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Abstract

This paper examines how firms adapt to climate-change risks resulting from their supply-
chain networks. Combining a large sample of global supplier-customer relationships
with granular data on local temperatures and flooding incidents, we first document
that the occurrence of climate shocks at affected supplier firms has both a large direct
and indirect negative effect on earnings and revenues of suppliers and their customers.
Second, we show that customers are 10% to 20% more likely to terminate existing
supplier-relationships when realized climate shocks at the supplier firms exceed ex-ante
expected climate shocks. Further, customers subsequently switch to suppliers with lower
heatwave and flooding exposure. Our results indicate that climate change affects the
formation of global production networks.
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1 Introduction

Climate change is one of the greatest challenges of our time. The average global surface temperature

has increased by 0.85◦ Celsius (1.5◦ F) since the industrial revolution, leading to more frequent

extreme weather events such as heatwaves, forest fires, and catastrophic floods, with dramatic

effects for society and economic activity (Carleton and Hsiang, 2016). According to the 2017 U.S.

Climate Science Special Report, the cost of extreme climate-related events for the United States

alone has exceeded $1.1 trillion since 1980 (CSSR, 2017).1 By the end of the century, temperatures

are expected to increase even further by 0.9 to 5.4◦ C (1.6 – 9.7◦ F) (IPCC, 2013).

While the academic literature in finance and economics has provided broad evidence on the

adverse effects of climate change, including corporate earnings (Addoum, Ng, and Ortiz-Bobea,

2019), labor productivity (Graff-Zivin, Hsiang, and Neidell, 2018), stock returns (Kumar, Xin, and

Zhang, 2019), and capital structure (Ginglinger and Moreau, 2019), much less is known about how

firms and market participants can adapt to climate change. In contrast, managers and investors

are increasingly looking for ways to mitigate climate change risks, for example by adapting their

operations and investments (Lin, Schmid, and Weisbach, 2018).2

In the age of globalization, most firms operate in extensive global production and supply-chain

networks. Supply-chains often move through parts of the world that are most vulnerable to climate

impacts. As a result, adapting to climate change is a complex task, as firms might be indirectly

exposed to climate change risks due to their suppliers and customers.3 Indeed, Barrot and Sauvagnat

(2016) and Seetharam (2018), among others, show that the impact of extreme weather events can

propagate through firm-level production networks. Consequently, in a recent survey, over 50% of

CEOs mentioned risks posed to their global supply chains by climate change as one of their primary

concerns (PWC, 2015).

Hence, the aim of this paper is twofold. First, we investigate if firms are affected by climate

change risk due to their global supply-chain network. Specifically, we estimate the firm performance

effects of climate change related extreme weather events on supplier firms around the world and the
1See for example Dell, Jones, and Olken (2014) and Auffhammer (2018) for a summary of the literature on the

economic effects of climate change.
2Krüger, Sautner, and Starks (2018) document that institutional investors consider engagement and risk manage-

ment strategies to address the financial implications of climate change risks for their portfolio firms.
3For example, during the 2011 flooding disaster in Thailand, more than 14,500 firms reliant on Thai suppliers

experienced business disruptions worldwide (BSR, 2018).
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propagation of climate-related performance shocks to their corporate customers. Second, we study

how firms adapt their supply-chain organizations in response to climate change risks. In particular,

we examine if customers optimize and diversify their supplier network by replacing high-risk with

low-risk supplier firms.

We combine detailed global, firm-level supply-chain data from FactSet Revere with geographic

location data from FactSet Fundamentals and granular climate data on heatwaves from the European

Center for Medium-term Weather Forecasts and floods from the Darthmouth Flood Observatory.

Our supply-chain dataset includes 4,289 (4,568) unique supplier (customer) firms, comprising over

200,000 quarterly supplier-customer observations across 51 countries around the world, over the

period from 2003 to 2017.4 We focus on two types of climate change risks – extreme heatwaves and

flooding – for the following reasons. First, the literature in physiology and economics has pointed

to several direct and indirect channels through which heatwaves can affect firm productivity. For

example, extreme heat reduces human capital (Graff-Zivin et al., 2018), labor provision (Graff-Zivin

and Neidell, 2014), and productivity (Zhang, Deschenes, Meng, and Zhang, 2018), with sharp

declines typically observed at temperatures over 30◦ C.5 Given current global carbon emissions, the

number of heat days (i.e. days that exceed 100◦ F) is projected to rise dramatically, from currently

1% of days to more than 15% of days by 2099 (Graff-Zivin and Neidell, 2014), making extreme

heatwaves a common and impactful phenomenon in the future. Second, flooding incidents can cause

enormous economic damage to the affected region. According to FEMA, the United States suffered

more than $260 billion in flood-related damages between 1980 and 2013. As a result of climate

change, both inland and coastal floods are expected to become more frequent and severe in the

coming years (CSSR, 2017).

While Addoum et al. (2019) and Pankratz, Bauer, and Derwall (2019) show that exposure to

local heatwaves affects the profitability of listed firms in many industries, both the question if climate

change related shocks propagate along firm-level links and how customer firms can potentially

mitigate such risks are unclear. First, the implications of climate shocks for suppliers and customers

might differ. While extreme temperatures and floods might be costly to supplier firms, for example
4In contrast to previous research on supply-chains in finance, which has mostly relied on data from Compustat

Segment Files, this dataset allows us to study the initiation and termination of customer-supplier relationships. See
Section 2 for details.

5High temperatures are also associated with higher civil conflict risk (Burke, Hsiang, and Miguel, 2015a) and
immigration (Feng, Krüger, and Oppenheimer, 2010), which might indirectly impact firms in the affected areas.
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by increasing energy consumption for air conditioning or clean-up costs, customer firms would be

unaffected by such shocks if suppliers cannot pass on the incurred costs downstream. In this case,

neither heat nor flood related shocks would propagate from suppliers to customers. On the other

hand, if heatwaves or floods lead to lower production output, such disruptions could propagate

along the supply-chain and affect customer firms, potentially with a delay.

Second, if managers understand the risks of climate change, they plausibly organize operations

to absorb climate risks and minimize disruptions due to shocks to their suppliers. Again, we would

not expect climate shocks to propagate from suppliers to customer in this case. On the other hand,

frictions such as relationship-specific investments or a high degree of input specialization might

prevent customer firms from making such adjustments or from switching to alternative suppliers.

Further, the risks of climate change have become much more salient over the past decades, as the

frequency of extreme weather events and scientific evidence of future risks and public awareness

both have increased. If managers are increasingly considering climate change risks when making

operational and investment decisions, we would expect that customers become more likely to switch

suppliers when observed climate change risks exceed previous expectations.

Our first set of tests focuses on the effect of climate change related weather events on the

operating performance of affected supplier firms. Following the climate science literature (Carleton

and Hsiang, 2016), we construct a location specific measure of heatwaves for our sample supplier

firms based on the daily temperatures over a given quarter in the location of the firm’s production

facilities. Consistent with Addoum et al. (2019), we document that the occurrence of a heatwave

during one of the three previous firm-quarters is associated with a subsequent reduction in revenue

(operating income) by 3.9% (9.7%) relative to the sample median. Focusing on flooding incidents,

we document a decrease by 3.9% (10.2%) relative to the sample median. These results hold after

controlling for firm-fixed effects, firm-specific seasonal trends, industry-specific time trends, as well

as a host of firm- and industry characteristics and trends.

Next, we provide evidence that firms are indeed exposed to climate change risks due to their

global supply-chain network. Our findings show that climate change related shocks to supplier

firms have a negative effect on the performance of their customers. Following the occurrence of a

heatwave in a given firm-quarter at a single supplier, customer revenues decrease by 0.2% relative

to the sample median. When suppliers are affected by a local flooding incident, customer revenue

3



and operating income are reduced by 1.8% and 2.2%, respectively. Consistent with Barrot and

Sauvagnat (2016), these effects hold with a lag of up to four quarters.

We conduct a number of robustness tests. First, we employ counting measures of heatwaves and

flood incidents instead of using dummy variables and find similar result. Second, we implement our

experiments both at the supplier-customer-quarter observation level as well as in a collapsed sample

of customer-quarter-level observations, aggregating across suppliers for each sample customer. The

results are similar in both settings. Third, we implement a placebo test by studying time periods in

which our supplier-customer pairs were not yet or no longer in a supply-chain relationship. We find

no evidence of climate risk propagation during these placebo periods.

Our main tests focus on the adaptation of supply-chains to climate change risks. We first

examine how climate change risk affects the likelihood that customers terminate the relationship

with their customers. Assuming that managers trade off potential climate-related risks with other

firm characteristics (product quality, costs, delivery times, etc.) when entering a supply-chain

relationship, we hypothesize that a customer firm is more likely to terminate an existing supplier-

relation when the climate shocks observed over the course of a supply-chain relationship exceed the

ex-ante anticipated risks. We therefore construct a measure of realized vs. expected climate risk

by comparing heatwaves and flood incidents after the establishment of a supply-chain link to the

observed climate shocks in the years before as a benchmark.

We document a large, positive effect of realized vs. expected climate risk on supplier termination.

Our results show that a supply-chain relationship is 1.0 (3.7) percentage points more likely to

be terminated in a given year, if the realized number of heatwaves (floods) exceeds the ex-ante

expected number. This effect is economically meaningful given the unconditional expectation

that a supply-chain relationship ends in any given year of 15.1% in our sample. The results are

robust to using several alternative ways of constructing our climate risk measure, and significant

at the 1%-level, controlling for any time-invariant supplier-by-customer characteristics, various

time-variant financial supplier and customer characteristics, industry-by-time fixed effects, and

country-by-time fixed effects. Importantly, when we solely consider the occurrence of heatwaves and

floods throughout the supply-chain relationship (without comparing it to ex-ante expected climate

shocks), we find a much smaller, statistically insignificant impact on the likelihood of supply-chain

relationship termination. This is consistent with the notion that managers are taking climate risks
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into consideration when entering a supply-chain relationship.

Last, we examine how firms optimize their supply-chain climate risk by analyzing if customers

switch from high climate-risk to low climate-risk suppliers. For this purpose, we consider all instances

of ending supply-chain relationships in our sample and match each ‘dropped’ supplier with the

‘replacement’ suppliers, i.e. firms with the same 4-digit SIC code which newly became suppliers to

the same customer within the next two years. We then compare the realized climate risk of the

dropped and replacement suppliers based on the number of heatwaves and flooding incidents over

the same time period. We find that replacement suppliers on average have 0.83 fewer heatwaves

and 0.03 fewer floods than terminated suppliers, measured over the duration of the relation with

the terminated supplier. The result is statically significant at the 1% level (t-statistics of 17.9 and

4.2), and robust to alternative comparison periods and climate risk measures.

Our paper contributes to the literature on the economic effects of climate change along several

dimensions. To the best of our knowledge, we present the first evidence of operational adaptation

to climate change-risk at the firm level. Our main result shows that managers respond to climate

risks resulting from their supply-chain network by switching from high-risk to low-risk suppliers,

indicating that climate risks can drive the formation of global firm-level production networks. This

finding has important potential implications. As the climate science literature has shown (e.g.

Burke, Hsiang, and Miguel, 2015b and Carleton and Hsiang, 2016), developing countries around the

world are more severely affected by the outcomes of global climate change than developed countries

in North America and Western Europe. However, as particularly the largest corporations traded on

international stock exchanges rely on extensive, worldwide production networks, it is important for

managers and policymakers to be aware of the extent to which the economic implications of climate

change are shared through supply chain links. Moreover, if firms further shift economic activity

from ‘southern’ to ‘northern’ countries due to heterogeneity in climate change risk, this effect could

contribute to widening global inequality and economically weaken the areas most vulnerable to

climate change. Lin et al. (2018) also study climate change adaptation, focusing on the investments

of electricity generating firms in more flexible power generation technologies.

This paper also provides novel evidence on the implications of climate change for firms and

investors. Previous research in the finance literature has studied the direct effects of climate shocks

on firm profitability (Zhang et al., 2018; Addoum et al., 2019; Pankratz et al., 2019), housing prices
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(Baldauf, Garlappi, and Yannelis, 2019), stock returns (Kumar et al., 2019), financial markets

(Bansal, Kiku, and Ochoa, 2016; Hong, Li, and Xu, 2019; Schlenker and Taylor, 2019), and capital

structure (Ginglinger and Moreau, 2019). Our paper is the first to show that firms can be indirectly

exposed to climate shocks due to their global supplier network. This aspect of our findings is

most closely related to Barrot and Sauvagnat (2016), Seetharam (2018), and Boehm, Flaaen, and

Pandalai-Nayar (2019), who document the propagation of natural disasters along input-output

linkages. The fundamental difference between our study and these papers is that we focus on the

effects of temperature exposure and flood incidents, allowing us to assess the potential impact of

climate change risk propagation along supply-chain links.

2 Data Sources and Descriptive Statistics

To conduct our empirical analysis, we combine data on global supply-chain relationships, firm

financial performance, and granular data on local climate exposure from four main sources. In the

following sections we describe the data sources in detail, explain how we link the individual datasets,

and provide summary statistics for our main sample. The final sample used for the empirical

tests in Sections 3 and 5 varies, as we merge supplier-customer relationship data with different

climate change-related databases. For example, in Section 3 we focus on the propagation of climate

shocks along existing supply-chain links, while Section 5 explores the determinants of customers

switching suppliers. The following summary statistics therefore refer to our main sample used to

examine climate shock propagation in Section 3. For this purpose, we retain each supplier- and

customer-quarter in our main sample for which a complete record of supply-chain data, financial

information, and climate exposure data is available. Throughout the rest of the paper, we provide

relevant summary statistics and details in the context of the respective empirical tests.

2.1 Global Supply-Chains

We start by obtaining information on customer-supplier relationships from the recently available

FactSet Revere database. Previous research on supply-chains in finance (e.g. Hertzel, Li, Officer,

and Rodgers, 2008; Cohen and Frazzini, 2008; Banerjee, Dasgupta, and Kim, 2008) has relied

primarily on the SEC’s regulation S-K, which requires U.S. firms to disclose the existence and
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names of customer firms representing at least 10% of their total sales, to identify customer-supplier

links. In contrast, the Revere supply-chain data has two important advantages that are particularly

important in the context of this paper. First, while the SEC regulation does not apply in other

countries, hence limiting existing research mostly to U.S. firms, Factset Revere supply-chain data

includes both U.S. and foreign supplier and customer firms. This is important because many of the

regions most vulnerable to climate change around the world are located outside of the United States.

Second, and more importantly, previous research relying on the SEC regulation has been unable

to study the initiation and termination of supplier-customer relationships, since the appearance

and disappearance of a given supply-chain link in the data might either be due to a customer

starting/ending a relationship with a given supplier, or because a customer firm was above/below the

10% reporting threshold in a given year. In contrast, the Revere supply-chain data is hand-collected,

verified, and updated by FactSet analysts relying on a range of primary sources of information,

including companies’ annual reports and 10-K filings, investor presentations, company websites

and press releases, corporate actions, and 10-Q and 8-K filings. This is crucial for our analysis of

supply-chain formation and climate change adaptation, as it provides us with precise information

on the beginning and end of a given supplier-customer relationship.

In total, our sample includes 4,568 unique customer firms and 4,289 unique supplier firms

across 51 different countries, comprising approximately 220,000 supplier-customer pair-year-quarter

observations over the sample period from 2003 to 2017. The geographical and industry distribution

of the suppliers and customers in our sample is summarized in Table 1 and visually illustrated in

Figures 1 and 2. As documented in Table 1, most of the suppliers and customers in our sample

operate in manufacturing (SIC 1st digits 2 and 3) or transport and utilities (SIC 1st digit 4).

Geographically, the majority of suppliers are located in North America (41%), East Asia and Pacific

(30.6%) and Europe or Central Asia (18.4%). The regional distribution of customers is similar to

the geographic distribution of the suppliers.

Table 2a (Panel C) presents relationship-level summary statistics for the firms in our sample.

As documented, the average supply-chain relationship in the sample lasts 13.83 quarters. Similar

to previous research on supply-chains in finance (e.g. Cen, Dasgupta, Elkamhi, and Pungaliya,

2015; Cen, Maydew, Zhang, and Zuo, 2017; Cen, Chen, Hou, and Richardson, 2018), we document

an asymmetric mutual importance between customers and their suppliers in our sample. First,
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sample customer firms are typically much larger than their suppliers. The median sample customer

holds 29 times the assets of the median supplier firm (book value of assets). Second, for firm-pairs

where detailed sales data from supplier to customer is available (9.39% of the sample), the average

proportion of sales the sample customers represent to their suppliers is 17.87%, while the average

proportion of cost-of-goods-sold (COGS) suppliers represent to customers is only 1.82%. This

relationship asymmetry suggests that customers on average have higher bargaining power in the

relationship with their suppliers.

2.2 Accounting Performance and Firm Characteristics

Next, we obtain quarterly financial performance records for the firms in our sample from 2000

to 2017 from Compustat Global.6 Our main variables of interest for measuring operating firm

performance in Section 3 are quarterly revenues and operating income, scaled by asset size. In

addition to financial performance data, we obtain information on firms’ financial reporting schedules

to ensure that we correctly match climate records and performance records when financial quarters

deviate from calendar quarters. To ensure that international financial records comparable, we

convert all variables into U.S. dollars using the WRDS currency conversion tables, and deflate the

values using the consumer price index information provided by the International Financial Statistics

of the International Monetary Fund.

We further collect data on several additional firm characteristics from FactSet as control variables.

These characteristics include firm controls such as the date of the first trade of the firms’ shares to

construct a proxy for firm age, the price-to-book ratio as well as the debt-to-assets ratio. To remove

outliers, we trim all variables above (below) the 99th (1st) percentile. We further drop firms with

incomplete records of financial information and exclude firms in the financial industry (SIC code

between 6000 and 6999).

Panels A and B of Table 2a report summary statistics for customer and supplier financial

performance and firm characteristics after applying the data filters outlined above. In line with

the expectation that suppliers are on average smaller than their customers, the average book

value of assets is is 6,354 million USD for customer firms, and 5,097 million USD for suppliers.
6Compared to our sample of supply-chain relationships from FactSet Revere, we extend the financial performance

sample by three years for later placebo tests, see Table 5.
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Customers (Panel A) and suppliers (Panel B) have similar operating performance in our sample.

The average quarterly (median) customer Revenue/Assets is 23.99% (19.91%) for customers and

21.96% (18.77%) for suppliers. The average quarterly (median) customer Operating Income/Assets

is 2.47% (2.57%) for customers and 1.92% (2.31%) for suppliers.

2.3 Firm Locations

A crucial requirement for our empirical analysis of the impact of climate shocks on downstream

propagation and the formation of supply-chain relationships is identifying the location of our sample

firms. In this paper, we obtain information on the location of firms’ operations from the FactSet

Fundamentals database. Specifically, as our primary measure for firm location we use the addresses

(City, Zip Code, Street Name) of firm headquarters as obtained from FactSet Fundamentals.

Of course, firms’ plants and establishments are not always located in the same location as firms’

headquarters. However, this measurement error is likely to bias our estimates in Sections 3 and

5 against finding any effect of climate shocks on firm performance and supply-chain formation.

In addition, we use FactSet Revere information on firms’ geographical concentration of assets to

determine in which locations firms operate. These records are collected based on firms’ public

reporting of assets, sales, and income by geographic and product segments. Specifically, publicly

listed firms are required to disclose these concentrations for all segments which represent more than

10% of total assets, sales, or income. In our main analysis, we limit our sample to firms with more

than 50% of their assets in their home country to ensure that climate shocks affect a substantial

part of firms’ assets and operations. To match firms with the local information on climate hazards,

we geocode the addresses of their headquarters using the Bing Maps API.

We apply two additional location-based data filters to our main sample: First, we remove

decentralized firms with < 50% of assets in their primary geographic segment. Second, we drop all

supplier-customer firm-pairs for which the headquarters of the two firms are located within 500km of

each other in the analyses of Section 5, to rule out that both firms are affected simultaneously by the

same climate shocks. As reported in Panel A and B of Table 2a, both customers and suppliers hold

a substantially larger share of their assets in their home country than imposed by our 50% threshold:

the average asset home-country concentration of customers is 79.4%, and the concentration of

suppliers’ assets is 80.5%.
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2.4 Climate Data

In this paper we focus on two types of climate change related shocks – extreme heatwaves and

flooding incidents – for the following reasons. First, heatwaves and floods are regionally concentrated

events, allowing us to exploit the high granularity of climate data and the resulting geographic

variation in climate exposure across our sample firms in our empirical tests. Second, climate science

research widely agrees that heatwaves and floods are expected to become significantly more frequent

and severe in the coming years (CSSR, 2017), making these climate shocks a particularly important

subject of study for assessing the future economic costs of climate change. This is different from other

type of natural disasters previously studied in the literature, e.g. earthquakes, as their occurrence

cannot be unambiguously linked to climate change. Third, while both extreme heat and floods can

cause significant economic damage (see e.g. Graff-Zivin et al., 2018; Graff-Zivin and Neidell, 2014;

Zhang et al., 2018), the two types of climate shocks possibly affect firms’ operating performance

and the results propagation effects through different channels. This allows us to further study the

way climate shocks affect supply-chain formation by comparing similarities and differences between

the effects of heatwaves and flooding incidents.

2.4.1 Heatwaves

First, we construct indicators capturing the occurrence of heatwaves at the firm-quarter-level from

daily, location-specific information on maximum temperatures. The global coverage of weather

station-based temperature records varies substantially across time and across different regions

around the world. The resulting data gaps can cause substantial issues for empirical analysis, as

weather station coverage can for example be correlated with other economic characteristics of a

given region. To alleviate this concern, we use ‘re-analysis’ temperature data7 from the European

Center for Medium-term Weather Forecasts (ECMWF), which is available at a significantly higher

geographical and temporal granularity than the temperature data used in previous research (see

e.g. Lin et al., 2018). Specifically, we use the ERA-Interim reanalysis data set with global, daily

coverage of a 0.75 × 0.75° latitude-longitude grid. The data is available starting in 1979.8

7Re-analysis temperatures are generated by interpolating local temperatures based on data from existing weather
stations and a number of other atmospheric data sources based on scientifically established climate models.

8Dee, Uppala, Simmons, Berrisford, Poli, Kobayashi, Andrae, Balmaseda, Balsamo, Bauer, Bechtold, Beljaars,
van de Berg, Bidlot, Bormann, Delsol, Dragani, Fuentes, Geer, Haimberger, Healy, Hersbach, Hlm, Isaksen, Kllberg,
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To construct our sample of local heatwave shocks, we begin by matching daily maximum temper-

atures to customer and supplier firms by based on the closest ERA-interim latitude-longitude grid

nodes for the geocoded addresses of our sample firms. Next, we convert the temperatures from Kelvin

to °Celsius and identify the start and end dates of heatwaves. Following the heatwave definition of the

National Weather Service, we label spells of three or more days with daily maximum temperatures

over 30° Celsius by firm location as the occurrence of a heatwave (National Weather Service, 2019)9.

Additionally, we compute the duration of the heatwaves by location and heatwave, and aggregate

the number of heatwave days on the monthly, and later on the firm-quarter level.

Table 2b reports summary statistics on climate shocks affecting the customers and suppliers in

our sample. As Panel A (customers) and B (supplier) of Table 2b show, the firms in our sample are

regularly exposed to heatwaves, 29.8% of customer-firm-quarters and 36% of supplier-firm-quarters

are affected by at least one heatwave in our sample. The average length of the heatwaves (consecutive

days over 30° C) is substantial with an average of 23.8 heatwave days per financial quarter for

suppliers, conditional on the occurrence of a heatwave, and 24.2 days for customers. On average,

suppliers and customers are exposed to similar temperatures, with a sample average temperature of

18.6° Celsius (18.5° Celsius) for the customers (suppliers).

2.4.2 Floods

Second, we obtain data on global surface water levels to determine whether firms are affected by

flooding incidents in a given quarter. While surface temperatures are the most commonly cited

consequence of global climate change, the scientific literature widely agrees that flooding incidents

will also increase significantly in frequency and severity in the future as a direct result of climate

change, i.e. due to heavy rainfall, rapid melting of snow and ice, and parched soil (CSSR, 2017). At

the same time, flooding can cause significant economic damage, providing us with a second type of

climate shock that potentially affects firms in a different way than heatwaves.

We gather information on surface water levels from the Dartmouth Flood Observatory. To

compile this data, the Dartmouth Observatory models the earth surface as a set of highly granular

Koehler, Matricardi, McNally, Monge-Sanz, Morcrette, Park, Peubey, de Rosnay, Tavolato, Thpaut, and Vitart 2011
provide a detailed description of the data set.

9Precisely, the National Weather Services defines heatwaves as “three or more consecutive days with the temperature
reaching or exceeding 90 degrees (Fahrenheit)”.
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polygons and uses on satellite images and remote sensing sources to identify flooding of inundated

ares. In addition, the observatory collects information on floods from news and governmental sources.

The dataset includes start and end dates for each flood and detailed geographical information

on the inundated areas polygons, from 1984 until today. The dataset further provides additional

information on the floods such as the associated damages, size of the affected area, and deaths. We

rely on the flood polygons used by the Dartmouth Observatory to spatially match the coordinates

of our sample firms to the areas affected by the floods using the software QGIS. Compared to the

country-level flooding data used in previous research, this approach allows us to determine more

precisely if a given firm location was inundated at a given point in time.

Equivalent to the procedure outlined in Section 2.4.1 for the heatwave records, we compute the

number of days for which a firm was exposed to a given flood, and aggregate the count of floods on

a monthly basis. Panel A and B of Table 2b illustrate the aggregate flooding summary statistics at

the firm-quarter level. On average, suppliers and customers experience floods in 6.0% and 6.1% of

all firm-quarters. The average number of 26.7 (30.8) casualties conditional on the occurrence of a

flood suggests that we observe flood events with a substantial magnitude.

2.4.3 EM-DAT Disaster Data

For additional robustness tests in Section 3 we also include climate shock data from the international

disaster database EM-DAT provided by the Centre for Research on the Epidemiology of Disasters

(CRED, 2011). EM-DAT is one of the most commonly used datasets in the literature on the

economic cost of climate hazards.10 To compare our heatwave and flood data with the country-level

EM-DAT disaster, we first distinguish if the temperature-related EM-DAT events are heatwaves or

cold spells. Subsequently, we aggregate flood and heat events on a monthly basis based on the start

and end dates, and combine the disaster data with our local records from the ECMWF and the

Darthmouth Flood Observatory. Table 2b provides the EM-DAT summary statistics.

We conjecture that our high-granularity heatwave and flood incidents data and the country-level

data from EM-DAT differ along two dimensions. First, using country-level information naturally

overstates the extent to which firms have been affected by natural disasters. In that case, the

EM-DAT shocks would overstate firms’ exposure to both floods and heatwaves. Second, the salience
10See for example: Strömberg, 2007; Noy, 2009; Lesk, Rowhani, and Ramankutty, 2016
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of the two hazard types and the probability that events are registered should differ across data

sources. Both heat and flood events are recorded by EM-DAT only if they either caused ten or more

associated casualties, affected more than 100 people, lead to the declaration of a state of emergency,

or resulted in a call for international assistance. While floods are highly visible, the relevance of

extreme temperatures and heatwaves can be contingent on the context, and hence more difficult

to identify. Therefore, we expect that the disaster data only captures a subset of both floods and

heatwaves that we can detect locally, particularly in the case of heatwaves.

In line with this reasoning, the average number of flood-affected firm-quarter observations is

significantly higher based on the country-level match compared to the EM-DAT match. For instance,

suppliers are physically exposed to floods only 6.1% of the time according to the local data, compared

to 49% if we match based on EM-DAT country-level records. The opposite holds for heatwaves.

While our local data suggests that heatwaves occur frequently, the disaster statistics yield a much

lower affected numbers of firm-quarters - despite the geographic overestimation.

3 Direct Exposure to Climate Shocks

We begin our analysis by studying the direct effects of climate shocks on the supplier firms in

our sample. This exercise is important to verify that the shocks we study in this paper indeed

have an economically significant effect on firm operating performance. Many of the regions most

severely affected by climate change are located outside of the developed countries of North America

and Western Europe. Hence, our analysis complements the results in Somanathan, Somanathan,

Sudarshan, and Tewari (2015); Zhang et al. (2018); Addoum et al. (2019), as we study the effect of

heatwaves on firm earnings and performance in a global setting. Further, by also studying flooding

incidents – in addition to local heatwaves – we are able to compare the economic effects of different

climate change related risks. In our main analysis we focus on heatwave and flooding data from

ECMWF and the Dartmouth Observatory, as the EM-DAT disaster data is less granular for floods

and too restrictive for heatwaves, as documented in Section 2.4.3.

One important consideration for our tests is that firms likely adjust to the average climate hazard

exposure in production locations. If managers understand climate risks and organize production

to maximize profits, they might choose (not) to produce in certain places if adjustment potential
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is (in)sufficient, or they adjust the production equipment to match the expected climate exposure

– contingent on the firm’s financial capacity to do so. Hence, it the cross-sectional relationship

between climate exposure variables and firm financial performance is likely endogenous.

However, while managers can base their decisions on expected climate exposure, they do not

have power over the weather variation over time and the exact timing of climate shocks. Moreover,

both floods and heatwaves can only be predicted with precision on short horizons, which are unlikely

to allow for substantial adjustment in the production planning. Therefore, the variation in climate

shocks over time is an exogenous source of variation and randomly distributed once we condition on

fixed firm locations. This allows us to identify the causal impact of floods and heatwaves on firm

operating performance.

We isolate the effect of time-series variation in climate shocks for a given firm on firm operating

performance by estimating OLS regressions with firm-by-quarter fixed effects. By interacting

firm-fixed effects and quarter fixed effects, our model absorbs both any time-invariant firm-level

characteristics, as well as firm-specific seasonal effects during the four quarters of the year. This

is important because firm operating performance varies seasonally throughout the year, and this

seasonal variation might be correlated with the occurrence of climate shocks. Further, we include

industry-by-year-by-quarter fixed effects to absorb any industry-specific time trends.

Our two main variables for measuring firm operating performance in the following regression

models are sales turnover and profitability. Specifically, we use quarterly revenues and operating

income, divided by assets. We specifically focus on these two measures – as opposed to for example

earnings – since revenues and operating income are harder to manipulate by firms’ strategic

accounting - and the incentive to smooth earnings might be particularly high following adverse

financial shocks.

In principle, the location-specific variation in flood and heat shocks over time cannot be actively

influenced by firm choices. However, as climate shocks could randomly coincide with changes in

firm characteristics over time, we additionally introduce size, age, and profitability specific time

fixed effects. For this purpose, we sort all firms into size, age, and profitability terciles and interact

the grouping variables with year-quarter fixed effects in our main specification, following Barrot and

Sauvagnat (2016). Specifically, we estimate models of the following form, clustering robust standard
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errors on the firm level in line with Barrot and Sauvagnat (2016):

yiqt =
0∑

t=−k

βt × Climate Shocksiqt + µiq + γnqt + δBS2016 + εiqt (1)

where yiqt is either Revenue/Assets (Rev/AT) or Operating Income/Assets (OpI/AT) of firm

i in quarter q of year t, Climate Shocksiqt is a dummy variable indicating the occurrence of a

heatwave or flood in the location of firm i in year-quarter qt, µiq are firm-by-quarter fixed effects,

γnqt are industry-by-year-by-quarter fixed effects based on 2-digit SIC codes, and δBS2016 are firm

size, age, and profitability × time fixed effects as in Barrot and Sauvagnat (2016). In robustness

tests, we also use the count of climate events by financial quarter as an alternative specification. As

it is ex-ante unclear if the financial impact of climate shocks manifests immediately or with some

delay throughout the financial year, we estimate two different specification of the outline model.

First, we limit the climate shock observations to the current financial quarter and second, i.e. we

restrict k = 0, second we additionally include three lags of three periods, i.e. k = 3.

[Insert Table 3 here.]

Table 3 reports the regression results for Equation (1). In Panel A we estimate regressions without

climate shock lags, in Panel B we additionally include three lags of climate shock events. The results

in both panels indicate that heatwaves and floods adversely impact the bottom line of our supplier

firms. However, the results also show that the full financial impact only becomes visible over the

course of the financial year. On the one hand, we find a very small contemporaneous impact of

heat events on firm operating performance, as both the effect on sales turnover and profitability is

statistically indistinguishable from zero in Panel A. At the same time, the occurrence of a flood is

associated with an average decrease in Revenue/Assets of 0.19 percentage points, and a decrease

in operating income over assets between 0.095 to 0.1 percentage points.

On the other hand, Panel B indicates that the financial impact of heatwaves and floods is

in fact much larger than the simple analysis of contemporaneous climate shocks suggests, in line

with the findings of Barrot and Sauvagnat (2016). When we include three lags of climate shocks

in Equation (1) while holding the sample fixed, we find a material impact of heatwaves on both

Rev/AT and OpI/AT between one to three financial firm quarters after the occurrence of a heatwave.
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The coefficient estimate for the effect of heatwaves on sales turnover in columns (1) and (2) is

between -0.25 to -0.26 (statistically significant at the 5 and 10% level), and between -0.09 to -0.12

for operating margin in columns (3) and (4) for the coefficients with a lag of two to three quarters.

Floods similarly decrease sales turnover (between -0.25 and -0.29 percentage points, statistically

significant on the 5% and 10% level) and profitability (-0.11 to -0.12 percentage points, significant

on the 1% level) in the contemporaneous and the previous two financial quarters. Given the average

operating margin (OpI/AT) of 2% and sales turnover (Rev/AT) of 22% in our supplier sample,

the mean effects are economically meaningful, representing approximately a 1% reduction in sales

turnover and a 5.5% reduction in operating income over assets, relative to the sample mean. The

documented difference in how quickly financial performance measures reflect the occurrence of

climate shocks could have important implications for market participants. If heatwaves are reflected

by accounting measures of firm performance with a delay, it becomes more difficult for investors

to understand the link between the such temperature events and firm performance. Hence, this

delay could help explain the underreaction of investors to firms’ exposure to extreme temperatures,

documented in the recent literature (Addoum et al., 2019; Pankratz et al., 2019).

Our results naturally raise questions regarding the economic mechanisms driving the observed

effects. In the context of heatwaves, a large literature in economics has focused on the channels

through which extreme temperatures can cause aggregate economic losses11. With regard to floods,

these channels have been studied less explicitly, but the observed net effect could be caused by

damages to assets, equipment and infrastructure, as well as production distortions during the floods,

e.g. if worker safety is endangered and production thereby constrained throughout the duration of

the floods. As the focus of our analysis lies on the direct and indirect performance implications of

climate shocks and the adaptation of supply-chain managers, we remain agnostic about the precise

mechanics of the directly observable effects in this paper.

We conduct several robustness tests for the direct effects of climate shocks on firm operating

performance. First, we estimate the impact of the climate shocks on supplier performance after

replacing heatwave and flood dummies with counting variables indicating the number of climate

events per financial quarter. The results are reported in Appendix Table A1 and show that the
11Previous research documents that electricity prices increase with heat exposure (Pechan and Eisenack, 2014),

while water supply tightens (Mishra and Singh, 2010) and both cognitive and physical worker performance are
compromised (Sepannen, Fisk, and Lei, 2006; Xiang, Bi, Pisaniello, and Hansen, 2014).
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statistical significance and overall pattern remain similar for this alternative specification. Moreover,

the statistically strongest effects of heatwaves again appear to occur with a delay of two quarters

after the firm was exposed to the heatwaves. Similarly, and in line with our main test in Table 3,

contemporaneous floods have a significant immediate as well as a two-quarter delayed impact on

sales turnover and operating income. When we use the count of heatwaves and floods per quarter for

our estimations, the magnitude of the coefficient estimates is naturally smaller than the aggregate

effect for all events in a financial quarter estimated in Table 3.

As our final robustness test on the direct impact of climate shocks, we estimate the impact of

heatwave and flooding disasters on supplier performance using the country-level data from EM-DAT.

Overall, the results reported in Appendix Table A2 confirm our conjecture from Section 2.4.3: for

evaluating the financial impact of climate shocks on the firm level the use of climate data with

high geographical granularity is essential. While heatwaves identified as disasters in the EM-DAT

database are negatively correlated with supplier performance only in the specifications in columns

(1) and (2) and with a delay of one financial quarter, the coefficient estimates are statistically

indistinguishable from zero, or even positive in all other specifications.

4 Indirect Exposure to Climate Shocks

Based on our result from the previous Section 3, showing that heatwaves and floods significantly

decrease supplier operating performance, we next test if climate hazards propagate downstream

along supply-chain links. Since particularly the largest corporations traded on international stock

exchanges rely on extensive, worldwide production networks, it is important to better understand

if even firms which are not located in areas with a high climate risk exposure can indirectly be

harmed by increases in the intensity of climate hazards due to their (remote) suppliers.

Analogous to our previous tests, we use sales turnover and profitability, measured by revenue

over assets and operating income over assets, as our two main dependent variables for assessing

whether climate risk is indeed propagated along supply-chains are. Despite the adverse direct

effect on suppliers documented above, the implications of climate shocks for supplier and customer

performance might differ. On the one hand, customer firms could be unaffected by shocks to

supplying firms if suppliers cannot pass on the incurred costs downstream. At the same time,

17



customers could also include climate factors in their contingency management, enabling them switch

suppliers without incurring large costs if a specific supplier is hit by a heatwave or flooding. In

both cases, neither heat nor flood related shocks would propagate from suppliers to customer along

the supply-chain, and we should not be able to document a significant impact of climate shocks to

suppliers on customer financial performance.

On the other hand, environmental shocks such as heatwaves or floods can cause supply-chain

glitches and lower production output at the supplier and customer level. These disruptions are

particularly likely if the provided inputs have a high level of specificity (Barrot and Sauvagnat,

2016). If climate shocks to suppliers on average cause distortions, we would expect to find a negative

relation between customer financial performance and supplier exposure to climate risk.

To test these competing hypotheses, we require two identifying assumptions. As in the previous

analysis, it is problematic to study this question in the cross-section, as the exposure of customer

firms to climate shocks through suppliers might be endogenous. For instance, if certain industries

systematically depend on specific inputs from suppliers clustered in risky areas, climate shocks

and customer firm performance might be endogenously correlated. In contrast, it is reasonable to

assume that the variation in supplier exposure to climate shocks over time is unrelated to time

invariant firm characteristics such as industry associations.12 Therefore, analogous to our model in

Equation (1), all our results in this section are due to within-firm-pair variation over time.

Second, customer firms could experience similar performance effects as their suppliers when

they themselves are hit by climate shocks. Therefore, to ensure that our results are not due climate

shocks affecting customer firms directly, we exclude all customers-supplier pairs with customers

located within a 500 kilometer radius of the affected supplier from our analysis.

Based on these considerations, we estimate two different models. In our first set of tests we

estimate pooled OLS regressions of the following form,

ycsqt =
0∑

t=−3
βt × Climate Shockscsqt + µcsq + γn(c)t + δBS2016 + εcsqt (2)

where ycsqt is either Revenue/Assets or Operating Income/Assets of customer c in quarter q of
12In our later analyses, we find that firms tend to terminate relationships with suppliers that face increases in

climate shock exposure compared to historical, expected levels of climate risk. However, the tendency of customers to
cut off suppliers that are particularly exposed to climate risk should only bias our effects downward.
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year t, Climate Shockscsqt is a dummy variable indicating the occurrence of a heatwave or flood

in the location of supplier s in year-quarter qt, µcsq are supplier-customer pair-by-quarter fixed

effects, γn(c)qt are customer industry-by-year-by-quarter fixed effects based on 2-digit SIC codes,

and δBS2016 are customer firm size, age, and profitability × year-quarter fixed effects similar to

Equation (1). The unit of observation in these test is at the customer-supplier-year-quarter level. By

including pair-by-quarter fixed effects (γn(c)qt), our model subsumes all time-invariant relationship

characteristics (e.g. supplier and customer country characteristics, languages, geographical distance,

average input specificity, average relationship strength, and firm fixed effects) as well as relationship-

specific seasonal patterns. Our results are therefore obtained from time-series variation in a given

firm-pair for the same quarter of the year.

In our second set of tests, we collapse our panel observations at the customer level by aggregating

over all suppliers of a given customer, and estimate regressions of the following form,

ycqt =
0∑

t=−3
βt × Climate Shockscqt + µcq + γn(c)t + δBS2016 + εcqt (3)

where ycqt again captures customer firm operating performance, and µcq, γn(c)t, and δBS2016 are fixed

effects at the customer-by-quarter, industry-by-year-by-quarter, and size/age/ROA × year-quarter

level. Climate Shockscqt is obtained as the maximum of Climate Shockscsqt over all suppliers s of

customer c in period qt. The unit of observation in these tests as at the customer-year-quarter level.

Based on our findings in Section 3, we include lags of k = 3 periods for the climate shocks in both

Model (2) and (3). In line with our identifying assumptions that the variation over time in flood and

heat shocks on suppliers are exogenous and that the supplier shocks only affect customers through

the supply chain link, other characteristics of the customer firms should not be systematically

correlated with both the outcome and the flood and heatwave occurrence. Hence, we do not include

firm-level controls in our main specification, but again add size, age, and profitability times quarter

fixed effects to control for different firm profiles, analogous to Equation 2. In line with Barrot and

Sauvagnat (2016), we cluster robust standard errors on the relationship and on the customer firm

level in Equations (2) and (3), respectively.
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4.1 Climate Shock Propagation – Results

Table 4 reports the results for our first test on customers’ sensitivity to supplier climate risk exposure,

as detailed in Equation (2). The unit of observation in Panel A is at the supplier-customer-year-

quarter level. The first four columns show the impact of supplier heatwaves, columns (5) to (8)

report the effect of supplier floods. With regard to heatwaves, we find tentative evidence that

the climate shocks on suppliers propagate along the supply chain. Specifically, we find a negative

impact (coefficient -0.044) of heatwaves at the supplier locations on customer revenues in column (2),

statistically significant at the 10% level. All other coefficient estimates for the propagation effect of

heatwaves lagged by one to three quarters are marginally not statistically significant. However, all

coefficient estimates carry negative signs, and the difference in the magnitude between the impact

of heatwaves on revenues and operating income is in line with the estimations of the direct impact

of heat on supplier firms. Hence, while the observed effect is small in our sample, our finding is still

economically meaningful, given that the frequency of heatwaves is projected to increase substantially

in the future due to ongoing climate change.

In comparison, the shock propagation of floods is unambiguous and both statistically and

economically large. According to our estimates, customer revenue over assets decreases between 0.10

to 0.16 percentage points in three quarters after the supplier has initially been exposed to a flood.

Moreover, customers’ operating income is reduced by 0.02 up to 0.04 percentage points (all effects

significant on the 1% level). These magnitudes are economically meaningful even at low climate

shock frequencies: Compared to the sample median, the occurrence of a flood at the supplier firm

reduces customer revenue and operating income by 1.8% and 2.2%, respectively.

[Insert Table 4 here.]

In Panel B of Table 4, we show the results for the sample collapsed on the customer level, imple-

menting the model in Equation (3). Again, we find evidence that the climate shocks on supplier

firms propagate along the supply chain with a tentative, statistically negative impact of heatwaves

at the supplier locations on operating income (column (3), coefficient estimate of -0.052, significant

at the 5% level). For floods, the results are similar in magnitude to our first set of tests using the

full panel. The impact of floods at one of a given customer’s supplier firms reduces revenues over

assets between -0.15 and -0.16 percentage points (statistically significant at the 10% and 5% level),
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with a lag of two calendar quarters. Further, floods have a significant negative effect on operating

income (coefficient estimates between -0.053 and -0.045 percentage points, significant at the 5% and

10% level), with a lag of one quarter.

Taken together, our results provide evidence that climate change related shocks can propagate

downstream along the supply-chain. This finding indicates that climate change could affect even

firms in relatively ‘climate-safe’ parts of the world as supply-chains span the globe. On average,

the results also suggest that suppliers can pass some of the cost caused by climate shocks on to

customers, or that not all customers in our sample are fully hedged against idiosyncratic shocks to

their suppliers through their contingency management. while the evidence on the side of heatwaves

is tentative13, the flood-related effects are pronounced both in a statistical and economic sense. Our

results are consistent with Barrot and Sauvagnat (2016), who document that the financial shocks

imposed by natural disasters propagate along the supply chain when inputs are specific.

4.2 Climate Shock Propagation – Robustness

We conduct a number of robustness with respect to our findings on the propagation of climate shocks.

First, to verify that the effects we observe are indeed attributable to climate shock transmission

through supply-chain linkages, we implement a placebo test based on the start and end dates of our

sample supply-chain relationships. Specifically, we re-estimate our regressions models specified in

Equations (2) and (3) using the same sample of supplier-customer relationships. However, in our

placebo tests we use only the periods before and after a given supplier-customer pair was engaged

in a supply-chain relationship.

[Insert Table 5 here.]

If the supply-chain data from FactSet Revere correctly identifies the beginning and end of our

sample supplier-customer relations, and our results in Section 4.1 are indeed due to the propagation

of climate shocks, we should not find a negative effect of supplier climate shocks on customer firm

operating performance in the placebo sample. Indeed, as reported in Table 5, we do not find a
13Given the marginally insignificant results for the heatwave-based tests, it is important to bear in mind that

the empirical setting biases the results downwards. First, if a share of the customers in the sample has a strong
contingency management with several alternative suppliers, and second, if managers respond to operational distortions
caused by troubled suppliers, and replace suppliers that are particularly exposed, so that affected supply-chain links
systematically drop out of the sample.
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negative relation between supplier climate shocks and customer firm performance, neither when

conducting the tests on the full customer-supplier pair level sample (Panel A), nor on the collapsed

sample at the customer level (Panel B).

As an additional robustness test, we estimate the shock propagation based on a count measure

of heatwaves and floods instead of an indicator variable. The results are reported in Appendix Table

A3. Again, we find weak evidence for a propagation of heatwave-related shocks on the supplier

to the customer operating income (column 2, coefficient estimate of -0.015, significant at the 5%

level) and strong evidence for the propagation of flood related shocks. Last, we repeat our tests

using the country-level climate shock data from EM-DAT, analogously to Section 3. The results are

reported in Appendix Table A4. In line with our results focusing on the direct effect of climate

shocks, we cannot document a consistent relation between customer performance and the climate

disaster measures from EM-DAT.

5 Supply-Chain Adaptation

Our results in the previous sections show that climate-related shocks matter for firm financial

performance, both directly and indirectly through supply chain links. Hence, managers have an

incentive to monitor the climate-change related risk imposed by their suppliers. In this section, we

empirically test if managers indeed take climate-risk considerations into account by adapting their

to supply-chain relationships.

5.1 Climate Trends and Supplier Termination

We first test if climate-change risk increases the likelihood that a supplier-customer relationship is

terminated. On the one hand, costly climate-related shocks could cause operational issues at a given

supplier, making the firm a less attractive supply chain partner going forward. On the other hand,

customer and supplier firms often make substantial relationship-specific investments to set up and

maintain a supply chain relationship. It is unclear if the adverse financial consequences of climate

risk exposure are sufficiently high to result in the termination of an existing customer-supplier

relationship.

We use the FactSet Revere information on the start and end dates of customer-supplier relation-
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ships to test these hypotheses. To construct the main outcome variable, we generate a panel of firm

years in which the customer-supplier relationships are active, and set the dummy variable 1 (End)

to take the value of one in the last year a given supply-chain relationship is reported in FactSet

Revere. To avoid mechanical issues in the last year of our sample we drop observations from 2017.

To construct our main variable of interest capturing supplier climate risk exposure, we start with

the assumption that managers trade off potential climate-related risks with other firm characteristics

such as product quality, costs and delivery times when entering a supply-chain relationship. Under

this scenario, a customer firm is generally aware of climate risks associated with a given supplier

and continuously weighs the costs and benefits of remaining in the relationship. As long as the

costs of leaving a given relationship exceed the costs of staying, the customer will continue the

relationship with a supplier. If this assumption holds, realized climate shocks over the course of a

supply-chain relationship that fall within the normal, ex-ante anticipated range of events given a

supplier’s location and climate risk will not substantially influence the likelihood that the supplier is

dropped, all else equal. However, if realized climate risks increase beyond the anticipated levels, and

in ways that firms are not prepared for or hedged against, it would reduce the economic viability of

a supplier-customer relationship and increase the profitability that the relationship ends.

To test this conjecture, we construct the measure 1 (Realized > Expected Climate Shocks) (t),

as illustrated in Figure 3. We first estimate the expected number of climate shocks per year in

the supplier location over a benchmark period of five14 yearsbefore the establishment of any given

supplier-customer relationship. 1 (Realized > Expected Climate Shocks) (t) then takes the value

of one in year t, if the difference between the realized number of climate shocks per year since

the beginning of the supplier-customer relationship exceeds the corresponding expected number of

shocks, and zero otherwise.

In econometric terms, our following test again relies on two identifying assumptions. First, we

exploit the fact that climate trends, besides the timing of climate shocks, are to a large extent

random over time and cannot be predicted with precision. Hence, managers can incorporate expected

levels of climate risk exposure, but not deviations from the expectation into their decision making.

Second, to be able to assume that the estimated effect is not caused by the direct impact of changing

climate risk on the customer, we again exclude all customers-supplier pairs with customers located
14In robustness tests, we use seven, ten, and fifteen years, respectively.
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within a 500 kilometer radius of the affected supplier. Based on these assumptions, our measure

of realized vs. expected climate risk is orthogonal to other firm decisions, and our corresponding

estimate reflects the impact of the change in supplier climate shock exposure. We estimate the

following linear probability model,

1 (End)sct = β × 1 (Realized > Expected Climate Shocks)st + µcs + γn(s)t + ρc(s)t + εint (4)

where 1 (End)sct is an indicator taking the value of one in year t if it is the last year on record of

the relation between supplier s and customer c.

To control for potential confounding effects, we estimate the regressions with several dimensions of

fixed effects. First, we include relationship fixed-effects µcs in all specification to account for supplier

characteristics that impact the probability of a relationship to end, but do not vary over time. For

instance, suppliers could face a fixed probability of termination based on their industry association.

Further, we include supplier industry-by-year fixed effects γn(s)t to account for industry trends, for

example related to the extent to which customers switch from buying inputs to manufacturing

inputs. We also add supplier country-year fixed effects ρc(s)t to account for changing macroeconomic

risks that impact whether customer firms maintain supplier-relationships. In addition, we estimate

the model with supplier country-customer-year × customer country-year fixed effects, to account

for changes in international trade dynamics, such as changing barriers or import-related costs. We

cluster robust standard errors on the relationship level.

[Insert Table 6 here.]

Table 6 reports the results. Across all specifications, we find a robust, positive impact of high realized

vs. expected climate exposure on the likelihood of supply-chain relationship termination. In line

with the results on the financial impact of the climate hazards as well as the financial propagation

of the shocks in the supply chains, the results suggest that increases in flood exposure increase

the probability a supply-chain relationship ends on average by 3.7 percentage points (column 8,

coefficient significant at the 1%-level). The impact of heatwave exposure increases is equally strong

in terms of its statistical significance but economically smaller at percentage points (column 4,

coefficient statistically significant at the 1%-level). The difference in the magnitude between floods

and heatwaves is in line with the stronger direct and indirect impact of floods compared to heatwaves
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documented in Sections 3 and 4. Both the estimate for heatwaves and floods are economically

meaningful, given the unconditional expectation of 15.12% that a supply chain relationship ends in

any given year in our sample.

To test the robustness of this result, we change the horizon over which we compute the expected

number of floods or heatwaves per year. Appendix Table A5 indicates that the results are robust

when we extend the period from 5 to 7, 10, or 15 years, as both the estimates for heatwaves and

floods remain very similar in magnitude and significance. Moreover, we test whether the results

remain stable when we include additional time-variant financial control variables for both the

supplier and customer firms. Thereby, we control for changes in the financial health of the firms

which could otherwise influence the probability of the continuation of the relationship. As Appendix

Table A6 shows, the results again remain very similar both in magnitude and significance when we

control for changes in the debt-to-assets ratio, the log price-to-book ratio, and firm size proxied by

the natural logarithm of the market value of equity.

5.2 Climate Shocks and Supplier Termination

To validate our assumption that managers take climate risks into account when establishing

supply-chain relations, we next replace our measure of realized vs. expected climate risk with

a simple measure of realized climate shocks since the beginning of the supplier relationship. If

the general level of climate risk exposure is taken into consideration before forming supply chain

relationships, climate shocks per se should not be a strong determinant of supplier termination.

We again estimate the model in Equation (4), replacing 1 (Realized > Expected Climate Shocks)

with Climate Shocks (t) of the supplier firm.

[Insert Table 7 here.]

The results, reported in table Table 7 show the sensitivity of supply-chain relationship continuation

to realized climate shocks. Depending on the dimension of fixed effects, we find a small, positive

impact of heatwave and flood occurrence on the probability that a supply-chain relationship ends

for some specifications. However, the economic magnitude of this effect is small: For heatwaves,

the probability of termination is increases by 0.16 to 0.17 percentage points (columns 3 and 4,

coefficients significant at the 5% level), for floods, there is some evidence of an increase by 0.29 to
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0.33 percentage points (columns 5 and 6, coefficients significant at the 1%-level). This effect is an

order of magnitude smaller and insignificant compared to the tests based on realized vs. expected

climate risk.

Taken together, our results are consistent with the notion that managers are taking climate risks

into consideration when entering a supply-chain relation. Also, the results suggest that increases in

climate risk exposure can be an important determinant of the probability of the continuation of the

relationships. If this effect holds globally, it could have important implications for international

development. According to Burke et al., 2015b and Carleton and Hsiang, 2016, developing countries

around the world are most severely affected by the outcomes of global climate change. If financial

incentives from supply-chain disruptions motivate ’Northern’ firms to further shift economic activity

from ‘Southern’ to ‘Northern’ countries, the effect could contribute to widening global economic

inequality.

5.3 Climate Risk Exposure of Old and New Suppliers

To shed further light on the question how firms adapt their supply-chains to climate change, and to

examine if climate risks are indeed driving the formation of production networks, we next study if

customers switch from high risk to low risk suppliers based on climate exposure. As we showed in the

previous section, realized climate shocks in exceedance of previously anticipated levels can increase

the likelihood that a given supplier relationship ends. However, it is unclear if managers understand

the link between climate risk exposure and financial performance, and hence mitigate these risks by

switching to different suppliers with lower climate exposure. Instead, customer managers might

simply observe the adverse financial effects of (indirect) climate shocks without considering climate

risk as an underlying driver of financial performance effects. Under this scenario, we would not

expect to find a difference in climate risk exposure between ‘old’ suppliers whose supply-chain

relationships are terminated and ‘new’ replacement suppliers.

To test this conjecture, we limit our dataset to supplier-customer links with a known end date,

retaining approximately 60,000 observations.15 Of course, not all supplier-customer relationships

in our sample end because of climate risk considerations. However, the noise introduced by this
15Note that in contrast to the performance-related tests, in this setting we do not condition on the availability of

performance information for customer and supplier firms
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measurement error would bias us against finding significant results. For each supplier whose

relationship with a customer ends throughout our sample period (i.e. ‘old’ supplier), we then

identify (likely) replacement suppliers who entered a new supply-chain relationship with the same

customer within the next two years, as reported in FactSet Revere. We require replacement

candidates to have the same four-digit SIC code as the ‘old’ supplier, and consider only supply-

chain relationships recorded by FactSet analysts for the first time in the two years after the ‘old’

supply-chain relationship ended. After applying these constraints, we identify 100,000 combinations

of terminated and replacement suppliers.

Next, we compare the climate hazard exposure of actual supplier firms during the active years

of the initial (‘old’) supply-chain relationship and their respective, likely, replacements. Figure 4

illustrates the construction of the test. First, we compare the number of climate shocks of the

actual, replaced supplier to the exposure that a replacement supplier would have had during the

time period in which the original relationship was active. Second, we estimate and compare the

number of climate shocks that actual and replacement suppliers were exposed to throughout the

whole sample period from 1984 to 2017. Third, we compare the time period after which the original

supply-chain relationship has ended. In all tests, we keep the observed years between the actual,

original, and hypothetical replacement suppliers constant. This requirement is important to ensure

that year-specific climate trends do not confound the comparison.

[Insert Table 8 here.]

Table 8 reports the mean differences and t-statistics of the comparison of the exposure of all

replaced suppliers and replacement suppliers. We conduct three tests per climate hazard: first,

based on the realized shocks throughout the entire sample period, second, based on the duration

of the supply-chain relationship, and third, based on the time thereafter until 2017. Focusing

on heatwaves, we find that replacement suppliers are on average less exposed during the original,

terminated relationship period, experiencing 0.83 fewer heatwaves on average. In the period after

the termination and during the time in which the new relationships are active, this difference further

increases to 2.0 fewer heatwaves (all differences are significantly different from zero at the 1% level).

The same pattern holds with regards to floods. Whereas potential replacement suppliers are slightly

less exposed to floods during the original relationship period (difference of -0.031, significant at
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the 1% level), the difference becomes more pronounced after the termination of the original link

(difference of -0.33, significant at the 1% level).

Hence, our results are consistent with the notion that climate risks can drive the formation of

supply-chain relations. If suppliers are negatively impacted by climate shocks and the cost of these

shocks are shared in supply chains, managers face a financial incentive to manage the extent to

which they are indirectly exposed to climate risk. Moreover, we observe that supplier climate risk

exposure beyond expected levels increases the probability that customers switch suppliers. In line

with the notion that these switches are climate related, managers appear to identify less sensitive

supplier firms as alternatives to the original supply-chain partner.

6 Conclusion

In this paper, we combine temporally and spatially granular data on heatwaves and flooding from

the European Center for Medium-term Weather Forecasts (ECMWF) and the Darthmouth Flood

Observatory with a detailed dataset on global supply chain relationships from FactSet Revere. We

obtain a climate-supply-chain database with 4,289 (4,568) suppliers (customers) across 51 countries

around the world from 2003 to 2017, and investigate two questions: First, do climate shocks matter

financially, and do they propagate along supply chains? And second, if so, how do firms respond to

changing climate risk exposure in their supply chain networks?

We present two main insights. First, we test if climate change exposure has direct and indirect

firm performance effects due to supply chain networks. We find that the financial performance of

suppliers is negatively associated with heatwaves and flooding incidents, and show that the financial

consequences of these climate shocks propagate to customers through supply chain links. Second, we

study how firms adapt their supply-chain organizations in response to climate change risks. We find

that firms are more likely to end relationships with suppliers which experience an unexpectedly high

number of climate shocks compared to expectations formed at the beginning of the supply-chain

relationship. Moreover, in substituting these suppliers, firms diversify their supplier network and

replace high-climate-risk with lower-climate-risk suppliers.

Our results both on climate shock transmission and supply chain adaptation are economically

meaningful. For instance, we find that heatwaves and floods are associated with a subsequent

28



reduction of 4% in sales turnover and 10% in profitability at the directly affect firm, relative to

the sample median. In terms of the adaptation effects, unexpectedly high numbers of floods and

heatwaves increase the probability that customers abandon their suppliers by 4% and 1% compared

to the unconditional sample probability of a customer-supplier relationship termination of 15%.

Our finding have two important, potential implications with regard to the impact of climate

change on internationally diversified firms, and the impact of the adaptation efforts of these firms on

international economic development. First, while developing countries are likely to experience the

most pronounced increases in climate shocks, the results on the indirect impact of climate shocks

suggest that economic impact of climate change is likely to be – at least partially – shared through

economic links in global production networks. Second, if firms in high-climate risk countries are

more likely to be substituted by customers in favor of suppliers in less vulnerable locations, the

outlined effects could further economically weaken the areas most vulnerable to climate change.

Our study contributes to the rapidly growing academic literature on the financial impact of

climate change, and is among the first studies to provide evidence on how firms adapt to climate

change.
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Tables and Figures

Figure 1: This figure illustrates the geographical distribution of the customers in our sample.
Supply-chain relationships and firm locations are obtained from FactSet Revere and FactSet
Fundamentals, respectively. The corresponding Table 1 reports the number of customers by regions
of the world.
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Figure 2: This figure illustrates the geographical distribution of the suppliers in our sample. Supply-
chain relationships and firm locations are obtained from FactSet Revere and FactSet Fundamentals,
respectively. The corresponding Table 1 reports the number of customers by regions of the world.
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Climate Shocks
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Figure 3: This figure illustrates the construction of 1 (Realized > Expected Climate Shocks) (t),
an indicator variable capturing the discrepancy between realized and expected climate risk based
on the exposure of a hypothetical supplier to climate shocks over time. It is constructed by first
estimating the expected number of climate shocks per year in the supplier location over a benchmark
period of five (in robustness tests seven, ten, and fifteen) years before the establishment a given
supplier-customer relationship. 1 (Realized > Expected Climate Shocks) (t) then takes the value
of one in year t if the difference between the realized number of climate shocks per year since
the beginning of the supplier-customer relationship exceeds the corresponding expected number of
shocks (illustrated in red), and zero otherwise (illustrated in green).
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Figure 4: This figure illustrates the construction of the comparison of the climate exposure of
replaced and replacement suppliers, based on an example of a hypothetical replaced supplier and
the replacement. We compare the climate exposure of old and new suppliers based on three time
periods. First, we compute the exposure to climate shocks for actual and replacement suppliers
throughout the whole sample period from 1984 to 2017. Second, we estimate and compare the
climate shock exposure of the replaced and replacement supplier based on the years (illustrated in
dark grey) during which the initial supply-chain relationship was active. Third, we compare the
exposure of both suppliers during the years (illustrated in light grey) after the initial supplier has
been replaced.
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Table 1: Sample Composition

Notes. This table shows the industry and geographic distribution of customers and suppliers in our sample. We
retain supplier and customer firms from the FactSet Revere universe of supply chain relationships if more than 50% of
their assets are in their home country and at least one complete record of financial performance data and climate
hazard records is available during the period from 2000 to 2017. We drop firms that operate in the financial industry
(one-digit SIC code of 6). The number of observations refers to firms.

Customers Suppliers

SIC Code No. %
1 460 10.1
2 863 18.9
3 1,147 25.1
4 721 15.8
5 646 14.1
7 518 11.3
8 195 4.3
9 18 0.4
Total 4,568 100.0

SIC Code No. %
1 482 11.2
2 803 18.7
3 1,226 28.6
4 637 14.9
5 313 7.3
7 606 14.1
8 212 4.9
9 10 0.2
Total 4,289 100.0

Customers Suppliers

Region No. %
East Asia & Pacific 1,397 30.6
Europe & Central Asia 838 18.4
Latin America & Caribbean 183 4.0
Middle East & North Africa 135 3.0
North America 1,852 40.6
South Asia 99 2.2
Sub-Saharan Africa 54 1.2
Total 4,558 100.0

Region No. %
East Asia & Pacific 1,457 34.0
Europe & Central Asia 775 18.1
Latin America & Caribbean 135 3.2
Middle East & North Africa 96 2.2
North America 1,756 41.0
South Asia 27 0.6
Sub-Saharan Africa 36 0.8
Total 4,282 100.0
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Table 2a: Summary Statistics – Firm and Relationship Characteristics

Notes. This table presents summary statistics of the financial performance of the customer firms (Panel A) and
supplier firms (Panel B) in our sample, as well as the characteristics of the customer-supplier pairs (Panel C). The
sample period is 2000 to 2017 and the number of observations refers to firm-quarters (pair year) in Panel A and B
(Panel C). The percentage of assets, price-book ratio, and debt-asset ratio are obtained from Factset, and total assets,
revenues and operating income over total assets are from Compustat Global and Compustat North America. The
sample excludes firms with less than 50% of their assets in their home country, observations with missing records on
revenue and/or operating income, missing lagged climate exposure records, as well as records of firms that operate in
the financial industry (one-digit SIC code of 6).

Panel A: Customers
Variables N Mean SD p25 p50 p75

Pct. Assets Home Country 93,076.000 88.825 12,374.838 77.018 95.888 100.000
Price-Book Ratio 77,938.000 4.386 69.987 1.245 1.991 3.318
Debt-Assets Ratio 81,532.000 25.921 58.712 7.998 23.106 37.155
Total Assets mUSD 93,076.000 6,353.646 22,195.190 381.761 1,296.504 4,250.391
Revenue/Assets (Quarter) 93,076.000 23.988 17.143 11.630 19.914 32.019
Op. Income/Assets (Quarter) 93,076.000 2.474 2.941 1.214 2.565 3.959

Panel B: Suppliers
Variables N Mean SD p25 p50 p75

Pct. Assets Home Country 86,615.000 88.338 17.919 78.192 96.616 100.000
Price-Book Ratio 72,695.000 3.749 20.676 1.258 2.025 3.368
Debt-Assets Ratio 75,939.000 23.447 24.425 4.898 20.115 35.377
Total Assets mUSD 86,615.000 5,096.686 21,595.702 194.664 690.095 2,612.214
Revenue/Assets (Quarter) 86,615.000 21.958 15.482 10.871 18.769 29.542
Op. Income/Assets (Quarter) 86,615.000 1.932 3.653 0.781 2.310 3.758

Panel C: Customer-Supplier Pairs
Variables N Mean SD p25 p50 p75

Suppl. Sales/Total Suppl. Sales 2,439 17.873 17.363 8.667 13.000 20.400
Suppl. Sales/Cust. Cost Goods Sold 1,848 1.815 5.085 0.058 0.274 1.171
Customer/Supplier Assets 25,954 342.489 1,036.583 4.908 29.036 172.786
Customer/Supplier Sales 25,954 1.336 1.437 0.542 0.902 1.522
Customer/Supplier Op. Income 25,954 1.022 1.584 0.429 0.917 1.566
Distance Customer-Supplier (km) 25,954 4,043.456 3,894.813 699.792 2,593.262 6,904.968
Customer-Supplier Active (Quarters) 25,954 13.828 10.612 8.000 12.000 16.000
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Table 2b: Summary Statistics – Climate Exposure

Notes. This Table presents summary statistics of the climate exposure measures of the customers (Panel A) and
suppliers (Panel B) in our sample. The sample period is 2000 to 2017 and the number of observations refers to
firm-quarters. We apply similar data filters as in Table 2a. The variables heatwave days, flood days, and flood deaths
are constructed conditional on the respective occurrence of a heatwave of flood incident, lowering the respective
number of observations. Heatwave occurrence and characteristics are constructed using daily temperature data from
the ERA-Interim database of the European Center for Medium-term Weather Forecasts, flood-related variables are
obtained from the Darthmouth Flood Observatory, and EM-DAT indicators are from the Emergency Events Database
(EM-DAT) provided by the Centre for Research on the Epidemiology of Disasters (CRED).

Panel A: Customers
Variables N Mean SD p25 p50 p75

Heatwave in Financial Quarter 93,076.000 0.301 0.459 0.000 0.000 1.000
Number Heatwaves in Financial Quarter 93,076.000 0.534 0.918 0.000 0.000 1.000
Heatwave Days 28,041.000 23.881 26.243 7.000 16.000 32.000
Average Temperature 93,076.000 18.843 8.920 11.468 20.379 26.426
Flood in Financial Quarter 93,076.000 0.062 0.241 0.000 0.000 0.000
Number Floods in Financial Quarter 93,076.000 0.082 0.347 0.000 0.000 0.000
Flood Deaths 5,774.000 29.338 147.970 0.000 4.000 18.000
EM-DAT Flood 93,076.000 0.503 0.500 0.000 1.000 1.000
EM-DAT Heatwave 93,076.000 0.054 0.226 0.000 0.000 0.000

Panel B: Suppliers
Variables N Mean SD p25 p50 p75

Heatwave in Financial Quarter 86,615.000 0.373 0.484 0.000 0.000 1.000
Number Heatwaves in Financial Quarter 86,615.000 0.676 0.996 0.000 0.000 1.000
Heatwave Days 32,315.000 24.499 25.613 7.000 17.000 33.000
Average Temperature 86,615.000 18.723 8.797 11.370 20.204 26.177
Flood in Financial Quarter 86,615.000 0.063 0.243 0.000 0.000 0.000
Number Floods in Financial Quarter 86,615.000 0.084 0.351 0.000 0.000 0.000
Flood Deaths 5,476.000 33.801 166.491 1.000 5.000 22.000
EM-DAT Flood 86,615.000 0.511 0.500 0.000 1.000 1.000
EM-DAT Heatwave 86,615.000 0.055 0.228 0.000 0.000 0.000
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Table 3: Climate Shocks and Supplier Firm Performance

Notes. This Table presents OLS regression estimates on the impact of climate shocks in the location of the sample
supplier firms on their revenues (Rev) and operating income (OpI), both scaled by assets. Heatwave (t) and F lood (t)
are dummy variables indicating the occurrence of a climate shock in quarter t, respectively. Panel A shows the results
for contemporaneous climate shocks observed during financial quarter t, Panel B includes three additional climate
lags. The number of observations refers to supplier firm-quarters, and the sample period is 2000 to 2017. We apply
similar data filters as in Table 2a. All regressions include firm-by-quarter fixed effects to control for time invariant
firm characteristics and firm-specific seasonal effects, and industry-by-year-by-quarter fixed effects. Columns (2), (4),
(6), and (8) additionally include interaction terms of terciles of firm size, age, and ROA with year-by-quarter fixed
effects to control for firm characteristics (BS2016 FE), following Barrot and Sauvagnat (2016). Standard errors are
clustered on the firm level. ∗, ∗∗ and ∗∗∗ indicate statistical significance at the 10%, 5% and 1% level, respectively.

Panel A
Dependent Variable:

Sup Rev (t) Sup OpI (t) Sup Rev (t) Sup OpI (t)
(1) (2) (3) (4) (5) (6) (7) (8)

Heatwave (t) 0.03166 0.02241 -0.01930 -0.01513
(0.1065) (0.1071) (0.0360) (0.0363)

Flood (t) -0.18854* -0.15404 -0.09460*** -0.09774***
(0.1112) (0.1111) (0.0361) (0.0364)

Observations 86,615 86,615 86,615 86,615 86,615 86,615 86,615 86,615
R-squared 0.887 0.889 0.740 0.741 0.887 0.889 0.740 0.741
Firm-Qtr FE Yes Yes Yes Yes Yes Yes Yes Yes
Ind-Year-Qtr FE Yes Yes Yes Yes Yes Yes Yes Yes
BS2016 FE No Yes No Yes No Yes No Yes

Panel B
Dependent Variable:

Sup Rev (t) Sup OpI (t) Sup Rev (t) Sup OpI (t)
(1) (2) (3) (4) (5) (6) (7) (8)

Heatwave (t) -0.05987 -0.06485 -0.04328 -0.03768
(0.1253) (0.1252) (0.0393) (0.0398)

Heatwave (t-1) -0.26467** -0.26323** -0.01000 -0.00882
(0.1316) (0.1298) (0.0428) (0.0431)

Heatwave (t-2) -0.26348** -0.23965* -0.13313*** -0.12375***
(0.1326) (0.1311) (0.0402) (0.0405)

Heatwave (t-3) -0.25308** -0.23141* -0.10326*** -0.09929**
(0.1201) (0.1186) (0.0388) (0.0391)

Flood (t) -0.26743** -0.22553* -0.11412*** -0.11614***
(0.1288) (0.1286) (0.0403) (0.0406)

Flood (t-1) -0.25238** -0.21675* -0.02420 -0.02420
(0.1237) (0.1238) (0.0416) (0.0419)

Flood (t-2) -0.29058** -0.28779** -0.12465*** -0.11980***
(0.1266) (0.1280) (0.0414) (0.0413)

Flood (t-3) -0.07022 -0.04943 0.00359 0.00740
(0.1188) (0.1197) (0.0376) (0.0374)

Observations 86,615 86,615 86,615 86,615 86,615 86,615 86,615 86,615
R-squared 0.887 0.889 0.740 0.741 0.887 0.889 0.740 0.741
Firm-Qtr FE Yes Yes Yes Yes Yes Yes Yes Yes
Ind-Year-Qtr FE Yes Yes Yes Yes Yes Yes Yes Yes
BS2016 FE No Yes No Yes No Yes No Yes
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Table 4: Downstream Propagation of Climate Shocks

Notes. This table presents OLS regression estimates on the impact of climate shocks at the supplier location on
revenues over assets (Rev) and operating income over assets (OpI) of their respective customers. In Panel A the
unit of observation is at the supplier-customer pair-quarter level. In Panel B we collapse the data at the customer
level by aggregating across suppliers. The climate shock dummy variables take the value of one if at least one
supplier has been affected by a heatwave or a flood, respectively. Hence, the number of observations in Panel B
refers to customer firm-quarters. The sample period in both panels is from 2003 to 2017. Sup Heatwave (t) and
Sup F lood (t) are dummy variables indicating the occurrence of a climate shock at the location of the supplier firm.
We apply similar data filters as in Table 3. All regressions include relationship-by-quarter fixed effects (Panel A) and
customer-by-quarter fixed effects (Panel B), respectively, as well as year-by-quarter fixed effects. Columns (2), (4),
(6), and (8) additionally include terciles of size, age, and ROA interacted with year-by-quarter fixed effects (BS2016
FE) as in Table 3. Standard errors are clustered on the customer-supplier relationship level. ∗, ∗∗ and ∗∗∗ indicate
statistical significance at the 10%, 5% and 1% level, respectively.

Panel A: Supplier-Customer Pair-Level
Dependent Variable:

Cus Rev (t) Cus OpI (t) Cus Rev (t) Cus OpI (t)
(1) (2) (3) (4) (5) (6) (7) (8)

Sup Heatwave (t) 0.02786 0.02672 -0.01790 -0.01912
(0.0470) (0.0465) (0.0137) (0.0132)

Sup Heatwave (t-1) -0.01464 -0.01745 -0.00962 -0.00987
(0.0221) (0.0213) (0.0068) (0.0066)

Sup Heatwave (t-2) -0.03825 -0.04398* -0.00806 -0.00803
(0.0245) (0.0238) (0.0074) (0.0071)

Sup Heatwave (t-3) -0.02819 -0.02662 -0.00956 -0.00805
(0.0258) (0.0251) (0.0072) (0.0070)

Sup Flood (t) -0.08335 -0.06364 -0.01944 -0.01096
(0.0569) (0.0544) (0.0161) (0.0154)

Sup Flood (t-1) -0.11191*** -0.09930** -0.03034** -0.02220*
(0.0418) (0.0411) (0.0122) (0.0117)

Sup Flood (t-2) -0.11857*** -0.12130*** -0.03792*** -0.03555***
(0.0416) (0.0406) (0.0120) (0.0115)

Sup Flood (t-3) -0.15530*** -0.14299*** -0.03110*** -0.02366**
(0.0430) (0.0418) (0.0120) (0.0117)

Observations 214,302 214,302 214,302 214,302 214,302 214,302 214,302 214,302
R-squared 0.948 0.951 0.807 0.820 0.948 0.951 0.807 0.820
Relationship-by-Qtr FE Yes Yes Yes Yes Yes Yes Yes Yes
Year-by-Qtr FE Yes Yes Yes Yes Yes Yes Yes Yes
BS2016 FE No Yes No Yes No Yes No Yes
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Panel B: Customer Firm-Level
Dependent Variable:

Cus Rev (t) Cus OpI (t) Cus Rev (t) Cus OpI (t)
(1) (2) (3) (4) (5) (6) (7) (8)

Sup Heatwave (t) -0.04554 -0.02099 -0.03659 -0.02541
(0.1113) (0.1114) (0.0294) (0.0290)

Sup Heatwave (t-1) -0.12701 -0.10292 -0.05150** -0.03996
(0.0836) (0.0838) (0.0258) (0.0259)

Sup Heatwave (t-2) -0.05269 -0.06724 0.00114 0.00398
(0.0748) (0.0747) (0.0258) (0.0258)

Sup Heatwave (t-3) -0.05443 -0.04173 -0.00864 -0.00528
(0.0784) (0.0785) (0.0251) (0.0251)

Sup Flood (t) 0.02105 0.03538 0.00680 0.02062
(0.0892) (0.0889) (0.0250) (0.0255)

Sup Flood (t-1) -0.10328 -0.09463 -0.05304** -0.04528*
(0.0818) (0.0816) (0.0248) (0.0247)

Sup Flood (t-2) -0.15035* -0.16157** -0.03007 -0.03828
(0.0786) (0.0781) (0.0243) (0.0240)

Sup Flood (t-3) -0.07456 -0.08922 0.00754 0.00636
(0.0857) (0.0874) (0.0258) (0.0255)

Observations 44,566 44,565 44,566 44,565 44,566 44,565 44,566 44,565
R-squared 0.888 0.891 0.671 0.679 0.888 0.891 0.671 0.679
Firm-by-Qtr FE Yes Yes Yes Yes Yes Yes Yes Yes
Year-by-Qtr FE Yes Yes Yes Yes Yes Yes Yes Yes
BS2016 FE No Yes No Yes No Yes No Yes
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Table 5: Downstream Propagation – Placebo Tests

Notes. This table presents the results of placebo tests on the impact of climate shocks at the supplier location on
customer revenues over assets (Rev) and operating income over assets (OpI). We construct the placebo sample by
restricting the observations to real customer-supplier pairs during periods in which the relationship was not yet or
no longer active. We apply similar data filters as in Table 4. Heatwave (t) and F lood (t) are dummies indicating
the occurrence of a climate shock in period t. In Panel A, the number of observations refers to supplier-customer
pair-quarters. In Panel B, we collapse the data in a similar way as in Panel B of Table 4. The sample period
in both panels is from 2003 to 2017. All regressions include relationship-by-quarter fixed effects (Panel A) and
customer-by-quarter fixed effects (Panel B), respectively, as well as year-by-quarter fixed effects. Columns (2), (4),
(6), and (8) additionally include terciles of size, age, and ROA interacted with year-by-quarter fixed effects (BS2016
FE) as in Table 4. Standard errors are clustered on the customer-supplier relationship level. ∗, ∗∗ and ∗∗∗ indicate
statistical significance at the 10%, 5% and 1% level, respectively.

Panel A: Supplier-Customer Pair Level
Dependent Variable:

Cus Rev (t) Cus OpI (t) Cus Rev (t) Cus OpI (t)
(1) (2) (3) (4) (5) (6) (7) (8)

Sup Heatwave (t) -0.02492 -0.02748 -0.01388 -0.00968
(0.0395) (0.0383) (0.0105) (0.0099)

Sup Heatwave (t-1) 0.02350 0.01697 0.00199 0.00006
(0.0200) (0.0196) (0.0055) (0.0054)

Sup Heatwave (t-2) 0.03437* 0.02456 0.00914* 0.00623
(0.0189) (0.0185) (0.0054) (0.0053)

Sup Heatwave (t-3) 0.01116 0.00337 0.00062 -0.00202
(0.0204) (0.0199) (0.0053) (0.0052)

Sup Flood (t) 0.07029* 0.05970 0.01540 0.01676
(0.0383) (0.0375) (0.0111) (0.0105)

Sup Flood (t-1) -0.00240 -0.01806 0.01524* 0.01616*
(0.0315) (0.0306) (0.0087) (0.0083)

Sup Flood (t-2) 0.01146 0.01105 0.01409* 0.01733**
(0.0317) (0.0307) (0.0085) (0.0081)

Sup Flood (t-3) 0.01051 0.00328 0.00825 0.00849
(0.0311) (0.0304) (0.0084) (0.0082)

Observations 542,962 542,961 542,962 542,961 542,962 542,961 542,962 542,961
R-squared 0.887 0.891 0.685 0.703 0.887 0.891 0.685 0.703
Relationship-by-Qtr FE Yes Yes Yes Yes Yes Yes Yes Yes
Year-by-Qtr FE Yes Yes Yes Yes Yes Yes Yes Yes
BS2016 FE No Yes No Yes No Yes No Yes
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Panel B: Customer Firm Level
Dependent Variable:

Cus Rev (t) Cus OpI (t) Cus Rev (t) Cus OpI (t)
(1) (2) (3) (4) (5) (6) (7) (8)

Sup Heatwave (t) -0.11981 -0.11738 -0.02767 -0.02955
(0.0882) (0.0878) (0.0267) (0.0265)

Sup Heatwave (t-1) 0.15363** 0.16255** 0.00044 -0.00175
(0.0743) (0.0745) (0.0234) (0.0234)

Sup Heatwave (t-2) 0.01662 0.03214 0.01570 0.01661
(0.0727) (0.0729) (0.0226) (0.0229)

Sup Heatwave (t-3) -0.02077 -0.00569 0.04261** 0.04308**
(0.0739) (0.0741) (0.0216) (0.0215)

Sup Flood (t) 0.10892 0.08744 0.01090 0.00010
(0.0740) (0.0747) (0.0217) (0.0217)

Sup Flood (t-1) 0.13973* 0.12288 0.06497*** 0.06359***
(0.0784) (0.0782) (0.0203) (0.0202)

Sup Flood (t-2) 0.00940 0.00138 0.03121 0.02713
(0.0733) (0.0731) (0.0219) (0.0219)

Sup Flood (t-3) 0.08090 0.07144 0.02089 0.01358
(0.0718) (0.0718) (0.0211) (0.0212)

Observations 77,342 77,339 77,342 77,339 77,342 77,339 77,342 77,339
R-squared 0.839 0.842 0.587 0.596 0.839 0.842 0.587 0.596
Firm-by-Qtr FE Yes Yes Yes Yes Yes Yes Yes Yes
Year-by-Qtr FE Yes Yes Yes Yes Yes Yes Yes Yes
BS2016 FE No Yes No Yes No Yes No Yes
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Table 6: Expected vs. Realized Climate Risk and Relationship Termination

Notes. This table presents linear probability model estimates on the impact of realized vs. expected supplier-firm
climate shocks on the likelihood of supply-chain relationship termination. Panel A reports the results for heatwaves,
Panel B reports the results for flooding incidents. The unit of observation in all regressions is at the supplier-customer
pair-year level, the dependent variable is a dummy variable taking the value of one if a given supplier-customer relation-
ship ends after the current year t, and zero otherwise. The regressions include only pair-years in which the relationship
was active. Our main variable of interest is the indicator variable 1 (Realized > Expected Climate Shocks) (t),
capturing the deviation of realized from expected supplier climate. It is constructed by first estimating the expected
number of climate shocks per year in the supplier location over a benchmark period of five years before the estab-
lishment a given supplier-customer relationship. 1 (Realized > Expected Climate Shocks) (t) then takes the value
of one in year t if the difference between the realized number of climate shocks per year since the beginning of the
supplier-customer relationship exceeds the corresponding expected number of shocks, and zero otherwise. We exclude
customers headquartered within a 500 kilometer radius of the supplier and apply similar data filters as in Table 4.
The regressions include relationship fixed effects, year fixed effects, supplier-industry-by-year, supplier-country-by-year,
and supplier-country-by-customer-country-by-year fixed effects as indicated. Robust standard errors are clustered on
the relationship level. ∗, ∗∗ and ∗∗∗ indicate statistical significance at the 10%, 5% and 1% level, respectively.

Panel A: Heatwaves
Dependent Variable: Last Relationship Year (0/1)

(1) (2) (3) (4)
1 (Realized > Expected Heatwaves) (t) 0.02320*** 0.02309*** 0.01422*** 0.01045***

(0.0022) (0.0023) (0.0023) (0.0023)
Observations 299,718 298,053 297,998 294,330
R-squared 0.353 0.378 0.413 0.415
Relationship FE Yes Yes Yes Yes
Yr FE Yes Yes Yes Yes
Sup-Industry-by-Yr FE No Yes Yes No
Sup-Country-by-Yr FE No No Yes No
Sup-Country-by-Cus-Country-by-Yr FE No No No Yes

Panel B: Flooding Incidents
Dependent Variable: Last Relationship Year (0/1)

(1) (2) (3) (4)
1 (Realized > Expected F loods) (t) 0.04707*** 0.04770*** 0.03982*** 0.03681***

(0.0021) (0.0022) (0.0022) (0.0022)
Observations 299,718 298,053 297,998 294,330
R-squared 0.354 0.379 0.413 0.416
Relationship FE Yes Yes Yes Yes
Yr FE Yes Yes Yes Yes
Sup-Industry-by-Yr FE No Yes Yes No
Sup-Country-by-Yr FE No No Yes No
Sup-Country-by-Cus-Country-by-Yr FE No No No Yes

45



Table 7: Robustness – Realized Climate Risk and Relationship Termination

Notes. This table presents linear probability model estimates on the of realized supplier-firm climate shocks on the
likelihood of supply-chain relationship termination. Panel A reports the results for heatwaves, Panel B reports the
results for flooding incidents. Heatwave (t) and F lood (t) are dummy variables indicating the occurrence of a climate
shock in the location of the supplier firm in year t, respectively. The unit of observation is at the supplier-customer-year
level. We include only active supply-chain relationship years. The dependent variable takes the value of one if a
given supplier-customer relationship ends after the current year t, and zero otherwise. Similar to Table 6, we exclude
all customers located within 500 kilometers of their supplier and apply similar data filters as in Table 6. The
regressions include relationship fixed effects, year fixed effects, supplier-industry-by-year, supplier-country-by-year,
and supplier-country-by-customer-country-by-year fixed effects as indicated. Robust standard errors are clustered on
the relationship level. ∗, ∗∗ and ∗∗∗ indicate statistical significance at the 10%, 5% and 1% level, respectively.

Panel A: Heatwaves
Dependent Variable: Last Relationship Year (0/1)

(1) (2) (3) (4)
Heatwave (t) 0.00118 0.00104 0.00171** 0.00160**

(0.0008) (0.0008) (0.0008) (0.0008)
Observations 299,718 298,053 297,998 294,330
R-squared 0.353 0.378 0.413 0.415
Relationship FE Yes Yes Yes Yes
Yr FE Yes Yes Yes Yes
Sup-Industry-by-Yr FE No Yes Yes No
Sup-Country-by-Yr FE No No Yes No
Sup-Country-by-Cus-Country-by-Yr FE No No No Yes

Panel B: Flood Incidents
Dependent Variable: Last Relationship Year (0/1)

(1) (2) (3) (4)
Flood (t) 0.00285*** 0.00331*** 0.00106 0.00010

(0.0010) (0.0010) (0.0010) (0.0010)
Observations 299,718 298,053 297,998 294,330
R-squared 0.353 0.378 0.413 0.415
Relationship FE Yes Yes Yes Yes
Yr FE Yes Yes Yes Yes
Sup-Industry-by-Yr FE No Yes Yes No
Sup-Country-by-Yr FE No No Yes No
Sup-Country-by-Cus-Country-by-Yr FE No No No Yes
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Table 8: Climate Change Risk and Supplier Substitution

Notes. This table reports the difference in climate change exposure between terminated suppliers and their subsequent
replacements. To construct the sample for this table, we match each supplier firm for which the supplier-customer
relationship is terminated during the sample period (“old suppliers”) (as reported in Table 6) with their replacements
(“new suppliers”). Replacement suppliers are identified as those firms with identical 4-digit SIC codes as the “old
suppliers”, which enter a new supply-chain relationship with a given customer within two years of the previous
supply-chain relationship termination. Panel A shows the comparison for heatwave exposure, Panel B shows the
results for flood exposure. The first line in each panel compares the number of climate shocks over the period from
1984 to 2017, the second line compares the exposure during the period in which the “old” supply-chain relationship
was active, and the third line refers to the time period after the “old” relationship is abandoned. t-statistics are
reported in brackets. ∗, ∗∗ and ∗∗∗ indicate statistical significance at the 5%, 1% and 0.1% level, respectively.

Panel A: Heatwaves
(1)

New vs. Old
Heatwaves 1984-2017 -5.239∗∗∗ [-17.569]
Heatwaves during Terminated Supply Chain Relationship -0.829∗∗∗ [-17.993]
Heatwaves after Termination of the Original Supply Chain Relationship -2.065∗∗∗ [-22.606]
Observations 100,172

Panel B: Flood Incidents
(1)

New vs. Old
Floods 1984-2017 -0.000 [-0.008]
Floods During Terminated Supply Chain Relationship -0.031∗∗∗ [-4.182]
Floods After Termination of the Original Supply Chain Relationship -0.333∗∗∗ [-23.340]
Observations 100,172
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A Appendix

Table A1: Robustness – Climate Shocks and Supplier Firm Performance

Notes. This table presents OLS regression estimates on the impact of climate shocks in the location of the sample
supplier firms on their revenues (Rev) and operating income (OpI), both scaled by assets. Heatwaves (t) and
F loods (t) are continuous variables measuring the total number (count) of climate shocks in the supplier’s location in
quarter t. Panel A shows the results for contemporaneous climate shocks observed during financial quarter t, Panel B
includes three additional climate lags. The number of observations refers to supplier firm-quarters, and the sample
period is 2000 to 2017. We apply similar data filters as in Table 2a. All regressions include firm-by-quarter fixed effects
to control for time invariant firm characteristics and firm-specific seasonal effects, and industry-by-year-by-quarter
fixed effects. Columns (2), (4), (6), and (8) additionally include interaction terms of terciles of firm size, age, and ROA
with year-by-quarter fixed effects to control for firm characteristics (BS2016 FE), following Barrot and Sauvagnat
(2016). Standard errors are clustered on the firm level. ∗, ∗∗ and ∗∗∗ indicate statistical significance at the 10%, 5%
and 1% level, respectively.

Dependent Variable:
Sup Rev (t) Sup OpI (t) Sup Rev (t) Sup OpI (t)

(1) (2) (3) (4) (5) (6) (7) (8)
Heatwaves -0.00036 0.00942 0.00884 0.00969

(0.0621) (0.0624) (0.0190) (0.0192)
Heatwaves (t-1) -0.09555 -0.09363 -0.00385 -0.00613

(0.0696) (0.0686) (0.0209) (0.0211)
Heatwaves (t-2) -0.14765** -0.14069** -0.06833*** -0.06902***

(0.0715) (0.0709) (0.0207) (0.0208)
Heatwaves (t-3) -0.20294*** -0.18615*** -0.05274** -0.05239**

(0.0660) (0.0659) (0.0206) (0.0207)
Floods -0.22041** -0.19408** -0.09581*** -0.09614***

(0.0885) (0.0887) (0.0283) (0.0287)
Floods (t-1) -0.17513* -0.15295* -0.02764 -0.02481

(0.0924) (0.0922) (0.0286) (0.0288)
Floods (t-2) -0.18122** -0.18212** -0.07107** -0.06623**

(0.0912) (0.0923) (0.0297) (0.0296)
Floods (t-3) -0.06639 -0.05708 -0.01064 -0.00673

(0.0853) (0.0860) (0.0272) (0.0271)
Observations 86,615 86,615 86,615 86,615 86,615 86,615 86,615 86,615
R-squared 0.887 0.889 0.740 0.741 0.887 0.889 0.740 0.741
Firm-Qtr FE Yes Yes Yes Yes Yes Yes Yes Yes
Ind-Year-Qtr FE Yes Yes Yes Yes Yes Yes Yes Yes
BS2016 FE No Yes No Yes No Yes No Yes
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Table A2: Robustness – EM-DAT Climate Shocks and Supplier Performance

Notes. This table presents OLS regression estimates on the impact of climate shocks in the location of the
sample supplier firms on supplier firm revenues (Rev) and operating income (OpI), both scaled by assets. EM −
DAT Heatwave (t) and EM − DAT F lood(t) are dummy variables indicating the occurrence of a climate shock in
the supplier’s location in quarter t based on the EM-DAT international disaster database. The number of observations
refers to supplier firm-quarters, and the sample period is 2003 to 2017. We apply similar data filters as in Table
2a. All regressions include firm-by-quarter fixed effects to control for time invariant firm characteristics and firm-
specific seasonal effects, and industry-by-year-by-quarter fixed effects. Columns (2), (4), (6), and (8) additionally
include interaction terms of terciles of firm size, age, and ROA with year-by-quarter fixed effects to control for firm
characteristics (BS2016 FE), following Barrot and Sauvagnat (2016). Standard errors are clustered on the firm level.
∗, ∗∗ and ∗∗∗ indicate statistical significance at the 10%, 5% and 1% level, respectively.

Dependent Variable:
Sup Rev (t) Sup OpI (t) Sup Rev (t) Sup OpI (t)

(1) (2) (3) (4) (5) (6) (7) (8)
EM-DAT Heatwave (t) -0.05013 -0.22382 0.04729 0.02408

(0.1862) (0.1977) (0.0556) (0.0669)
EM-DAT Heatwave (t-1) -0.34675** -0.38940** -0.12494*** -0.15618***

(0.1511) (0.1602) (0.0483) (0.0560)
EM-DAT Heatwave (t-2) 0.07203 -0.01361 0.07404 0.07325

(0.1546) (0.1579) (0.0559) (0.0603)
EM-DAT Heatwave (t-3) 0.16453 0.02850 0.07788 0.06295

(0.1547) (0.1603) (0.0569) (0.0601)
EM-DAT Flood (t) -0.03392 -0.00332 0.00581 0.00484

(0.0755) (0.0797) (0.0268) (0.0285)
EM-DAT Flood (t-1) -0.04415 0.02797 0.06244** 0.06291*

(0.0822) (0.0836) (0.0303) (0.0323)
EM-DAT Flood (t-2) -0.03657 0.01128 0.04908 0.05400*

(0.0759) (0.0787) (0.0300) (0.0319)
EM-DAT Flood (t-3) -0.07892 -0.02729 0.02255 0.02113

(0.0703) (0.0725) (0.0264) (0.0286)
Observations 86,615 86,615 86,615 86,615 86,615 86,615 86,615 86,615
R-squared 0.887 0.889 0.740 0.741 0.887 0.889 0.740 0.741
Firm-Qtr FE Yes Yes Yes Yes Yes Yes Yes Yes
Ind-Yr-Qtr FE Yes Yes Yes Yes Yes Yes Yes Yes
BS2016 FE No Yes No Yes No Yes No Yes
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Table A3: Robustness – Downstream Propagation of Climate Shocks

Notes. This table presents OLS regression estimates on the impact of climate shocks at the supplier location on
revenues over assets (Rev) and operating income over assets (OpI) of their respective customers. The unit of observation
is at the supplier-customer pair-quarter level and the sample period is from 2003 to 2017. Sup Heatwaves (t) and
Sup F loods (t) are continuous variables measuring the total number (count) of climate shocks in the supplier’s location
in quarter t. We apply similar data filters as in Table 4. All regressions include relationship-by-quarter fixed effects
as well as year-by-quarter fixed effects. Columns (2), (4), (6), and (8) additionally include terciles of size, age, and
ROA interacted with year-by-quarter fixed effects (BS2016 FE) as in Table 4. Standard errors are clustered on
the customer-supplier relationship level. ∗, ∗∗ and ∗∗∗ indicate statistical significance at the 10%, 5% and 1% level,
respectively.

Dependent Variable:
Cus Rev (t) Cus OpI (t) Cus Rev (t) Cus OpI (t)

(1) (2) (3) (4) (5) (6) (7) (8)
Sup Heatwaves (t) 0.02938 0.03503 -0.01539** -0.01081

(0.0257) (0.0250) (0.0072) (0.0069)
Sup Heatwaves (t-1) 0.00610 0.00773 -0.00487 -0.00314

(0.0120) (0.0117) (0.0033) (0.0031)
Sup Heatwaves (t-2) 0.00525 0.00278 -0.00061 -0.00052

(0.0123) (0.0119) (0.0035) (0.0034)
Sup Heatwaves (t-3) 0.00787 0.01075 -0.00344 -0.00183

(0.0129) (0.0126) (0.0033) (0.0032)
Sup Floods (t) -0.11948*** -0.10698** -0.03053** -0.02331**

(0.0451) (0.0424) (0.0123) (0.0115)
Sup Floods (t-1) -0.13504*** -0.13094*** -0.03392*** -0.02911***

(0.0323) (0.0315) (0.0094) (0.0088)
Sup Floods (t-2) -0.15698*** -0.15939*** -0.03760*** -0.03565***

(0.0318) (0.0307) (0.0083) (0.0079)
Sup Floods (t-3) -0.15580*** -0.14692*** -0.02846*** -0.02304***

(0.0321) (0.0315) (0.0083) (0.0080)
Observations 214,302 214,302 214,302 214,302 214,302 214,302 214,302 214,302
R-squared 0.948 0.951 0.807 0.820 0.948 0.951 0.807 0.820
Relationship-by-Qtr FE Yes Yes Yes Yes Yes Yes Yes Yes
Yr-by-Qtr FE Yes Yes Yes Yes Yes Yes Yes Yes
BS2016 FE No Yes No Yes No Yes No Yes
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Table A4: Robustness – Downstream Propagation of EM-DAT Climate Shocks

Notes. This table presents OLS regression estimates on the impact of climate shocks at the supplier location on
revenues over assets (Rev) and operating income over assets (OpI) of their respective customers. The unit of observation
is at the supplier-customer pair-quarter level and the sample period is from 2003 to 2017. EM − DAT Heatwave (t)
and EM − DAT F lood (t) are dummy variables indicating the occurrence of a climate shock in the supplier’s location
in quarter t based on the EM-DAT international disaster database. We apply similar data filters as in Table 4. All
regressions include relationship-by-quarter fixed effects as well as year-by-quarter fixed effects. Columns (2), (4), (6),
and (8) additionally include terciles of size, age, and ROA interacted with year-by-quarter fixed effects (BS2016 FE) as
in Table 4. Standard errors are clustered on the customer-supplier relationship level. ∗, ∗∗ and ∗∗∗ indicate statistical
significance at the 10%, 5% and 1% level, respectively.

Dependent Variable:
Cus Rev (t) Cus OpI (t) Cus Rev (t) Cus OpI (t)

(1) (2) (3) (4) (5) (6) (7) (8)
EM-DAT Heatwave (t) -0.07784 -0.09911 0.04383* 0.04897**

(0.0831) (0.0820) (0.0264) (0.0245)
EM-DAT Heatwave (t-1) 0.08667* 0.06417 0.00409 0.00762

(0.0497) (0.0486) (0.0155) (0.0149)
EM-DAT Heatwave (t-2) -0.11003** -0.10010** -0.01911 -0.01421

(0.0502) (0.0499) (0.0153) (0.0148)
EM-DAT Heatwave (t-3) -0.04647 -0.04014 0.01404 0.01114

(0.0521) (0.0516) (0.0168) (0.0163)
EM-DAT Flood (t) 0.06421 0.04346 0.02854** 0.02195**

(0.0408) (0.0406) (0.0117) (0.0112)
EM-DAT Flood (t-1) 0.02745 0.01803 -0.00236 -0.00463

(0.0225) (0.0222) (0.0070) (0.0068)
EM-DAT Flood (t-2) 0.01866 0.01528 0.01159* 0.01082

(0.0235) (0.0228) (0.0068) (0.0066)
EM-DAT Flood (t-3) 0.04297* 0.05178** -0.00326 -0.00228

(0.0227) (0.0229) (0.0067) (0.0063)
Observations 214,302 214,302 214,302 214,302 214,302 214,302 214,302 214,302
R-squared 0.948 0.951 0.807 0.820 0.948 0.951 0.807 0.820
Relationship-by-Qtr FE Yes Yes Yes Yes Yes Yes Yes Yes
Year-by-Qtr FE Yes Yes Yes Yes Yes Yes Yes Yes
BS2016 FE No Yes No Yes No Yes No Yes
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Table A5: Robustness – Expected vs. Realized Climate Risk

Notes. This table presents linear probability model estimates on the impact of realized vs. expected supplier-
firm climate shocks on the likelihood of supply-chain relationship termination. The sample and variables are
constructed similarly as in Table 6. In Panels A, B, and C we use benchmark periods of seven, ten, and fif-
teen years before the establishment of a supply-chain relationship to construct our main variables of interest,
1 (Realized > Expected Climate Shocks) (t), as illustrated in Figure 3. We apply similar data filters as in Table 6.
The regressions include relationship fixed effects, year fixed effects, supplier-industry-by-year, supplier-country-by-year,
and supplier-country-by-customer-country-by-year fixed effects as indicated. Robust standard errors are clustered on
the relationship level. ∗, ∗∗ and ∗∗∗ indicate statistical significance at the 10%, 5% and 1% level, respectively.

Panel A: 7-year benchmark period
Dependent Variable: Last Relationship Year (0/1)

(1) (2) (3) (4) (5) (6) (7) (8)
1 (Realized > Expected Heatwaves) (t) 0.01340*** 0.01259*** 0.00744*** 0.00564***

(0.0021) (0.0021) (0.0022) (0.0022)
1 (Realized > Expected F loods) (t) 0.07069*** 0.07149*** 0.06483*** 0.06027***

(0.0022) (0.0022) (0.0023) (0.0023)
Observations 299,718 298,053 297,998 294,330 299,718 298,053 297,998 294,330
R-squared 0.353 0.378 0.413 0.415 0.356 0.381 0.415 0.417
Relationship FE Yes Yes Yes Yes Yes Yes Yes Yes
Yr FE Yes Yes Yes Yes Yes Yes Yes Yes
Sup-Industry-by-Yr FE No Yes Yes No No Yes Yes No
Sup-Country-by-Yr FE No Yes Yes No No Yes Yes No
Sup-Country-by-Cus-Country-by-Yr FE No No No Yes No No No Yes

Panel B: 10-year benchmark period
Dependent Variable: Last Relationship Year (0/1)

(1) (2) (3) (4) (5) (6) (7) (8)
1 (Realized > Expected Heatwaves) (t) 0.01452*** 0.01203*** 0.00671*** 0.00662***

(0.0021) (0.0021) (0.0021) (0.0021)
1 (Realized > Expected F loods) (t) 0.07492*** 0.07381*** 0.07195*** 0.06895***

(0.0022) (0.0022) (0.0023) (0.0023)
Observations 299,718 298,053 297,998 294,330 299,718 298,053 297,998 294,330
R-squared 0.353 0.378 0.413 0.415 0.356 0.381 0.415 0.417
Relationship FE Yes Yes Yes Yes Yes Yes Yes Yes
Yr FE Yes Yes Yes Yes Yes Yes Yes Yes
Sup-Industry-by-Yr FE No Yes Yes No No Yes Yes No
Sup-Country-by-Yr FE No Yes Yes No No Yes Yes No
Sup-Country-by-Cus-Country-by-Yr FE No No No Yes No No No Yes

Panel C: 15-year benchmark period
Dependent Variable: Last Relationship Year (0/1)

(1) (2) (3) (4) (5) (6) (7) (8)
1 (Realized > Expected Heatwaves) (t) 0.01984*** 0.01691*** 0.01286*** 0.01414***

(0.0021) (0.0021) (0.0022) (0.0022)
1 (Realized > Expected F loods) (t) 0.06034*** 0.05982*** 0.05815*** 0.05595***

(0.0022) (0.0022) (0.0023) (0.0023)
Observations 299,718 298,053 297,998 294,330 299,718 298,053 297,998 294,330
R-squared 0.353 0.378 0.413 0.415 0.355 0.380 0.414 0.416
Relationship FE Yes Yes Yes Yes Yes Yes Yes Yes
Yr FE Yes Yes Yes Yes Yes Yes Yes Yes
Sup-Industry-by-Yr FE No Yes Yes No No Yes Yes No
Sup-Country-by-Yr FE No Yes Yes No No Yes Yes No
Sup-Country-by-Cus-Country-by-Yr FE No No No Yes No No No Yes
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Table A6: Robustness – Expected vs. Realized Climate Risk with Control Variables

Notes. This table presents linear probability model estimates on the impact of realized vs. expected supplier-firm
climate shocks on the likelihood of supply-chain relationship termination, controlling for supplier and customer
firm characteristics. The sample and variables are constructed similarly as in Table 6. In Panels A, B, and C
we use benchmark periods of seven, ten, and fifteen years before the establishment of a supply-chain relationship
to construct our main variables of interest, 1 (Realized > Expected Climate Shocks) (t), as illustrated in Figure
3. We apply similar data filters as in Table 6. The regressions include relationship fixed effects, year fixed effects,
supplier-industry-by-year, supplier-country-by-year, and supplier-country-by-customer-country-by-year fixed effects as
indicated. Robust standard errors are clustered on the relationship level. ∗, ∗∗ and ∗∗∗ indicate statistical significance
at the 10%, 5% and 1% level, respectively.

Panel A: 7-year benchmark period
Dependent Variable: Last Relationship Year (0/1)

(1) (2) (3) (4) (5) (6) (7) (8)
1 (Realized > Expected Heatwaves) (t) 0.01306*** 0.01154*** 0.00614* 0.00612*

(0.0032) (0.0033) (0.0034) (0.0034)
1 (Realized > Expected F loods) (t) 0.06411*** 0.06738*** 0.06050*** 0.05226***

(0.0035) (0.0035) (0.0036) (0.0036)
Debt-Assets Ratio Supplier -0.00035** -0.00056*** -0.00004 0.00017 -0.00035** -0.00055*** -0.00005 0.00016

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
Debt-Assets Ratio Customer 0.00014 0.00004 0.00001 0.00037* 0.00012 0.00002 -0.00001 0.00035*

(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)
Price-Book Ratio Customer -0.02256*** -0.01471*** -0.01023*** -0.01515*** -0.02205*** -0.01425*** -0.00990*** -0.01517***

(0.0034) (0.0034) (0.0033) (0.0035) (0.0034) (0.0034) (0.0033) (0.0035)
Price-Book Ratio Supplier -0.00089 0.00790** 0.00863*** 0.00066 -0.00089 0.00783** 0.00882*** 0.00080

(0.0032) (0.0033) (0.0033) (0.0032) (0.0032) (0.0033) (0.0032) (0.0032)
Ln(MV Equity) Supplier -0.02108*** -0.02462*** -0.01757*** -0.01110*** -0.02106*** -0.02457*** -0.01739*** -0.01097***

(0.0028) (0.0029) (0.0029) (0.0029) (0.0028) (0.0029) (0.0029) (0.0029)
Ln(MV Equity) Customer -0.00093 -0.00032 0.00018 -0.00039 -0.00106 -0.00043 0.00008 -0.00051

(0.0017) (0.0016) (0.0016) (0.0017) (0.0017) (0.0016) (0.0016) (0.0017)

Observations 137,239 137,171 137,099 133,519 137,239 137,171 137,099 133,519
R-squared 0.373 0.400 0.435 0.439 0.375 0.403 0.436 0.440
Relationship FE Yes Yes Yes Yes Yes Yes Yes Yes
Yr FE Yes Yes Yes Yes Yes Yes Yes Yes
SupIndustry-Yr FE No No Yes No No No Yes No
SupCountry-Yr FE No No Yes No No No Yes No
SupCountry-CusCountry-Yr FE No No No Yes No No No Yes

Panel B: 10-year benchmark period
Dependent Variable: Last Relationship Year (0/1)

(1) (2) (3) (4) (5) (6) (7) (8)
1 (Realized > Expected Heatwaves) (t) 0.01727*** 0.01362*** 0.00728** 0.00907***

(0.0032) (0.0032) (0.0033) (0.0033)
1 (Realized > Expected F loods) (t) 0.06559*** 0.06581*** 0.06344*** 0.05770***

(0.0035) (0.0035) (0.0037) (0.0037)
Debt-Assets Ratio Supplier -0.00034** -0.00055*** -0.00004 0.00017 -0.00035** -0.00056*** -0.00005 0.00016

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
Debt-Assets Ratio Customer 0.00014 0.00005 0.00001 0.00037* 0.00011 0.00001 -0.00001 0.00034*

(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)
Price-Book Ratio Customer -0.02254*** -0.01470*** -0.01022*** -0.01514*** -0.02211*** -0.01438*** -0.01001*** -0.01527***

(0.0034) (0.0034) (0.0033) (0.0035) (0.0034) (0.0034) (0.0033) (0.0035)
Price-Book Ratio Supplier -0.00078 0.00796** 0.00866*** 0.00069 -0.00082 0.00800** 0.00896*** 0.00095

(0.0032) (0.0033) (0.0033) (0.0032) (0.0032) (0.0033) (0.0032) (0.0032)
Ln(MV Equity) Supplier -0.02105*** -0.02456*** -0.01754*** -0.01112*** -0.02068*** -0.02420*** -0.01710*** -0.01070***

(0.0028) (0.0029) (0.0029) (0.0029) (0.0028) (0.0029) (0.0029) (0.0029)
Ln(MV Equity) Customer -0.00093 -0.00032 0.00018 -0.00038 -0.00114 -0.00051 -0.00000 -0.00059

(0.0017) (0.0016) (0.0016) (0.0017) (0.0017) (0.0016) (0.0016) (0.0017)

Observations 137,239 137,171 137,099 133,519 137,239 137,171 137,099 133,519
R-squared 0.373 0.400 0.435 0.439 0.375 0.402 0.436 0.440
Relationship FE Yes Yes Yes Yes Yes Yes Yes Yes
Yr FE Yes Yes Yes Yes Yes Yes Yes Yes
SupIndustry-Yr FE No No Yes No No No Yes No
SupCountry-Yr FE No No Yes No No No Yes No
SupCountry-CusCountry-Yr FE No No No Yes No No No Yes
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