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1 Introduction

In a revealed preference framework, choices made by agents reflect their underlying prefer-

ences, thus are the key ingredients to further economic analysis. In reality, however, agents’

decisions may not be directly observed by researchers. In a principal-agent framework, moral

hazard problems occur when the agent’s actions impose an externality on the principal but

cannot be directly observed. Models with hidden actions have been applied to many contexts

in economics and political science. For example, in credit markets, borrowers may have in-

centives to invest in riskier projects, which increases default probability, but the investment

decisions may not be perfectly monitored by lenders; a politician knows the amount of time

and effort he spends generating economic growth, but this action is unlikely to be observed

by voters. In such contexts where actions are private information, it is almost impossible

for researchers to observe agents’ choices.1 An important research question therefore arises:

when actions are hidden, can we still uncover the decision-making process and infer agent

preferences from the data?

In this paper, we study identification and estimation of dynamic structural models when

agents’ choices are not observed by econometricians. In the existing literature on dynamic

discrete choice models, researchers mainly focused on the cases in which choices are observ-

able.2 Examples include engine replacement decisions in Rust (1987), parental contraceptive

choices in Hotz and Miller (1993), occupational choices in Keane and Wolpin (1997), em-

ployee retirement decisions in Rust and Phelan (1997), retail firm inventory strategies in

Aguirregabiria (1999), and water authority pricing behavior in Timmins (2002), etc. The

identification results of dynamic structural models in previous works require the observation

of choices and state variables for a random set of agents for a period of time (see Rust,

1994; Magnac and Thesmar, 2002; Aguirregabiria, 2010; Abbring, 2010; and Norets and

Tang, 2014). For estimation of this class of models, agents’ choices are needed to construct

(pseudo) likelihood or to do first-stage nonparametric estimation of the conditional choice

probabilities (CCPs) and the state transition probabilities (see Rust, 1987; Hotz and Miller,

1993; Hotz et al., 1994; Aguirregabiria and Mira, 2002).

Given that the existing approaches are not generally effective when agents’ choices are

not observed by econometricians, in this paper, we propose new identification and estima-

tion methods for dynamic structural models with unobserved choice variables. We consider

1Another reason that choices may be hard for researchers to obtain relates to data collecting issues. For
example, in many survey datasets, some key decisions, such as agents’ investments in human capital, health,
and child development, etc. are not reported (or inquired about).

2See Aguirregabiria and Mira (2010) for a comprehensive survey on dynamic discrete choice structural
models.
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a single-agent finite-horizon dynamic discrete choice model with a continuous state variable

in the baseline analysis. We specify the state transition process through a nonparametric

regression model with an additive error. We assume that the unobserved choices may shift

the distribution of the future state but are independent with the error term conditional on

the current state. The key intuition of our identification results is as follows. In a finite-

horizon dynamic structural model, agents’ choice probabilities are inherently time-varying.

For example, when an executive in a firm is close to retirement, s/he may have fewer incen-

tives to exert effort; the probability of shirking may exhibit an upward trend. However, the

stationarity of the state transition process is typically considered an innocuous assumption

in the literature.3 In the executive’s example, this assumption means that conditional on

working hard, the distribution of the future state given a fixed current state will remain the

same no matter whether the executive is close to retirement or not. In the data, the differ-

ences in the observed state transition process across periods are driven by the differences in

choice probabilities. Therefore, by exploiting variations in moments of observed future state

distributions across periods, we identify the unobserved choice probabilities and the latent

state transition process.

In this paper, we consider several extensions to our baseline model. First, we incorpo-

rate individual serially correlated unobserved heterogeneity into the dynamic discrete choice

model when choices are unobserved. Existing papers by Aguirregabiria and Mira (2007),

Houde and Imai (2006), Kasahara and Shimotsu (2009), and Hu and Shum (2012) have

provided solutions to deal with unobserved heterogeneity. Following Hu and Shum (2012),

we use joint distribution of the observed state variable at four consecutive periods to identify

the transition of the observed state conditional on unobserved heterogeneity, to which we

can apply our method directly to deal with unobserved choices. Second, we discuss iden-

tification for infinite-horizon models. In finite-horizon models, time essentially serves as an

exclusion restriction. We show that as long as there is an excluded variable that only shifts

choice probabilities but does not affect the latent state transition process, the baseline iden-

tification results remain valid. Third, we provide conditions under which unobserved choice

probabilities and the latent state transition process are identified when only discrete state

variables are available. Our results rely on the assumption that the transition processes of

two discrete state variables are independent conditional on the agent’s choice. When this

assumption holds, intuitively, the future states can be viewed as “measurements” of the

unobserved choice. If two continuous state variables are available, it is straightforward to

extend our results to allow for continuous choices.

Our identification results are not limited to single-agent dynamic models. We also show

3See the discussions on stationary Markovian policy function in Rust (1987).
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in this paper that the proposed approach can be extended to dynamic discrete games of

incomplete information. In a game setting, multiple players interact with each other and

make decisions simultaneously. Their choices naturally depend on the actions and states of

other players. In some cases, however, it is reasonable to assume that the state transition

process for a player only depends on his own actions and state variables in the past.4 When

this assumption holds, the state of other players can be treated as an excluded variable

(i.e., it only affects the choice probabilities, but not the state transition process); hence, our

identification results for single-agent models can be applied to unobserved choices in dynamic

discrete games.

Following our identification strategies, we propose a sieve maximum likelihood estima-

tion strategy for the nonparametric functions in the state transition process and the agent’s

utility primitives. We conduct Monte Carlo simulations to examine the finite sample per-

formances of our estimator. We also apply our method to study moral hazard problems

in U.S. gubernatorial elections. Specifically, we estimate a dynamic discrete choice model

for governors’ effort-exerting decisions in the United States from 1950–2000. In our model,

governors’ choices are not directly observed by voters or econometricians, but they have an

impact on the state variable (log per capita spending). Our empirical analysis suggests that

the probabilities of shirking increase as the governors approach the end of their terms; the

shirking probability is 42 percent higher in the last period compared to that in the first year.

We also find governors serving their second terms are more likely to exert effort, potentially

because of the selection effect of elections.

This paper is, to the best of our knowledge, the first to incorporate unobserved choice

variables into a general framework of dynamic discrete choice models. There are few empir-

ical papers focused on models with unobserved choices. Misra and Nair (2011) investigate

salesforces’ dynamic effort allocations, treating unobserved effort levels as time-specific fixed

effects. Copeland and Monnet (2009) consider a dynamic model of effort decisions under

non-linear incentive schemes; their identification results rely on exogenous variations in the

threshold of the firm’s daily bonus plan. Gayle and Miller (2015) study models of man-

agerial compensation and assume that some levels of revenue can only be achieved through

high effort. Perrigne and Vuong (2011) focus on a false moral hazard model, in which ef-

fort, though unobserved, is a deterministic function of type that can be identified one-to-one

from observed prices.5 Xin (2019) studies adverse selection and moral hazard problems in

4For example, in a dynamic oligopoly game where the state variable is the firm’s capacity levels and the
choice is incremental changes to capacity, it is reasonable to assume that the firm’s future capacity levels
only depend on its own decisions, not on other firms’ choices. See Aguirregabiria, Mira, and Roman (2007),
Ryan (2012), Collard-Wexler (2013), and Takahashi (2015) for more details on empirical models of oligopoly
dynamics.

5The identification arguments in Perrigne and Vuong (2011) relate to the nonparametric identification
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online credit markets, where borrowers’ default and late payment performances are used as

measurements of unobserved effort choices.

Our paper differs from these preceding papers in the sense that we impose general as-

sumptions on the state transition process. Our identification strategies do not rely on mul-

tiple measurements of effort levels, exogenous variations in incentive schemes, or one-to-one

mapping between effort levels and observables.6 In this paper, we also provide identification

results for dynamic discrete games with unobserved choices. The existing papers that develop

estimation techniques for dynamic discrete games all require the observation of choices (see

Jofre-Bonet and Pesendorfer, 2003; Aguirregabiria and Mira, 2007; Bajari, Benkard, and

Levin, 2007; Pakes, Ostrovsky, and Berry, 2007; Pesendorfer and Schmidt-Dengler, 2008,

etc).

This paper is also related to the empirical literature in political economy focused on un-

derstanding the impact of institutional design of election rules (e.g., term limits) on politi-

cians’ performances (see Besley and Case, 1995; Alt, Bueno de Mesquita, and Rose, 2011;

Aruoba, Drazen, and Vlaicu, 2019; Sieg and Yoon, 2017). We study governors’ dynamic

effort-exerting decisions within a term and provide new empirical evidence on moral hazard

problems in U.S. gubernatorial elections.

The rest of the paper is organized as follows. We outline a standard dynamic discrete

choice model in Section 2. Identification and estimation results for the baseline model are

provided in Sections 3 and 4, respectively. Section 5 provides simulation results. We consider

extensions to the baseline model in Section 6 and apply our methods to study moral hazard

problems in gubernatorial elections in Section 7. Section 8 concludes.

2 A Basic Model

We first fix the notation for a standard single-agent dynamic discrete choice model with

t = 0, 1, · · · , T < ∞. Let st represent the observed state variable and yt denote the agent’s

choice. εt represents the state variable that is unobserved by econometricians, such as utility

shocks. An agent’s flow utility depends on the current state and the choice, i.e., ut(st, εt, yt).

The sum of the discounted utility stream of the agent is therefore defined as

U(s, ε, y) =
T∑
t=0

βtut(st, εt, yt), (2.1)

results in the auction literature; see Guerre, Perrigne, and Vuong (2000).
6In the case where only discrete state variables are available, we need multiple measurements of effort

levels to identify the model primitives. The details are provided in Section 6.3.
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where s = (s0, · · · , sT ), ε = (ε0, · · · , εT ), y = (y0, · · · , yT ), and β is the discount factor. The

agent’s problem is to choose an optimal decision rule δ = (δ0, · · · , δT ) that maximizes the

expected sum of the discounted utility, i.e.,

max
δ=(δ0,··· ,δT )

E(U(s, ε,y)),

where expectation is with respect to the partially controlled stochastic process of {st, εt, yt}
induced by the decision rule δ. We now introduce the first assumption to restrict attention

to certain classes of models.

Assumption 1. The dynamic process of {st, εt, yt} satisfies

(i) First-order Markov: fst+1,εt+1,yt+1|st,εt,yt,Ω<t = fst+1,εt+1,yt+1|st,εt,yt ,

where Ω<t ≡ {st−1, · · · , s0, εt−1, · · · , ε0, yt−1, · · · , y0}.

(ii) The distribution of st+1 given (st, εt, yt) only depends on (st, yt) and is denoted by

fst+1|st,yt; the distribution of εt+1 given (st+1, st, εt, yt) only depends on st+1 and is

denoted by fεt+1|st+1.

(iii) State transition probabilities fst+1|st,yt are time-invariant.

Assumption 1(i), which imposes the first-order Markov property on the transition process

of {st, εt, yt}, is commonly adopted in the dynamic discrete choice framework and may be

easily relaxed to allow for a higher-order Markov process. Following Rust (1987), Assump-

tion 1(ii) highlights two types of conditional independence: (1) given the state st, ε’s are

independent over time and (2) conditional on the current state st and choice yt, the future

state st+1 is independent of the unobserved state εt. The relaxation of this assumption is

discussed in recent literature on identification and estimation of dynamic discrete choice

models when the unobserved state variables are serially correlated (see Aguirregabiria and

Mira, 2007; Houde and Imai, 2006; Kasahara and Shimotsu, 2009; Hu and Shum, 2012).

In Section 6.1, we show that our identification results can be generalized for the model

that incorporates serially correlated unobserved heterogeneity when at least five periods are

available in the data.7 In order to highlight the identification intuition related to unobserved

choice variables, we first focus on the case when Assumption 1(ii) is invoked. Assumption

1(iii) guarantees the stationarity of the state transition process and is usually invoked in dy-

namic models.8 When choice variables are available, this assumption can be directly tested

7When the unobserved heterogeneity is fixed over time, we show that only four consecutive periods are
needed.

8Bajari et al. (2016) impose the same assumption of time-homogeneous state transition for finite-horizon
dynamic discrete choice models; see Rust (1987) for a discussion on stationary infinite-horizon models.
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using the data. The dynamic process of the state and choice variables (st, yt) that satisfies

Assumption 1 is illustrated in Figure 1.

Figure 1: The Dynamic Process of (st, yt)

Under Assumption 1, we represent the agent’s optimization problem using the Bellman’s

equation as follows.

Vt(st, εt) = max
y
u(st, εt, y) + β E[Vt+1(st+1, εt+1)|st, y]. (2.2)

The agent’s decision rule is hence defined by

δt(st, εt) = arg max
y

{
u(st, εt, y) + β E[Vt+1(st+1, εt+1)|st, y]

}
. (2.3)

At period t, the choice probability of alternative yt conditional on the observed state st (also

abbreviated as CCP) is defined in the following equation.

pt(yt|st) =

∫
1 {yt = δt(st, ε)} dFεt|st(ε|st), (2.4)

where Fεt|st(·|·) denotes the cumulative density function of the unobserved state variable εt

conditional on the current state st.

For the model described above, if the choice variable yt is observed at each period, the

two-step CCP method developed by Hotz and Miller (1993) can be easily adopted—in the

first step, the choice and state transition probabilities are nonparametrically identified and

estimated. However, when yt is not observed by econometricians, we cannot recover the

decision rules and the state transition probabilities directly from the data in the first step.

As a result, the existing methods fail to obtain sufficient ingredients for identifying and

estimating structural primitives.
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3 Identification

In this section, we provide new identification strategies to recover the unobserved choice

probabilities pt(yt|st) and latent state transition probabilities fst+1|st,yt when only {st}Tt=1

is observed. We focus on the case when st represents a continuous state variable in this

section; the identification results of cases in which only discrete state variables are available

are provided in Section 6.3. To highlight the feature that the choice variable is unobserved

by econometricians, we use y∗t to denote the unobserved choice variable hereafter.

When agents’ choices are unobserved, neither conditional choice probabilities nor state

transition rules can be directly recovered from the data. However, these two sets of unknowns

are connected through the observed state transition process as shown in the following equa-

tion under Assumption 1(i)–(ii).

fst+1|st(s
′|s) =

∑
y∗t

fst+1|st,y∗t (s
′|s, y∗t )pt(y∗t |s), (3.1)

where s′ and s represent a realized value of st+1 and st, respectively. In Equation (3.1),

the probability density of the future state conditional on the current state is a mixture of

the true latent state transition probabilities conditional on different alternatives, and the

choice probabilities serve as the mixing weights. Under Assumption 1(iii), fst+1|st,y∗t (s
′|s, y∗t )

is stationary; while in finite-horizon models, pt(y
∗
t |s) varies across different periods. The

differences in fst+1|st(s
′|s) across periods are therefore driven by the non-stationarity of the

choice probabilities. In the rest of this section, we explore variations in moments of the

observed state transition process to identify choice probabilities and latent state transition

rules, for which the following assumption is invoked.

Assumption 2. st+1 = m(y∗t , st) + ηt, where E(ηt|st) = 0 and ηt ⊥ y∗t |st.

Assumption 2 specifies the transition process of the continuous state variable st through a

nonparametric regression model, where m(·, ·) is an unknown function and ηt represents the

random shock realized in the transition process with conditional mean equal to zero. This

assumption also requires that the regression error is independent of the unobserved choice

conditional on the state variable. This conditional independence assumption ensures that

the impact of the choices on the state transition process is only through the deterministic

part but not through the error term. In other words, the choice variables only shift the mean

of the future state distribution. Combining Assumption 2 and Assumption 1(iii), we know

that the conditional distribution of ηt is also stationary. That is, for t, τ ∈ {0, 1, · · · , T},
fηt|St(η|s) = fητ |Sτ (η|s), ∀η, s. By Assumption 2, the unknown function m(·, ·) and the
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conditional distribution of ηt jointly determine the state transition probabilities fst+1|st,y∗t ,

and thus are the key primitives in addition to the unobserved choice probabilities.

For illustration, we now consider the case in which the choice variable takes binary

values, i.e., y∗t ∈ {0, 1}. Identifying the function m(y∗t , st) is then equivalent to identifying

two functions of st, i.e., m(y∗t = 0, st) and m(y∗t = 1, st). In the rest of this section, we

consider the identification of model primitives for a fixed state s. Let m1 = m(1, s) and

m0 = m(0, s). For the choice probability at period t, let pt = pt(1|s). We define the first-,

the second-, and the third-order conditional moments of the observed state variable at t+ 1

as follows.

µt+1 = Et+1 [st+1|st = s] ,

νt+1 = Et+1

[
(st+1 − µt+1)2|st = s

]
,

ξt+1 = Et+1

[
(st+1 − µt+1)3|st = s

]
.

Notice that all of these conditional moments can be directly estimated from the data, and

are thus treated as known constants for identification purposes.

We rewrite the first-order conditional mean of the state variable at period t + 1 by

replacing st+1 with m(y∗t , st) + ηt. Specifically,

µt+1 =
∑

y∗t ∈{0,1}

pt(y
∗
t |s) Et+1[m(y∗t , s) + ηt|s, y∗t ] = ptm1 + (1− pt)m0, (3.2)

where the second equality holds because under Assumption 2, ηt and y∗t are independent

conditional on the state and E(ηt|s) = 0. In Equation (3.2), µt+1 is a weighted average of

m1 and m0 with the choice probabilities (pt, 1− pt) serving as the mixing weights. Following

similar arguments, we rewrite the second- and the third-order conditional moments of the

state variable as follows.

νt+1 =
∑

y∗t ∈{0,1}

pt(y
∗
t |s) Et+1

[
(m(y∗t , s) + ηt − µt+1)2|s, y∗t

]
=

∑
y∗t ∈{0,1}

pt(y
∗
t |s)
[
(m(y∗t , s)− µt+1)2 + 2(m(y∗t , s)− µt+1) E[ηt|s] + E[η2

t |s]
]

= pt(m1 − µt+1)2 + (1− pt)(m0 − µt+1)2 + E
[
η2
t |s
]

(3.3)
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ξt+1 =
∑

y∗t ∈{0,1}

pt(y
∗
t |s) Et+1

[
(m(y∗t , s) + ηt − µt+1)3|s, y∗t

]
=

∑
y∗t ∈{0,1}

pt(y
∗
t |s)
[
(m(y∗t , s)− µt+1)3 + E[η3

t |s] + 3(m(y∗t , s)− µt+1)2 E[ηt|s]

+ 3(m(y∗t , s)− µt+1) E[η2
t |s]
]

= pt(m1 − µt+1)3 + (1− pt)(m0 − µt+1)3 + E
[
η3
t |s
]
.

(3.4)

In Equations (3.3) and (3.4), E [η2
t |s] and E [η3

t |s] represent the second- and third-order

moments of the error term respectively, but the values of these terms are not known.

To identify m1, m0, and the choice probabilities, we consider two periods t and τ along

the dynamic process. Based on Equation (3.2), we have

µt+1 = ptm1 + (1− pt)m0,

µτ+1 = pτm1 + (1− pτ )m0.

This system of two linear equations leads to the identification of pt and pτ for any given m0

and m1 as long as m0 6= m1. Specifically,

pt =
µt+1 −m0

m1 −m0

, pτ =
µτ+1 −m0

m1 −m0

. (3.5)

Under Assumption 1(iii) and Assumption (2), we know that the conditional distribution

of ηt is stationary, which implies that the higher order moments of the error term are time-

invariant conditional on the same state s, i.e.,

E
[
η2
t |s
]

= E
[
η2
τ |s
]
, E

[
η3
t |s
]

= E
[
η3
τ |s
]
.

By taking the difference of Equations (3.3) and (3.4) across the two periods t and τ , we

eliminate the unknown moments of ηt and achieve the following two equations.

νt+1 − ντ+1 =pt(m1 − µt+1)2 + (1− pt)(m0 − µt+1)2 − pτ (m1 − µτ+1)2 − (1− pτ )(m0 − µτ+1)2

=(pt − pτ )(m1 +m0)(m1 −m0)− (µ2
t+1 − µ2

τ+1), (3.6)

ξt+1 − ξτ+1 =pt(m1 − µt+1)3 + (1− pt)(m0 − µt+1)3 − pτ (m1 − µτ+1)3 − (1− pτ )(m0 − µτ+1)3

(3.7)

Plugging the expressions of pt and pτ in Equation (3.5) into Equations (3.6) and (3.7), we
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obtain a system of equations for the unknown primitives m1 and m0. Specifically,

νt+1 − ντ+1 = (µt+1 − µτ+1)∆1 − (µ2
t+1 − µ2

τ+1),

ξt+1 − ξτ+1 = (µt+1∆1 −∆2 − µ2
t+1)(∆1 − 2µt+1)− (µτ+1∆1 −∆2 − µ2

τ+1)(∆1 − 2µτ+1),

(3.8)

where ∆1 = m1 + m0 and ∆2 = m1m0. It is easy to get analytical solutions for ∆1 and ∆2

from Equation (3.8).

∆1 =
νt+1 − ντ+1 + (µ2

t+1 − µ2
τ+1)

µt+1 − µτ+1

,

∆2 =
ξt+1 − ξτ+1 − (µt+1(∆1 − µt+1)(∆1 − 2µt+1)− µτ+1(∆1 − µτ+1)(∆1 − 2µτ+1))

2(µt+1 − µτ+1)
.

With ∆1 and ∆2 identified using the moments of the observed state transition process, m0

and m1 are the two roots of the equation m2−∆1m+ ∆2 = 0, provided that ∆2
1− 4∆2 > 0.

This condition can be directly tested from the data. To further decide the order of m0 and

m1, we invoke the following assumption.

Assumption 3 (First Order Stochastic Dominance). Fst+1|st,y∗t (·|s, y
∗
t = 1) first-order stochas-

tically dominates Fst+1|st,y∗t (·|s, y
∗
t = 0).

Assumption 3 implies that m1 ≥ m0 because m1 = E(st+1|s, y∗t = 1) ≥ E(st+1|s, y∗t =

0) = m0. Intuitively, consider an example where st represents the outcome of a loan and y∗

represents whether a borrower exerts effort to pay off the debt. In this case, it is reasonable to

assume that when borrowers exert effort, the outcome distribution first-order stochastically

dominates the distribution when borrowers exert no effort. Assumption 3 gives an example

of how to decide the order of m0 and m1 from the state transition process; other assumptions

arising from the model or consistent with the economic intuition would also work. Once m0

and m1 are recovered, it is straightforward to pin down the choice probabilities through

Equation (3.5), provided that m0 6= m1.

Last, we focus on the identification of the error term distribution. Given the additive

structure of the state transition process and the independence of ηt and y∗t conditional st, the

observed state transition probability of st+1 = s′ given st = s can be written as a mixture of

the conditional density of ηt evaluated at s′−m1 and s′−m0. Again, the conditional choice

probabilities (pt, 1− pt) serve as the mixing weights.

fst+1|st(s
′|s) = ptfηt|st(s

′ −m1|s) + (1− pt)fηt|st(s′ −m0|s),

fsτ+1|sτ (s
′|s) = pτfητ |sτ (s

′ −m1|s) + (1− pτ )fητ |sτ (s′ −m0|s).
(3.9)
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Given the stationarity of ηt conditional on st,

fηt|st(s
′ −m1|s) = fητ |sτ (s

′ −m1|s), fηt|st(s
′ −m0|s) = fητ |sτ (s

′ −m0|s).

Equation (3.9) identifies the conditional density function of ηt at s′ −m1 and s′ −m0 if pt

and pτ are known and are not equal. Specifically,

fηt|st(s
′ −m1|s) =

fst+1|st(s
′|s)(1− pτ )− fsτ+1|sτ (s

′|s)(1− pt)
pt − pτ

,

fηt|st(s
′ −m0|s) =

fsτ+1|sτ (s
′|s)pt − fst+1|st(s

′|s)pτ
pt − pτ

.

(3.10)

Notice that the identification of pt, pτ , and the distribution of ηt requires that m0 6= m1

and pt 6= pτ . These two conditions are guaranteed if µt+1 6= µτ+1, which is also empirically

testable. We summarize the main identification results in the following theorem.

Theorem 1 (Identification). Suppose Assumptions 1–3 hold for the dynamic process of

{st, εt, y∗t }, y∗t takes binary values, and µt+1 6= µτ+1. fst+1|st(·|s) and fsτ+1|sτ (·|s) identify the

latent state transition probabilities fst+1|st,y∗t (·|s, y
∗
t ) and the choice probabilities pt(y

∗
t |s) and

pτ (y
∗
τ |s) for any s and y∗t .

The economic intuition of Theorem 1 is as follows. In finite-horizon dynamic models,

choice probabilities are inherently non-stationary, while the stationarity of transition proba-

bilities is often justified in empirical settings. Conditional on the same state, the differences

in observed future state distribution are driven by the differences in choice probabilities.

Variations in moments (mean, variance, or higher order) of future state distributions create

restrictions to identify the unobserved choice probabilities. We discuss several extensions of

the main identification results in Section 6. In particular, we consider cases in which: (1)

individual unobserved heterogeneity is allowed, (2) the model has infinite horizon, (3) only

discrete state variables are available, and (4) there are multiple players making simultaneous

decisions (i.e., dynamic discrete games).

4 Sieve Maximum Likelihood Estimation

Following our identification results in Section 3, we propose sieve maximum likelihood esti-

mation (MLE) for the nonparametric function m(·, ·) and the distribution of the error term

fηt|St in the state transition process. Conditions under which the estimator is consistent are

provided at the end of this section.
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We first fix notations for our estimation strategies. Let θ0 = (α0,m0
0,m

0
1, f

0
ηt|st) represent

the vector of true parameter values of interest. α0 ∈ A is a vector of true utility parameters.

m0
0 : S → S and m0

1 : S → S are two nonparametric functions in the state transition rules,

where S denotes the state space. f 0
ηt|st : R × S → R+ is the probability density function of

the error term conditional on the state variable. The sieve maximum likelihood estimator of

θ0 is denoted by θ̂.

We impose the following smoothness restrictions on m0
0, m0

1, and the density function

f 0
ηt|St . To strengthen the definition of continuity, we introduce the notation for the space of

Hölder continuous functions. If Ψ is an open set in Rn, κ ∈ N, and ζ ∈ (0, 1], then Γκ,ζ(Ψ)

consists of all functions m : Ψ → R with continuous partial derivatives in Ψ of order less

than or equal to κ whose κ-th partial derivatives are locally uniformly Hölder continuous

with exponent ζ in Ψ. Define a Hölder ball, which is a compact subset of Γκ,ζ(Ψ), as

Γκ,ζc (Ψ) ≡
{
m ∈ Γκ,ζ(Ψ)

∣∣∣∣ ‖m‖Γκ,ζ(Ψ) ≤ c <∞
}

with respect to the norm

‖m‖Γκ,ζ(Ψ) ≡ max
|r|≤κ

sup
Ψ
‖∂rm‖e + max

|r|=κ
[∂rm]ζ,Ψ.

In the norm definition for the Hölder ball, ‖·‖e represents the Euclidean norm, and

[m]ζ,Ψ ≡ sup
x,x′∈Ψ,x 6=x′

‖m(x)−m(x′)‖e
‖x− x′‖ζe

.

∂rm represents the multi-index notation for partial derivatives with r = (r1, r2, · · · , rdim(Ψ))

and |r| = r1 +r2 + · · ·+rdim(Ψ). With notations for the space of Hölder continuous functions,

we define the functional space of m0 and m1 by H = Γκ1,ζ1c (S) with supremum norm ‖m‖H =

supx∈S |m(x)|. The space of the density function is

F =

{
fηt|st(·|·) ∈ Γκ2,ζ2c (R× S) : fηt|st(·|s) > 0,

∫
R
fηt|st(η|s)dη = 1,E(ηt|s) = 0,∀s ∈ S

}
,

with norm defined by ‖f‖F = supx∈R×S
∣∣f(x)(1 + ‖x‖2

e)
−ψ/2

∣∣, ψ > 0. Notice that the con-

ditional mean of ηt for all density functions in F are equal to 0, which is consistent with

Assumption 2. Let Θ = A×H×H×F denote the space for all parameters of interest. Θ is

an infinite-dimensional space as it contains nonparametric functions m0, m1, and fηt|st . The

metric on Θ is defined by

d(θ, θ̃) = ‖α− α̃‖e + ‖m0 − m̃0‖H + ‖m1 − m̃1‖H +
∥∥∥fηt|st − f̃ηt|st∥∥∥F .

13



For θ = {α,m0,m1, fηt|st} ∈ Θ, the log-likelihood evaluated at a single observation

Di = {sit}Tt=1 is derived in the following equation.

l(Di; θ) =
T∑
t=1

log

(
fst+1|st(si,t+1|sit; θ)

)

=
T∑
t=1

log

(
fηt|st(si,t+1 −m1(sit)|sit)pt(1|sit; θ) + fηt|st(si,t+1 −m0(sit)|sit)pt(0|sit; θ)

)
.

(4.1)

In Equation (4.1), pt(1|sit; θ) and pt(0|sit; θ) are the choice probabilities for alternatives 1

and 0 conditional on state sit given the parameter value θ (including utility parameters and

nonparametric functions m0, m1, and fηt|st in the state transition rules). The population

criterion function Q : Θ→ R is hence defined by

Q(θ) = E(l(Di; θ)). (4.2)

A sample counterpart of the objective function in Equation (4.2) is

Q̂n(θ) =
1

n

n∑
i=1

l(Di; θ). (4.3)

In light of a finite sample, instead of searching parameters over an infinite-dimensional

parameter space Θ, we use the sieve MLE to maximize the empirical criterion function over

a sequence of approximating sieve spaces Θk = A×Hk1 ×Hk2 ×Fk3 , where

Hk1 =

{
m ∈ H

∣∣∣∣∣m : S → R,m(s) =

k1∑
q=1

γqhq(s), γq ∈ R, ∀q
}
,

Hk2 =

{
m ∈ H

∣∣∣∣∣m : S → R,m(s) =

k2∑
q=1

γqhq(s), γq ∈ R, ∀q
}
,

Fk3 =

{
f ∈ F

∣∣∣f : R× S → R+,
√
f(η|s) = gk3(η, s)Tλ,λ ∈ Rk3

}
.

In the definition of sieve spaces, (h1(·), h2(·), h3(·), · · · ) represents a sequence of known basis

functions, such as Hermite polynomials, power series, splines, etc. We use linear sieves to

approximate the square root of densities and gk3(·, ·) is a k3× 1 vector of the tensor product

of spline basis functions on R × S. Notice that it is standard to generate linear sieves of

multivariate functions using a tensor product of linear sieves of univariate functions. With

14



these settings, our sieve maximum likelihood estimator θ̂k is defined as

θ̂k = arg sup
θ∈Θk

Q̂n(θ). (4.4)

Chen (2007; Ch. 3) provides a general consistency theorem for sieve extremum estima-

tors for various semi-/non-parametric models. Following Chen, Hu, and Lewbel (2008) and

Carroll, Chen, and Hu (2010), we provide lower level sufficient conditions tailored to our

model for consistency of the sieve maximum likelihood estimator in Equation (4.4).9

Assumption 4 (Consistency). The following conditions are satisfied.

(i) Di is i.i.d. across i.

(ii) m0 and m1 ∈ H with κ1 + ζ1 > 1/2; fη|S ∈ F with κ2 + ζ2 > 1.

(iii) |Q(θ0)| <∞ and Q(θ) is upper semicontinuous on Θ under the metric d(·, ·).

(iv) There is a finite σ > 0 and a random variable c(Di) with E(c(Di)) < ∞ such that

supθ∈Θk:d(θ,θ0)≤ε |l(Di; θ)− l(Di; θ
0)| ≤ εσc(Di).

(v) k1, k2, and k3 →∞, k1/n, k2/n, and k3/n→ 0.

Assumption 4 provides lower-level assumptions that imply the high-level conditions of

Chen (2007; Ch. 3, Theorem 3.1). The following theorem for the consistency of our sieve

maximum likelihood estimator is a direct application, therefore the proof is omitted.

Theorem 2 (Consistency). Suppose that all assumptions in Theorem 1 hold. If Assumption

4 is satisfied, then the sieve maximum likelihood estimator in Equation (4.4) is consistent

with respect to the metric d(·, ·), i.e.,

d(θ̂k, θ
0) = oP (1).

Remark 1. For general results on convergence rates, root-n asymptotic normality, and semi-

parametric efficiency of sieve maximum likelihood estimators, see Shen and Wong (1994),

Chen and Shen (1996), Shen (1997), Chen and Shen (1998), Ai and Chen (1999), and Chen

(2007; Theorem 3.2 and Theorem 4.3).

9Chen, Hu, and Lewbel (2008) study identification and estimation of a nonparametric regression model
with discrete covariates measured with error. Carroll, Chen, and Hu (2010) consider a general nonlinear
errors-in-variables model using two samples.
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5 Simulations

In this section, we present Monte Carlo simulation results when there is a continuous state

variable. We assume that the utility function follows a very simple linear form

u(st, y
∗
t ) = ωst − ρy∗t ,

where ω = 0.8 measures the marginal utility from higher values of the current state and

ρ = 0.3 measures the marginal cost of exerting more effort. For this exercise, we consider a

scenario in which the choice variable only takes binary values, i.e., y∗t ∈ {0, 1}. The utility

shocks εt(0) and εt(1) independently follow the type I extreme value distribution and the

discount factor is fixed at 0.95. We consider four data generating processes for the state

transition process.

– DGP 1: st+1 = 0.8st + 0.5y∗t + ηt.

– DGP 2: st+1 = 0.8st + 0.5y∗t + 0.3st · y∗t + ηt.

– DGP 3: st+1 = 0.8st + 0.05s2
t + 0.5y∗t + ηt.

– DGP 4: st+1 = 0.2st + 0.1s2
t + 0.5y∗t + ηt.

In the first specification, m0(st) = 0.8st and m1(st) = 0.5 + 0.8st, both taking a linear

form, and the marginal effects of the current state on the future state are the same given

different choices. In the second specification, we add an interaction term between the state

variable and the choice variable, so that the marginal effects of the current state vary across

alternatives. Specifically, m0(st) = 0.8st and m1(st) = 0.5 + 1.1st. For DGP’s 3 and 4, we

assume the transition rule is nonlinear in the current state st; while in the latter case, the

nonlinearity is more important. For all specifications, we assume ηt ∼ N(0, 1) and choose

T = 10; we run simulations for different sample sizes, N = 100, 1000, and 10000. The

estimation results shown in this paper are based on 100 Monte Carlo replications.

For illustration of our identification intuition, we first plot the distribution of the state

variable at different periods (t = 1, 3, 5, and 7) in Figure 2 under DGP 1. It is clear that the

state distribution shifts to the right with a smaller variance as time goes by. The variations in

the state distribution are mainly driven by the differences in choice probabilities across time

periods. Figure 3 further confirms that the mean of the future state distribution conditional

on st = 0 is decreasing over time. This observation suggests that the probability of agents

exerting effort becomes lower as they approach the end of the game.

We summarize the estimation results for DGPs 1–4 with N = 10000 in Tables 1–4. The

estimation results for different sample sizes are provided in Tables 8–15 in Appendix A. In
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Figure 2: Distribution of the State Variable at Periods 1, 3, 5, and 7 under DGP1

these exercises, we use third-degree polynomials to approximate the nonparametric functions

m0 and m1. Specifically,

m0(s) ≈ a0 + a1s+ a2s
2 + a3s

3,

m1(s) ≈ b0 + b1s+ b2s
2 + b3s

3.

For the square root of the density function fηt , we use fifth-degree polynomials. In Tables 1–4,

we report Monte Carlo means, biases, standard deviations, mean absolute errors, and the root

mean squared errors of the primitives of interest. Instead of showing the estimated coefficients

for the η distribution, we report our estimates of ση, which represents the standard deviation

of the error distribution.10 The estimation results for the structural utility parameters are

shown in the last two rows of each table. For all data generating processes, our Monte Carlo

estimation results generally perform well; adding nonlinear effects of the current state to the

transition process leads to slightly less precise estimates.

To visualize the simulation results, we plot functions m0 and m1 using our estimates and

the true parameter values in the data generating process in Figure 4.11 Our nonparametric

estimates of m0 and m1 are generally close to the true parameter values, particularly when

there is a linear effect of the current state in the transition process. For nonlinear cases, our

estimates still predict the shape of the nonlinear function reasonably well. We also plot the

predicted choice probabilities at each period using our estimates and compare those with the

choice probabilities calculated using the simulated datasets. The results for the four data

10We impose the restriction that the mean of the η distribution is zero in the estimation.
11The sample size in Figures 4 and 5 is 1e4.
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Figure 3: Mean of st+1 Conditional on st = 0 under DGP 1 for t = 1, 2, · · · , 10

Table 1: Monte Carlo Simulation Results: DGP 1, N=1e4

TRUE MC Mean MC Bias MC Std MAE RMSE
m0 : a0 0.0000 0.0209 0.0209 0.0035 0.0209 0.0212
m0 : a1 0.8000 0.7626 -0.0374 0.0195 0.0375 0.0421
m0 : a2 0.0000 -0.0051 -0.0051 0.0004 0.0051 0.0051
m0 : a3 0.0000 0.0045 0.0045 0.0008 0.0045 0.0046
m1 : b0 0.5000 0.4951 -0.0049 0.0139 0.0114 0.0146
m1 : b1 0.8000 0.7682 -0.0318 0.0161 0.0319 0.0356
m1 : b2 0.0000 -0.0054 -0.0054 0.0006 0.0054 0.0055
m1 : b3 0.0000 0.0027 0.0027 0.0012 0.0027 0.0029
ση 1.0000 1.0490 0.0490 0.0039 0.0490 0.0492
ω 0.8000 0.8656 0.0656 0.0135 0.0656 0.0670
ρ 0.3000 0.3301 0.0301 0.0225 0.0338 0.0375

generating processes are shown in Figure 5. Except for DGP 3, choice probabilities at each

period predicted using our estimates are very close to those “observed” in the simulated

datasets. These results support our identification and estimation strategies—even if we do

not observe agents’ choices in the dataset, we can still estimate the choice probabilities to

be reasonably close to the first-step nonparametric estimates if choices were observed. The

reason that predicted choice probabilities deviate from the estimates using the data in DGP3

is probably because there are some extremely large values of the state variable generated

in the simulated dataset, which makes the nonparametric estimates of the observed state

distribution very imprecise.
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Table 2: Monte Carlo Simulation Results: DGP 2, N=1e4

TRUE MC Mean MC Bias MC Std MAE RMSE
m0 : a0 0.0000 0.0233 0.0233 0.0098 0.0233 0.0253
m0 : a1 0.8000 0.7744 -0.0256 0.0706 0.0518 0.0748
m0 : a2 0.0000 -0.0056 -0.0056 0.0026 0.0058 0.0062
m0 : a3 0.0000 0.0019 0.0019 0.0013 0.0019 0.0023
m1 : b0 0.5000 0.5515 0.0515 0.0748 0.0720 0.0905
m1 : b1 1.1000 1.0774 -0.0226 0.0433 0.0362 0.0487
m1 : b2 0.0000 -0.0066 -0.0066 0.0029 0.0067 0.0072
m1 : b3 0.0000 0.0010 0.0010 0.0009 0.0011 0.0014
ση 1.0000 1.1096 0.1096 0.0462 0.1096 0.1189
ω 0.8000 0.8409 0.0409 0.0507 0.0542 0.0649
ρ 0.3000 0.3503 0.0503 0.0590 0.0619 0.0773

Table 3: Monte Carlo Simulation Results: DGP 3, N=1e4

TRUE MC Mean MC Bias MC Std MAE RMSE
m0 : a0 0.0000 0.0237 0.0237 0.0106 0.0239 0.0260
m0 : a1 0.8000 0.9372 0.1372 0.1165 0.1582 0.1796
m0 : a2 0.0500 0.0291 -0.0209 0.0145 0.0213 0.0254
m0 : a3 0.0000 0.0009 0.0009 0.0012 0.0009 0.0015
m1 : b0 0.5000 0.4837 -0.0163 0.0778 0.0558 0.0791
m1 : b1 0.8000 0.7797 -0.0203 0.0824 0.0596 0.0845
m1 : b2 0.0500 0.0279 -0.0221 0.0188 0.0234 0.0289
m1 : b3 0.0000 0.0025 0.0025 0.0021 0.0026 0.0033
ση 1.0000 1.0701 0.0701 0.0195 0.0701 0.0727
ω 0.8000 0.8803 0.0803 0.0514 0.0844 0.0952
ρ 0.3000 0.3328 0.0328 0.0641 0.0581 0.0717

Table 4: Monte Carlo Simulation Results: DGP 4, N=1e4

TRUE MC Mean MC Bias MC Std MAE RMSE
m0 : a0 0.0000 0.0211 0.0211 0.0015 0.0211 0.0212
m0 : a1 0.2000 0.1514 -0.0486 0.0107 0.0486 0.0498
m0 : a2 0.1000 0.1120 0.0120 0.0051 0.0121 0.0131
m0 : a3 0.0000 0.0049 0.0049 0.0004 0.0049 0.0049
m1 : b0 0.5000 0.5133 0.0133 0.0128 0.0157 0.0184
m1 : b1 0.2000 0.2134 0.0134 0.0094 0.0138 0.0163
m1 : b2 0.1000 0.0708 -0.0292 0.0051 0.0292 0.0297
m1 : b3 0.0000 0.0049 0.0049 0.0004 0.0049 0.0050
ση 1.0000 1.0476 0.0476 0.0032 0.0476 0.0477
ω 0.8000 0.8582 0.0582 0.0045 0.0582 0.0584
ρ 0.3000 0.3352 0.0352 0.0060 0.0352 0.0357
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(a) DGP 1 (b) DGP 2

(c) DGP 3 (d) DGP 4

Figure 4: Plot m0 and m1 Using Estimates and the True Parameter Values
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(a) DGP 1 (b) DGP 2

(c) DGP 3 (d) DGP 4

Figure 5: Choice Probabilities: Model Predictions v.s. Data
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6 Extensions

We focused on a single-agent finite-horizon dynamic discrete choice model with one contin-

uous state variable to illustrate our main identification and estimation approaches. In the

current section, we discuss extensions of our baseline identification results. In particular, we

consider four scenarios: (1) when serially correlated unobserved heterogeneity is allowed, (2)

when the model has infinite horizon, (3) when only discrete state variables are available in

the data, and (4) when multiple players make simultaneous decisions in a game.

6.1 Serially Correlated Unobserved Heterogeneity

In this section, we consider a dynamic discrete choice model with serially correlated unob-

served heterogeneity. Following our notations of the baseline model in Section 2, we use st to

represent the observed state variable and yt to denote the choice variable. Let (εt, x
∗
t ) repre-

sent the vector of unobserved state variables. We now impose assumptions on the dynamic

process.

Assumption 5. The dynamic process of {st, εt, x∗t , yt} satisfies the following conditions.

(i) First-order Markov: fst+1,εt+1,x∗t+1,yt+1|st,x∗t ,εt,yt,Ω<t = fst+1,εt+1,x∗t+1,yt+1|st,εt,x∗t ,yt ,

where Ω<t ≡ {st−1, · · · , s0, εt−1, · · · , ε0, x
∗
t−1, · · · , x∗0, yt−1, · · · , y0}.

(ii) The distribution of st+1 given (st, εt, x
∗
t , yt) only depends on (st, x

∗
t , yt) and is denoted

by fst+1|st,x∗t ,yt; the distribution of εt+1 given (st+1, x
∗
t+1, st, εt, x

∗
t , yt) only depends on

(st+1, x
∗
t+1) and is denoted by fεt+1|st+1,x∗t+1

; the distribution of x∗t+1 given (st+1, st, εt, x
∗
t , yt)

only depends on (st+1, x
∗
t ) and is denoted by fx∗t+1|st+1,x∗t

.

(iii) State transition probabilities fst+1|st,x∗t ,yt are time invariant.

In general, Assumption 5 is very similar to Assumption 1 invoked for the baseline model.

The main difference between the two is that Assumption 5 imposes additional restrictions

on the dynamic process related to the unobserved heterogeneity x∗t . Specifically, Assumption

5(ii) allows that the transition of the observed state st depends on the unobserved hetero-

geneity in the last period. Conditional on st and x∗t , ε’s are independent over time and,

most importantly, the unobserved heterogeneity is serially correlated—the distribution of

x∗t+1 depends on (st+1, x
∗
t ). Assumption 5 still holds if the unobserved heterogeneity is fixed

over time, i.e., x∗t+1 = x∗t .
12 The serial correlation of the unobserved heterogeneity invoked

12Aguirregabiria and Mira (2007), Houde and Imai (2006), and Kasahara and Shimotsu (2009) study cases
with time-invariant discrete unobserved heterogeneity.
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in Assumption 5(ii) is more general.13 The dynamic process of the state (observed and un-

observed) and choice variables (st, x
∗
t , yt) that satisfies Assumption 5 is illustrated in Figure

6. This graph indicates that now in the dynamic discrete choice model, agents’ decisions

depend on both the observed and unobserved state variables; the transition of the observed

state variable also depends on the unobserved heterogeneity. The red dashed lines highlight

the serial correlation of the unobserved heterogeneity.

Figure 6: The Dynamic Process of (st, x
∗
t , yt)

When both unobserved choices and serially correlated unobserved heterogeneity are

present, can we apply a similar methodology developed in Section 3 to identify the primitives

of interest, i.e., latent choice and state transition probabilities? Under Assumption 5 (i)–(ii),

the transition probabilities of the observed state variable can be written as

fst+1|st,x∗t (s
′|s, x∗) =

∑
y∗t

fst+1|st,x∗t ,y∗t (s
′|s, x∗, y∗t )pt(y∗t |s, x∗), (6.1)

where pt(y
∗
t |s, x∗) represents the choice probability of alternative y∗t given the observed state

variable st = s and the unobserved heterogeneity x∗t = x∗. Unlike Equation (3.1), both sides

of the Equation (6.1) consist of unobserved terms. On the left-hand side of this equation,

the transition probability of the future state given the current state is not directly estimable

from the data due to the existence of the unobserved heterogeneity x∗t . It is clear to see

from Equation (6.1) that in order to apply our identification strategy developed in Section

3, the key is to first recover the transition process of the observed state conditional on the

unobserved heterogeneity, i.e., fst+1|st,x∗t .

13Hu and Shum (2012) study identification of dynamic models with time-varying and continuous unob-
served heterogeneity. Our assumption differs from the one made in their paper in terms of the time restriction.
In our case, the unobserved heterogeneity x∗t realizes after the state variable st.
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In order to identify fst+1|st,x∗t , we consider the joint distribution of the observed state

variable at four consecutive periods (st+2, st+1, st, st−1).

fst+2,st+1,st,st−1

=

∫
x∗t+1

∫
x∗t

∫
x∗t−1

∫
y∗t+1

∫
y∗t

∫
y∗t−1

fst+2,y∗t+1,x
∗
t+1,st+1,y∗t ,x

∗
t ,st,y

∗
t−1,x

∗
t−1,st−1dFx∗t+1

· · · dFy∗t−1

=

∫
x∗t+1

∫
x∗t

∫
x∗t−1

(∫
y∗t+1

fst+2|st+1,x∗t+1,y
∗
t+1
× fy∗t+1|st+1,x∗t+1

dFy∗t+1

)
× fx∗t+1|st+1,x∗t

×
(∫

y∗t

fst+1|st,x∗t ,y∗t × fy∗t |st,x∗t dFy∗t

)
× fx∗t |st,x∗t−1

×
(∫

y∗t−1

fst|st−1,x∗t−1,y
∗
t−1
× fy∗t−1|st−1,x∗t−1

dFy∗t−1

)
× fx∗t−1,st−1dFx∗t+1

· · · dFx∗t−1

=

∫
x∗t+1

∫
x∗t

∫
x∗t−1

fst+2|st+1,x∗t+1
× fx∗t+1|st+1,x∗t

× fst+1|st,x∗t × fx∗t |st,x∗t−1
× fst,x∗t−1,st−1dFx∗t+1

· · · dFx∗t−1

=

∫
x∗t

(∫
x∗t+1

fst+2|st+1,x∗t+1
× fx∗t+1|st+1,x∗t

dFx∗t+1

)
× fst+1|st,x∗t

×
(∫

x∗t−1

fx∗t |st,x∗t−1
× fst,x∗t−1,st−1dFx∗t−1

)
dFx∗t

=

∫
x∗t

fst+2|st+1,x∗t
× fst+1|st,x∗t × fx∗t ,st,st−1dFx∗t

(6.2)

The second equality in Equation(6.2) holds under the first-order Markov property of the

dynamic process and the conditional independence imposed in Assumption 5(i)–(ii). By

integrating out the unobserved choice variables (y∗t+1, y
∗
t , y
∗
t−1), the third equality holds. We

further integrate out the unobserved heterogeneity (x∗t+1, x
∗
t−1), which yields the last line of

Equation (6.2). The key insight of this equation is that the transition of the observed state

variable reveals information about the underlying individual heterogeneity; hence, can be

considered as measurements of the unobserved heterogeneity. Conditional on x∗t , these mea-

surements are independent.14 Using the spectrum decomposition technique developed by Hu

and Schennach (2008), fst+2|st+1,x∗t
, fst+1|st,x∗t , and fx∗t ,st,st−1 are nonparametrically identified

from the joint distribution of the observed state variable at four periods: t+ 2, t+ 1, t, and

t− 1.15

14Hu and Shum (2012) studied nonparametric identification of dynamic models with unobserved state
variables. The main difference in this paper is that the choice variable is also unobserved. As a result, in
Equation (6.2), we also have to integrate out choices.

15The assumptions that guarantee the validity and uniqueness of the spectrum decomposition are discussed
in Hu and Shum (2012).
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Given that fst+1|st,x∗t is identified from the joint distribution of (st+2, st+1, st, st−1), the

density function on the left-hand side of Equation (6.1) is identified and can be treated as

known. Now in order to apply the identification results in Section 3, we need to find another

period τ . Suppose τ = t+ 1. Then, with the state variable at t+ 3, t+ 2, t+ 1, and t, we are

able to identify fsτ+1|sτ ,x∗τ . The main takeaway here is that the unobserved choice and state

transition probabilities are identified when serially correlated heterogeneity is present if at

least five periods of data are available.

Remark 2. Identification of models with time-invariant unobserved heterogeneity, such as

individual fixed effects, is a special case of our main identification results in Section 6.1

that allow for serially correlated unobserved heterogeneity. In addition, our results allow an

individual’s decision-making process to depend on his unobserved heterogeneity in a nonlinear

way through the optimization process. In fact, it is easy to show that with constant individual

unobserved heterogeneity (denoted by x∗), we can identify fst+1|st,x∗ and fst|st−1,x∗ from the

joint distribution of (st+1, st, st−1, st−2) using similar techniques as in Equation (6.2). This

result indicates that four periods of observed state variables are sufficient to identify the

unobserved choice and state transition probabilities conditional on individual fixed effects.

6.2 Infinite Horizon

We focused on finite-horizon dynamic discrete choice models in the previous discussion. In

the current section, we provide conditions under which the unobserved choice and state

transition probabilities are identified in an infinite-horizon model.

In a finite-horizon model, the agent’s choice probabilities vary over time. As a result,

when the latent state transition rule is assumed to be stationary, variations in the moments

of the future state distribution conditional on the same previous state can be attributed to

changes in choice probabilities across different periods. In other words, in a finite-horizon

model, time serves as an exclusion restriction as it only affects the choice probabilities but

not the latent state transition process. However, in an infinite-horizon model, agents’ choice

probabilities across different periods are the same conditional on the same state variable.

Consequently, time cannot be used as an excluded variable any more.

In an infinite-horizon model, we need to have an additional variable zt that satisfies the

following assumption serving as an exclusion restriction.

Assumption 6. zt enters agents’ flow utility, i.e., u(st, zt, yt, εt), but the transition rule of

st does not depend on zt.
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Assumption 6 ensures that the agent’s choice probabilities vary with the values of zt.

The condition that the transition rule of st does not depend on zt is an analogy to the

stationarity assumption in the baseline model. To see this, for two distinct values of zt, z̄

and ẑ, we obtain the following two equations under Assumption 6.

fst+1|st,zt(s
′|s, z̄) =

∑
y∗t

fst+1|st,y∗t (s
′|s, y∗t )pt(y∗t |s, z̄),

fst+1|st,zt(s
′|s, ẑ) =

∑
y∗t

fst+1|st,y∗t (s
′|s, y∗t )pt(y∗t |s, ẑ).

(6.3)

From Equation (6.3), we can see that the variations in the moments of fst+1|st,zt given different

values of zt are due to the differences in the choice probabilities. Similar identification

arguments can be made as in Section 3; hence, the details are omitted.

6.3 Discrete States

We discussed identification results with a continuous state variable in the baseline model.

We now focus on a scenario where only discrete state variables are available. When there is

only one discrete state variable, comparing future state distributions at two periods provides

insufficient variations to identify the unobserved choice probabilities. When the choice vari-

able takes different values, not only does the location of the future state distribution shift,

but also the shapes of the distribution change. In this section, we consider a case where we

have two discrete state variables {st, zt} that satisfy the following assumption.

Assumption 7 (Conditional Independence). fst+1,zt+1|st,zt,y∗t = fst+1|st,y∗t fzt+1|zt,y∗t .

Assumption 7 implies that the transition process of the two state variables are indepen-

dent conditional on the choice variable. Specifically, st is excluded from the transition of

zt and vice versa, but the choice probability depends on both state variables. We plot the

dynamic process of (st, zt, y
∗
t ) in Figure 7.

Under Assumption 7, the observed joint distribution of {st+1, zt+1, st, zt} can be factorized

as follows.

fst+1,zt+1,st,zt(s
′, z′, s, z) =

∑
y∗t

fst+1|st,y∗t (s
′|s, y∗t )fzt+1|zt,y∗t (z

′|z, y∗t )fy∗t ,st,zt(y
∗
t , s, z). (6.4)

Let js = 1, · · · , Js, jz = 1, · · · , Jz, and jy = 1, · · · , Jy index the categories of st, zt and y∗t ,

respectively. For simplicity, we consider the case where the cardinalities of st, zt, and y∗t are
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Figure 7: The Dynamic Process of (st, zt, yt)

equal, i.e., Js = Jz = Jy. We define the following matrices for fixed (s, z):

Mst+1,zt+1,s,z =
[
fst+1,zt+1,st,zt(st+1, zt+1, s, z)

∣∣
st+1=js,zt+1=jz

]
js,jz

,

Mst+1|s,y∗t =
[
fst+1|st,y∗t (st+1|s, y∗t )

∣∣
st+1=js,y∗t=jy

]
js,jy

,

My∗t ,s,z
= diag

{[
fy∗t ,st,zt(y

∗
t , s, z)

∣∣
y∗t=jy

]
jy=1,2,··· ,Jy

}
,

Mzt+1|z,y∗t =
[
fzt+1|zt,y∗t (zt+1|z, y∗t )

∣∣
y∗t=jy ,zt+1=jz

]
jy ,jz

.

Equation (6.4) in matrix form is therefore

Mst+1,zt+1,s,z = Mst+1|s,y∗tMy∗t ,s,z
Mzt+1|z,y∗t . (6.5)

We consider four combinations of observed states at t: (s̄, z̄), (ŝ, z̄), (s̄, ẑ), (ŝ, ẑ), and con-

struct the following equations:

M s
t =

(
Mst+1,zt+1,s̄,z̄ ·M−1

st+1,zt+1,ŝ,z̄

)(
Mst+1,zt+1,s̄,ẑ ·M−1

st+1,zt+1,ŝ,ẑ

)−1

= Mst+1|s̄,y∗t

(
My∗t ,s̄,z̄

M−1
y∗t ,ŝ,z̄

My∗t ,ŝ,ẑ
M−1

y∗t ,s̄,ẑ

)
M−1

st+1|s̄,y∗t

≡Mst+1|s̄,y∗tM
s
y∗t
M−1

st+1|s̄,y∗t
,

(6.6)
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and

M z
t =

(
M−1

st+1,zt+1,s̄,z̄
·Mst+1,zt+1,s̄,ẑ

) (
M−1

st+1,zt+1,ŝ,z̄
·Mst+1,zt+1,ŝ,ẑ

)−1

= M−1
zt+1|z̄,y∗t

(
M−1

y∗t ,s̄,z̄
My∗t ,s̄,ẑ

M−1
y∗t ,ŝ,ẑ

My∗t ,ŝ,z̄

)
Mzt+1|z̄,y∗t

≡M−1
zt+1|z̄,y∗t

M z
y∗t
Mzt+1|z̄,y∗t ,

(6.7)

provided that the following assumption holds.

Assumption 8 (Invertibility). Matrices Mst+1|s,y∗t , My∗t ,s,z
, and Mzt+1|z,y∗t are invertible for

(s, z) ∈ {(s̄, z̄), (ŝ, z̄), (s̄, ẑ), (ŝ, ẑ)}.

To ensure the invertibility of Mst+1|s,y∗t and Mzt+1|z,y∗t , intuitively, we need the choice

variable y∗t to generate sufficient variations on the future state distributions of st and zt. If for

any combinations of (s, z), the choice probabilities of each alternative are nonzero, then the

invertiblity of My∗t ,s,z
is guaranteed. With Assumption 8 satisfied, Equations (6.6) and (6.7)

lead to eigenvalue-eigenvector decompositions of matrices M s
t and M z

t , respectively, although

additional assumptions are required to guarantee the uniqueness of the decomposition. We

provide one such example for the case where y∗t ∈ {0, 1} and st+1 ∈ {s̄, ŝ}, s̄ < ŝ.

Assumption 9 (Uniqueness). For any s, fst+1|st,y∗t (s̄|s, y
∗
t = 1) < fst+1|st,y∗t (ŝ|s, y

∗
t = 1) and

fst+1|st,y∗t (s̄|s, y
∗
t = 0) > fst+1|st,y∗t (ŝ|s, y

∗
t = 0).

Assumption 9 imposes restrictions on the state transition process given different choices.

The economic intuition of this assumption can be illustrated using the executive’s example.

Suppose y∗t = 1 represents the case where the executive exerts effort, and 0 otherwise; st

represents the firm’s revenue at period t. Assumption 9 implies that the distribution of

the future revenue given exerting effort first-order stochastically dominates the one given

shirking. For more general assumptions, see the discussions in Hu (2008). Once matrices

Mst+1|s,y∗t , My∗t ,s,z
, and Mzt+1|z,y∗t are uniquely determined, the identification of all unknown

densities in Equation (6.4) is achieved. This result is formally stated in the theorem below.

Theorem 3 (Identification). Suppose Assumptions 1 and 7–9 hold for the Markov process of

{st, zt, εt, y∗t }. The joint distribution of {st+1, zt+1, st, zt} identifies the state transition rules

fst+1|st,y∗t and fzt+1|zt,y∗t , and the choice probabilities fy∗t |st,zt.

The proof of Theorem 3 is a direct application of Hu (2008) on Equations (6.6) and (6.7)

and is omitted in this paper.
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Remark 3. When there is only one discrete state variable available in the data, we do not get

point identification of the unobserved choice probabilities and the latent state transition prob-

abilities. Following An, Hu, and Xiao (2018), we connect the unobserved choice probabilities

and the latent state transition probabilities through (1) the observed state transition process,

and (2) the agent’s dynamic optimization problem. By constructing a sufficient number of

nonlinear restrictions, we can locally identify the model primitives.16

Remark 4. When two continuous state variables are available, it is trivial to generalize

our identification results in Section 6.3 to allow for continuous choice variables. Instead of

using eigenvalue-eigenvector decompositions, spectrum decompositions proposed by Hu and

Schennach (2008) can be easily applied.

6.4 Dynamic Discrete Games

In the baseline model and extensions discussed in Sections 6.1–6.3, we focus on single-

agent dynamic discrete choice models. In this section, we show that our results can be

extended to dynamic discrete games. We first provide a basic framework of dynamic discrete

games of incomplete information and then provide identification strategies for conditional

choice probabilities and state transition probabilities when players’ choices are unobserved

by econometricians.

Consider a game with I players, where i = 1, 2, · · · , I is the index of each individual.

Players choose an action from the choice set Y simultaneously at each period t = 1, 2, · · · ,∞.

We use yit to represent player i’s action at t, so the action profile is denoted by yt =

(y1t, y2t, · · · , yIt) ∈ YI . We use sit ∈ Si to denote the player’s state variable that is publicly

observed and εit ∈ Ei to denote the utility shock that is privately observed by player i (not by

i’s rivals or econometricians). Let st = (s1t, s2t, · · · , sIt) ∈ S and εt = (ε1t, ε2t, · · · , εIt) ∈ E
be the vector of observed states and private utility shocks at t, respectively. Define S =

×Ii=1Si and E = ×Ii=1Ei.
Unlike the single-agent case, a player’s utility now depends on the action profile and

state variables of all players and his own private information εit. We use u(st, εit,yt) to

represent the player’s per period flow utility. At each period t, all players choose their

actions simultaneously to maximize their own expected sum of the discounted utility, i.e.,

E[
∑T−t

j=0 β
ju(st+j, εi,t+j,yt+j)], where the expectation is taken over other players’ current and

future actions, the future observed states, and i’s private shocks in the future. We invoke

16 We conduct Monte Carlo simulations for the scenario where only one discrete state variable is available.
The basic setup remains the same as in Section 5. However, the state variable now only takes binary values:
st ∈ {1, 2}. We present the simulation results in Table 16 in Appendix A.
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the following assumption to restrict attention to certain classes of models.

Assumption 10. The dynamic process of {st, εt,yt} satisfies the following conditions.

(i) First-order Markov: fst+1,εt+1,yt+1|st,εt,yt,Ω<t = fst+1,εt+1,yt+1|st,εt,yt ,

where Ω<t ≡ {st−1, · · · , s0, εt−1, · · · , ε0,yt−1, · · · ,y0}.

(ii) εit are independently distributed over time and across players, and are drawn from a

distribution Fi(·|st).

(iii) The distribution of st+1 given (st, εt,yt) only depends on (st,yt) and is denoted by

fst+1|st,yt.

Though typically invoked in the literature of dynamic discrete games of incomplete in-

formation, Assumption 10 imposes several restrictions on the model. First, it assumes that

the distribution of observed state variables, utility shocks, and choices only depends on their

values in the last period (i.e., they follow a first-order Markov process). Second, a con-

ditional independence assumption that is very similar to the one imposed for single-agent

models is invoked for private utility shocks. Assumption 10(ii) rules out the possibility that

private shocks are serially correlated over time; in a game setting, allowing serial correlation

could lead to complicated theoretical issues, including learning or strategic signaling behav-

ior among players. Last, Assumption 10(iii) requires that the transition process of observed

state variables does not depend on private utility shocks in the previous periods.

In the game described above, we consider pure strategy Markov Perfect Equilibrium

(MPE) as our equilibrium concept, in which case players’ actions only depend on the value

of current states and utility shocks. In addition, we focus on stationary Markov strategies,

so subscript t is dropped in the following definitions. We define a Markov strategy for player

i as ai(st, εit) and i’s belief that yt is chosen at state st as σi(yt|st). Under Assumption

10(ii), the value function for player i given belief σi is

Vi(st, εit;σi) = max
y∈Y

∑
y−i∈YI−1

σi(y−i|st)
[
u(st, εit, (y,y−i)) + β E[Vi(st+1, εi,t+1;σi)|st, (y,y−i)]

]
,

(6.8)

where y−i represents the profile of actions for all other players except i. The optimal strategy

of player i given state variable st and private utility shock εit under belief σi is therefore

ai(st, εit;σi) = arg max
y∈Y

Vi(st, εit;σi). (6.9)
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After integrating out the player’s private information, we can define i’s choice probabilities

given state variable st and belief σi as

pi(yit|st;σi) =

∫
1{yit = ai(st, εit;σi)}dFi(εit|st). (6.10)

In an MPE, players’ beliefs are consistent with their strategies, leading to a fixed point of a

mapping in the space of conditional choice probabilities. Under certain regularity conditions,

at least one Markov perfect equilibrium exists for dynamic discrete games of incomplete

information, but multiplicity of equilibria may be possible.17 In this paper, our goal is to

analyze situations when players’ actions are unobserved by econometricians, so we focus on

the simplest case where the same equilibrium is played in the data.18,19

We define player i’s equilibrium choice probabilities conditional on st as p∗i (yit|st). When

agents’ actions are observed by econometricians, following the two-step methods originally

developed by Hotz and Miller (1993), we can directly estimate the conditional choice proba-

bilities p∗i (yit|st) and state transition rules fst+1|st,yt from the data in the first step. Different

approaches have been developed in the literature to recover structural parameters of the game

(see Jofre-Bonet and Pesendorfer, 2003; Aguirregabiria and Mira, 2007; Bajari, Benkard, and

Levin, 2007; Pakes, Ostrovsky, and Berry, 2007; Pesendorfer and Schmidt-Dengler, 2008).

However, when the actions are unobserved by researchers, the existing methods no longer

work; in this paper, we invoke the following assumption to achieve the identification of

structural parameters in dynamic discrete games with unobserved actions.

Assumption 11. Conditional on the current values of a player’s own actions and states,

the future states are independent across players, i.e.,

fst+1|st,yt(s
′|s,y) =

I∏
i=1

fsi,t+1|sit,yit(s
′
i|si, yi),

where s′ = (s′1, s
′
2, · · · , s′I), s = (s1, s2, · · · , sI), and y = (y1, y2, · · · , yI).

In general, Assumption 11 eliminates the “cross-effects”: the transition process of the

observed state variable only depends on player i’s action and state in the last period, not

17Doraszelski and Satterthwaite (2010) provided conditions under which equilibrium exists. See the dis-
cussions in Bajari, Benkard, and Levin (2007) and Aguirregabiria and Mira (2010) for more details about
multiple equilibria.

18Otsu, Pesendorfer, and Takahashi (2016) provide several statistical tests to examine whether the same
(or unique) equilibrium is played when data from distinctive markets are pooled. Their method also requires
the observation of players’ choices to estimate CCPs and state transition probabilities in the first step.

19Luo, Xiao, and Xiao (2018) provide nonparametric identification results for dynamic discrete games of
incomplete information when multiple equilibria and unobserved heterogeneity are present.
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on other players’ actions or states. This assumption is motivated by the empirical setting of

dynamic oligopoly competition, where the state variable is the firm’s capacity levels and the

choice is the firm’s incremental changes to capacity. In this case, it is natural to assume that

the transition of states only depends on the firm’s own decisions, not on the other player’s

choices.20 Under Assumption 11, we achieve the following equation for i’s state transition

process:

fsi,t+1|st(s
′
i|s) =

∑
y∗it∈Y

fsi,t+1|sit,y∗it(s
′
i|si, y∗it)p∗i (y∗it|s), (6.11)

where y∗it is used to represent player i’s unobserved choice at period t. It is highlighted

in Equation (6.11) that the transition process of si,t+1 does not depend on s−i,t; while in a

game setting, all players interact with each other, so i’s choices naturally depend on all other

players’ state variables. In dynamic games, s−i can be used as an exclusion restriction. For

two values of s−i, s̄−i and ŝ−i, we obtain the following two equations under Assumption 11.

fsi,t+1|st(s
′
i|si, s̄−i) =

∑
y∗it∈Y

fsi,t+1|sit,y∗it(s
′
i|si, y∗it)p∗i (y∗it|si, s̄−i),

fsi,t+1|st(s
′
i|si, ŝ−i) =

∑
y∗it∈Y

fsi,t+1|sit,y∗it(s
′
i|si, y∗it)p∗i (y∗it|si, ŝ−i),

(6.12)

From Equation (6.12), it is clear that the variations in the moments of player i’s state distri-

bution conditional on other players’ last-period states (i.e., fsi,t+1|st) are due to the differences

in the choice probabilities. Similar identification strategies as shown in Section 3 can be ap-

plied to identify the state transition probabilities and equilibrium choice probabilities for

players i = 1, 2, · · · , I. We therefore omit the details here.

Remark 5. Our identification results do not require all state variables to satisfy Assumption

11. Depending on applications, we may have multiple dimensions of the state variable; as

long as there exists one state variable whose transition process does not involve other players’

actions or states, the equilibrium choice probabilities are identified. To identify the state

transition process, we may relax Assumption 11 by allowing the transition of si,t+1 to depend

on a subset of state variables from other players. When equilibrium choice probabilities are

known, we can identify the state transition probabilities under certain rank conditions.

20Ryan (2012) estimates a dynamic model of oligopoly to study the cost of environmental regulations on
firms’ entry, exit, and investment decisions. In that paper, it is assumed that the transition of the states
(capacity) depend on firms’ own current state variables and actions (i.e., entry, exit, or investment). In
addition, the author assumes that the transition process is deterministic to reduce computational burden.
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7 Empirical Application: Moral Hazard in U.S. Gu-

bernatorial Elections

In this section, we apply our methods to study moral hazard problems in U.S. gubernatorial

elections. As pointed out by the theoretical literature, the accountability of politicians is

usually not observed by the voters—some incentives are necessary to motivate politicians

to exert more effort. There is a strand of empirical literature in political economy focused

on understanding the impact of institutional design of election rules (e.g., term limits) on

politician’s behavior, election outcomes, and voter welfare.21 A seminal paper by Besley

and Case (1995) studies the effect of term limits on U.S. governors’ policy choices from

1950–1986; Alt, Bueno de Mesquita, and Rose (2011) extend the dataset and explore vari-

ations in gubernatorial term limits across states to separately identify the accountability

and competence effects of elections. In two recent structural papers, Aruoba, Drazen, and

Vlaicu (2019) develop and estimate a political agency model with asymmetric information

between politicians and voters and they find significant incentive effects of reelections, and

Sieg and Yoon (2017) focus more on the adverse selection problem, treating the ideology of

the politician as a source of unobserved heterogeneity instead of an effort-exerting decision.

In all of the papers mentioned above, governors are assumed to make one decision (ex-

erting effort or shirking) for each term, which ignores the dynamics within a term and rules

out the possibility of political business cycle (see Drazen (2000) for a comprehensive survey

on this literature). The main goal of the empirical application in this paper is to estimate

a dynamic structural model of politicians’ within-term effort-exerting decisions to better

understand the moral hazard problems in gubernatorial elections.

The dataset used for our empirical application comes from Alt, Bueno de Mesquita, and

Rose (2011). This dataset contains all gubernatorial elections between 1950 and 2000 in

the United States. During that period, different states may have adopted different term

limits and the rules could also change over time.22 We select governors serving their last

terms for states that have four-year terms. The governors we select are essentially “lame

ducks” who were not eligible for reelections.23 For states that have adopted a limit of two

consecutive terms, we only consider governors who were serving their second terms. In total,

there are 142 governors in our sample. The summary statistics of whether the governor is

a first-term lame duck, proportions of elderly people in the state, and whether the governor

21See Alt, Bueno de Mesquita, and Rose (2011) for a literature review.
22Detailed information about gubernatorial term limits can be found in the Book of the States.
23In Alt, Bueno de Mesquita, and Rose (2011), “lame ducks” refer to politicians who cannot run for

reelection. This includes two cases: (1) the state adopted a limit of one term, or (2) the state adopted a
limit of two consecutive terms and the governor was in his second term.
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is a Democratic politician are provided in the upper panel of Table 5. In our sample, about

54% of the governors were serving their first terms and because of the term limits they were

not eligible for reelections. The average proportion of elderly people across states is around

10%, and 71% were Democratic governors.

Table 5: Summary Statistics

Variable Mean Std. Dev. Min Max Obs
Observed Characteristics

First-term lame duck 0.5423 0.5000 0 1 142
Proportions of elderly 0.1039 0.0235 0.0618 0.1848 142
Democratic governor 0.7183 0.4514 0 1 142

Log of Per Capita Spending
Year 0 6.6491 0.5675 5.4375 7.8136 142
Year 1 6.6970 0.5599 5.4880 7.8375 142
Year 2 6.7331 0.5399 5.5383 7.8445 142
Year 3 6.7673 0.5276 5.5669 7.9448 142
Year 4 6.8115 0.5108 5.6396 7.9362 142

In this application, we use log of per capita spending (reported in constant 1982 dollars)

as the state variable. Let t be the index of years within a term. t = 1 refers to the year when

a governor was elected (or reelected); t = 0 refers to the year before the term began. The

summary statistics of the state variable for t = 0, 1, · · · , 4 are provided in the lower panel

of Table 5. We impose Assumption 2 on the transition process of the state variable, that

is st+1 = m(st, y
∗
t ) + ηt, where ηt is independent with the choice variable y∗t . Although our

identification results allow that the distribution of ηt depends on st, for this application we

focus on the case in which ηt is also independent with st due to the small sample size. We

assume the per period utility of a governor at t given the current state st and choice y∗t has

the following linear structure:

u(st, y
∗
t ) = ωst − ρy∗t . (7.1)

Let y∗t = 1 if the governor exerts effort, and 0 otherwise. In Equation (7.1), ρ represents the

marginal cost of exerting effort. In our estimation, we allow ρ to depend on individual ob-

served characteristics, such as whether the governor is a first-term lame duck, proportions of

elderly people in the state, and whether the governor is a Democratic politician. Specifically,

the following parametric form is considered in the estimation.

ρ = ρ0 + ρ1First-Term + ρ2Elderly-Prop + ρ3Democratic.

In addition to the deterministic part, the governor also receives a random utility shock
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Table 6: Estimation Results

Panel (A) Estimates of m0 and m1

Parameters Estimates Std. Err.
m0 : a0 -3.6378 0.0249
m0 : a1 1.8175 0.0013
m0 : a2 0.0126 0.0013
m0 : a3 -0.0078 0.0002
m0 : b0 0.8898 0.1788
m0 : b1 0.7589 0.0042
m0 : b2 0.0209 0.0140
m0 : b3 -0.0006 0.0014

Panel (B) Estimates of Utility Primitives

Parameters Estimates Std. Err.
ω 24.8092 0.5361
ρ0 0.0155 0.8367
ρ1 3.2202 0.9443
ρ2 0.7401 7.9896
ρ3 0.0201 0.9461
ση 0.0581 0.0008

εt, which is choice specific. Assume (εt(0), εt(1)) are drawn independently from the type

I extreme value distribution. In summary, the parameters to be estimated in this model

include {ω, ρ0, ρ1, ρ2, ρ3,m0(·),m1(·), fη(·)}, where the last three are unknown functions.

We estimate the model primitives following our sieve maximum likelihood estimation

strategy developed in Section 4. The point estimates and their standard errors are provided

in Table 6.24 From the estimation results of m0 and m1 in Panel (A), we can see that if

governors exert effort, the distribution of the future state is on average better. The marginal

utility governors get from the state variable is significantly positive, but exerting effort is

costly. We find that the marginal cost of exerting effort for the first-term lame ducks is

significantly higher compared to the second-term lame ducks. This finding suggests that

governors who were reelected are potentially more competent, which is consistent with the

selection effect of elections.

We compute the probabilities of shirking for governors at each period using the estimated

parameters. The results for the full sample and by each observed category are shown in Table

7. From this table, we can see that the probabilities of shirking are increasing over time within

a term. The probability of exerting no effort in the last period is 42 percent higher than that

of the first period. This result is quite intuitive: governors have fewer incentives to exert

effort when they are approaching the end of the term. Overall, we observe a lower chance of

exerting effort for first-term governors. The differences between Democratic and Republican

politicians are not significant; having different proportions of elderly people also seems to

have no significant impact on governors’ shirking probabilities.

24Similar to our notations in Monte Carlo simulations in Section 5, parameters aj and bj for j = 0, 1, 2, 3
are coefficients in polynomials that approximate m0(·) and m1(·), respectively. Specifically, m0(s) ≈ a0 +
a1s+ a2s

2 + a3s
3, and m1(s) ≈ b0 + b1s+ b2s

2 + b3s
3.
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Table 7: Probabilities of Shirking at Each Period

Year 1 Year 2 Year 3 Year 4
All sample 0.5409 0.5943 0.6711 0.7654

By Category
First-term lame duck 0.7318 0.8323 0.9326 0.9651
Second-term lame duck 0.3147 0.3123 0.3613 0.5288
Democratic governor 0.5541 0.6181 0.7055 0.7949
Republican governor 0.5072 0.5335 0.5833 0.6903
Lower percent of elderly 0.6175 0.7024 0.7994 0.8524
Higher percent of elderly 0.4232 0.4283 0.4740 0.6317

8 Conclusion

In this paper, we provide new identification and estimation methods for dynamic structural

models when agents’ choices are unobserved by econometricians. We leverage variations

in the observed state transition process across different periods. In finite-horizon models,

time serves as an exclusion restriction because it only affects the choice probabilities but

not the state transition rules. We consider several extensions to our baseline model. First,

we incorporate individual serially correlated heterogeneity into the dynamic discrete choice

model. Second, we discuss the conditions under which infinite-horizon models with unob-

served choices are also identified. Third, we consider the cases in which only discrete state

variables are available in the data. Last, we extend the results to dynamic discrete games.

We propose sieve maximum likelihood estimation strategy for nonparametric functions in

the state transition rules and utility primitives. Monte Carlo simulations under various

specifications confirm the validity of our proposed approaches.

We apply our method to study moral hazard problems in U.S. gubernatorial elections.

Our estimation results suggest that the probabilities of shirking for governors are generally

increasing over time within a four-year term. The probability of exerting no effort in the

last period is around 42 percent higher than that of the first period. These findings add new

evidence to the empirical literature focused on understanding the impact of term limits on

politicians’ behavior.
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A Additional Tables

Table 8: Monte Carlo Simulation Results: DGP 1, N=1000

TRUE MC Mean MC Bias MC Std MAE RMSE
m0 : a0 0.0000 0.0203 0.0203 0.0005 0.0203 0.0203
m0 : a1 0.8000 0.7941 -0.0059 0.0149 0.0109 0.0159
m0 : a2 0.0000 -0.0051 -0.0051 0.0002 0.0051 0.0051
m0 : a3 0.0000 0.0050 0.0050 0.0001 0.0050 0.0050
m1 : b0 0.5000 0.4626 -0.0374 0.0172 0.0383 0.0411
m1 : b1 0.8000 0.7489 -0.0511 0.0083 0.0511 0.0518
m1 : b2 0.0000 -0.0052 -0.0052 0.0001 0.0052 0.0052
m1 : b3 0.0000 0.0046 0.0046 0.0005 0.0046 0.0047
ση 1.0000 1.0622 0.0622 0.0092 0.0622 0.0629
ω 0.8000 0.8508 0.0508 0.0041 0.0508 0.0510
ρ 0.3000 0.3476 0.0476 0.0062 0.0476 0.0480

Table 9: Monte Carlo Simulation Results: DGP 2, N=1000

TRUE MC Mean MC Bias MC Std MAE RMSE
m0 : a0 0.0000 0.0233 0.0233 0.0078 0.0235 0.0246
m0 : a1 0.8000 0.7590 -0.0410 0.0835 0.0706 0.0926
m0 : a2 0.0000 -0.0055 -0.0055 0.0021 0.0055 0.0059
m0 : a3 0.0000 0.0025 0.0025 0.0012 0.0025 0.0027
m1 : b0 0.5000 0.5423 0.0423 0.0899 0.0815 0.0990
m1 : b1 1.1000 1.0667 -0.0333 0.0373 0.0389 0.0498
m1 : b2 0.0000 -0.0062 -0.0062 0.0022 0.0062 0.0066
m1 : b3 0.0000 0.0012 0.0012 0.0009 0.0012 0.0015
ση 1.0000 1.1272 0.1272 0.0417 0.1272 0.1338
ω 0.8000 0.8483 0.0483 0.0450 0.0577 0.0659
ρ 0.3000 0.3440 0.0440 0.0547 0.0560 0.0700
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Table 10: Monte Carlo Simulation Results: DGP 3, N=1000

TRUE MC Mean MC Bias MC Std MAE RMSE
m0 : a0 0.0000 0.0221 0.0221 0.0100 0.0223 0.0242
m0 : a1 0.8000 0.8916 0.0916 0.1655 0.1713 0.1884
m0 : a2 0.0500 0.0242 -0.0258 0.0124 0.0261 0.0286
m0 : a3 0.0000 0.0017 0.0017 0.0016 0.0017 0.0024
m1 : b0 0.5000 0.5173 0.0173 0.0871 0.0676 0.0883
m1 : b1 0.8000 0.7788 -0.0212 0.0791 0.0630 0.0815
m1 : b2 0.0500 0.0261 -0.0239 0.0155 0.0245 0.0285
m1 : b3 0.0000 0.0029 0.0029 0.0019 0.0029 0.0035
ση 1.0000 1.0800 0.0800 0.0268 0.0800 0.0843
ω 0.8000 0.8781 0.0781 0.0490 0.0837 0.0920
ρ 0.3000 0.3397 0.0397 0.0637 0.0560 0.0748

Table 11: Monte Carlo Simulation Results: DGP 4, N=1000

TRUE MC Mean MC Bias MC Std MAE RMSE
m0 : a0 0.0000 0.0207 0.0207 0.0008 0.0207 0.0207
m0 : a1 0.2000 0.1677 -0.0323 0.0118 0.0323 0.0344
m0 : a2 0.1000 0.1199 0.0199 0.0087 0.0200 0.0217
m0 : a3 0.0000 0.0049 0.0049 0.0002 0.0049 0.0049
m1 : b0 0.5000 0.4845 -0.0155 0.0238 0.0241 0.0283
m1 : b1 0.2000 0.2245 0.0245 0.0186 0.0283 0.0307
m1 : b2 0.1000 0.0697 -0.0303 0.0032 0.0303 0.0304
m1 : b3 0.0000 0.0050 0.0050 0.0002 0.0050 0.0050
ση 1.0000 1.0500 0.0500 0.0071 0.0500 0.0505
ω 0.8000 0.8547 0.0547 0.0039 0.0547 0.0549
ρ 0.3000 0.3426 0.0426 0.0053 0.0426 0.0430
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Table 12: Monte Carlo Simulation Results: DGP 1, N=100

TRUE MC Mean MC Bias MC Std MAE RMSE
m0 : a0 0.0000 0.0204 0.0204 0.0004 0.0204 0.0204
m0 : a1 0.8000 0.7839 -0.0161 0.0230 0.0199 0.0280
m0 : a2 0.0000 -0.0051 -0.0051 0.0001 0.0051 0.0051
m0 : a3 0.0000 0.0050 0.0050 0.0001 0.0050 0.0050
m1 : b0 0.5000 0.4501 -0.0499 0.0148 0.0503 0.0520
m1 : b1 0.8000 0.7462 -0.0538 0.0209 0.0539 0.0577
m1 : b2 0.0000 -0.0051 -0.0051 0.0002 0.0051 0.0051
m1 : b3 0.0000 0.0049 0.0049 0.0001 0.0049 0.0049
ση 1.0000 1.0648 0.0648 0.0214 0.0648 0.0682
ω 0.8000 0.8508 0.0508 0.0026 0.0508 0.0509
ρ 0.3000 0.3482 0.0482 0.0024 0.0482 0.0482

Table 13: Monte Carlo Simulation Results: DGP 2, N=100

TRUE MC Mean MC Bias MC Std MAE RMSE
m0 : a0 0.0000 0.0205 0.0205 0.0046 0.0205 0.0210
m0 : a1 0.8000 0.7403 -0.0597 0.0768 0.0747 0.0969
m0 : a2 0.0000 -0.0051 -0.0051 0.0013 0.0052 0.0053
m0 : a3 0.0000 0.0042 0.0042 0.0009 0.0042 0.0043
m1 : b0 0.5000 0.4990 -0.0010 0.0767 0.0582 0.0763
m1 : b1 1.1000 0.9925 -0.1075 0.0387 0.1075 0.1142
m1 : b2 0.0000 -0.0056 -0.0056 0.0010 0.0056 0.0056
m1 : b3 0.0000 0.0035 0.0035 0.0013 0.0035 0.0038
ση 1.0000 1.2163 0.2163 0.0673 0.2163 0.2264
ω 0.8000 0.8586 0.0586 0.0167 0.0586 0.0609
ρ 0.3000 0.3433 0.0433 0.0266 0.0455 0.0507
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Table 14: Monte Carlo Simulation Results: DGP 3, N=100

TRUE MC Mean MC Bias MC Std MAE RMSE
m0 : a0 0.0000 0.0214 0.0214 0.0044 0.0214 0.0219
m0 : a1 0.8000 0.8117 0.0117 0.1352 0.1135 0.1350
m0 : a2 0.0500 0.0261 -0.0239 0.0065 0.0239 0.0247
m0 : a3 0.0000 0.0032 0.0032 0.0015 0.0032 0.0036
m1 : b0 0.5000 0.4999 -0.0001 0.0924 0.0754 0.0919
m1 : b1 0.8000 0.7105 -0.0895 0.1040 0.1089 0.1368
m1 : b2 0.0500 0.0429 -0.0071 0.0189 0.0150 0.0202
m1 : b3 0.0000 0.0039 0.0039 0.0014 0.0039 0.0042
ση 1.0000 1.1349 0.1349 0.0694 0.1349 0.1515
ω 0.8000 0.8729 0.0729 0.0234 0.0729 0.0765
ρ 0.3000 0.3450 0.0450 0.0336 0.0478 0.0560

Table 15: Monte Carlo Simulation Results: DGP 4, N=100

TRUE MC Mean MC Bias MC Std MAE RMSE
m0 : a0 0.0000 0.0204 0.0204 0.0010 0.0204 0.0204
m0 : a1 0.2000 0.1738 -0.0262 0.0152 0.0262 0.0303
m0 : a2 0.1000 0.1274 0.0274 0.0118 0.0284 0.0298
m0 : a3 0.0000 0.0050 0.0050 0.0002 0.0050 0.0050
m1 : b0 0.5000 0.4626 -0.0374 0.0355 0.0450 0.0514
m1 : b1 0.2000 0.2313 0.0313 0.0348 0.0430 0.0466
m1 : b2 0.1000 0.0706 -0.0294 0.0026 0.0294 0.0295
m1 : b3 0.0000 0.0051 0.0051 0.0002 0.0051 0.0051
ση 1.0000 1.0540 0.0540 0.0203 0.0541 0.0577
ω 0.8000 0.8524 0.0524 0.0058 0.0524 0.0528
ρ 0.3000 0.3470 0.0470 0.0059 0.0470 0.0474

Table 16: Monte Carlo Estimation Results: Discrete Case

Parameters TRUE MC Mean MC Bias MC Std MAE RMSE
ω 0.8000 0.7923 -0.0077 0.3654 0.2018 0.3653
ρ 0.3000 0.3346 0.0346 0.2264 0.1298 0.2290
Pr(s1|s1, y = 0) 0.5000 0.5027 0.0027 0.0246 0.0183 0.0248
Pr(s2|s2, y = 0) 0.2000 0.1918 -0.0082 0.0367 0.0237 0.0376
Pr(s1|s1, y = 1) 0.3000 0.2924 -0.0076 0.0344 0.0232 0.0352
Pr(s2|s2, y = 1) 0.6000 0.6189 0.0189 0.0553 0.0318 0.0584
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