1992) t-statistics that corrects for estimation error in betas and cross-correlations. I also report

Fama and MacBeth (1973) t-statistics by running period-by-period cross-sectional regressions and

computing standard errors of the time-series average of λs. I report cross-sectional R2 and the
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mean absolute pricing error (MAPE), calculated as 1
N

∑
|ζ| where N is the number of test assets,

as measures of model fit. I also report a χ2(N −K) statistic (K is te number of factors) that tests

if the pricing errors are jointly zero.

Column 1 of Table 5 reports the results of heterogeneous intermediary factor as a single pricing

factor. The estimated price of risk is positive, which means assets that pay well in states with a

low broker-dealer wealth share in the financial sector (i.e. assets with low betas on yt) are valuable

hedges and have lower expected returns in equilibrium. This risk price estimate confirms the

procyclicality of broker-dealer wealth share yt documented in Figure 9. The adjusted R2 is 61%

while the total MAPE is only 1.86%. The single-factor model can explains 62% of the variation

in average returns in these cross-sections, with an average absolute pricing error around 1.8%

per annum. Figure G.5 in the Appendix, visually shows the HIFac’s pricing performance in the

cross-section of equity and bond returns by plotting realized versus predicted returns.

For robustness and comparison with recent empirical work, in Columns 2–6, I add additional

pricing factors. In Column 2, I include market risk premium, MktRF, as an additional factor.

However, the price of risk for MktRF is not statistically significant and in terms of almost all test

statistics, the two-factor model is nearly identical to the single-factor model in Column 1. The

market adds essentially no explanatory power to the intermediary heterogeneity factor.

In Columns 3 and 5, for reference, I present performances of the pricing factors in AEM and

HKM, respectively. AEM use a leverage factor defined as the seasonally adjusted growth rate in

broker–dealer book leverage level from Flow of Funds. A shown in Column 3, for the test assets

mentioned above, HIFac outperforms AEM with 38% lower MAPE (1.83% versus AEM’s 2.96%)

and 56% higher cross-sectional R2 (61% compared to 39% in AEM).54

In HKM, the pricing factors are the market risk premium (MktRF) and shocks to intermediary

capital ratio defined as the ratio of total market equity to total market assets (book debt plus

54The pricing performance of AEM reported in their Table III and shown in Figure 1 of their paper, is substantially
better than the one reported in Column 3 of Table 5 (their reported MAPE is only 1.31% and R2 = 0.77). This
difference can stem from two possible sources: (i) In 2015, the Federal Reserve substantially revised and updated
Flow of Funds historical data for security broker-dealers, changing the way assets and liabilities were counted. They
specifically changed their handling of using gross vs net repo. For more detail, see Z.1 Financial Accounts Technical
Q&As. (ii) The test assets used in this paper are different from AEM’s. I have the same 35 equity portfolios (25
size/book-to-market and 10 momentum portfolios) but use both Treasury and corporate bonds from Nozawa (2017),
while AEM only use 6 Treasury bonds sorted by maturity from CRSP.
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market equity) for New York Fed’s primary dealer holding companies. A shown in Column 5, my

model with a single pricing factor performs almost as well as HKM’s two factor model with nearly

identical MAPE (1.83% vs. 1.89% for HKM) and cross-sectional R2 (61% vs. HKM’s 63%).

In Column 4, I add leverage factor from AEM to evaluate a model with two pricing factors:

HIFac and AEM. Addition of AEM’s leverage factor does not make price of HIFac risk insignificant

or change its sign. This even raises the cross-sectional R2 to 72%. Finally, in Column 6, I add two

pricing factors from HKM: MktRF and shocks to intermediary capital ratio. Again, λHIFac remains

positive and significant. Note that since HIFac is positively corrected with both HKM and AEM

factors, it is not surprising that λHIFac has weaker statistical significance in the presence of these

additional factors.55

In summary, The results in Table 5 demonstrates that heterogeneity in the financial sectors has

explanatory power for the cross-section of expected returns even in the presence of representative

intermediary asset pricing factors presented in AEM and HKM.

7.3.2 Sorted Portfolios on Exposures to Heterogeneous Intermediary Factor

The positive price of risk associated with shocks to wealth share of dealers in the financial sector

means assets that pay more in states with a low dealer wealth share (i.e. assets with low betas on

yt shocks) are viewed as hedges thus have lower expected returns in equilibrium.

To empirically verify the positive price of risk for innovations in the wealth share of dealers in

the financial sector, I sort stocks based on their exposures to these shocks and form portfolios by

quintiles on a 10-year trailing window. I consider all common stocks (share codes 10 and 11) in the

CRSP universe from Amex, NASDAQ, and NYSE (exchange codes 1,2, and 3). For every stock i

at quarter t, I regress its quarterly excess return on constant and innovations in the heterogeneous

intermediary factor (HIFac), defined in equation (32):

Rei,t = αi + βi,HIFac HIFact + ξi,t (35)

The coefficient βi,HIFac measures the exposure of firm i’s stock to the factor’s innovations. I then

55HIFac has positive correlation of 13% and 9% with AEM’s leverage and HKM’s capital risk factors, respectively.
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sort stocks into quintiles every quarter according to their βi,HIFac.

Consistent with model’s implications, when sorted on βHIFac, average risk premia are increasing

from the portfolio of low-beta stocks to the high-beta quintile. In the Appendix, I report the

average returns of the beta-sorted portfolios in Table G.4, along with return volatilities, average

book-to-market ratio, average market cap, and alphas from CAPM and Fama-French three-factor

models. Excess returns are monotonically increasing from quintile one to five and the top portfolio

earns an approximately 5% premium over the lowest quintile. In Appendix F, I further verify

the results above are robust to double-sorting with asset pricing factors from recent models with

representative intermediaries.

This exercise demonstrates that the heterogeneity in the financial sector is an important risk

factor and has pricing information above and beyond representative intermediary asset pricing

factors in AEM and HKM: even within portfolios sorted based on AEM or HKM factor betas, I

see a monotonic progression in returns from low- to high-HIFac beta portfolios.

7.4 Additional Robustness Checks

In Appendix F, I project the heterogeneous intermediary factor (HIFac) onto the space of traded

returns to form a factor-mimicking portfolio that mimics the HIFac. To further verify that this het-

erogeneity an important source of risk, I evaluate the heterogeneous intermediary factor-mimicking

portfolio (HIMP) relative to the mimicking portfolios for representative intermediary factors in

AEM and HKM. I show that the mimicking portfolios for these representative intermediary factors

cannot fully span the HIMP and there is more to be captured by the heterogeneity within the fi-

nancial sector. This exercise confirms my earlier results: the heterogeneity in the financial sector is

an important risk factor and has pricing information above and beyond representative intermediary

asset pricing factors in AEM and HKM.

8 Conclusion

This paper studies the asset pricing implications of heterogeneity among financial intermediaries.

Evidence on large balance sheet adjustments within the intermediary sector during the Great

47



Recession is at odds with existing models featuring representative intermediaries. To explain and

study the implications of these massive asset reallocations within the financial sector, in this paper,

I present a model with two main ingredients: intermediaries heterogeneous in their aggressiveness,

and occasionally binding leverage constraints. Heterogeneity in intermediaries’ risk appetite and

margin constraints are both necessary in matching and understanding reallocations within the

financial sector.

My model implies that a dealer deleveraging episode, comparable in magnitudes to the one

observed during the recent financial crisis, leads to an approximately 55% increase in the risk

premia and a 5% increase in endogenous volatility. In contrast, since balance sheet adjustments

among different intermediaries does not affect the wealth share of the aggregate financial sector, in

models with representative intermediaries these asset reallocations have no impact on asset prices

and risk premia.

I show that the composition of the financial sector accounts for a substantial portion of the

variation in risk premia in the model. With an independent and identically distributed aggregate

endowment, the variation in expected returns is entirely due to intermediation frictions captured

by both the health of the overall financial sector as well as its composition. I show that the wealth

distribution among intermediaries, a measure of the composition of the financial sector, accounts for

approximately 20% incremental variation in risk premia over a representative intermediary model.

The model also generates opposite cyclical dynamics for leverage of the two intermediary sec-

tors, reconciling empirical evidence that has previously seemed contradictory through the lens of

representative intermediary asset pricing models of AEM and HKM. To construct the SDF, AEM

and HKM measure marginal utilities of different financial intermediaries: security broker-dealers,

and bank holding companies, respectively. Given the economic mechanism of my model, it does

not seem surprising that they arrive at conflicting asset pricing results.

I examine the empirical implications of the model for time-series predictability and the cross-

section of returns. Consistent with the model, wealth share of broker-dealers in the financial

sector, a measure of heterogeneity among intermediaries, strongly and negatively forecasts future

excess returns on many assets. In particular, it leads to additional predictive power for market
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risk premium beyond many established forecasting variables in the literature. I also show that

using only shocks to the relative wealth share of broker-dealers in the financial sector, explains the

cross-section of equity and bond returns about as well or better than existing intermediary asset

pricing models. I further document that including aggregate intermediary leverage as a second

asset pricing factor increases cross-sectional fit by at least 10 percentages points, depending on

whether the factor is the leverage of broker-dealers or bank holding companies.
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Figure 1. Panel (a) presents time-series of leverage for different financial intermediaries: security broker-dealers
(BDs) and bank holding companies (BHCs). Leverage for broker-dealers (solid blue line) is defined as the ratio total
financial assets to total equity (total financial assets minus total liabilities) from Table L.130 of the Flow of Funds.
BHC leverage (dashed red line) is defined as the ratio of total market assets (book debt plus market equity) to
total market equity constructed for publicly-traded holding companies of the NY Fed’s primary dealer counterparties
using CRSP/Compustat and Datastream, where market equity is outstanding shares times stock price and book
debt is total assets minus common equity. Panel (b) presents quarterly change in total financial assets for BDs and
Private Depository Institutions (DIs). BDs’ (solid blue line) and DIs’ (dashed red line) total financial assets are
from Tables L.130 and L.110 of the Financial Accounts of the United States (Flow of Funds), respectively. Data is
quarterly from 1970Q1 to 2017Q4. The vertical shaded bars indicate NBER recessions.
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Figure 2. Risk premia, the price of risk, valuation, and volatility. This figure presents price-dividend ratio
1/F , return volatility σ, Sharpe ratio and risk premium on the endowment claim in constrained and unconstrained
equilibria as functions of state variable x (wealth share of the financial sector i.e. type A and B agents) under the
benchmark parameters in Table 1. Each quantity is plotted against state variable xt while the value of the second
state variable yt (wealth share of type A investors, i.e. broker-dealers, in the financial sector) is fixed at 0.56 (its value
at the stochastic steady state). The solid blue line corresponds to the unconstrained economy, the dash-dotted purple
line corresponds to the economy with a constant portfolio constraint (θ̄t = m̄), and the dashed red line corresponds
to the the economy with a Value-at-Risk (VaR)-type margin constraint (θ̄t = 1

ασt
). Three-dimensional plots are

provided in Appendix C.2.
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Figure 3. Optimal portfolios and the risk-free rate. This figure presents portfolio weights of each type of
agent wAs , w

B
s , and wCs as well as the real interest rate rt in constrained and unconstrained equilibria as functions

of state variable x (wealth share of the financial sector i.e. A and B agents) under the benchmark parameters in
Table 1. Each quantity is plotted against state variable xt while the value of the second state variable yt (wealth
share of type A investors in the financial sector) is fixed at 0.56 (its value at the stochastic steady state). The solid
blue line corresponds to the unconstrained economy, the dash-dotted purple line corresponds to the economy with a
constant portfolio constraint (θ̄t = m̄), and the dashed red line corresponds to the the economy with a Value-at-Risk
(VaR)-type margin constraint (θ̄t = 1

ασt
). Three-dimensional plots are provided in Appendix C.2.
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Figure 4. Dynamics of the endogenous state variables. This figure presents dynamics of the state variables x
and y (wealth share of the financial sector i.e. A and B agents, and wealth share of type A investors in the financial
sector, respectively) in constrained and unconstrained equilibria under the benchmark parameters in Table 1. Drift
and volatility of state variable x (i.e. µx, σx) are plotted as functions of x while the value of the state variable y is
fixed at 0.56. Drift and volatility of state variable y (i.e. µy, σy) are plotted as functions of y while the value of the
state variable x is fixed at 0.25. The solid blue line corresponds to the unconstrained economy, the dash-dotted purple
line corresponds to the economy with a constant portfolio constraint (θ̄t = m̄), and the dashed red line corresponds
to the the economy with a Value-at-Risk (VaR)-type margin constraint (θ̄t = 1

ασt
). Three-dimensional plots are

provided in Appendix C.2.
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Figure 5. Cyclical properties of intermediary leverage. This figure presents optimal intermediary leverage in
the unconstrained and constrained equilibria under parameters listed in Table 1. The left panel plots leverage of the
financial sector (equation 28) in the unconstrained equilibrium (dashed red line) and the model with time-varying
margin constraints, θ̄t = 1

ασt
(solid blue line). The right panel plots intermediary leverage in the main model with

endogenous margin constraints. The solid blue line corresponds to leverage of the financial sector (wFSs ), the dashed
red line presents broker-dealers’ leverage (wAs ), and the dash-dotted purple line corresponds to leverage of bank
holding companies (wBs ). Each quantity is plotted against state variable xt (wealth share of the financial sector i.e.
A and B agents) while the value of the second state variable yt (wealth share of type A investors in the financial
sector) is held fixed at 0.56 (its stochastic steady state value).
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Figure 6. Asset reallocation within the financial sector. This figure presents portfolio weights for dealers,
holding companies, and households (A,B, and C types, respectively), as well as, the risk premium and Sharpe ratio
of the risky claim on the aggregate endowment, and the volatility of the risky asset return in the baseline model (solid
blue line) and a model with tighter margin constraints and less risk averse financial sector (dashed red line). The
changes in tightness of the margin constraint (parameter α) and relative risk aversion of the financial and household
sectors (γI/γC) are such that leverage of A (B) types is reduced (increased) by approximately 47% (72%): changes
documented during the Great Recession in Figure 1a. Each quantity is plotted against state variable x (wealth share
of the financial sector i.e. A and B agents) while value of the state variable y (wealth share of dealers i.e. type A
investors in the financial sector) is fixed at 0.56, its value at the stochastic steady state. Parameters for the baseline
model are presented in Table 1.

59



0
0.2

0.4
0.6

0.8
1 0

0.2
0.4

0.6
0.8

1
0

0.5

1

1.5

2

x y

Diffusion of State Variable σx (%)

0
0.2

0.4
0.6

0.8
1 0

0.2
0.4

0.6
0.8

1
0

0.5

1

1.5

x y

Diffusion of State Variable σy (%)

Figure 7. State variable diffusions. This figure presents the diffusions of state variables x and y (σx and σy,
respectively) in the economy with time-varying margin constraints as functions of state variable x (wealth share of
the financial sector i.e. type A and B agents) and yt (wealth share of type A agents in the financial sector) under
the benchmark parameters in Table 1.
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Figure 8. Price of risk. This figure presents the Sharpe ratio of the risk asset in the economy with time-varying
margin constraints as functions of state variable x (wealth share of the financial sector i.e. type A and B agents) and
yt (wealth share of type A agents in the financial sector) under the benchmark parameters in Table 1.

60



0.05

0.10

0.15

0.20

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

x

y

Figure 9. State variables x and y in the data. This figure presents the three-month moving averages of monthly
wealth share of the financial sector, xdata, and quarterly equity share of the broker-dealers in the financial sector,
ydata, defined in equations (29) and (30), respectively. Financial sector is identified as firms in the CRSP universe
for which the first two digits of the header SIC code (HSICCD in CRSP) equals 60–67. Book equity for BDs and
depository institutions are computed from the Flow of Funds Tables L.130 and L.110, respectively. Sample period is
from 1970 to 2018. Both time-series are standardized to have zero mean and unit standard deviation for illustration.
The vertical shaded bars indicate NBER recessions.
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Table 1. Parameter values for the endowment economy model.
This tables reports parameter values used in calibrating the model. The model is set in continuous time. So, the
values correspond to annual values rather than the typical quarterly ones seen in discrete time calibrations.

Parameter Choice Target

Preferences

ψA EIS of type A 1.5 Literature
ψB EIS of type B 1.5 Literature
ψC EIS of type C 1.5 Literature
γA Risk aversion of type A 2.5 Free parameter
γB Risk aversion of type B 5.5 Dealer/bank leverage ratio
γC Risk aversion of type C 15 Mean Sharpe ratio
ρ Rate of time preference 0.001 Literature

Endowment and Demography

µD Endowment growth rate 0.022 US consumption data
σD Endowment volatility 0.035 US consumption data
κ Agents birth/death rate 0.015 Literature
ū Population share of type A 0.05 Intermediary and BD wealth shares
v̄ Population share of type B 0.07 Intermediary and BD wealth shares

Margin Constraint

m̄ Constant leverage constraint 4 Literature
α Tightness of the dynamic constraint 10 30-day 99% VaR

Table 2. State variables statistics.
This table reports statistics for empirical proxies for model’s two state variables in level and changes (Innov.). AC(j)
represent jth autocorrelation. Data is quarterly from 1970Q1 to 2017Q4.

xdata ydata

Level Innov. Level Innov.

Mean 0.141 0.000 0.191 0.000
Std Dev 0.037 0.007 0.068 0.018
AC(1) 0.966 0.003 0.958 −0.185
AC(2) 0.933 0.046 0.930 0.087
AC(3) 0.899 0.105 0.896 −0.087
AC(4) 0.861 0.004 0.870 −0.075
AC(5) 0.825 −0.025 0.851 0.071
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Table 3. Predictive regressions: yt.
This table provides results for one-year ahead predictive regressions according to Rit+1→t+4 − rft = γ0 + γiy yt + εit+1→t+4, using lagged equity share of
broker-dealers in the financial sector, the empirical proxy for state variable y defined in equation (30) which captures the composition of the financial sector,
as the predictor of interest. The dependent variables are excess holding period returns from quarter t + 1 to quarter t + 4 on the CRSP value-weighted
portfolio (Mktt+1), mean excess return on 25 Fama-French size and book-to-market (FF25t+1), 10 momentum (Momt+1) portfolios, 10 maturity-sorted
US government and 10 US corporate bond portfolios sorted on yield spreads (US bondst+1), mean excess returns on six sovereign bonds (Sov. bondst+1),
54 portfolios of S&P 500 index options sorted on moneyness and maturity (Optionst+1), 20 CDS portfolios sorted by spreads (CDSt+1), 23 commodity
(Commod.t+1), and 12 foreign exchange (FXt+1) portfolios. Size/book-to-market and momentum portfolios and the risk-free rate data are from Ken
French’s website. Data on sovereign bonds, options, CDS, commodities, and FX portfolios are from He et al. (2017). The sample quarterly from 1974Q2 to
2017Q2 for market, FF25 and momentum portfolios, and to 2012Q4 for HKM assets. Hodrick (1992) standard errors are reported in parentheses to adjust
for the fact that overlapping quarterly observations are used to forecast annual returns.

Dependent variable:

Mkt FF25 Mom US bonds Sov. bonds Options CDS Commod. FX

(1) (2) (3) (4) (5) (6) (7) (8) (9)

ydatat −1.16∗∗∗ −0.98∗∗∗ −0.77∗∗ −0.11 −1.09∗∗ −1.57∗∗ −0.04 −0.40 0.37
(0.38) (0.28) (0.33) (0.14) (0.46) (0.61) (0.13) (0.45) (0.31)

Const 0.39∗∗∗ 0.34∗∗∗ 0.27∗∗∗ 0.09∗∗ 0.39∗∗∗ 0.46∗∗∗ 0.03 0.14 −0.08
(0.08) (0.05) (0.06) (0.04) (0.11) (0.14) (0.03) (0.11) (0.08)

Obs 173 173 173 152 62 100 44 102 132
R2 0.10 0.11 0.08 0.01 0.15 0.12 0.005 0.01 0.05
Adjusted R2 0.09 0.11 0.07 0.01 0.14 0.11 −0.02 0.003 0.05

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 4. Predictive regressions: yt and Controls.
This table provides results for one-year ahead predictive regressions according to Rit+1→t+4 − rft = γ0 + γiy yt + γiCtrl Ctrlt + εit+1→t+4, using lagged equity
share of broker-dealers in the financial sector, the empirical proxy for state variable y defined in equation (30) which captures the composition of the financial
sector, as the predictor of interest. Ctrl represents the vector of control variables that are known in the literature to forecast returns. I use the following
control variables: wealth share of the aggregate financial sector (x from the model defined in 29), cay variable from Lettau and Ludvigson (2001), real
price-dividend (PD) and cyclically adjusted price-earnings (CAPE) ratios from Robert Shiller’s website, and variance risk premium (VRP) from Bollerslev
et al. (2009). The dependent variables are excess holding period returns from quarter t+ 1 to quarter t+ 4 on the CRSP value-weighted portfolio (Mktt+1),
mean excess return on 25 Fama-French size and book-to-market (FF25t+1), 10 momentum (Momt+1) portfolios, 10 maturity-sorted US government and 10
US corporate bond portfolios sorted on yield spreads (US bondst+1), mean excess returns on six sovereign bonds (Sov. bondst+1), 54 portfolios of S&P 500
index options sorted on moneyness and maturity (Optionst+1), 20 CDS portfolios sorted by spreads (CDSt+1), 23 commodity (Commod.t+1), and 12 foreign
exchange (FXt+1) portfolios. Size/book-to-market and momentum portfolios and the risk-free rate data are from Ken French’s website. Data on sovereign
bonds, options, CDS, commodities, and FX portfolios are from He et al. (2017). The sample quarterly from 1990Q1 to 2017Q3 for market, FF25 and
momentum portfolios, and to 2012Q4 for HKM assets. Hodrick (1992) standard errors are reported in parentheses to adjust for the fact that overlapping
quarterly observations are used to forecast annual returns.

Dependent variable:

Mkt FF25 FFmom US bonds Sov. bonds Options CDS Commod. FX

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

yt −1.77∗∗∗ −1.72∗∗∗ −1.80∗∗∗ 0.43∗∗∗ −0.27 −2.14∗∗∗ −0.18 −1.15 0.44
(0.46) (0.51) (0.45) (0.18) (0.64) (0.74) (0.16) (0.74) (0.40)

Const 0.04 −0.01 0.23 0.14 0.14∗∗∗ 0.54∗∗∗ 0.03 0.001 −0.06 −0.09
(0.19) (0.13) (0.15) (0.14) (0.03) (0.11) (0.10) (0.03) (0.13) (0.07)

Ctrls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Obs 109 109 109 109 88 62 84 44 88 76
R2 0.31 0.46 0.31 0.44 0.35 0.26 0.57 0.38 0.16 0.41
Adj R2 0.28 0.43 0.27 0.40 0.30 0.18 0.54 0.28 0.10 0.36

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 5. Cross-sectional asset pricing tests.
This table presents pricing results for the 25 size/book-to-market, 10 momentum, 10 maturity-sorted Treasury bond
portfolios from CRSP with maturities in six month intervals up to five years, and 10 US corporate bond portfolios
sorted on yield spreads from Nozawa (2017). The table reports the prices of risk and test diagnostics, including
mean absolute pricing errors (MAPEs), and adjusted R2s, and a χ2 statistic and p-value that tests whether the
pricing errors are jointly zero. Shanken (1992)-corrected and Fama and MacBeth (1973) t-statistics (t-Shanken and
t-FM, respectively) are reported in parentheses. Heterogeneous intermediary factor (HIFac) is defined as the AR(1)
innovations in the wealth share of dealers, scaled by their lagged wealth share according to equation (32). The
AEM leverage factor (AEMLevFac) is defined as the seasonally-adjusted growth rate in broker-dealer leverage from
Table L.130 of the Flow of Funds. HKM capital factor (HKMFac) is the shock to intermediary capital ratio in He
et al. (2017), defined as the ratio of total market equity to total market assets (book debt plus market equity) for
bank holding companies of New York Fed’s primary dealer counterparties. MktRF is the excess return on CRSP
value-weighted portfolio from Ken French’s website. The sample is quarterly from 1970Q1 to 2017Q4. Returns and
risk premia are reported in percentage per year (quarterly percentages multiplied by four).

(1) (2) (3) (4) (5) (6)

HIFac 38.27∗ 57.35∗∗ 34.87∗ 52.47∗

t-Shanken (1.83) (2.11) (1.78) (1.74)
t-FM (2.24) (3.11) (2.02) (2.82)

MktRF 3.86 6.93∗ 4.61
t-Shanken (1.20) (1.97) (1.38)
t-FM (1.27) (2.20) (1.52)

AEMLevFac 32.50∗∗∗ 21.66∗∗

t-Shanken (2.68) (2.42)
t-FM (3.73) (3.14)

HKMFac 12.55∗∗ 11.80∗∗

t-Shanken (2.57) (2.12)
t-FM (3.96) (3.68)

Intercept 3.47∗∗∗ 4.14∗∗∗ 5.32∗∗ 3.01∗∗ 2.77∗ 3.99∗∗∗

t-Shanken (2.92) (2.90) (2.03) (2.32) (1.84) (2.38)
t-FM (3.62) (4.32) (2.68) (3.11) (2.90) (4.19)

Observations 55 55 55 55 55 55
Adjusted R2 0.61 0.61 0.39 0.72 0.63 0.69
MAPE, % 1.83 1.84 2.96 1.58 1.89 1.67
χ2(N −K) 195.39 133.53 151.78 167.17 121.35 95.34
p-value 0.00 0.00 0.00 0.00 0.00 0.00

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Appendix

A Proof of Propositions

Proof of Proposition 1

Proof. State variable x is the wealth share of financial sector: xt = WA+WB

W and state variable y

is wealth share of type A agents in the financial sector: yt = WA

WA+WB , where W,WA, and WB are
the aggregate wealth, wealth of A, and B agents, respectively.
Dynamics of xt: From equation (5), WA has the following law of motion

dWA

WA
=
(
r + wAs (µ− r)− cA

)
dt+ wAs σ dZ,

and WB has the similar law of motion.
The law of motion for the numerator, WA +WB, will be

d
(
WA +WB

)
WA +WB

=
[
r +

(
ywAs + (1− y)wBs

)
(µ− r)− (ycA + (1− y)cB)

]
dt

+
(
ywAs + (1− y)wBs

)
σdZt

Define wealth share of agents A and B as u ≡ WA/W = xy, and v ≡ WB/W = x(1 − y),
respectively.56 Since the aggregate wealth is W = WA + WB + WC , the law of motion for the
denominator is

dW

W
=

r +
(
xywAs + x(1− y)wBs + (1− x)wCs

)︸ ︷︷ ︸
=1 (by stock market-clearing)

(µ− r)− (xycA + x(1− y)cB + (1− x)cC)︸ ︷︷ ︸
=F (by goods market-clearing)

 dt
+

xywAs + x(1− y)wBs + (1− x)wCs︸ ︷︷ ︸
=1

σ dZt
= [r + (µ− r)− F ] dt+ σ dZt

From Ito’s lemma for ratio of two stochastic processes,

dx

x
= κ(x̄− x)dt+

[(
ywAs + (1− y)wBs − 1

)
(µ− r − σ2)− ycA − (1− y)cB + F

]
dt

+
(
ywAs + (1− y)wBs − 1

)
σ dZt

Thus from the dynamics of x in equation (12) we have

µx =
(
ywAs + (1− y)wBs − 1

)
(µ− r − σ2)− ycA − (1− y)cB + F

σx =
(
ywAs + (1− y)wBs − 1

)
σ

Dynamics of yt: The numerator of y is WA, and its denominator is
(
WA +WB

)
which its law

56Agent C’s wealth share will then be 1− u− v.
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of motion is calculated above. So from Ito’s lemma for a ratio, we get

dy

y
= κ(ȳ − y)dt+ (1− y)

[(
wAs − wBs

)
(µ− r)− cA + cB −

(
ywAs + (1− y)wBs

) (
wAs − wBs

)
σ2
]
dt

+ (1− y)
(
wAs − wBs

)
σ dZt

Thus from the dynamics of y in equation (13) we have

µy =
(
wAs − wBs

)
(µ− r)− cA + cB −

(
ywAs + (1− y)wBs

) (
wAs − wBs

)
σ2

σy =
(
wAs − wBs

)
σ

Proof of Proposition 2

Proof. Since σx and σy are finite, we trivially get

lim
x→0

xσx = 0, ∀y and lim
y→0

y(1− y)σy = lim
y→1

y(1− y)σy = 0, ∀x.

We only need to show lim
x→1

xσx = 0 ∀y. The market clearing condition for the risky asset when

x→ 1 becomes ywAs + (1− y)wBs = 1.
So, from the expression for σx in equation (16), we have:

xσx = x
[
ywAs + (1− y)wBs − 1

]
σ

which goes to zero as x→ 1 for all y from the stock market-clearing.

Proof of Proposition 3

Proof. We can write agent i’s optimization problem in equation (8) as

0 = max
ci,wis

{fi (ci,t, Vi,t) dt+ Et [dVi,t]}

Using Ito’s lemma we have

Et[dVi] = Vi,WiEt[dWi] +
1

2
Vi,WiWiEt

[
dW 2

i

]
+ Vi,JiEt[dJi] +

1

2
Vi,JiJiEt

[
dJ2

i

]
+ Vi,WiJiEt[dWidJi]

where Vi,Wi and Vi,WiWi are the first and second partial derivatives of Vi with respect toWi (similarly
for Vi,Ji , Vi,JiJi , and Vi,WiJi .) Also posit the following Ito process for marginal value of wealth Ji:

dJi
Ji

= µJi,tdt+ σJi,tdZ,

with adapted processes µJi,t = µJi(xt, yt) and σJi,t = σJi(xt, yt). I will drop t subscripts for
notational simplicity.
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Using Ito’s lemma, we can find the drift and diffusions µJi and σJi

µJi =
Ji,x
Ji

[κ(x̄− x) + xµx] +
Ji,y
Ji

[κ(ȳ − y) + y(1− y)µy]

+
1

2

Ji,xx
Ji

x2σ2
x +

Ji,xy
Ji

xy(1− y)σxσy +
1

2

Ji,yy
Ji

y2(1− y)2σ2
y (A.1)

σJi =
Ji,x
Ji

xσx +
Ji,y
Ji

y(1− y)σy (A.2)

Plugging in the felicity function f(C,U) in (3) and the conjecture for value function Vi in (21)
into the HJB equation above, using the budget constraint in (5) and the law of motion for Ji in

(A.1) and (A.2), and dropping W 1−γi
i J

1−γi
1−ψi
i and dt terms yields

0 = max
ci,wi

s

1

1− 1/ψi

( ci

J
1/(1−ψi)
i

)1−1/ψi

− (ρ+ κ)

+
[
r − ci + κ+ wis(µ− r)−

γi
2

(
wis
)2
σ2
]

+

(
1

1− ψi

){
Ji,x
Ji

[κ(x̄− x) + xµx] +
Ji,y
Ji

[κ(ȳ − y) + y(1− y)µy]

+(1− γi)
(
Ji,x
Ji

xσx +
Ji,y
Ji

y(1− y)σy

)
wisσ

}
+

1

2

(
1

1− ψi

)[(
ψi − γi
1− ψi

)(
Ji,x
Ji

xσx +
Ji,y
Ji

y(1− y)µy

)2

+
Ji,xx
Ji

x2σ2
x + 2

Ji,xy
Ji

xy(1− y)σxσy +
Ji,yy
Ji

y2(1− y)2σ2
y

]
+ λi

(
θ̄t − wis

)
,

where λi is proportional to the Lagrange multiplier on the time-varying margin constraint. The
first-order condition for consumption-wealth ratio and portfolio share will lead to equations (23)
and (25):

ci = Ji (A.3)

wis =
1

γi

[
µ− r
σ2

+

(
1− γi
1− ψi

)(
Ji,x
Ji
x
σx
σ

+
Ji,y
Ji
y(1− y)

σy
σ

)]
− 1

γiσ2
λi (A.4)

When the margin constraint for agent i is slack, λi = 0 and we have

wi,∗s =
µ− r
γiσ2

+
1

γi

(
1− γi
1− ψi

)(
Ji,x
Ji
x
σx
σ

+
Ji,y
Ji
y(1− y)

σy
σ

)
When the margin constraint for agent i is binding, λi is strictly positive and wi,consts = θ̄t.

Plugging in the wi,consts into (A.4), we get the expression for the multiplier on the time-varying
margin constraint:

λi = (µ− r) +

(
1− γi
1− ψi

)(
Ji,x
Ji
xσx +

Ji,y
Ji
y(1− y)σy

)
σ − γiσ2θ̄t (A.5)
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B Numerical Procedure

The computation of equilibrium is reduced to solving three second-order PDEs for functions
Ji for i ∈ {A,B,C}.57 I use Chebyshev orthogonal collocation method to solve the model.58 The
HJB equation for agent i can be written as the following functional equation:

Hi (Ji) = 0.

I express marginal value of wealth functions JA(x, y), JB(x, y) and JC(x, y) as bivariate Chebyshev
polynomials of order N (I use N = 20), that is, I approximate Ji with tensor product of Chebyshev
polynomials of order N :

Ĵi(x, y) =

N∑
j=0

N∑
k=0

aijkψj(ωj(x))ψk(ωk(y)), i ∈ {A,B,C}. (B.1)

where ψj is the Chebyshev polynomial of degree j = 0, 1, . . . , N , called the basis function,
Ψjk(x, y) = ψj(x)ψk(y) is a tensor product basis, {aijk}Nj,k=1 are unknown coefficients for agent
i, and ωj ’s are the Chebyshev nodes (collocation points) defined below.

I then plug in Ĵi into the HJB equation for agent i to form the residual equation:

Ri
(
· | ai

)
= Hi

(
Ĵi

)
,

and find the vector of coefficients ai that makes the residual equation as close to 0 as possible given
some objective function ρ

(
Ri
(
· | ai

)
,0
)
:

ai = arg min
ai

ρ
(
Ri
(
· | ai

)
,0
)

The most common objective function is a weighted residual given some weight functions φj : Ω→
Rm:

ρ
(
Ri
(
· | ai

)
,0
)

=


0 if

∫∫
Ω×Ω

φj(x)φk(y)Ri
(
· | ai

)
dx dy = 0, for j, k = 1, . . . , N

1 otherwise

In the pseudo-spectral (or collocation) method, the weight functions are chosen as: φj(x) = δ(x−xi)
where δ is the dirac delta function and xi’s are the collocation points. In the orthogonal collocation
method, which I use to solve the model, the basis functions are a set of orthogonal Chebyshev
polynomials and collocation points are given by the roots of the N th polynomial.

57Duffie and Lions (1992) show existence and uniqueness of infinite-horizon stochastic differential utility by partial
differential equation techniques in a Markov diffusion setting.

58For more details, see Judd (1992, 1998) and Computational Tools & Macroeconomic Applications, NBER Sum-
mer Institute 2011 Methods Lectures, Lawrence Christiano and Jesus Fernandez-Villaverde, Organizers.
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Chebyshev polynomials of degree n can be easily defined recursively:

ψ0(ω) = 1

ψ1(ω) = x

ψn+1(ω) = 2ωψn(ω)− ψn−1(ω) (B.2)

As mentioned above, the collocation points are the N zeros of the Chebyshev polynomial of
order N, (ψN (ωj) = 0), and are given by the following expression

ωj = cos

(
2j − 1

2n
π

)
, j = 1, . . . , N.

These roots are clustered quadratically towards ±1. Chebyshev polynomials are defined on ωi ∈
[−1, 1]. Since the state variables x, y ∈ [0, 1] in my model, I use the linear transformation xj =
(1 + ωj)/2.59

I calculate the derivatives of these functions as well as the state variable dynamics, agents’
portfolio choice, risky asset return and volatility using the relevant equilibrium expressions. I
then plug these quantities into the HJB equations (22) and project the resulting residuals onto
the complete set of Chebyshev polynomials up to order N . I use the built-in MATLAB function
fsolve to find the coefficients of Ji polynomials that make the projected residuals equal to zero.
This results in a highly accurate solution for coefficients in the Ĵi functions with errors in the order
of 10−20.

The numerical algorithm is summarized below.

1. From goods market-clearing conditions and differentiating it with respect to the state variable,
we get expressions for dividend yield F and its derivatives with respect to x and y.

F = xyJA + x(1− y)JB + (1− x)JC ,

Fx = yJA + (1− y)JB − JC + xyJA,x + x(1− y)JB,x + (1− x)JC,x,

Fy = xJA − xJB + xyJA,y + x(1− y)JB,y + (1− x)JC,y,

Fxx = 2yJA,x + 2(1− y)JB,x − 2JC,x + xyJA,xx + x(1− y)JB,xx + (1− x)JC,xx,

Fyy = 2xJA,y − 2xJB,y + xyJA,yy + x(1− y)JB,yy + (1− x)JC,yy,

Fxy = JA − JB + xJA,x − xJB,x + yJA,y + (1− y)JB,y − JC,y + xyJA,xy

+ x(1− y)JB,xy + (1− x)JC,xy,

where Ji,x and Ji,xx are the first and second partial derivative of Ji with respect to x, respec-
tively, and similarly for Ji,y, Ji,yy and Ji,xy.

2. Using market-clearing condition for the endowment claim, plugging in the expression for agent
C’s optimal portfolio choice wCs from (24), and substituting for (µ−r)/σ2 from the expression

59For a general state space x ∈ [xL, xH ], we use a linear transformation xj = xL + 0.5(xH − xL)(1 + ωj).
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for wA,∗s , we will get the first of the two equations that wA,∗s and wBs have to satisfy:

1 = xywA,∗s + x(1− y)wBs + (1− x)wCs

= xywA,∗s + x(1− y)wBs

+ (1− x)
1

γC

{
µ− r
σ2

+

(
1− γC
1− ψC

)[
JC,x
JC

x
(
ywA,∗s + (1− y)wBs − 1

)
+
JC,y
JC

y(1− y)
(
wA,∗s − wBs

)]}
= xwA,∗s + ywBs + (1− x)

1

γC

{
γAw

A,∗
s −

(
1− γA
1− ψA

)[
JA,x
JA

x
(
ywA,∗s + (1− y)wBs − 1

)
+
JA,y
JA

y(1− y)
(
wA,∗s − wBs

)]
+

(
1− γC
1− ψC

)[
JC,x
JC

x
(
ywA,∗s + (1− y)wBs − 1

)
+
JC,y
JC

y(1− y)
(
wA,∗s − wBs

)]}
To get the second equation, I plug in the expression for (µ−r)/σ2 from A’s optimal portfolio
wA,∗s in the expression for wBs :

wBs =
1

γB

[
µ− r
σ2

+

(
1− γB
1− ψB

)(
JB,x
JB

x
(
ywAs + (1− y)wBs − 1

)
+
JB,y
JB

y(1− y)(wAs − wBs )

)]
=

1

γB

[
γAw

A
s −

(
1− γA
1− ψA

)(
JA,x
JA

x
(
ywAs + (1− y)wBs − 1

)
+
JA,y
JA

y(1− y)(wAs − wBs )

)
+

(
1− γB
1− ψB

)(
JB,x
JB

x
(
ywAs + (1− y)wBs − 1

)
+
JB,y
JB

y(1− y)(wAs − wBs )

)]
We can rewrite the systems of equation as

a11w
A,∗
s + a12w

B
s = b1

a21w
A,∗
s + a22w

B
s = b2

where

a11 = xy + (1− x)
1

γC

[
γA −

(
1− γA
1− ψA

)(
JA,x
JA

xy +
JA,y
JA

y(1− y)

)
+

(
1− γC
1− ψC

)(
JC,x
JC

xy +
JC,y
JC

y(1− y)

)]
,

a12 = x(1− y) + (1− x)
1

γC

[
−
(

1− γA
1− ψA

)(
JA,x
JA

x(1− y)−
JA,y
JA

y(1− y)

)
+

(
1− γC
1− ψC

)(
JC,x
Jx

x(1− y)−
JC,y
JC

y(1− y)

)]
,

a21 =
1

γB

[
γA −

(
1− γA
1− ψA

)(
JA,x
JA

xy +
JA,y
JA

y(1− y)

)
+

(
1− γB
1− ψB

)(
JB,x
JB

xy +
JB,y
JB

y(1− y)

)]
,
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a22 = −1 +
1

γB

[
−
(

1− γA
1− ψA

)(
JA,x
JA

x(1− y) +
JA,y
JA

y(1− y)

)
+

(
1− γB
1− ψB

)(
JB,x
JB

x(1− y)−
JB,y
JB

y(1− y)

)]
,

b1 = 1 + (1− x)
1

γC

[
−
(

1− γA
1− ψA

)
JA,x
JA

x+

(
1− γC
1− ψC

)
JC,x
JC

x

]
,

b2 =
1

γB

[
−
(

1− γA
1− ψA

)
JA,x
JA

x+

(
1− γB
1− ψB

)
JB,x
JB

x

]
.

The system of equations above can be solved easily to get wA,∗s and wBs .

3. Since the return volatility can be written as

σ =
σD

1 +
Fx
F
x [ywAs + (1− y)wBs − 1] +

Fy
F
y(1− y) (wAs − wBs )

, (B.3)

when the margin constrains for agent A bind, from equation (7) with ν = 1, we must have

wA,consts =

1− Fx
F
x+

(
Fx
F
x− Fy

F
y

)
(1− y)wBs

ασD −
[
Fx
F
x+

Fy
F

(1− y)

]
y

(B.4)

So, we have wAs ≤ wA,consts . Then from (25) we can find A and B’s portfolio weights in the
risky asset

wAs = min
(
wA,∗s , wA,consts

)
,

where wA,consts is given in equation (B.4).

4. From stock market clearing, we can get C’s optimal portfolio weight

wCs =
1− xy wAs − x(1− y)wBs

1− x

5. Using the expression for the return volatility in equation (19) and plugging in expressions for
σx and σy from equations (16) and (17), the expression for return volatility is

σ =
σD

1 +
Fx
F
x [ywAs + (1− y)wBs − 1] +

Fy
F
y(1− y) (wAs − wBs )

.

6. Using the expression for σ above, state variable diffusions (σx and σy) can be found from
equations (16) and (17):

σx =
[
ywAs + (1− y)wBs − 1

]
σ, and σy =

(
wAs − wBs

)
σ.

7. From the expression for wCs , σ, σx, and σy, the expected excess return (risk premium) on the
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risky asset is

µ− r = γCw
C
s σ

2 −
(

1− γC
1− ψC

)(
JC,x
JC

xσx +
JC,y
JC

y(1− y)σy

)
σ

8. Using the optimal consumption-wealth ratios ci = Ji, we can then compute drifts of the state
variables µx and µy as

µx =
[
ywAs + (1− y)wBs − 1

]
(µ− r − σ2)− yJA − (1− y)JB + F

µy =
(
wAs − wBs

)
(µ− r)− JA + JB −

[
ywAs + (1− y)wBs

] (
wAs − wBs

)
σ2.

9. From equation (18) the expected return on the risky asset can be calculated

µ = µD + F − Fx
F

[κ(x̄− x) + x(µx + σDσx)]− Fy
F

[κ(ȳ − y) + y(1− y)(µy + σDσy)]

+

[(
Fx
F

)2

− 1

2

Fxx
F

]
x2σ2

x +

[(
Fy
F

)2

− 1

2

Fyy
F

]
y2(1− y)2σ2

y +

[
2

(
Fx
F

)(
Fy
F

)
− Fxy

F

]
xy(1− y)σxσy.

10. The real interest rate is
r = µ− (µ− r).

11. Plugging expressions above into agent i’s HJB equations in (22), we get the residual functions
for agent i:

0 = −(ρ+ κ) +
1

ψi
Ji +

(
1− 1

ψi

)[
r + wis(µ− r)−

γi
2

(
wis

)2

σ2

]
− 1

ψi

{
Ji,x
Ji

[κ(x̄− x) + xµx] +
Ji,y
Ji

[κ(ȳ − y) + y(1− y)µy] + (1− γi)
(
Ji,x
Ji

xσx +
Ji,y
Ji

y(1− y)σy

)
wisσ

}
− 1

2ψi

[(
ψi − γi
1− ψi

)(
Ji,x
Ji

xσx +
Ji,y
Ji

y(1− y)µy

)2

+
Ji,xx
Ji

x2σ2
x + 2

Ji,xy
Ji

xy(1− y)σxσy +
Ji,yy
Ji

y2(1− y)2σ2
y

]
.

C Additional Model Results

C.1 Heterogeneous vs. Representative Intermediaries

I simulate representative- and heterogeneous-intermediary models for 3,000 quarters 20,000
times and examine the distribution of risk premium volatility. Figure G.1 in shows these distri-
butions. As expected, the model with heterogeneous intermediaries exhibits more variation in risk
premia than the one with a representative financial sector. Since the aggregate intermediary sec-
tors in both models are (almost) identical, any excess variation in risk premia in the heterogeneous
intermediary model has to be due to state variable y. In my calibration, approximately 20% of the
variation in risk premia can be attributed to heterogeneity in the financial sector (state variable
y). Therefore, failing to account for heterogeneity among intermediaries can lead to missing a
substantial portion of the variation in risk premia.
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C.2 Three-Dimensional Plots

Figure G.2 plots various objects the unconstrained equilibrium, where θ̄t = m̄. All variables
are functions of the two state variables in the model: x (wealth share of agents A and B, i.e. the
financial sector) and y (wealth share of A agents in the financial sector). These are the same objects
plotted in solid blue line in Figures 2 and 3 but in three dimensions.D

Figure G.3 presents various variables in the equilibrium with time-varying margin constraint
in the endowment model with θ̄t = 1

ασt
as functions of state variables (xt, yt). These are the same

equilibrium objects plotted in dashed red line in Figures 2 and 3 but in three dimensions.

D Internal Capital Market Regulation

Affiliate Transactions (Regulation W) Section 23A of the Federal Reserve Act (12 USC 371c)
is the primary statute governing transactions between a bank and its affiliates. Section 23A (1)
designates the types of companies that are affiliates of a bank; (2) specifies the types of transactions
covered by the statute; (3) sets the quantitative limitations on a bank’s covered transactions with
any single affiliate, and with all affiliates combined; and (4) sets forth collateral requirements for
certain bank transactions with affiliates.

Overview of Section 23A:

Section 23A prohibits a bank from initiating a “covered transaction” with an affiliate if, after
the transaction, (i) the aggregate amount of the bank’s covered transactions with that particular
affiliate would exceed 10 percent of the bank’s capital stock and surplus, or (ii) the aggregate
amount of the bank’s covered transactions with all affiliates would exceed 20 percent of the bank’s
capital stock and surplus.60

Section 23A requires all covered transactions between a bank and its affiliate to be on terms
and conditions consistent with safe and sound banking practices (“Safety and Soundness Re-
quirement”).

Extensions of credit to an affiliate and guarantees, letters of credit, and acceptances issued on
behalf of an affiliate (“credit transactions”) must be secured by a statutorily defined amount of
collateral, ranging from 100 to 130 percent of the covered transaction amount. Securities issued
by an affiliate and low-quality assets are not acceptable collateral for any credit transaction with
an affiliate. In addition, the attribution rule provides that any transaction by a bank with any
person is deemed to be an affiliate transaction subject to section 23A to the extent that the
proceeds of the transaction are used for the benefit of, or transferred to, an affiliate.

Overview of Section 23B:

Section 23B requires that certain transactions, including all covered transactions, be on mar-
ket terms and conditions (“Market Terms Requirement”). In addition to covered transactions,
the Market Terms Requirement applies to: (i) any sale of assets by the bank to an affiliate; (ii)
any payment of money or furnishing of services by the bank to an affiliate; (iii) any transaction
in which an affiliate acts as agent or broker for the bank or any other person if the bank is a par-
ticipant in the transaction; and (iv) any transaction by the bank with a third party if an affiliate
has a financial interest in the third party or an affiliate is a participant in the transaction. In
the absence of comparable transactions for identifying market terms, the bank must use terms,
including credit standards that are at least as favorable to the bank as those that would be offered
in good faith to nonaffiliated companies.

60Covered transactions include loans and other extensions of credit to an affiliate, investments in the securities of
an affiliate, purchases of assets from an affiliate, and certain other transactions that expose the bank to the risks of
its affiliates.
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Source: Federal Reserve Supervisory Policy and Guidance Topics, Affiliate Transactions (Reg-
ulation W).

E Data Sources

Broker-Dealer and Holding Company Data

Balance sheet data for broker-dealers and bank holding companies are from Tables L.130 and
L.131 of Financial Accounts of the United States (Flow of Funds) from Federal Reserves, respec-
tively. As noted in the description of Table L.130,

Security brokers and dealers are firms that buy and sell securities for a fee, hold an inventory
of securities for resale, or do both. The firms that make up this sector are those that submit
information to the Securities and Exchange Commission on one of two reporting forms, either
the Financial and Operational Combined Uniform Single Report of Brokers and Dealers (FO-
CUS) or the Report on Finances and Operations of Government Securities Brokers and Dealers
(FOGS). The major assets of the sector are collateral repayable from funding corporations in
connection with securities borrowing (included in miscellaneous assets), debt securities and eq-
uities held for redistribution, customers’ margin accounts, and security repurchase agreements
(reverse repos). Sector operations are financed largely by net transactions with parent compa-
nies, customers’ cash accounts, loans for purchasing and carrying securities from depository
institutions, and security repurchase agreements.

Also from Table L.131’s description for holding companies,

. . . the holding companies sector consists of all top-tiered bank holding companies, savings and
loan holding companies, U.S. Intermediate Holding Companies (IHCs), and securities holding
companies (collectively “holding companies”) that file the Federal Reserve’s Form FR Y-9LP,
Parent Company Only Financial Statements for Large Holding Companies, FR Y-9SP, Parent
Company Only Financial Statements for Small Holding Companies, or FR 2320, Quarterly
Savings and Loan Holding Company Report. Holding companies required to file FR Y-9LP
include those with total consolidated assets of $1 billion or more or meet other criteria, such
as having a material amount of debt or equity securities outstanding that are registered with
the Securities and Exchange Commission, being engaged in significant nonbanking activity, or
conducting off-balance-sheet activities either directly or through a nonbank subsidiary. Those
holding companies required to file FR Y-9SP have total consolidated assets less than $1 billion.
Form FR 2320 must be filed by top-tier savings and loan holding companies exempt from initially
filing the Y-9LP or Y-9SP, because even though they own a savings and loan institution, that is
not their primary line of business. Mutual stock companies that file the FR 2320 are excluded
because they do not hold any assets or liabilities at the holding company level. The major assets
of holding companies, other than small amounts of loans and securities, are net transactions with
their subsidiaries; this includes equity investments in subsidiaries and associated banks and net
balances due from subsidiaries and related depository institutions. The main source of funding
for the sector is the issuance of corporate bonds and commercial paper.61

61The holding companies sector has a large increase in the level of assets and liabilities in the 2009:Q1 because a
number of large financial institutions became bank holding companies. These companies (including Goldman Sachs,
Morgan Stanley, American Express, CIT Group, GMAC, Discover Financial Services, and IB Finance) had not
previously been included in the financial accounts.

75

https://www.federalreserve.gov/supervisionreg/topics/regulation_w.htm
https://www.federalreserve.gov/supervisionreg/topics/regulation_w.htm


Test Assets

Test assets for time-series and cross-sectional asset pricing tests are from two sources: (i) equity
portfolios (25 portfolios formed on size and book-to-market and 10 momentum portfolios) are from
Ken French’s Data Library, and (ii) non-equity assets are from HKM obtained from Asaf Manela’s
website and include 10 maturity-sorted US government and 10 corporate bond portfolios sorted on
yield spreads, 6 sovereign bond portfolios based on a two-way sort on a bond’s covariance with US
equity market and bond’s S&P rating, 54 portfolios of S&P 500 index options sorted on moneyness
and maturity split by contract type (27 calls and 27 puts), 20 CDS portfolios sorted by spreads
using single-name 5-year contracts, 23 commodity portfolios with at least 25 years of return data,
and 12 foreign exchange currency portfolios, six sorted on interest rate differentials and six sorted
on momentum. Except for Treasury bond portfolios which are from CRSP, non-equity test assets
in HKM are from previous studies.

Intermediary Asset Pricing Factors

AEM and HKM factors are from Tyler Muir’s and Asaf Manela’s websites, respectively. AEM
leverage factor is defined as the seasonally adjusted growth rate in broker-dealer book leverage
from Table L.130 of the Flow of Funds, where leverage is defined as total financial assets divided
by total financial assets minus total volatility. The intermediary capital ratio in HKM is the ratio
of total market equity to total market assets (book debt plus market equity) of primary dealer
holding companies of the New York Fed. Shocks to capital ratio (HKM capital factor) are defined
as AR(1) innovations in the capital ratio, scaled by the lagged capital ratio. Data for publicly-
traded holding companies of primary dealers are from CRSP/Compustat and Datastream. Primary
dealers are large and sophisticated institutions and serve as trading counterparties of the NY Fed
in its implementation of monetary policy. For the current and historical list of primary dealers see
this link.

F Robustness Checks for Empirical Results

F.1 Predictive Regressions

Exclude the Great Recession form the Sample

As a robustness check, I remove the Great Recession (years 2007 to 2009) form the sample and
rerun the predictive regressions in equation (31) with the market excess return as the dependent
variable. Table G.1 presents the results. Consistent with the first two columns of Table 4 with
the full sample, we also see negative and significant coefficient γy with additional predictive power
over control variables in the sample excluding the 2008 financial crisis. Importantly, the predictive
regression results are robust to excluding the Great Recession from the sample: It is not just the
financial crisis that drives my predictability results.

Using the Cyclical Component of y as Predictor

One might be concerned about time-series trends in state variable y impacting the predictive
regression results. Figure G.4 presents the trend and cyclical components of ydata, defined in
equation (30). Hodrick-Prescott filter with smoothing parameter of 1600 is used to separate the
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time series into trend and cyclical components. We observe that the cyclical component shows
procyclical behavior particularly in the late part of the sample.

Table G.2 presents the results. Consistent with the first two columns of Table 4, we also see
negative and significant coefficient γy for the lagged cyclical component of state variable y (ycyc)
with additional predictive power over control variables. I also considered other ways to detrend
the time series. The predictive regression results are robust to excluding the time trends in state
variable y and using only its cyclical components as the main forecasting variable. In unreported
regression, the forecasting regression is also robust to using 1-year, and 5-year growth rates, as well
as the AR(1) residual of y.

Include Factors from Representative Intermediary-Based Models

As robustness, in Table G.3, I further examine the predictive power of the composition of
financial intermediaries (captured by state variable y) in the presence of factors from representative
intermediary asset pricing models studied in AEM and HKM. That is, I include AEM and/or HKM
factors in predictive regressions in equation (31):

Rit+1→t+4 − r
f
t = γi0 + γiy yt + γiRep Rept + γiCtrl Ctrlt + εt+1→t+4,

where Rep represents the vectors of representative intermediary factors: broker-dealer leverage
from AEM and BHC capital ratio from HKM. Ctrl represents the vector of control variables that
are known in the literature to forecast returns. I use the following control variables: wealth share
of the aggregate financial sector (x from the model defined in 29), fluctuations in the aggregate
consumption-wealth ratio (cay variable) defined in Lettau and Ludvigson (2001), real price-dividend
(PD) and cyclically adjusted price-earnings (CAPE) ratios from Robert Shiller’s website, and vari-
ance risk premium (VRP) from Bollerslev et al. (2009). For reference, the first column repeats the
regression in Column (1) of Table 4. In Column (2), HKM’s intermediary capital ratio (CapRatio)
is added as an additional predictor. We observe that the coefficient on CapRatio is not statistically
significant and the R2 is only slightly increased (from 0.43 to 0.45). Removing y in Column (3)
substantially reduces R2 by 13%, emphasizing the predictive power of my measure of intermediary
heterogeneity beyond CapRatio. In Column (4), AEM’s borker-dealer leverage (BDLev) is added
as an additional predictor. Similarly, the coefficient on BDLev is not statistically significant and
the R2 is only slightly increased (from 0.43 to 0.47). Removing y in Column (5) however, does not
substantially reduce R2 (only by 2% ). Finally, in the last column, all three predictors are included
simultaneously: The coefficient on y remains negative and highly significant with a large R2 of
0.47. The coefficient is also economically significant: a 1% decrease in wealth share of dealers in
the financial sector predicts a 1.2% (quarterly, 4.8% annualized) increase in market risk premium
over the next four quarters. As before, I include several control variables that are known in the lit-
erature to forecast returns: Wealth share of the aggregate financial sector (x from the model defined
in 29), fluctuations in the aggregate consumption-wealth ratio (cay variable) defined in Lettau and
Ludvigson (2001), real price-dividend (PD) and cyclically adjusted price-earnings (CAPE) ratios
from Robert Shiller’s website, and variance risk premium (VRP) from Bollerslev et al. (2009).

77



F.2 Cross-Sectional Asset Pricing Tests

HIFac’s Pricing Performance

Figure G.5 visually shows the HIFac’s pricing performance: The top panel plots the annualized
realized against the predicted excess returns for the 55 equity and bond portfolios when HIFac
is the only pricing factor (Column (1) in Table 5). Most of the portfolios line up closely to the
45-degree line. The bottom panel is similar to the top panel when HIFac and AEM are used as
pricing factors, corresponding to Column (4) in Table 5. The model slightly outperforms the one
in panel (a) as shown in above.

One-Way Sorted CRSP Portfolios

To empirically verify the positive price of risk for innovations in the wealth share of dealers in
the financial sector, I sort stocks based on their exposures to these shocks and form portfolios by
quintiles on a 10-year trailing window. I consider all common stocks (share codes 10 and 11) in the
CRSP universe from Amex, NASDAQ, and NYSE (exchange codes 1,2, and 3). For every stock i
at quarter t, I regress its quarterly excess return on constant and innovations in the heterogeneous
intermediary factor (HIFac), defined in equation (32):

Rei,t = αi + βi,HIFac HIFact + ξi,t

The coefficient βi,HIFac measures the exposure of firm i’s stock to the factor’s innovations. I then
sort stocks into quintiles every quarter according to their βi,HIFac.

The average returns of the beta-sorted portfolios are reported in Table G.4, along with re-
turn volatilities, average book-to-market ratio, average market cap, and alphas from CAPM and
Fama-French three-factor model. Consistent with model’s implications, when sorted on βHIFac,
average risk premia are increasing from the portfolio of low-beta stocks to the high-beta quintile.
Excess returns are monotonically increasing from quintile one to five and the top portfolio earns
an approximately 5% premium over the lowest quintile.

Two-Way Sorted CRSP Portfolios

In this section, I verify the results above are robust to double-sorting with asset pricing factors
from recent models with representative intermediaries. In this exercise, I independently double-sort
CRSP stocks into three-by-three portfolios on their exposures to the heterogeneous intermediary
factor (HIFac) and either AEM or HKM representative intermediary asset pricing factors. Table G.5
reports returns for double-sorted portfolios on exposures to HIFac and AEM and HKM betas. The
return spread on HIFac-beta-sorted portfolios is 4.34% and 3.14% per year among stocks with low
exposures to the AEM leverage and HKM capital factors, respectively.

This exercise demonstrates that the heterogeneity in the financial sector is an important risk
factor and has pricing information above and beyond representative intermediary asset pricing
factors in AEM and HKM: even within portfolios sorted based on AEM or HKM factor betas, I
see a monotonic progression in returns from low- to high-HIFac beta portfolios.
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The Heterogeneous Intermediary Factor-Mimicking Portfolio

As emphasized above, the main argument of the paper is that the heterogeneity in the inter-
mediary sector has important implication for asset prices. To conduct additional robustness tests,
in this section, I project the heterogeneous intermediary factor (HIFac) onto the space of traded
returns to form a factor-mimicking portfolio that mimics the HIFac. To further verify that this het-
erogeneity an important source of risk, I evaluate the heterogeneous intermediary factor-mimicking
portfolio (HIMP) relative to the mimicking portfolios for representative intermediary factors in
AEM and HKM. I show that the mimicking portfolios for these representative intermediary factors
cannot fully span the HIMP and there is more to be captured by the heterogeneity within the
financial sector.

This approach also allows me to run tests using higher frequency data and longer time series.
Moreover, since the mimicking portfolio is a traded excess return, I can evaluate the model by
testing alphas in the time-series regression without the need to estimate the cross-section risk
prices.

Construction of HIMP To construct mimicking portfolio of the heterogeneous intermediary
factor (HIFac), I follow AEM and project this factor, onto the space of excess returns by running
the following regression:

HIFact = aHI + b′HI [BL,BM,BH,SL, SM,SH,Mom,Bond]t + %t, (F.1)

where HIFac is the heterogeneous intermediary factor defined in equation (32), and
BL,BM,BH,SL, SM,SH are, respectively, the excess returns of the six Fama-French portfolios
on size (Small and Big) and book-to-market (Low, Medium, and High), and Mom is the momen-
tum factor, obtained from Ken French’s data library. Bond is the first principal component (PC) of
excess returns on six Treasury bond portfolios sorted by maturity from CRSP. The heterogeneous
intermediary mimicking portfolio (HIMP) is then given by

HIMPt = b̃′HI [BL,BM,BH,SL, SM,SH,Mom,Bond]t , (F.2)

where b̃HI =
b′HI∑
bHI

= [−0.34, 0.20,−1.04,−0.09, 0.41, 1.64, 1.04,−0.83] positively loading on the
momentum factor.

HIMP vs. Mimicking Portfolios for AEM and HKM Factors To further verify that my
heterogeneous intermediary factor captures sources of risk beyond the factors from representative
intermediary asset pricing models, in this section I evaluate the performance of HIMP with mim-
icking portfolios for AEM and HKM factors. I similarly construct mimicking portfolios for AEM’s
broker-dealer leverage and HKM’s holding company capital factors using quarterly data for the
two factors from Tyler Muir’s and Asaf Manela’s websites, respectively.62 The mimicking portfolio
for the heterogeneous intermediary factor has Sharpe ratio of 0.45 over the sample period (1970Q1
to 2017Q3), much higher than Sharpe ratios for AEM and HKM factor-mimicking portfolios (0.21
and 0.27, respectively).

62The loadings for AEM and HKM factor-mimicking portfolios are b̃AEM =
[−0.98, 0.50,−0.03,−0.26, 0.96, 0.05, 0.16, 0.59] and b̃HKM = [0.30, 0.03, 0.58,−0.06,−0.16, 0.25, 0.09,−0.03].

79



To evaluate the importance of heterogeneity in the financial sector above an beyond represen-
tative intermediary factors, I regress HIFac on mimicking portfolios for AEM and HKM factors in
the following regression:

HIMPt = αMP + β′FMP FMPt + εt, (F.3)

where FMP is either the mimicking portfolio for broker-dealer leverage factor from AEM
(AEM MP), or the mimicking portfolio for capital factor for primary dealers’ holding companies
from HKM (HKM MP), or both AEM MP and HKM MP. Notice the mimicking portfolios are
traded excess returns, thus I can evaluate the model by testing alphas in the time-series regres-
sion without the need to estimate the cross-section risk prices. If HIMP is fully “explained” by
AEM MP, HKM MP, or both, I expect to see small and insignificant αMP in the regression above.
I find the opposite to be true, however.

Table G.6 presents the results. In Columns 1 and 2, I run univariate regression where the
dependent variables are AEM MP and HKM MP, respectively. In both cases the intercept, αMP

is statistically significant at 1% level and the R2 of the regressions are relatively low at 0.14 and
0.32, respectively. In Column 3, I added value-weighted return from CRSP (MktRF) to HKM MP
as independent variables which leads to very similar results to Column 3. In Column 4, I add both
AEM and HKM factor-mimicking portfolios as right-hand-side variables in equation (F.3). We
observe a large and significant αMP and relatively small R2. Adding MktRF in Column 5 to the
regression in Column 4, further strengthen the results.

As a robustness check, I build factor-mimicking portfolios by projecting them instead onto the
Fama-French three factors, the momentum factor, and the first PC of bond portfolios, and repeat
the regressions in Table G.6. I arrive at very similar results: time-series alphas are large and
significantly different from zero with low R2 in all regressions. See Table G.7 in Appendix F.

This exercise confirms my earlier results: the heterogeneity in the financial sector is an important
risk factor and has pricing information above and beyond representative intermediary asset pricing
factors in AEM and HKM.

Alternative Projections for Factor-Mimicking Portfolios (FMPs) In this section, I repeat
the exercise in Section F.2 with an alternative set of returns. I construct a mimicking portfolio
for the heterogeneous intermediary factor (HIFac) by projecting it onto the space of excess returns
running the following regression:

HIFact = aHI + b′HI [MktRF, SMB,HML,Mom,Bond]t + %t, (F.4)

where HIFac is the heterogeneous intermediary factor defined in equation (32), MktRF, SMB, and
HML are the Fama-French three factors, Mom is the momentum factor, and Bond is the first
principal component (PC) of excess returns on six Treasury bond portfolios sorted by maturity
from CRSP. The heterogeneous intermediary mimicking portfolio (HIMP) is then given by

HIMPt = b̃′HI [MktRF, SMB,HML,Mom,Bond]t , (F.5)

where b̃HI =
b′HI∑
bHI

= [0.19, 0.51, 0.22, 0.29,−0.22] positively loading on the momentum factor.
I similarly construct mimicking portfolios for AEM’s broker-dealer leverage and HKM’s hold-

ing company capital factors using quarterly data for the two factors from Tyler Muir’s and Asaf
Manela’s websites, respectively. The mimicking portfolio for the heterogeneous intermediary factor
has Sharpe ratio of 0.43 over the sample period (1970Q1 to 2017Q3), much higher than Sharpe
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ratios for AEM and HKM factor-mimicking portfolios (0.24 and 0.28, respectively).
To evaluate the importance of heterogeneity in the financial sector above an beyond represen-

tative intermediary factors, I regress HIFac on mimicking portfolios for AEM and HKM factors in
the following regression:

HIMPt = αMP + β′FMP FMPt + εt, (F.6)

where FMP is either the mimicking portfolio for broker-dealer leverage factor from AEM
(AEM MP), or the mimicking portfolio for capital factor for primary dealers’ holding compa-
nies from HKM (HKM MP), or both AEM MP and HKM MP. If HIMP is fully “explained” by
AEM MP, HKM MP, or both, I expect to see small and insignificant αMP in the regression above.
I find the opposite to be hold in the data, however. Table G.7 presents the results. Time-series
alphas are positive and significant at 1% level in all columns similar to the regressions in Table G.6
from the main text.

G Appendix Figures and Tables
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Figure G.1. Heterogeneous and representative intermediaries. This figure presents distribution of risk
premia volatility in models with representative (red) and heterogeneous (blue) intermediaries. I simulate each model
20,000 times for 3,000 quarters. Notice that horizontal axis is the volatility of the risk premium for the endowment
claim, which has relatively low volatility (σD = 3.5%) relative to the market (approximately 16%). Therefore,
equity premium volatility implied by the model is about five to six times larger than that of the endowment claim
(approximately 1% for the heterogeneous intermediary model, for example).
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Figure G.2. Equilibrium in the unconstrained economy. This figure presents price-dividend ratio 1/F , return
volatility σ, Sharpe ratio and risk premium on the endowment claim, optimal portfolio weights of each type of agent
(wAs , w

B
s , and wCs ) as well as the real interest rate rt and the drift and diffusion of state variables x and y (µx, σx,

µy, and σy, respectively) in the frictionless economy as functions of state variable x (wealth share of the financial
sector i.e. type A and B agents) and yt (wealth share of type A agents in the financial sector) under the benchmark
parameters in Table 1.
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Figure G.3. Equilibrium in the economy with time-varying margin constraints. This figure presents price-
dividend ratio 1/F , return volatility σ, Sharpe ratio and risk premium on the endowment claim, optimal portfolio
weights of each type of agent (wAs , w

B
s , and wCs ) as well as the real interest rate rt and the drift and diffusion of

state variables x and y (µx, σx, µy, and σy, respectively) in the economy with time-varying margin constraints as
functions of state variable x (wealth share of the financial sector i.e. type A and B agents) and yt (wealth share of
type A agents in the financial sector) under the benchmark parameters in Table 1.
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Figure G.4. Trend and cyclical components of state variable y in the data. This figure presents the trend
and cyclical components of quarterly book equity share of the broker-dealers in the financial sector, ydata, defined
in equation (30). Hodrick-Prescott filter with smoothing parameter of 1600 is used to separate the time series into
trend and cyclical components. Book equity for BDs and commercial banks are computed from the Flow of Funds
Tables L.130 and L.110, respectively. Sample period is from 1970Q1 to 2018Q4. The vertical shaded bars indicate
NBER recessions.

85



S1B1

S1B2S1B3

S1B4

S1B5

S2B1

S2B2

S2B3

S2B4S2B5

S3B1

S3B2

S3B3

S3B4

S3B5

S4B1S4B2S4B3

S4B4 S4B5

S5B1

S5B2
S5B3

S5B4

S5B5

Mom1

Mom2
Mom3

Mom4

Mom5

Mom6
Mom7

Mom8Mom9

Mom10

Bonds01
Bonds02
Bonds03Bonds04Bonds05Bonds06Bonds07Bonds08Bonds09Bonds10
Bonds11
Bonds12Bonds13Bonds14

Bonds15Bonds16Bonds17Bonds18Bonds19

Bonds20

-1

1

3

5

7

9

11

13

15

17

-1 1 3 5 7 9 11 13 15 17
Predicted Expected Return (% per year)

R
ea

li
ze

d
M

ea
n

R
et

u
rn

(%
p

er
y
ea

r)

(a) HIFac only.
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(b) HIFac + AEM.

Figure G.5. Realized versus predicted mean returns: intermediary heterogeneity factor. This figure
presents the realized mean excess returns of 35 equity portfolios (25 size and book-to-market-sorted portfolios and
10 momentum-sorted portfolios) and 10 Treasury bond portfolios (sorted by maturity), and 10 US corporate bond
portfolios (sorted by yield spread) against the mean excess returns predicted by the single heterogeneous intermediary
risk factor when only the heterogeneous intermediary factor (HIFac) (panel a) and HiFac and AEM factors (panel
b) are used as pricing factor, respectively. The sample is quarterly from 1970Q1 to 2017Q4. Returns are reported in
percent per year (quarterly percentages multiplied by four).
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Table G.1. Predictive regressions: Excluding the Great Recession.
This table provides results for one-year ahead predictive regressions according to Rit+1→t+4 − rft = γi0 + γiy yt +
γiCtrl Ctrlt + εit+1→t+4, using lagged equity share of broker-dealers in the financial sector, ydatat defined in (30). Ctrl
represents the vector of control variables that are known in the literature to forecast returns. I use the following
control variables: wealth share of the aggregate financial sector (x from the model defined in 29), cay variable
from Lettau and Ludvigson (2001), real price-dividend (PD) and cyclically adjusted price-earnings ratios (CAPE)
from Robert Shiller’s website, and variance risk premium (VRP) from Bollerslev et al. (2009). The dependent
variables are excess holding period returns from quarter t + 1 to quarter t + 4 on the CRSP value-weighted port-
folio (Mktt+1). Broker-Dealer leverage is calculated using data from Table L.130 of Flow of Funds and is defined:
Total Financial Assets/(Total Financial Assets−Total Liabilities). The sample is quarterly from 1974Q1 to 2018Q4.
The Great Recession (years 2007–2009) is excluded form the sample. Hodrick (1992) standard errors are reported in
parentheses to adjust for the fact that overlapping quarterly observations are used to forecast annual returns.

Dependent variable:

Mkt

(1) (2)

yt −1.06∗∗∗

(0.34)

Constant −0.12 −0.13
(0.14) (0.10)

Controls Yes Yes

Observations 97 97
R2 0.48 0.54
Adjusted R2 0.45 0.51

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table G.2. Predictive regressions: Using cyclical component of y as predictor.
This table provides results for one-year ahead predictive regressions according to Rit+1→t+4 − rft = γi0 + γiy y

cyc
t +

γiCtrl Ctrlt + εit+1→t+4, using lagged cyclical component of equity share of broker-dealers in the financial sector, ycyct

as the main predictor. Hodrick-Prescott filter with smoothing parameter of 1600 is used to separate the time series of
y into trend and cyclical components. Ctrl represents the vector of control variables that are known in the literature
to forecast returns. I use the following control variables: wealth share of the aggregate financial sector (x from the
model defined in 29), cay variable from Lettau and Ludvigson (2001), real price-dividend (PD) and cyclically adjusted
price-earnings ratios (CAPE) from Robert Shiller’s website, and variance risk premium (VRP) from Bollerslev et al.
(2009). The dependent variables are excess holding period returns from quarter t+ 1 to quarter t+ 4 on the CRSP
value-weighted portfolio (Mktt+1). Broker-Dealer leverage is calculated using data from Table L.130 of Flow of
Funds and is defined: Total Financial Assets/(Total Financial Assets − Total Liabilities). The sample is quarterly
from 1970Q1 to 2018Q4. Hodrick (1992) standard errors are reported in parentheses to adjust for the fact that
overlapping quarterly observations are used to forecast annual returns.

Dependent variable:

Mkt

(1) (2)

ycyct −4.47∗∗∗

(1.06)

Constant 0.04 −0.06
(0.19) (0.16)

Controls Yes Yes

Observations 103 103
R2 0.33 0.42
Adjusted R2 0.29 0.39

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table G.3. Predictive regressions for the MKT excess return: Robustness
This table provides results for one-year ahead predictive regressions using lagged equity share of broker-dealers in
the financial sector, the empirical proxy for state variable y defined in equation (30) which captures the composi-
tion of the financial sector, as well as intermediary equity capital ratio (from HKM) and leverage of broker-dealers
(from AEM) as predictors of interest. I use the same control variables as in Table 4: wealth share of the ag-
gregate financial sector (x from the model defined in 29), cay variable from Lettau and Ludvigson (2001), real
price-dividend (PD) and cyclically adjusted price-earnings (CAPE) ratios from Robert Shiller’s website, and vari-
ance risk premium (VRP) from Bollerslev et al. (2009). The dependent variable is excess holding period returns
from quarter t + 1 to quarter t + 4 on the CRSP value-weighted portfolio (Mktt+1). The sample quarterly from
1974Q1 to 2017Q3. Broker-Dealer leverage is calculated using data from Table L.130 of Flow of Funds and is defined:
Total Financial Assets/(Total Financial Assets − Total Liabilities). The capital ratio for New York Fed’s primary
dealer holding companies are downloaded from Asaf Manela’s website. Hodrick (1992) standard errors are reported
in parentheses to adjust for the fact that overlapping quarterly observations are used to forecast annual returns.

Dependent variable: Mktt+1

(1) (2) (3) (4) (5) (6)

yt −1.80∗∗∗ −1.98∗∗∗ −0.97∗ −1.19∗∗∗

(0.43) (0.48) (0.51) (0.43)

CapRatiot 3.31 1.22 1.68
(3.58) (4.58) (2.25)

BDLevt −1.35 −1.98∗∗∗ −1.13∗

(0.85) (0.56) (0.59)

Constant 0.01 0.18 0.10 0.05 0.09 0.13
(0.13) (0.26) (0.38) (0.15) (0.17) (0.22)

Controls Yes Yes Yes Yes Yes Yes

Observations 109 109 109 109 109 109
R2 0.46 0.49 0.32 0.51 0.48 0.51
Adjusted R2 0.43 0.45 0.28 0.47 0.45 0.47

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table G.4. One-way sorted CRSP portfolios on exposures to the heterogeneous intermediary factor.
This table reports average excess returns, alphas, volatility, average book-to-market ratio, and average market cap-
italization for portfolios formed on their exposure to shocks to dealer wealth share in the financial sector. Shocks
to dealer wealth share (HIFac) are defined as AR(1) innovations in the wealth share, scaled by the lagged wealth
share as shown in equation (32). Data is quarterly from 1970Q1 to 2017Q3. Returns, volatilities, and alphas are
annualized.

L H HML

(1) (2) (3) (4) (5) (6)

Average Excess Return (%) 11.66 11.53 12.81 14.34 16.65 4.98
Volatility (%) 19.69 19.08 21.76 26.41 35.53 26.72
βHIFac −0.20 0.33 0.69 1.19 2.21 2.41
t-stat −0.89 1.50 2.77 4.07 5.89 10.67
αCAPM 4.77 4.33 4.56 4.75 4.44 −0.32
t-stat 3.40 3.90 3.63 2.84 1.57 −0.10
αFF3 3.89 2.88 3.36 3.98 4.02 0.14
t-stat 3.14 4.21 5.45 5.04 2.24 0.05
Average Market Cap ($bn) 5.28 3.66 2.40 1.97 0.89 –

Table G.5. Two-way sorted CRSP portfolios.
This table reports average excess returns for portfolios independently double-sorted on their exposure to shocks to
dealer wealth share in the financial sector (HIFac) and beta to the AEM leverage factor (AEM LevFac), as well
as, double-sorted portfolios on HIFac beta and HKM capital ratio factor (HKM CapFac) beta. Shocks to dealer
wealth share (HIFac) are defined as AR(1) innovations in the wealth share, scaled by the lagged wealth share as
shown in equation (32). AEM leverage and HKM capital factors are from Tyler Muir’s and Asaf Manela’s websites,
respectively. Returns are annualized in percentage points. Data is quarterly from 1970Q1 to 2017Q3.

HIFac
AEM LevFac (1) (2) (3) (3)−(1) t-stat

(1) 12.85 14.05 17.19 4.34 1.49
(2) 11.47 12.75 14.63 3.16 1.25
(3) 11.42 12.19 14.67 3.24 1.25
(3)−(1) −1.43 −1.86 −2.54 – –
t-stat −0.65 −0.85 −0.91 – –

HIFac
HKM CapFac (1) (2) (3) (3)−(1) t-stat

(1) 10.05 11.39 13.19 3.14 1.20
(2) 11.91 12.48 14.82 2.91 1.28
(3) 14.75 15.17 17.74 2.99 1.13
(3)−(1) 4.70 3.78 4.55 – –
t-stat 1.48 1.30 1.48 – –
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Table G.6. The heterogeneous intermediary mimicking portfolio (HIMP): Comparing models
This table presents time-series regression results of heterogeneous intermediary mimicking portfolio (HIMP) on
mimicking portfolios for the representative intermediary factors in AEM and HKM according to: HIMPt =
αMP + β′FMP FMPt + εt, where FMP is either the mimicking portfolio for broker-dealer leverage factor from
AEM (AEM MP), or the mimicking portfolio for capital factor for primary dealers’ holding companies from HKM
(HKM MP), or both AEM MP and HKM MP. The factor-mimicking portfolios are constructed by projecting the
heterogeneous intermediary, AEM’s leverage, and HKM’s capital factors unto the space of equity and bond returns
according to equations (F.1) and (F.2). The sample is quarterly from 1970Q1 to 2017Q3. Standard errors are in
parentheses.

Dependent variable: HIMP

(1) (2) (3) (4) (5)

αMP 5.03∗∗∗ 4.03∗∗∗ 4.14∗∗∗ 3.74∗∗∗ 3.91∗∗∗

(0.94) (0.85) (0.85) (0.83) (0.83)

AEM MP 0.72∗∗∗ 0.37∗∗∗ 0.49∗∗∗

(0.13) (0.12) (0.13)

HKM MP 0.94∗∗∗ 0.68∗∗ 0.82∗∗∗ 0.15
(0.10) (0.27) (0.10) (0.30)

MktRF 0.27 0.65∗∗

(0.26) (0.27)

Observations 191 191 191 191 191
R2 0.14 0.32 0.33 0.35 0.37
Adjusted R2 0.14 0.32 0.32 0.35 0.36

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table G.7. The heterogeneous intermediary mimicking portfolio (HIMP): Comparing models with
alternative projections
This table presents time-series regression results of heterogeneous intermediary mimicking portfolio (HIMP) on
mimicking portfolios for the representative intermediary factors in AEM and HKM according to: HIMPt =
αMP + β′FMP FMPt + εt, where FMP is either the mimicking portfolio for broker-dealer leverage factor from
AEM (AEM MP), or the mimicking portfolio for capital factor for primary dealers’ holding companies from HKM
(HKM MP), or both AEM MP and HKM MP. The factor-mimicking portfolios are constructed by projecting the
heterogeneous intermediary, AEM’s leverage, and HKM’s capital factors unto the space of equity and bond returns
according to equations (F.1) and (F.2). The sample is quarterly from 1970Q1 to 2017Q3. Standard errors are in
parentheses.

Dependent variable: HIMP

(1) (2) (3) (4) (5)

αMP 1.21∗∗∗ 0.96∗∗∗ 0.95∗∗∗ 0.88∗∗∗ 0.92∗∗∗

(0.25) (0.22) (0.23) (0.22) (0.22)

AEM MP 0.55∗∗∗ 0.23∗∗ 0.32∗∗∗

(0.09) (0.09) (0.11)

HKM MP 0.38∗∗∗ 0.39∗∗∗ 0.34∗∗∗ 0.13
(0.04) (0.11) (0.04) (0.14)

MktRF −0.01 0.13
(0.07) (0.08)

Observations 191 191 191 191 191
R2 0.16 0.35 0.35 0.38 0.38
Adjusted R2 0.15 0.35 0.35 0.37 0.37

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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