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Abstract

Bioeconomic models can be used to value single and multiple coupled natural capital stocks

as assets under real-world management conditions for the purposes of measuring accounting

prices in context change-in-wealth based sustainability assessment. In this paper we extend

prior work to consider the valuation of assets linked through deterministic relationships (i.e.

biophysical coupling or shared management) to assets with stochastic dynamics including

when there are multiple stock with correlated stochastic processes. We derive asset prices for

natural capital stocks governed by correlated diffusions and show how function approximation

techniques can be used to approximate these shadow prices across the domain of capital

stocks. Using single examples, we develop intuition for the role of stochasticity on value

changes in stocks of natural assets. We show that stochasticity is generally of second-order

importance for a large class of natural assets. Therefore, concerns about stochasticity should

not be used to hold back progress on change-in-wealth based sustainability assessments and

scarce effort may be better focused on addressing the nuances of economic programs, spatial

scale, and local institutions.

Keywords: Natural capital, Stochasticity, Risk, Sustainability, Wealth Accounting, Green

Accounting
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1. Introduction1

Change-in-wealth based measures of sustainability (inclusive, comprehensive, or genuine2

wealth) that are grounded in economic theory (e.g., Dasgupta, 2001; Dasgupta and Mäler,3

2000; Hamilton and Clemens, 1999), have gained substantial acceptance and credibility be-4

yond economists (e.g., Matson, Clark, and Andersson, 2016). These approaches are em-5

ployed regularly by the United Nations Environment Programme and the World Bank for6

the sustainability assessment of nation states (UNU-IHDP and UNEP, 2014), and individual7

countries are starting to produce their own reports.1 Furthermore, change-in-wealth based8

approaches have been used to assess the sustainability of bounded systems such as cities9

(Dovern, Quaas, and Rickels, 2014), hydrological catchments (Pearson et al., 2013) and as10

an indicator of sustainable management for ecosystems (Yun et al., 2017).11

The lack of defensible, theoretically and empirically grounded accounting prices for nat-12

ural capital was once bemoaned as the “Achilles’ heel” of the wealth-based approach to13

sustainability (Smulders, 2012). Many natural capital stocks provide service flows that are14

non-excludable, non-rivalrous, and managed in demonstrably inefficient, ‘kakatopic’ ways.15

These factors together limit the usefulness of the (scant) market data for pricing natural16

assets and undercut the validity of shadow prices from optimized bioeconomic models as a17

realistic guide for sustainability assessment. Fortunately, substantial theoretical, and some18

empirical, progress has been made in recent years. Fenichel and Abbott (2014) provide a19

theoretical foundation for pricing of natural assets by deriving the revealed shadow price or20

accounting price of natural capital under general, non-optimized forms of management, and21

link their derivation to foundational contributions in economic capital theory (Jorgenson,22

1963).2 In this and subsequent work with coauthors, they demonstrate the necessary com-23

1For example, Canada contracted for a Comprehensive Wealth report in 2018
https://www.iisd.org/library/comprehensive-wealth-canada-2018-measuring-what-matters-
long-term and the U.K. has developed a 25 year plan focused on natural capital,
https://www.gov.uk/government/groups/natural-capital-committee.

2See Fenichel, Abbott, and Yun (2018) for a detailed development of natural capital pricing. This
approach has subsequently been expanded to allow for the valuation of a portfolio of capital stocks whose
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ponents of an accounting price for natural assets and develop and implement computational24

approaches to measure accounting prices.25

One shortcoming of the Fenichel-Abbott approach to pricing natural assets, as well as26

much of the work that precedes it, is that it abstracts from stochasticity and uncertainty,27

which are a critical part of the sustainability question (Baumgärtner and Quaas, 2010).28

Valuing capital is about the future, but the future is inherently uncertain. It is therefore29

important that the theory for pricing natural assets incorporate risk explicitly – in order30

to understand when and to what extent stochastic effects are critical for ongoing shadow31

pricing efforts.32

The most consistent way to incorporate risk is through a theoretically-grounded risk33

adjustment to the price itself. The ultimate objective of the shadow pricing endeavor is34

to put natural capital on the same conceptual and empirical ground as ‘real’ capital assets35

(i.e. reproducible capital). The latter are also subject to considerable uncertainty, and36

yet asset markets resolve the beliefs about uncertainty at a given moment into prices that37

reflect the collective assessment of risk and its valuation. The change-in-wealth approach38

to sustainability is about tracking changes in a societal balance sheet. This means that39

once prices and quantities are measured, measuring sustainability becomes an accounting40

problem. Accountants rarely include ‘error bars’ to account for uncertainty in the valuation41

of assets. Instead, prices for real and financial assets are taken as given by the market and42

already reflecting an appropriate risk adjustment.343

This paper contributes to the literature by generalizing the natural asset pricing ap-44

proach to explicitly include stochastic dynamics, placing change-in-wealth based metrics for45

dynamics may be interlinked through physical or biological processes or via human behavior (Yun et al.,
2017). These methods have been used to value a range of natural capital stocks, from fish in single-species
fisheries (Fenichel and Abbott, 2014), groundwater (Fenichel et al., 2016), coastal habitat (Bond, 2017), and
an assemblage of interacting fish stocks (Yun et al., 2017).

3An alternative approach is to layer Monte Carlo simulation on a fundamentally deterministic valuation
approach to compute error bounds on change-in-wealth metrics. However, this muddles the aggregation of
accounting prices for natural capital and reproducible capital in ways that are unlikely to be acceptable in
sustainability accounting and are also not fully theoretically grounded.
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sustainability on a broader theoretical footing. We show how these realized shadow prices or46

accounting prices can be approximated, given a full bioeconomic model and specification of47

the diffusion process, through an extension of the functional approximation technique em-48

ployed in (Yun et al., 2017). As a stepping stone to understanding the valuation of multiple,49

linked stochastic assets, we focus a significant portion of our efforts focus on the single-asset50

case and examine the implications of stochasticity in the dynamics of natural capital. Model-51

based shadow prices are inherently dependent on the underlying specification of the model of52

natural capital dynamics. However, there is often significant uncertainty with regard to these53

models. Our understanding of many natural processes is at best incomplete, with the result54

that the actual evolution of natural capital could deviate significantly from any deterministic55

specific model. The valuation of such an inherently risky asset may differ significantly from56

one where the capital dynamics are deterministic and known with certainty.57

Despite these concerns, we show that stochasticity may be a second-order concern in the58

valuation of a sizable class of natural assets. Instead, managerial responses to stochasticity59

— as expressed in the degree of precaution reflected in the feedback control rules we adopt for60

managing natural capital stocks — have a far greater impact. One repercussion of this finding61

is that concerns about stochasticity may be of little consequence for the valuation of many62

natural assets—therefore offering little impediment to the development of wealth accounts63

using the capital asset pricing for nature approach (Yun et al., 2017; Fenichel, Abbott, and64

Yun, 2018). Nevertheless, stochasticity remains relevant in benefit-cost analyses intended to65

help choose the economic program.66

Secondarily, we consider the case of linked natural capital assets. Many natural capi-67

tal stocks in a given system are differentially vulnerable to a wide array of systemic and68

idiosyncratic shocks, with the result that changes in their stocks may be correlated – even69

in the absence of fundamental interactions in their dynamics. Since sustainability requires70

maintaining the wealth contained in a portfolio of capital stocks, it can be important to sus-71

tainable management to understand how the properties of the covariance structure of stocks72
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in the ‘ecosystem fund’ influences the overall value of the portfolio and how this correlated73

volatility interacts with the mechanistic interactions between capital stocks and the portfolio74

balancing decisions embodied in management policies. We extend the theory of Yun et al.75

(2017) to consider the case of assets with diffusions linked through their ‘drift’ terms and76

through correlations in the noise terms of the diffusion.77

The following section derives the shadow price formulas for the single- and multi-stock78

cases. Section 3 demonstrates the valuation approach for a single-stock, stochastic control79

problem where the optimal co-state (i.e. accounting price) is available in closed form. This80

allows us to validate our approach and also allows us to isolate the effects of stochasticity81

from the effects of the choice of a sub-optimal control rule (economic programs) that may82

stem from heuristics for coping with stochasticity. Section 4 extends our approach to a83

stochastic version of the Gulf of Mexico reef fish case study examined in Fenichel and Abbott84

(2014). This case allows us to consider the impact of natural stochasticity in a real-world,85

non-optimal setting. Section 5 concludes the paper.86

2. Derivation of shadow pricing formula87

2.1. The single asset case88

Let s(t) represent the known stock of a scalar asset at time t.4 Suppose the dynamics of89

s are represented by a diffusion (also known as an Ito) process and stationary infinitesimal90

parameters µ (s, x (s)) and σ(s). The diffusion process is written as91

ds(t) = µ (s(t), x (s(t))) dt+ σ(s(t))dZ(t) (1)

where dZ(t) is an increment of a Wiener process (Stokey, 2009). The drift of the diffusion92

µ (s, x (s)) is specified as a function of the current capital stock and as a function of the feed-93

back control rule, known as the economic program or resource allocation mechanism, x(s).94

4t is suppressed when doing so does not cause confusion.
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It is easiest to assume that stochasticity comes through the ecological production process,95

but stochasticity could also come through the economic program. Once the substitution for96

the economic program has been made, the drift is an explicit function of only s.97

Define the intertemporal welfare function, evaluated along the economic program and98

along the stochastic capital trajectory given by (1), as99

V (s (t)) = Et
[∫ ∞

t

e−δ(τ−t)W (s (τ) , x (s (τ))) dτ

]
(2)

where Et is the expectations operator. The marginal value of an investment in the capital100

stock in expectation is defined as p(s) ≡ Vs. To derive the properties of p(s), start by101

differentiating (2) with respect to t.102

dV

dt
= Et

[
δ

∫ ∞
t

e−δ(τ−t)W (·) dτ −W (s (t) , x (s (t)))

]
= δV −W (s (t) , x (s (t))) (3)

The first equality in (3) assumes that the derivative can be carried through the expectation103

operator, which is ensured by the stationarity of the infinitesimal parameters of (1). The104

second equality holds because the state of the system is known at τ = t.105

We know that dV
dt

= Et[dV ]
dt

. By Ito’s Lemma

dV =

[
µ (s)Vs +

1

2
σ2 (s)Vss

]
dt+ σ (s)VsdZ

Taking the expected value, and employing the property that all stochastic integrals are

identically zero (Stokey, 2009):

Et[dV ] =

[
µ (s)Vs +

1

2
σ2 (s)Vss

]
dt

so that106

dV

dt
=

Et[dV ]

dt
= µ (s)Vs +

1

2
σ2 (s)Vss (4)
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Setting (3) equal to (4) we obtain the stochastic Hamilton-Jacobi-Bellman (HJB) equation:107

108

δV (s) = W (s (t) , x (s (t))) + µ (s)Vs +
1

2
σ2 (s)Vss (5)

If we substitute p(s) ≡ VS into the HJB equation yielding:109

δV (s) = W (s (t) , x (s (t))) + p (s)µ (s) +
1

2
σ2 (s) ps (s) (6)

The first two terms on the RHS are the traditional deterministic current-value Hamilto-110

nian. The third term captures the effect of risk even if the deterministic rate of change in111

the capital stock µ(s) = 0. The risk effect captures the effect of Jensen’s inequality via the112

curvature of the intertemporal welfare function. If the shadow price function is downward113

sloping then ps < 0 so that risk has a negative effect on the intertemporal welfare function.114

Suppressing functional dependency on s, and differentiate (6) with respect to s yields:115

δp = Ws + µsp+ µps + σσsps +
1

2
σ2pss

Isolating p on the left-hand side we obtain the asset pricing equation:116

p(s) =
Ws + [µ(s) + σ(s)σs(s)]ps + 1

2
σ2(s)pss

δ − µs(s)
(7)

In the case where the variance of the noise in (1) does not depend on s then (2.1) reduces

to:

p(s) =
Ws + µ(s)ps + 1

2
σ2(s)pss

δ − µs(s)

and if capital dynamics are deterministic then this further reduces to

p(s) =
Ws + µ(s)ps
δ − µs(s)

which is the same as in (Fenichel and Abbott, 2014) who show that this equation is equivalent117
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to Jorgenson (1963).118

The general asset pricing equation equation (7) contains two additional numerator terms119

relative to Fenichel and Abbott’s deterministic derivation. The first term enters in a way120

that is symmetric to capital gains in a deterministic system and depends on the extent121

of “risk aversion” embodied in the curvature of the intertemporal welfare function (since122

ps ≡ Vss) and the extent to which the standard deviation of the diffusion is elastic with123

respect to s. If increasing investment in s increases the size of shock, and if the shadow price124

function is decreasing in the stock (analogous to risk aversion), then this results in a “capital125

loss.” This term only matters if the variance depends on the capital stock, as in the case of126

geometric Brownian motion. Importantly, curvature of the intertemporal welfare function,127

which is defined over the domain of capital stocks, need not result from underlying curvature128

of the “social utility” or real income function for welfare flows W (·). Indeed, the nature of129

risk preferences over flows embodied in W (including risk neutrality) may have no direct130

mapping to the curvature of V (s). Curvature of the intertemporal welfare function can be131

inherited from the underlying biophysical dynamics in (1) or from the economic program132

x(s) - suggesting that the risk premia embodied in the numerator of (7) are endogenous to133

policy and may reflect actual existing levels of self-insurance and self-protection (Ehrlich and134

Becker, 1972). This first term pertains to how a marginal investment in the capital stock135

increases risk, holding the curvature of the intertemporal welfare function constant.136

The second additional term in (7) is present with stochastic dynamics so long as the137

third derivative of the intertemporal welfare (or value) function is non-zero. There will be a138

premium if there is a positive third derivative (convex price function), while a negative third139

derivative (concave price function) yields a discount. If the value function is quadratic (i.e.140

zero derivatives above the second derivative), then this term is zero. Both additional terms141

in the numerator of (7) originate from differentiating 1
2
σ2(s)ps term in (6). This second term142

can be interpreted as the affect of a marginal increase in the capital stock on risk aversion,143

holding risk constant or interpreted as “prudence,” which is associated with precautionary144
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savings (?)). If risk aversion or prudence is increased by the investment (Vsss = pss < 0)145

then the shadow price is decreased. In other words, the pricing of risk into the capital asset146

depends on how an investment affects the sensitivity to risk, given the biophysical dynamics147

and economic program in place, in addition to how the marginal investment affects the risk148

itself. This can be thought of as a “self insurance effect” because changes in the curvature of149

the intertemporal welfare function impact the consequences of stochastic events rather than150

their probability (Shogren and Crocker, 1999).151

2.2. The multi-stock case152

Let s(t) ∈ RS and x(s(t)) : RS → RXand extend the diffusion in (1) to S distinct Ito153

processes154

dsi = µi (s,x (s)) dt+ σi(s)dZi(t) for i = 1, . . . , S (8)

The dZi(t) can be correlated with a S × S correlation matrix ρ such that the covariance of155

the stochastic components of capital stocks i and j, which may differ from their observed156

covariance in-sample due to the presence of deterministic relations between the stocks in (8),157

is Et [σi(s)dZi(t)σj(s)dZj(t)] = σi(s)σj(s)Et [dZi(t)dZj(t)] = σi(s)σj(s)ρijdt. If i = j, then158

the expression simplifies to σi(s)2dt.159

While the decomposition of the noise into a correlation matrix and standard deviations is160

intuitive and useful for model parameterization, we work directly with the covariance matrix161

to conserve on notation. Let Ω(s) be a S × S covariance matrix of the noise terms such162

that Cov(dsi, dsj) = Ωij(s) dt. A Cholesky decomposition of the covariance matrix yields163

Ω(s) = ω(s)ω(s)′.5164

Redefine the instantaneous return functions and intertemporal welfare functions in the

multi-stock case as W (s (t) ,x (s (t))) and V (s(t)). Once again, we know that dV
dt

= Et[dV ]
dt

.

5This approach generalizes (8) slightly by technically allowing for the correlation matrix - not just the
standard deviations - to vary in the stock vector.
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Applying Ito’s Lemma (Dixit and Pindyck, 1994) yields:

dV (s) =

[
S∑
j=1

µj (s,x (s))Vsj +
1

2

S∑
j=1

S∑
k=1

Ωjk(s)Vsjsk

]
dt+

S∑
j=1

σj(s)VsjdZ
j

Finding the expected value and dividing through by dt:165

dV

dt
=

Et[dV ]

dt
=

[
S∑
j=1

µj (s,x (s))Vsj +
1

2

S∑
j=1

S∑
k=1

Ωjk(s)Vsjsk

]
(9)

Setting (9) equal to the multidimensional generalization of (3) yields the HJB equation.166

δV (s) = W (s (t) ,x (s (t))) +

[
S∑
j=1

µj (s,x (s))Vsj +
1

2

S∑
j=1

S∑
k=1

Ωjk(s)Vsjsk

]
(10)

Partial differentiation of (10) yields the following expression for the shadow price of si167

pi(s) =
Wsi +

(
∂pi

∂si
µi +

∑S
j 6=i

∂pj

∂si
µj
)

+
∑S

j 6=i p
jµj

si
+ 1

2

∑S
j

∑S
k

(
Ωjk
si
∂pj

∂sk
+ Ωjk ∂2pj

∂sk∂si

)
δ − µi

si

Factoring the final numerator term yields the final asset pricing equation.

pi(s) =

[
Wsi +

(
∂pi

∂si
µi +

S∑
j 6=i

∂pj

∂si
µj

)
+

S∑
j 6=i

pjµj
si

+
1

2

S∑
j=1

(
σ2j
si
∂pj

∂sj
+ σ2j ∂

2pj

∂sj∂si

)

+
1

2

S∑
j=1

S∑
k 6=j

(
Ωjk
si
∂pj

∂sk
+ Ωjk ∂2pj

∂sk∂si

)]/(
δ − µisi

)
(11)

The first numerator term in (11) has the same interpretation as in the single-asset case. The168

next two terms in the numerator are present in the deterministic multi-asset case (Yun et al.,169

2017) and are forms of “capital gains.” The second numerator term
(
∂pi

∂si
µi +

∑S
j 6=i

∂pj

∂si
µj
)

170

reflects the effects of investment in si on the shadow price of stock i due to its prices of all171

assets in the portfolio (i.e. “price effects”). The third numerator term
∑S

j 6=i p
jµj

si
captures172
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the deterministic effects of investment in stock i on the physical growth rates of all other173

stocks (“cross-stock effects”), which can stem from system ecology or production interactions174

within the economic program.175

The additional numerator terms in (11) only exist in the stochastic case. The third176

term 1
2

S∑
j=1

(
σ2j
si
∂pj

∂sj
+ σ2j ∂

2pj

∂sj∂si

)
operates solely through the individual variances of each177

asset and captures the “risk sensitivity” effect of an investment in asset i on the variance178

of each asset, σ2j
si
∂pj

∂sj
. This part of the term reflects how substitution and complementarity179

relationships can provide “self-protection” through “portfolio diversification,” which is the180

endogenous risk concept. Importantly, the σ2j ∂2pj

∂sj∂si
term represents prudence and accounts181

for the fact that investments in i also affects the sensitivity to risk for all S assets, σ2j ∂2pj

∂sj∂si
,182

even if the variance for these other assets remains unchanged by the investment. This means183

that this term influences the consequences of stochastic events, and can be thought of as a184

self-insurance term. Together, these terms mirror the numerator terms, σ(s)ps + 1
2
σ2(s)pss,185

in (7).186

The final term in the numerator of (11), 1
2

S∑
j=1

S∑
k 6=j

(
Ωjk
si
∂pj

∂sk
+ Ωjk ∂2pj

∂sk∂si

)
, reflects the187

risk-related effects of investing in asset i that are mediated through the covariances of assets188

in the portfolio. This term is zero in the case that natural capital stocks are uncorrelated189

regardless of the vector of capital stocks. Ωjk
si
∂pj

∂sk
is the effect of an investment in i on the190

covariances between other assets j, k as valued through the first cross-partial between these191

assets (i.e. the 2nd cross-partial of the intertemporal welfare function). If the covariances192

between asset stocks are invariant to capital stocks then this term is zero. Ωjk ∂2pj

∂sk∂si
reflects193

the fact that investing in i may itself affect the curvature of the intertemporal welfare function194

in the direction of k and i (i.e. ∂2pj

∂sk∂si
= ∂

∂si
Vsjsk). If the effect of increasing asset i is to195

increase the concavity in the direction of increases in j and k ( ∂2pj

∂sk∂si
< 0) then the existence of196

positive correlation between the latter two assets results in a compensating reduction in the197

asset price. This creates addition “self insurance” opportunities from portfolio diversification.198

Some insight on the numerator terms involving covariances can be gleaned by realizing199
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that the covariance between innovations in sj (the residual of changes in sj after the deter-200

ministic drift µj(s,x(s)) is differenced away) and innovations in sk can be viewed as their201

rescaled relationship in expectation. Specifically, if the conditional expectation of sj and sk is202

linear6 E[dsj|dsk] = βdsk, then it is well known that β = Ωjk

σ2k . In other words, the covariance203

terms in (11) reflect the expected marginal effect of dsk on dsj such that the risk terms in the204

multivariate asset case account for systematic (linear) cross-effects between perturbations in205

stocks in a way that is analogous to how the previous cross-terms in the numerator account206

for capital gains through deterministic relationships via price and cross-stock effects.207

Finally, it is noteworthy that the effects of stochasticity disappear from (11) when two208

conditions hold: 1) when all second moments are constant regardless of the stock levels, and209

2) the intertemporal welfare function, V , is quadratic such that investments have no effect210

on its curvature. However, since the intertemporal welfare function inherits the properties211

of the instantaneous benefits function, the economic program, and biophysical dynamics in212

a complex manner, the latter property is difficult to verify ex ante.213

The numerical approximation of the shadow price function is carried out using “value214

function approximation” and is detailed in Appendix A. As detailed in Fenichel, Abbott, and215

Yun (2018) for the deterministic case and employed in Yun et al. (2017), this approach uses216

a Chebyshev polynomial basis to approximate the intertemporal welfare function using the217

HJB equation. We then differentiate the HJB equation to obtain estimates of the shadow218

prices.219

3. An optimized single-stock example220

The asset pricing approach presented in the previous section is valid regardless of whether221

the economic program maximizes intertemporal welfare or not (i.e. is the optimal feedback222

control rule). Nevertheless, given the substantial literature focusing on optimal economies,223

it useful to build intuition for realized shadow prices from an optimized economy model.224

6Linearity of the conditional mean follows directly from the joint normality assumption for Ito processes.
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Simple optimized models may also confer the benefit of a closed form solution for the co-225

state, thereby allowing for a direct validation of the numerical approximation approach.7226

To provide this example, we draw upon a case explored in Pindyck (1984). In this seminal227

contribution, Pindyck extends the canonical infinite horizon, continuous-time renewable re-228

source model for a single stock to allow for a stochastically evolving resource stock. The focus229

of the modeling is on revealing how the ‘golden rule’ of resource management is augmented230

by a risk premium term. He then explores how the biological and economic parameterization231

interacts with increases in risk to influence the extraction rate and the stochastic steady state232

distribution.233

Our model draws directly on Pindyck’s example 1 (p. 296), which is also explored in234

Miranda and Fackler (2004, p. 330). The objective is to maximize the infinite horizon235

expected net present value of the combined consumer and producer surplus from harvest q236

of the fish stock s.8 The demand function is isoelastic, q(p) = bp−η, and the marginal cost237

of harvest is cs−γ. The resource dynamics evolve according to a diffusion characterized by a238

logistic drift function with stochasticity that follows a geometric Brownian motion process:239

ds = rs (1− s/K)− q + σsdZ.240

In general, this model must be solved numerically. However, Pindyck (1984) demonstrates241

that a closed form solution to the HJB equation exists when η = 1/2 and γ = 2. Specifically,242

the optimized co-state (or rent) is:243

Vs = φ/s2 (12)

and the optimized economic program (feedback control rule) is:244

x(s) = q∗(s) =
b

(φ+ c)1/2
s (13)

7Fenichel and Abbott (2014) follow a similar process in the deterministic case by evaluating how the
natural asset pricing approach works on a simulated optimal program.

8Pindyck uses x for the state variable, we have changed this to s to avoid confusion and align with
notation within this paper.
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Figure 1: Illustration the the natural capital asset pricing approximation approach reproduces known value
function and price curves for a stochastic system.

where245

φ =
2b2 + 2b[b2 + c(r + δ − σ2)2]1/2

(r + δ − σ2)2
(14)

The resulting economic program (13) is linearly increasing in the stock. Such rules imply246

a constant (per-capita) rate of fishing mortality (i.e. a “constant-F” rule) and are common247

in natural resource management. Although, the rate of harvest may not correspond to the248

optimal rate in many real world applications. Importantly, ∂φ/∂σ2 > 0. This implies that249

∂q∗/∂σ2 < 0 and ∂Vs/∂σ
2 > 0, meaning that increasing stochasticity in this model always250

increases the accounting price of the stock, thereby decreasing the optimal rate of harvest251

at every stock level.252

We approximate the value function using the approach detailed in Appendix A and using253

the optimal feedback rule (13) for the economic program.9 Figure 1 shows that we are able254

to reproduce the analytical value function and shadow price to a high degree of accuracy.255

Dynamic optimization in this example yields an economic program that reflects what256

9We use parameter values of σ = 0.1, δ = 0.05, b = 1, r = 0.5, and K = 1.
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we might term “uniform precaution” (Figure 2, black line). Increases in stochasticity lead257

to a less aggressive harvest rate at all stock levels and therefore a larger ‘target’ steady258

state biomass. More generally, Pindyck shows that stock stochasticity has three competing259

effects that may lead to more or less aggressive (less precautionary) harvest relative to the260

deterministic case. The first, a variance reduction effect, encourages the manager to hold a261

lower stock due to the fact that the variance of stock increases in the stock size, and variance262

lowers the value function given its concavity. The second, a cost reduction effect, encourages263

the manager to hold a lower stock as variance increases due to the cost-increasing effects264

of stochastic fluctuations on expected harvest costs given the concavity of the harvest cost265

function – an implication of Jensen’s inequality. The third, a growth rate effect, encourages266

managers to hold more stock as variance rises since stochasticity reduces the expected growth267

rate of the stock given the concavity of the growth function. He shows through a series of268

examples how the different effects can lead to more or less aggressive harvest under risk.269

In practice, managers may choose to exercise more (or less) precaution than is optimal.270

We reflect these adjustments through two scalar shifts of the economic program, where271

harvests are either systematically lower (purple line, half the optimal harvest at every point)272

or greater (red line, 1.5 times the optimal harvest at every point) than the optimizing program273

(black line) (Figure 2).10 These shifts lead to economic programs that are non-optimal274

everywhere and result in different stochastic “equilibria.” These deviations from optimality275

are reflected in the intertemporal welfare functions and accounting price functions.276

We also consider an economic program that deviates from the “constant-F” form (Figure277

2, blue curve) by being a convex function of the stock. This program is ‘adaptive’ in its278

degree of precaution by being more conservative at low stocks and more aggressive at high279

stocks.11 For the sake of comparison, we calibrate this control rule to have the same stochastic280

10When the system is stochastic the catch curves representing the economic programs are slightly to left
of the deterministic programs, though this difference is hardly noticeable when plotted so we have omitted
the stochastic plots. Furthermore, applying deterministic program to the stochastic system in this setting
has only a small effect.

11In fisheries management, this adaptivity is often accomplished in practice by distinct linear harvest
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Figure 2: Stock-catch space showing the optimal harvest feedback rule and three alternative non-optimal
economic programs

equilibrium as the optimal program. Therefore, the adaptive program is the optimal program281

if, and only if, the stock is at the stochastic equilibrium. Importantly, the strong convexity282

of the adaptive program reflects a managerial bias for system stability; the steady state283

probability distribution will have a lower variance than the optimal program. The shape of284

this control rule, but not its anchoring on the optimal steady state, is similar to the feedback285

process that Zhang and Smith (2011) estimate and Fenichel and Abbott (2014) use in their286

application to the Gulf of Mexico reef fish fishery.287

Figure 3 compares the intertemporal welfare and price functions for the scalar trans-288

formations of the optimal harvest program for the stochastic (σ = 0.1, solid lines) and289

deterministic case (σ = 0, dotted lines). Importantly, the optimal and sub-optimal economic290

programs adjust for the value of σ according to the feedback rule in (13). The left-hand291

panel, showing the intertemporal welfare functions, shows that risk strictly reduces welfare,292

control rules that are each applicable within different stock thresholds–in essence a linear spline function.
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with risk having a similar effect across all three economic programs. Stochasticity appears293

to translate the intertemporal welfare functions down in a nearly constant manner (i.e. a294

location shift). This suggests that changes in welfare between stock levels – which are the295

relevant metrics for social benefit cost analysis and sustainability assessment – may be min-296

imally affected by volatile stock dynamics. The first column of Table 1 considers the welfare297

change for a relatively large perturbation in stock from 0.37 to 0.57. Regardless of whether298

we consider the optimal or sub-optimal programs, we find that the change in welfare from a299

stock shift is 3 percent greater in the stochastic case relative to the deterministic case, de-300

spite substantial volatility. Therefore, ignoring stochasticity may systematically undervalue301

changes in natural capital. However, our example indicates that this bias may be small in302

some cases.12 Indeed, we find that the changes in measured welfare across the three eco-303

nomic programs – holding stochasticity constant – are much more sizable than the effects304

of ignoring stochasticity. This suggests that the behavioral responses to stochasticity (i.e.,305

excessive or inadequate precaution that push the system toward a sub-optimal equilibrium)306

may be more consequential for welfare than the effects of stochasticity itself.307

Given the apparently near-vertical translations of the intertemporal welfare functions308

from introducing stochasticity, it is no surprise that risk has a muted effect on the accounting309

price functions (Figure 3). (Recall the price is the first derivative of the value function.) The310

effect of stochasticity on the shadow price is hardly noticeable. For the optimal program and311

its scalar multiples, price always increases in stochasticity. However, stochasticity has only a312

second-order effect on marginal values – hardly surprising given the small welfare effects of313

stochasticity for non-marginal stock changes (which integrate under the price curve) noted314

in the previous paragraph. Finally, stochasticity has no effect on the approximation error of315

welfare changes introduced by using a price index over the change multiplied by the change316

12We find that employing the program associated with deterministic dynamics to a system with stochastic
dynamics has a small effect. Using the “wrong” program can either lead to a larger or small assessment
of the welfare change, relative to using the stochastic program. This is due to second-best nature of these
feedback rules.
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Figure 3: The intertemporal welfare (value) function and shadow price curves for optimal program and two
scalar shifts of the optimal program with stochastic and deterministic dynamics.

in quantity (Table 1).13
317

Now consider the adaptive economic program (Figure 4), which mimics the asymmetric318

precaution observed in the management of many harvested resource systems and thereby319

ensures a greater degree of stability relative to linear feedback rules. Importantly, this320

rule has the same steady state as the optimal control rule, so all differences are due to321

the sub-optimal approach path and its potential interactions with stochasticity. As before,322

the most apparent effect of introducing stochasticity to the adaptive economic program is323

a downward shift in the intertemporal welfare function. However, there are subtle, but324

important differences relative to the linear control rule case.325

In the deterministic case (dashed curves), the intertemporal welfare value in the region326

of the equilibrium is approximately the same under the adaptive and optimal programs327

(indeed, identical at the equilibrium itself). Therefore, small changes in the stock in this328

region result in near-identical welfare changes under either program. It is only as the system329

13The use of price indexes is likely necessary in applied wealth accounting approaches for sustainability
assessment. The Fisher Ideal price Index is the geometric mean of prices. The Mean price Index is the
arithmetic mean of prices.
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Table 1: Comparison of the change in welfare and the change in wealth using two different index number
approaches. The Fisher Ideal index is the geometric mean of prices, and the Mean price index is the
arithmetic mean of prices. The price index is multiplied by the change in quantity.

Program Change Fisher %error Mean %error
in Ideal Price

Welfare Index Index
Optimal rule with determinis-
tic dynamics

15.920 15.920 0.000 17.373 0.091

Optimal rule with stochastic
dynamics

16.405 16.405 0.000 17.902 0.091

Adaptive rule with determinis-
tic dynamics

17.110 16.901 -0.012 18.873 0.103

Adaptive rule with stochastic
dynamics

17.730 17.517 -0.012 19.553 0.103

Scalar rule, 0.5 of the opti-
mum, with deterministic dy-
namics

20.855 20.855 0.000 22.758 0.091

Scalar rule, 0.5 of the opti-
mum, with stochastic dynam-
ics

21.497 21.497 0.000 23.459 0.091

Scalar rule, 1.5 of the opti-
mum, with deterministic dy-
namics

19.081 19.081 0.000 20.822 0.091

Scalar rule, 1.5 of the opti-
mum, with stochastic dynam-
ics

19.692 19.692 0.000 21.489 0.091

moves significantly from the equilibrium that there is a meaningful divergence between the330

intertemporal welfare functions in a deterministic system. By contrast, when the system is331

stochastic, the intertemporal welfare function under the adaptive program is always below332

that of the optimal program – even at the stochastic steady state biomass. This occurs333

because even at the equilibrium point there is an expectation of a shock that will move the334

system to a region where the adaptive program is meaningfully sub-optimal.335

These features are reflected in the shadow price curves (Figure 4, right panel). The336

shadow price curves cross at the equilibrium. This must be the case in the deterministic337

model for the adaptive program to be sub-optimal everywhere except at the equilibrium;338

it is required for the intertemporal welfare function of the adaptive program to “bow in”339
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Figure 4: The intertemporal welfare (value) function and shadow price curves for the optimal program and
a non-optimal adaptive “precautionary” economic program that preserves the stochastic equilibrium under
stochastic and deterministic dynamics.

relative to the optimal program’s value function. This feature is inherited in the stochastic340

setting as well.341

Despite these subtleties, once again the shadow price curves for the deterministic and342

stochastic dynamics for the adaptive precautionary economic program are remarkably simi-343

lar. Once again, the first order effects for valuation derive from the choice of the economic344

program – not from the introduction of stochasticity.345

The analysis of Pindyck’s model suggests that stochasticity may be, at most, a second-346

order concern for social benefit cost analysis or sustainability assessment.14 This appears347

in sharp contrast to much of the literature’s broader concern with stochasticity, risk, and348

uncertainty. We conjecture that a key feature of the Pindyck model that supports this349

result is the existence of a single stochastic equilibrium. There is a substantial literature on350

multiple equilibria (reviewed by Fenichel et al. (2015)), but this literature largely focuses on351

14Lest the reader think we are cherry-picking an extreme example to minimize stochasticity, Pindyck’s
example 2 in the same paper replaces the logistic growth function with a Gompertz growth function to
show that risk has no effect on shadow prices, and hence no effect on changes in welfare, in the optimal
management case.
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deterministic models to examine how the optimal pursuit of alternative long-run equilibria352

depends on initial conditions. Fenichel, Abbott, and Yun (2018) argue that the difficulties353

caused by multiple equilibria for valuation purposes (where the economic program is typically354

pre-determined, and the relevant basin(s) of attraction are therefore known) are lessened355

compared to optimal control. However, stochasticity could complicate matters by shocking356

the system into a different basin. An important question is whether real world economic357

programs are robust to these shocks. Nevertheless, we suspect that the findings from the358

Pindyck model may serve as a reasonable qualitative metaphor for a number of real-world359

systems. In the next section, we investigate a real-world system that that has similar features360

to the Pindyck model and show that second-order nature of stochasticity persists for a real361

world calibration.362

4. Gulf of Mexico Reef Fish363

The Gulf of Mexico reef fish example presented in Fenichel and Abbott (2014) has many364

of the same properties as the Pindyck (1984) model. Zhang and Smith (2011) estimated a365

logistic growth equation for the stock, and Zhang (2011) estimated an empirically-grounded366

feedback rule with similar properties as the adaptive rule illustrated in prior section – though367

Zhang’s rule is not calibrated to bisect the optimal equilibrium (Figure 5).15
368

We extend this deterministic model to the stochastic case. As in Pindyck, we augment369

the logistic stock dynamics with an additive geometric Brownian motion (GBM) noise term.370

Geometric Brownian motion is consistent with the assumptions of log-normal disturbances371

frequently used in population dynamic modeling and fisheries stock assessment. Utilizing372

the assessed biomass data from the fishery we calibrate σ = 0.067; therefore the standard373

deviation from the deterministic drift given by the logistic growth equation with harvest is374

15Indeed, the subsequent rebuilding of many stocks that has occurred, with support of the GOM fleet,
under rights-based management suggests that the former economic program, as approximated by Zhang,
under-invested in the stock relative to the economic optimum.
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Figure 5: The growth function and economic program for the Gulf of Mexico model.

approximately 6.7 percent of the stock level. The stock dynamics are375

ds =

(
0.3847s(t)

(
1− s(t)

3.59× 108

)
− h (x (s (t)) , s (t))

)
dt+ 0.067s(t)dZ(t) (15)

The economic program, the feedback relationship linking stock status (in pounds (lbs))376

and effort (in crew-days) in the fishery, is provided by a power rule, x(s) = ysγ, where377

γ = 0.7882 and y = 0.157. We assume that the valuation of income flows in the fishery is378

directly expressed in terms of monetary profits, with price-taking firms and costs that are379

linear in effort: W = mh − cx, with m = $2.70/lb., c = $153/crew-day. The production380

function for harvests is of a generalized Schaefer form h = qsx (s)α, with q = 3.17 × 10−4
381

and α = 0.544. W (s) is a strictly convex function of the stock once the endogenous feedback382

from the stock level to harvest behavior x(s) is incorporated, despite the linearity of harvests383

and costs for a fixed allocation of effort x. Abstracting from stochasticity, Figure 5 shows384

the dynamics of the system are similar to the Pindyck model with the adaptive control rule.385

4.1. The effects of risk, σ386

Figure 6 illustrates stochastic simulations of stock paths originating from the steady387

state biomass and harvest under four levels of stochasticity. The level of noise introduced by388

stochasticity in the base case (Fig. 6a) is already substantial and reminiscent of the noise389

seen in many ecological systems. While extinction is technically impossible in continuous390
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(a) σ = .067 (b) σ = .2

(c) σ = .5 (d) σ = 1

Figure 6: Stochastic simulations of stock dynamics over a range of values for σ. Note that the values for
σ = 1 exceed the range of the graph on a number of runs.

time, using the current economic program and geometric Brownian motion, our numerical391

simulations nevertheless show that the number of paths that tend to a numerically zero392

level increase dramatically with increases in σ. Indeed, all paths reach numerical extinction393

within 20 periods when σ = 1. This suggests that levels of σ of 0.5 or 1 are likely inconsistent394

with the dynamics of most real-world species. Dixit and Pindyck (1994) provide a similar395

example where they argue that volatility can only be so high given a reasonable probability396

of observing the stock at all.16
397

Unsurprisingly, increasing levels of volatility reduce the intertemporal welfare shown by398

the graph of the value function (Figure 7). Following Eq. (6) and the Pindyck example,399

the value function in the stochastic case includes an additional risk term that serves, in400

part, to shift the value function downward with increasing stochasticity. In the current401

16We thank Martin Quaas for bring this to our attention.
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Figure 7: The intertemporal welfare or value function and shadow price or account price function of the Gulf
of Mexico reef fish example with four different values of σ

.

case, the value function is concave in s (i.e. the shadow price curve is downward-sloping)402

so that increasing σ has the effect of reducing the expected net present value at any given403

stock level. This adjustment is small for the empirically-justified level of stochasticity in our404

system (σ = .067) – suggesting that the economic program is fairly robust to the level of405

stochasticity in the system by maintaining stock levels in a relatively insensitive range of the406

profit function. However, higher levels of stochasticity lead to much less controlled systems,407

resulting in devaluations of the ‘ecosystem portfolio.’408

Higher-order effects on the shape of the value function with increases in σ exist, but are409

small. Changes in the shadow prices (i.e. the derivative of the value function) are hardly410

noticeable (Fig. 7, right panel) and suggest the volatility is creating a nearly vertical shift in411

the value function. Thus, while risk devalues the stock in total (albeit mildly), stochasticity412

has no appreciable effect on its marginal valuation.413

Examining the Gulf of Mexico case reinforces the intuition developed by the Pindyck414

example in the context of a real world, well calibrated system. Risk appears to be a decidedly415

second-order feature. Yet, not all of the intuition from the Pindyck examples carries through.416
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Consider the value of a change from the observed equilibrium to the stock level supporting417

maximum sustained yield or half of carrying capacity. The change in the value function418

for the deterministic case is $244 million, whereas in the stochastic case the value is $243419

million.17 In this case, use of the deterministic system as a proxy for the stochastic system420

appears to overvalue the change in welfare or wealth slightly. This reinforces an insight421

from Pindyck under optimal management to the general case – that the effects of risk on422

the shadow price are contingent on bioeconomic parameters. However, these errors remain423

small.424

5. Conclusion425

The implications of uncertainty for decision-making and valuation are a longstanding426

concern in natural resource economics and real-world resource management. There is a large427

literature applying stochastic optimal control theory to the optimal management of resources428

subject to stochastic shocks (e.g., Sethi et al., 2005; LaRiviere et al., 2017). There is also a429

growing literature applying modern portfolio theory to the design optimal portfolios of har-430

vested species or portfolios of spatial conservation across landscapes or seascapes according431

to the social planner’s risk-return preferences (e.g., Ando and Mallory, 2012). Meanwhile,432

decision makers are increasingly influenced by a wave of thought, loosely organized under the433

heading of the “precautionary principle,” urging less aggressive action, or delay of irreversible434

actions, under conditions of risk or Knightian uncertainty. This mode of thinking is provided435

some qualified economic support by the literature on option value (Arrow and Fisher, 1974;436

Dixit and Pindyck, 1994; Gollier, 2003). This cautious approach to uncertainty is countered437

by the literature on adaptive management (e.g., Walters, 1986), which urges active learning438

in the presence of risk and uncertainty. Given these divergent approaches, and their often439

conflicting advice, it is of little surprise that resource governance has struggled with how to440

17Using the Fisher Ideal index the change in value for the deterministic and stochastic cases are both $245
million and using a mean price index both are $250 million. In both cases there are difference of less than
$1 million.
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incorporate risk and uncertainty into decision making.441

The challenges posed by risk and uncertainty for sustainability assessment and natu-442

ral capital valuation likewise appear formidable. There are several relevant uncertainties to443

consider, including stochasticity in resource dynamics, measurement error of the stocks them-444

selves, implementation error in policy (i.e., a stochastic economic program), and profound445

uncertainty about the current and future substitutability of the services provided by different446

capital stocks (Gollier, 2019). How should these risks enter sustainability assessment and447

natural capital accounts?448

We address this question for one form of risk, process error in natural capital dynamics,449

under real-world, non-optimized conditions. We show how the stochastic dynamics of natural450

resources can be incorporated into a single revealed shadow (accounting) price for natural451

assets at risk. This finding parallels financial markets that yield a price for traded assets452

conditional on the information-contingent forecasts in the minds of traders – even as the453

flow of dividends, which may be dependent on physical or managerial processes, from these454

assets is uncertain.455

In the case of single assets, we find that risk enters into the marginal valuation of natural456

capital in two ways. The first, an “endogenous risk” effect, reflects how capital investments457

influence the extent of volatility itself. This effect is valued through the curvature of the458

value function. It reflects the degree of self-protection in the economic program. The second,459

an “endogenous risk aversion” effect, reflects how these same investments affect the valuation460

of the risk by moving from regions of the value function with different degrees of curvature,461

which suggest a self-insurance feature. This second feature is likely to affect the accuracy462

of price indexes in the presence of stochasticity, since the accuracy of a price index depends463

on its ability to adjust for curvature in the price function – to impose a linear index on a464

fundamentally non-linear welfare valuation.465

The revealed value of risk therefore depends on the second and third derivatives of the466

value function, which depend on the totality of the properties of the utility function valuing467
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income flows from capital stocks, the shape of the growth functions of capital stocks, and468

the feedback rules between capital stocks and human behavior embodied in the economic469

program. In other words, the extent of “intertemporal risk aversion” and prudence – the470

curvature and change in curvature of the value function with respect to stocks of capital – is471

not “baked in” solely through the curvature of the welfare function evaluating income flows472

(i.e., ecosystem services) from natural capital. Rather, it is a global property of the coupled473

human-natural system in question, including its management. Even in the case of a single474

natural asset, the feedback rule employed to respond to fluctuations in the resource stock475

can affect the level of objective risk faced and the sensitivity of intertemporal welfare to that476

risk. In other words, resource management plays a significant role in shaping the marginal477

value of an asset. Indeed, this is the logic behind the endogenous risk framework (Shogren478

and Crocker, 1999) and the broader literature on self-protection, self-insurance, and market479

based insurance (Ehrlich and Becker, 1972).480

The logic from the single-asset case carries over to the multi-asset case, but in an even481

richer form. Investments in a given capital stock have the potential to affect the variances and482

the covariances of other capital stocks in the portfolio and the multi-dimensional curvature of483

the value function. These “portfolio effects” further elevate the role of the economic program.484

The feedback rule between the vector of capital stocks and human actions on these stocks485

serves as a portfolio rebalancing rule that influences the overall value of the portfolio. The486

valuation approach we have outlined provides a metric for understanding how alternative487

portfolio management strategies influence the valuation of individual capital stocks and the488

sustainability of management itself.489

Despite the rich manner in which risk theoretically influences the valuation of natural490

assets, our investigation of the single-stock, logistic model with GBM shocks found that491

stochasticity has only a minor impact on measures of changes in wealth for marginal and492

non-marginal perturbations to capital stocks. This result is robust across optimized and493

non-optimized settings and for quite high (arguably unrealistic) levels of volatility. One ex-494
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planation of this result is inherent in Pindcyk’s analysis. He notes that risk acts in subtle and495

countervailing ways on shadow values (and hence the extraction rate) so that the qualitative496

effect of risk is unclear a priori. It is possible that in a number of cases that these effects may497

approximately cancel out. Our results suggest that for a large and important class of natural498

capital assets this is the case – risk is truly a second-order concern. Therefore, we argue that499

the lack of risk-adjustment in accounting prices is a poor reason to avoid or delay tracking500

changes in societal wealth to measure progress on sustainability. Deterministic estimates of501

shadow prices seem to be able to capture most of the change in value. Errors introduced502

by standard measurement error and index number error likely introduce errors of similar or503

greater magnitude.504

Notwithstanding this strong conclusion, there are many aspects of risk and uncertainty505

which remain to be considered. We focused on diffusions in continuous time, while many506

other stochastic processes are also possible. For example, there is the possibility of resource507

dynamics experiencing discontinuous Poisson shocks that transition the system into an al-508

ternative basin of attraction. In these cases the stochasticity of the shock may be best509

thought of as reflecting our uncertainty of where the “critical thresholds” lie in an otherwise510

deterministic system. While these forms of risk fall outside the class of correlated diffusions511

considered here, we conjecture that they can nevertheless be handled in a relatively straight-512

forward manner through extensions of analogues in the literature (Walker et al., 2010; Reed513

and Heras, 1992). This provides a narrow, but perhaps important, window for stochasticity514

to be of first-order concern.515

Including credible measures of changes in wealth from natural capital in accounting and516

social benefit cost analysis is imperative for structuring policy discussions about sustainable517

development and encouraging better decision making. However, it’s not easy. Developing518

credible accounting price estimates for natural assets, which resist aggregation due to their519

dependence on localized features and institutions (Addicott and Fenichel, 2019), is a daunting520

task. It is therefore important to prioritize efforts. The preliminary analysis in this paper521
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suggests that adjusting shadow prices and changes in intertemporal welfare for the effects of522

risk may be of secondary importance for accurate valuation.523

To be clear, risk is often important for decision making – while the economic program is524

being “chosen” – but accounting prices “build in” the feedback rule of the given economic525

program. The treatment of risk is conditional on a certain management plan for how to526

respond to it. This suggests a potential hidden vulnerability in the treatment of risk if there527

are unknown structural breaks in the economic program in response to risk. For example,528

a political revolution may be facilitated by a large resource shock such as a famine or stock529

collapse; or, scarcity-induced innovation may lead to new technologies that alter the nature530

of substitutability between capital stocks. How risks of such discontinuous technological531

and institutional change capitalize into the valuation of natural assets may be tractable532

conceptually, but often necessarily rests upon a highly speculative empirical basis. It may533

be exactly such “known unknowns” and “unknown unknowns” that ultimately trouble the534

minds of decision makers – not the polite and well-behaved risks. The difficulty of accountant535

approaches to capture such Knightian uncertainty may be one more reason why (Dasgupta,536

2001) calls non-declining wealth a necessary, but not sufficient, condition for sustainability.537
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Appendix A. Numerical approximation538

Given a complete deterministic bioeconomic model of a social-ecological system it is539

possible, at least in principle, to obtain approximate shadow values for a given stock at a given540

initial state vector by perturbing the desired natural capital stock and calculating the change541

in the net present value of benefits flows over the indefinite future. While straightforward,542

this approach is computationally intensive and cumbersome for forecasting or backcasting543

the wealth dynamics of a system and may be inappropriate in stochastic settings. Fenichel,544

Abbott, and Yun (2018) and Yun et al. (2017) describe how the HJB equation can be545

combined with functional approximation approaches frequently used in numerical dynamic546

programming to approximate the entire shadow price function over a closed domain of capital547

stocks. For the deterministic, multi-asset case they advocate approximating V (s(t)) using548

the HJB equation (analogous to (10)), replacing V (s(t)) on the LHS of the equation with a549

weighted sum of the tensor product of Chebyshev basis functions in the stock vector s(t) and550

replacing the partial derivatives of the value function on the RHS with the partial derivatives551

of this approximation. The coefficients that determine the weightings on the basis functions552

can be solved analytically and are chosen (in a system with as many approximation points553

as coefficients) to make the LHS and RHS of the approximated HJB equation hold with554

equality.18
555

This value (intertemporal welfare) function approximation technique can be adapted556

with relatively minor changes to the stochastic diffusion case. First, define the bounded557

approximation interval for each state variable. Then choose M evaluation points within this558

interval for each of the S capital stocks and then calculate W (s (t) , x (s (t))), µ (s,x (s))559

and Ω(s) at each point.19 The univariate node coordinates are then permuted to yield560

18In some cases it may be desirable to utilize more approximation nodes than the number of coefficients
- an over-determined system. In this case, the coefficients can be chosen to minimize the sum of squared
deviations between the LHS and RHS of the approximation. The analytical expression for this solution is
analogous to ordinary least squares (Fenichel, Abbott, and Yun, 2018).

19In many cases the evaluation nodes are found by finding the M roots of a unidimensional Chebyshev
polynomial on the bounded approximation range for each state variable. However, care must be taken so
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MS grid points. We define φi as the M × (qi + 1) basis matrix of qith degree for state561

variable i. This is a matrix of qi + 1 basis functions - Chebyshev polynomials of ascending562

degree in our case - evaluated at the M evaluation points. To approximate over the bounded563

domain in RS we find the tensor product across all dimensions (i.e. allow for full interactions564

across the univariate basis functions) to form an MS ×
∏S

i=1 (qi + 1) basis matrix: Φ (S) =565

φN ⊗ φN−1⊗ . . .⊗ φ1 where S is the MS × S matrix of evaluation points (i.e. all grid nodes566

of M evaluation points for all S state variables). We can now define our approximation to567

the intertemporal welfare function V (Sm) ≈ Φm (S)β where m indexes the MS distinct568

capital stock vectors (i.e. the individual evaluation points in the S-dimensional grid) and569

Sm is the mth row of S. Φm (S) is the mth row of Φ (S), and β is a
∏S

i=1 (qi + 1) × 1570

vector of unknown approximation coefficients. Using the fact that ∂V (Sm)
∂si

≈
(
∂Φm(S)
∂si

)
β571

and ∂2V (Sm)
∂si∂sj

≈
(
∂2Φm(S)
∂si∂sj

)
β we can replace the HJB equation in (10) with the following572

approximation:573

δΦm (S)β = W (Sm) +

[
S∑
j=1

diag(µj (Sm))

(
∂Φm(S)

∂sj

)
β

+
1

2

S∑
j=1

S∑
k=1

diag(Ωjk(Sm))

(
∂2Φm(S)

∂sj∂sk

)
β

] (A.1)

Collecting terms involving β yields:574

[
δΦm (S)−

S∑
j=1

diag(µj (Sm))

(
∂Φm(S)

∂sj

)
− 1

2

S∑
j=1

S∑
k=1

diag(Ωjk(Sm))

(
∂2Φm(S)

∂sj∂sk

)]
β

= Ψm(S)β = W (Sm)

Stacking these MS vector equations results in the equation Ψ(S)β = W (S). If MS =575

that the nodes are laid out in a way that the system dynamics do not leave the approximating domain in
expectation.
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∏S
i=1 (qi + 1) (i.e. the number of approximation points equals the number of unknown ap-576

proximation coefficients) then the approximation coefficients can be calculated in a straight577

foward way through matrix inversion. Alternatively, if MS >
∏S

i=1 (qi + 1) then the β can578

be found using least squares.579

β = (Ψ(S)′Ψ(S))
−1

Ψ(S)′W (S) (A.2)

After obtaining the approximation Φ(S) it is straightforward to find the shadow values580

of any given capital stock by taking its partial derivative.581

Fenichel, Abbott, and Yun (2018) discuss the importance of determining the domain582

of approximation. They show that in multi-dimensional systems the system dynamics to583

can lead outside the approximation domain, which hinders the ability to recover shadow584

prices. They argue that it is important to make sure the approximation domain is sufficient585

to include dynamic from any stock size for which a shadow price is desired. In the single586

stock deterministic case this is never an issue so long as the system has attractors that are587

within the approximation domain. However, this property does not extend to stochastic588

dynamics. This is because a shock at the edge of the approximation domain could lead589

the system outside the approximation domain for a non-trivial period of time. Therefore,590

extra attention is needed to enlarge the approximation domain when system dynamics are591

stochastic.592
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