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Abstract

Information spillovers between �rms can reduce the incentive to invest in R&D if property

rights do not prevent �rms from free riding on competitors' innovations. Conversely, strong

property rights over innovations can impede cumulative research and lead to ine�cient du-

plication of e�ort. These e�ects are particularly acute in natural resource exploration, where

discoveries are spatially correlated and property rights over neighboring regions are allocated

to competing �rms. I use data from o�shore oil exploration in the UK to quantify the ef-

fects of information externalities on the speed and e�ciency of exploration by estimating a

dynamic structural model of the �rm's exploration problem. Firms drill exploration wells

to learn about the spatial distribution of oil and face a trade-o� between drilling now and

delaying exploration to learn from other �rms' wells. I show that removing the incentive to

free ride brings exploration forward by about 1 year and increases industry surplus by 31%.

Allowing perfect information �ow between �rms raises industry surplus by a further 38%.

Counterfactual policy simulations highlight the trade o� between discouraging free riding and

encouraging cumulative research - stronger property rights over exploration well data increase

the rate of exploration, while weaker property rights increase the e�ciency and speed of learn-

ing but reduce the rate of exploration. Spatial clustering of each �rm's drilling licenses both

reduces the incentive to free ride and increases the speed of learning.
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1 Introduction

The incentive for a �rm to invest in research and development depends on the extent to which it

can bene�t from the investments of its competitors. If the knowledge generated by R&D, such

as new technologies, the results of experiments, or the discovery of mineral deposits, is publicly

observable, �rms may have an incentive to free ride on their competitors' innovations, for example

by introducing similar products or mining in locations near their rivals' discoveries. When each �rm

would rather wait to observe the results of other �rms' research than invest in R&D themselves, the

equilibrium rate of innovation can fall below the socially optimal level (Bolton and Harris, 1999).

On the other hand if information �ow between �rms is limited, for example by property rights on

existing innovations, the progress of research may be slowed because of ine�cient duplication and

the inability of researchers to build on each other's discoveries (Williams, 2013).

The growth of knowledge and the generation of new ideas are the most important drivers of

economic growth (Romer, 1990; Jones, 2002), and ine�ciencies in the rate of innovation have

potentially signi�cant economic e�ects. Policy that de�nes property rights over innovations plays

an important role in controlling the e�ects of information externalities and balancing the trade

o� between discouraging free riding and encouraging cumulative research. For example, patent

law assigns property rights over innovations so that �rms who pro�t from an innovation must

compensate the inventor for their research investment. Broader patents minimize the potential

for free riding but increase the cost of research that builds on existing patents, and may therefore

direct research investment away from socially e�cient projects (Scotchmer, 1991).

In this paper, I quantify the e�ects of information externalities on R&D in the context of oil

exploration. Several features of this industry make it an ideal setting for studying the general

problem of information spillovers and the design of optimal property rights regulation. When

an oil �rm drills an exploration well it generates knowledge about the presence or absence of

resources in a particular location. Exploration wells can therefore be thought of as experiments

with observable outcomes located at points in a geographic space. Since oil deposits are spatially

correlated, the result of exploration in one location generates information about the likelihood of

�nding oil in nearby, unexplored locations. The spatial nature of research in this industry means

that the extent to which di�erent experiments are more or less closely related is well de�ned.

Research is cumulative in the sense that the �ndings from exploration wells direct the location of

future wells and the decision to develop �elds and extract oil.

Since multiple �rms operate in the same region, the results of rival �rms' wells provide information

that can determine the path of a �rm's exploration. If �rms can see the results of each other's

exploration activity, then there is an incentive to free ride and delay investment in exploration

until another �rm has made discoveries that can direct subsequent drilling. However, if the results

of exploration are con�dential then �rms are likely to engage in wasteful exploration of regions that
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are known by other �rms to be unproductive.1 I use data covering the history of o�shore drilling

in the UK between 1964 and 1990 to quantify these ine�ciencies and the extent to which they can

be mitigated by counterfactual property rights policies. The magnitude of these e�ects depends

on the spatial correlation of well outcomes, the extent to which �rms can observe the results of

each others' wells, and the spatial arrangement of drilling licenses assigned to di�erent �rms.

I start by measuring the spatial correlation of well outcomes. I �t a logistic Gaussian process

model to data on the locations and outcomes of all exploration wells drilled before 1990. This

model allows binary outcomes - wells are either successful or unsuccessful - to be correlated across

space. The estimated Gaussian process can be used as a Bayesian prior that embeds spatial

learning. When a successful or unsuccessful well is drilled, the implied posterior beliefs about

the probability of �nding oil are updated at all other locations, with the perceived probability

at nearby locations updating more than at distant locations. The updating rule corresponds

to a geostatistical technique for interpolating over space that is widely used in natural resource

exploration.

The estimated spatial correlation indicates that the results of exploration wells should have a

signi�cant e�ect on beliefs about the probability of well success at distances of up to 50 km. To test

whether �rm behavior is consistent with this spatial correlation, I regress �rm drilling decisions on

past well results. I �nd that �rms' probability of exploration at a location is signi�cantly increasing

in the number of successful past wells and signi�cantly decreasing in the number of unsuccessful

past wells. The response declines in distance in line with the measured spatial correlation. Firms'

response to the results of their own past wells is 2 to 5 times as as large as their response to other

�rms' wells, suggesting imperfect information �ow between �rms.

Next, I measure how exploration probability varies with the spatial distribution of property rights.

Drilling licenses are issued to �rms on 22x18 km blocks. I �nd that the monthly probability of

exploration on a block increases by 0.8 percentage points when the number of nearby blocks licenses

to the same �rm is doubled and decreases by 0.4 percentage points when the number of nearby

blocks licensed to other �rms is doubled. These e�ects are statistically and economically signi�cant

and consistent with the presence of a free riding incentive - �rms are less likely to explore where

there is a greater potential to learn from other �rms' exploration.

Together, these descriptive �ndings suggest that information spillovers over space and between

�rms play an important role in �rms' exploration decisions. To measure the e�ect of these exter-

nalities on equilibrium exploration rates and industry surplus I incorporate the model of spatial

beliefs into a structural model of the �rm's exploration problem. Firms face a dynamic discrete

1This trade-o� between free riding and ine�cient exploration has been identi�ed as important for policy making
in the industry literature. For example, in their survey of UK oil and gas regulation, Rowland and Hann (1987, p.
13) note that �if it is not possible to exclude other companies from the results of an exploration well... companies
will wait for other companies' drilling results and exploration will be deferred,� but if �information is treated highly
con�dentially... an unregulated market would be likely to generate repetitious exploration activity.�
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choice problem in which, each period, they can choose to drill exploration wells on the set of blocks

over which they have property rights. At the end of each period �rms observe the results of their

exploration wells, observe the results of other �rm's wells with some probability, α ∈ [0, 1], and

update their beliefs about the spatial distribution of oil.

The model's asymmetric information structure complicates the �rm's problem. Firms observe

di�erent sets of well outcomes, and in order to forecast other �rms' drilling behavior each �rm needs

to form beliefs about the outcomes of unobserved wells and about other �rms' beliefs. To make

estimation of the model and computation of equilibria feasible I adopt the simplifying assumption

that �rms believe blocks held by other �rms are explored at a �xed rate which is equal to the true

average probability of exploration in equilibrium. This removes certain strategic incentives - for

example the incentive to signal to other �rms through drilling - but leaves in tact the asymmetric

information structure and the incentives I am interested in measuring. In particular, �rms face a

trade o� between drilling now and delaying exploration to learn from the results of other �rms'

wells that depends on the spatial arrangement of drilling licenses and the probability of observing

the results of other �rms' wells.

The estimated value of the spillover parameter, α, indicates that �rms observe the results of

other �rms' wells with 37% probability. The presence of substantial but imperfect information

spillovers means that equilibrium exploration behavior could be a�ected by both free riding - since

�rms observe each other's well results and have an incentive to delay exploration - and ine�cient

exploration - since spillovers are imperfect, each �rm has less information on which to base its

drilling decisions than the set of all �rms combined.

I perform counterfactual simulations to quantify these two e�ects. First, I remove the incentive for

�rms to free ride and simulate counterfactual exploration and development behavior. I �nd that

exploration and development is brought forward in time by about one year, increasing the number

of exploration wells drilled between 1964 and 1990 by 7.4%. Removing free riding increases the

1964 present discounted value of 1964-1990 industry surplus by 31%. Next, I allow for perfect

information sharing between �rms, holding �rms' incentive to free ride �xed at the baseline level.

The number of exploration wells increases by 12.6% and the e�ciency of exploration increases

substantially - since �rms can perfectly observe each other's well results, cumulative learning

is faster. The number of exploration wells per block developed falls and exploration wells are

more concentrated on productive blocks. Industry surplus is 70% higher than the baseline in this

information sharing counterfactual.

I next ask to what extent these ine�ciencies could be mitigated through alternative property rights.

Under the current regulations in the UK, data from exploration wells is property of the �rm for

�ve years before being made public. Weakening property rights by shortening the con�dentiality

window will increase the �ow of information between �rms, and is likely to increase the e�ciency

of exploration but may also increase the incentive to free ride. On the other hand, strengthening
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property rights by extending the con�dentiality window will decrease the incentive to free ride but

slow cumulative learning and reduce the e�ciency of exploration.

I simulate equilibrium behavior under di�erent con�dentiality window lengths and �nd that in-

dustry surplus is increased under both longer and shorter con�dentiality windows. When the

con�dentiality window is increased to 10 years, the increase in the exploration rate dominates the

reduction in exploration e�ciency and industry surplus increases by 11%. When the con�dentiality

window is reduced to 0, the increased the speed of learning and e�ciency of exploration overcomes

the free riding e�ect, and industry surplus increases by 57%. Although a marginal increase in

window length would increase surplus, the free riding e�ect is su�ciently small such that it is

optimal for well data to be released immediately.

Finally, I show how the spatial distribution of property rights a�ects exploration incentives. When

each �rm's drilling licenses neighbor fewer other-�rm licenses the incentive for �rms to delay

exploration is reduced and the value to �rms of the information generated by their own wells

is greater. I construct a counterfactual spatial assignment of property rights that clusters each

�rm's licenses together, holding the total number of blocks assigned to each �rm �xed. Under

the clustered assignment the number of exploration wells drilled increases by 8% and the number

of exploration wells per developed block falls from 22.45 to 18.9. I do not claim that this is the

optimal arrangement of property rights, so these �gures represent a lower bound on the possible

e�ect of spatial reorganization.

The results highlight the tension between discouraging free riding and encouraging e�cient cumu-

lative research in the design of property rights over innovations. In this setting, there are ranges of

the policy space in which strengthening property rights leads to a marginal improvement in surplus

and ranges where weakening property rights is optimal. This trade o� applies in other settings,

for example in de�ning the breadth of patents, regulations about the release of data from clinical

trials, and the property rights conditions attached to public funding of research. The quantitative

results on the spatial assignment of licenses can be thought of as an example of decentralized

research where a principal (here, the government) assigns research projects to independent agents

(here, �rms). The results suggest that there are signi�cant gains from assignments of projects

that minimize the potential for information spillovers across agents. This �nding could be applied

to, for example, publicly funded research e�orts that coordinate the activity of many independent

scientists.

This paper contributes to the large literature on �rms' incentives to conduct R&D (Arrow, 1971;

Dasgupta and Stiglitz, 1980; Spence, 1984). In particular, I build on recent papers that ask whether

and to what extent intellectual property rights hinder subsequent innovation (Murray and Stern,

2007; Williams, 2013; Murray et al., 2016). Both Williams (2013) and Murray et al. (2016) address

this issue in a similar spirit to this paper, by focusing on speci�c settings where the set of possible

research projects and cumulative nature of research is well de�ned, rather than looking at research
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in general and using metrics such as patent citations to measure cumulative innovation (see for

example, Ja�e, Trajtenberg, and Henderson, 1993). I contribute to this literature by quantifying

the trade o� between this e�ect on cumulative research and the free riding incentive that has

been discussed in the theory literature (Hendricks and Kovenock, 1989; Bolton and Farrell, 1990;

Bolton and Harris, 1999). This paper di�ers from much of the innovation literature by using

a structural model of the �rm's sequential research (here, exploration) problem to quantify the

e�ects of information externalities and alternative property rights policies.

The results in this paper also contribute to an existing empirical literature on the e�ect of infor-

mation externalities in oil exploration. Much of this literature, summarized by Porter (1995) and

Haile, Hendricks, and Porter (2010), has focused on bidding incentives in license auctions using

data from the Gulf of Mexico. Less attention has been given to the post-licensing exploration

incentives induced by di�erent property rights policies. Notable exceptions include Hendricks

and Porter (1996), who show that the probability of exploration on tracts in the Gulf of Mexico

increases sharply when �rms drilling licenses are close to expiry, and Lin (2009), who �nds no

evidence that �rms are more likely to drill exploration wells after neighboring tracts are explored.

The descriptive results I present are closest to those of Levitt (2016), who shows how exploration

decisions respond to past well outcomes using data from Alberta and �nds evidence of limited

information spillovers across �rms operating within the same region. I show how these spillovers

vary with distance and the spatial distribution of drilling licenses.

Existing papers on oil and gas exploration that estimate structural models of the �rm's exploration

problem include Levitt (2009), Lin (2013), Agerton (2018), and Steck (2018). The model I estimate

in this paper di�ers from existing work by incorporating both Bayesian learning with spatially

correlated beliefs and information leakage across �rms. This allows me to simulate exploration

paths under counterfactual policies which change the dependence of each �rm's beliefs on the

results of other �rms' exploration wells, for example under di�erent spatial assignments of blocks

to �rms. Steck (2018) uses a closely related dynamic model of the �rm's decision of when to

drill in the presence of social learning about the optimal inputs to hydraulic fracturing. Steck's

�nding of a signi�cant free riding e�ect when there is uncertainty about the optimal technology is

complementary to the �ndings of this paper, which measures the free riding e�ect in the presence

of uncertainty about the location of oil deposits.

Other related papers in the economics of oil and gas exploration include Kellogg (2011), who pro-

vides evidence of learning about drilling technology, showing that pairs of oil production companies

and drilling contractors develop relationship-speci�c knowledge, and Covert (2015), who investi-

gates �rm learning about the optimal drilling technology at di�erent locations in North Dakota's

Bakken Shale. Covert's methodology is particularly close to mine, as he also uses a Gaussian

process to model �rms' beliefs about the e�ectiveness of di�erent drilling technologies in di�erent

locations. The results I present in Section 4, which show that �rms are more likely to drill explo-
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ration wells in locations where the outcome is more uncertain, contrast with the �ndings of Covert

(2015), who shows that oil �rms do not actively experiment with fracking technology when the

optimal choice of inputs in uncertain.

Finally, the procedure used to estimate the structural model of the �rm's exploration problem

builds on the literature on estimation of dynamic games using conditional choice probability

methods, following Hotz and Miller (1993), Hotz, Miller, Sanders, and Smith (1994), and Ba-

jari, Benkard, and Levin (2007). In particular, I extend these methods to a setting in which the

econometrician is uninformed about each agent's information set. The procedure I propose to deal

with this latent state variable is less generally applicable but less computationally intensive than

the Expectation-Maximization procedure proposed by Arcidiacono and Miller (2011).

The remainder of this paper proceeds as follows. Section 2 provides an overview of the setting

and a summary of the data. Section 3 presents a model of spatial beliefs about the location of

oil deposits. Section 4 presents reduced form results that provide evidence of spatial learning,

information spillovers, and free riding. In Section 5 I develop a dynamic structural model of

optimal exploration with information spillovers, and in Section 6 I discuss estimation of the model.

Results and policy counterfactuals are presented in Sections 7 and 8. Section 9 concludes.

2 UK Oil Exploration: Setting and Data

I use data covering the history of oil drilling in the UK Continental Shelf (UKCS) from 1964 to

1990. Oil exploration and production on the UKCS is carried out by private companies who hold

drilling licenses issued by the government. The �rst such licenses were issued in 1964, and the

�rst successful (oil yielding) well was drilled in 1969. Discoveries of the large Forties and Brent oil

�elds followed in 1970 and 1971. Drilling activity took o� after the oil price shock of 1973, and by

the 1980s the North Sea was an important producer of oil and gas. I focus on the region of the

UKCS north of 55°N and east of 2°W , mapped in Figure 1, which is bordered on the north and

east by the Norwegian and Faroese economic zones. This region contains the main oil producing

areas of the North Sea and has few natural gas �elds, which are mostly south of 55°N .

2.1 Technology

O�shore oil production can be divided into two phases of investment and two distinct technologies.

First, oil reservoirs must be located through the drilling of exploration wells. These wells are

typically drilled from mobile rigs or drill ships and generate information about the geology under

the seabed at a particular point, including the presence or absence of oil in that location. It is

important to note that the results of a single exploration well provide limited information about
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the size of an oil deposit, and many exploration wells must be drilled to estimate the volume of a

reservoir. When a su�ciently large oil �eld has been located, the �eld is developed. This second

phase of investment involves the construction of a production platform, a large static facility

typically anchored to the sea bed by stilts or concrete columns with the capacity to extract large

volumes of oil.

I observe the coordinates and operating �rm of every exploration well drilled and development

platform constructed from 1964 to 1990. The left panel of Figure 1 maps exploration wells in the

relevant region. For each exploration well, I observe a binary outcome - whether or not it was

successful. In industry terms, a successful exploration well is one that encounters an �oil column�,

and an unsuccessful well is a �dry hole�. In reality, although exploration wells yield more complex

geological data, the success rate of wells based on a binary wet/dry classi�cation is an important

statistic in determining whether to develop, continue exploring, or abandon a region. See for

example Lerche and MacKay (1995) and Bickel and Smith (2006) who present models of optimal

sequential exploration decisions based on binary signals. I observe each development platform's

monthly oil and gas production in m3 up to the year 2000.

2.2 Regulation

The UKCS is divided into blocks measuring 12x10 nautical miles (approx. 22x18 km). These blocks

are indicated by the grid squares on the maps in Figure 1. The UK government holds licensing

rounds at irregular intervals (once every 1 to 2 years), during which licenses that grant drilling

rights over blocks are issued to oil and gas companies. Unlike in many countries, drilling rights are

not allocated by auctions. Instead, the government announces a set of blocks that are available,

and �rms submit applications which consist of a list of blocks, a portfolio of research on the geology

and potential productivity of the areas requested, a proposed drilling program, and evidence

of technical and �nancial capacity. Applications for each block are evaluated by government

geoscientists. Although a formal scoring rubric allocates points for a large number of assessment

criteria including �nancial competency, track record, use of new technology, and the extent and

feasibility of the proposed drilling program, the assessment process allows government scientists

and evaluators to exercise discretion in determining the allocation of blocks to �rms. Although the

evaluation criteria have changed over time, the discretionary system itself has remained relatively

unchanged since 1964.2

License holders pay an annual per-block fee, and are subject to 12.5% royalty payments on the

2A few blocks were o�ered at auction in the early 1970s, but this experiment was determined to be unsuccessful.
According to a regulatory manager at the Oil and Gas Authority (OGA), the result of the auctions was that �the
Treasury got a whole bunch of money but nobody drilled any wells.� By contrast, the discretionary system has
�stood the test of time�. The belief among UK regulators is that auctions divert money away from �rms' drilling
budgets.
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gross value of all oil extracted. Licenses have an initial period of 4 or 6 years during which �rms

are required to carry out a minimum work requirement. I refer to the end of this period as the

license's work date. Minimum work requirements are typically light, even in highly active areas.

During the 1970s �3 exploration wells per... 7 blocks became the norm� in the main �contested�

areas (Kemp, 2012a p. 58). Licenses in less contested �frontier� areas often did not require any

drilling, only seismic analysis.

Figure 1: Wells and License Blocks

Notes: Grid squares are license blocks. The left panel plots the location of all exploration wells drilled from 1964
to 1990. The right panel records license holders for each block in January 1975. Note that if multiple �rms hold
licenses on separate sections of a block, only one of those �rms (chosen at random) is represented on this map.

I observe the history of license allocations for all blocks. In assigning blocks to �rms I make

two important simplifying assumptions. First, I focus only on the �operator� �rm for each block.

Licenses are often issued to consortia of �rms, each of which hold some share of equity on the block.

The operator, typically the largest equity holder, is given responsibility for day to day operations

and decision making. Non-operator equity holders are typically smaller oil companies that do

not operate any blocks themselves, and are often banks or other �nancial institutions. Major oil

companies do enter joint ventures, with one of the companies acting as operator, but these are

typically long lasting alliances rather than block by block decisions.3 In the main analysis below,

I will be ignoring secondary equity holders and treating the operating �rm as the sole decision

3For example, 97% of blocks operated by Shell between 1964 and 1990 were actually licensed to Shell and Esso
in a 50-50 split. Esso was at some point the operator of 16 unique blocks, compared to more than 740 blocks that
were joint ventures with Shell. Only 8.6% of block-months operated by one of the top 5 �rms (who together operate
more than 50% of all block-months) have another top 5 �rms as a secondary equity holder. This falls to 2.8%
among the top 4 �rms.

9



maker, with all secondary equity holders being passive investors.4 Second, licenses are sometimes

issued over parts of blocks, splitting the original blocks into smaller areas that can be held by

di�erent �rms. All of the analysis below will take place at the block level. Therefore, if two �rms

have drilling rights on the two halves of block j, I will record them both as having independent

drilling rights on block j. In practice, 88.2% of licensed block-months have only one license holder.

11.5% of block-months have two license holders and a negligible fraction have more than two.

Subject to these simpli�cations, the right panel of Figure 1 maps the locations of licensed blocks

operated by the 5 largest �rms in January 1975. There are 73 unique operators between 1964 and

1990, but 90% of block-months are operated by one of the top 25 �rms, and over 50% are operated

by one of the top 5. Appendix Figure A1 illustrates the distribution of licenses at the block-month

level across �rms.

A �nal set of regulations de�ne property rights over the information generated by wells. The

production of development platforms is reported to the government and published on a monthly

basis. Data from exploration wells, including whether or not the well was successful, is property of

the �rm for the �rst �ve years after a well is drilled. After this con�dentiality period, well data is

reported to the government and made publicly available. In reality there is likely to be information

�ow between �rms during this con�dentiality period for a number of reasons: �rms can exchange

or sell well data, information can leak through shared employees, contractors, or investors, and the

activities associated with a successful exploration well might be visibly di�erent than the activities

associated with an unsuccessful exploration well. The extent to which information �ows between

�rms during this con�dentiality period is an object of interest in the empirical analysis that follows.

2.3 Data

Table 1 contains summary statistics describing the data. Observations are at the �rm-block level.

That is, if a particular block is licensed multiple times to di�erent �rms, it appears in Table 1 as

many times as it is licensed. There are a total of 628 blocks ever licensed and 1470 �rm-block

pairs between 1964 and 1990. I focus on two actions - the drilling of exploration wells and the

development of blocks. I consider the development of a block as a one o� decision to invest in a

development platform. I record a block as being developed on the drill date of the �rst development

well. In reality, this would come several months after construction of the development platform

begins. I consider development to be a terminal action. Once a block is developed, I drop it from

the data.

4Appendix Table A4 presents regressions of drilling probability on the distribution of surrounding licenses that
suggest this is a reasonable assumption. The number of nearby licenses operated by the same �rm as block j has
a consistent, statistically signi�cant positive e�ect on the probability of exploration on block j. The number of
nearby licenses with the same secondary equity holders as block j, on which the operator of block j is a secondary
equity holder, and on which one of the secondary equity holders on block j is the operator, all have no statistically
signi�cant e�ect on drilling probability.
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Table 1: Summary Statistics: Blocks & Wells

Firm-Blocks All Explored Exp. &

Devel-

oped

Exp. &

Not

Dev.

Not

Exp.

N 1470 721 160 561 749

Share Explored .490 1.000 1.000 1.000 0.000

Share Developed .120 .222 1.000 0.000 .021

First Exp. After Work Date . .227 .280 .215 .

Own Share of Nearby Blocks:

Mean .199 .178 .181 .177 .219

SD .217 .199 .206 .197 .231

Exploration Wells per Block 2.002 4.082 10.138 2.355 0.000

Share Successful .199 .199 .444 .129 .

Notes: Table records statistics on all license-block pairs active between 1964 and 1990. In particular, if a block
is licensed to multiple �rms it appears multiple times in this Table. Each column records statistics on subsets of
license-blocks de�ned according to whether they are ever explored or developed. Own share of nearby blocks is
de�ned as the share of license-blocks that are at most third degree neighbors that are licensed to the same �rm.

The second column of Table 1 records statistics on the set of �rm-blocks that are ever explored - that

is, those �rm-blocks where at least one exploration well was drilled - and the third column records

statistics for those �rm-blocks that are ever developed. 49% of �rm-blocks are ever explored,

and among these, 22% are developed. Note that the information generated by a single well is

insu�cient to establish the size of an oil reservoir, and �rms must drill many exploration wells on

a block before making the decision to develop. On average, over 10 exploration wells are drilled

before a block is developed, and 2.3 exploration wells are drilled on blocks that are explored but

not developed. The bottom row of Table 1 records the success rate of exploration wells across the

di�erent types of �rm-block. 44% of exploration wells are successful on blocks that are eventually

developed, while only 13% of wells are successful on blocks that are never developed. The success

rate of exploration wells on a block is correlated withe the size of any underlying oil reservoir.

Thus, if an initial exploration well yields oil, but subsequent wells do not, the block is likely to

only hold small oil deposits and is unlikely to be developed. Figure 2 illustrates the distribution of

estimated reserves in log millions of barrels over all developed blocks.5 The distribution is plotted

separately for four quartiles of the exploration success rate. There is a positive, approximately

linear relationship between exploration success rate prior to development and log estimated reserves

Note that the work requirement policy leaves signi�cant scope for �rms to delay exploration. The

work requirement typically demands at most one exploration well be drilled per block, but it is

clear that many more than one exploration well must be drilled before a block is developed. While

5The methodology used to estimate reserves is outlined in Appendix C.
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Figure 2: Estimated Reserves
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Notes: Figure records the distribution of estimated oil reserve volume, measured in log millions of barrels, across
all developed blocks in the relevant area. The box plot markers record the lower adjacent value, 25th percentile,
median, 75th percentile, and upper adjacent value. The distribution is plotted separately for four subsets of blocks
de�ned by the quartiles of the pre-development exploration well success rate. A regression of log estimated reserves
on success rate has a slope coe�cient of 5.990 with a standard error of 0.964.

the work requirement policy is therefore likely to hasten the drilling of the �rst exploration well on

a block, there are no requirements on the speed with which the subsequent program of exploration

must take place. The fourth row of Table 1 indicates that almost a quarter of blocks that are ever

explored are �rst explored after the work requirement date. These �ndings corroborate claims from

industry literature that indicate the terms of drilling licenses issued in the UK are considerably

more generous than those issued, for example, in the Gulf of Mexico, and provide considerable

room for �rms to �stockpile� unexplored and undeveloped acreage for many years (Gordon, 2015).

3 A Model of Spatially Correlated Beliefs

The e�ect of information externalities on �rms' exploration decisions depends on the spatial ar-

rangement of licenses, the extent to which �rms can observe the results of each other's wells, and

on the correlation of exploration results at di�erent locations. In Appendix A I show that in a

simple two �rm, two block model, spatial correlation in well outcomes reduces the equilibrium rate

of exploration below the social optimum. The magnitude of this free riding e�ect is determined by

the extent to which well results are correlated over space. In particular, the more correlated are

outcomes on neighboring blocks, the lower the equilibrium rate of exploration.

In this section, I measure this spatial correlation by estimating a statistical model of the distribution
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of oil that allows the results of exploration wells at di�erent locations to be correlated. By �tting

the model to data on the outcomes of all exploration wells drilled between 1964 and 1990, I obtain

an estimate of the extent to which this covariance of well outcomes declines with distance. I

interpret the estimated model as describing the true spatial correlation of oil deposits determined

by underlying geology.

I then show how this statistical model can be used as a Bayesian prior about the distribution of oil.

If �rms know the true parameter values, then the estimated model implies a Bayesian updating

rule for �rms with rational beliefs. In particular, �rms' posterior beliefs about the probability

of exploration well success at a given location are a function of past well outcomes at nearby

locations. The true correlation of well outcomes informs the extent to which �rms should make

inferences over space when updating their beliefs after observing well outcomes. This model of

spatial learning allows me to compute �rms' posterior beliefs about the location of oil deposits

after observing di�erent sets of wells.

3.1 Statistical Model of the Distribution of Oil

I start by describing a statistical model of the distribution of oil over space. I model the probability

that an exploration well at a particular location is successful as a continuous function over space

drawn from a Gaussian process. This model assumes that the location of oil is distributed randomly

over space but allows spatial correlation - the outcomes of exploration wells close to each other

are highly correlated and the degree of correlation declines with distance. A draw from this

process is a continuous function that, depending on the parameters of the process, can have many

local maxima corresponding to separate clusters of oil �elds (see Appendix Figure A2 for a one

dimensional example). As I discuss further below, Gaussian processes are widely used in natural

resource exploration to model the spatial distribution of geological features (see for example Hohn,

1999).

Formally, let ρ(X) : X → [0, 1] be a function that de�nes the probability of exploration well

success at locations X ∈ X. I model ρ(X) as being drawn from a logistic Gaussian process G(ρ)

over the space X.6 In particular, for any location X,

ρ(X) ≡ ρ(λ(X)) =
1

1 + exp(−λ(X))
, (1)

where λ(X) is a continuous function fromX to R. Equation 1 is a logistic function that �squashes�
6If well success rates were independent across locations j, a natural model would draw ρj ∈ [0, 1] from a beta

distribution. However, it is likely that well outcomes are correlated across space. Indeed, the results presented
below in Figure 6 indicate that �rms' exploration decisions on block j respond to the results of exploration wells
on nearby blocks. There is no natural multivariate analogue of the beta distribution that allows me to specify a
covariance between ρj and ρk for j 6= k.
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λ(X) so that ρ(X) ∈ [0, 1].7

The function λ(X) is drawn from a Gaussian process with mean function µ(X) and covariance

function κ(X,X ′). This means that for any �nite collection of K locations {1, ..., K}, the vector
(λ(X1), ..., λ(XK)) is a multivariate normal random variable with mean (µ(X1), ..., µ(XK)) and a

covariance matrix with (j, k) element κ(Xj, Xk). The prior mean function µ : X → R is assumed

to be smooth and the covariance function κ : X × X → R must be such that the resulting

covariance matrix for any K locations is symmetric and positive semi-de�nite. One covariance

function that satis�es these assumptions is the square exponential covariance function (Rasmussen

and Williams, 2006) given by

κ(X,X ′) = ω2exp

(
− |X −X ′|2

2`2

)
. (2)

The parameter ω controls the variance of the process. In particular, for any X, the marginal

distribution of λ(X) is given by λ(X) ∼ N(µ(X), ω). The parameter ` controls the covariance

between λ(X) and λ(X ′) for X 6= X ′. Notice that as the distance |X −X ′| between two locations

increases, the covariance falls at a rate proportional to `. As |X −X ′| goes to 0, the correlation

of λ(X) and λ(X ′) goes to 1, so draws from this process are continuous functions.

I estimate the parameters, (µ(X), ω, `), of the Gaussian process model using data on the binary

outcomes of all well exploration wells drilled between 1964 and 1990. Let s = (s1, s2, ..., sW ) be

a vector of length W where W is the total number of exploration wells drilled by all �rms and

sw = 1 if well s was successful, and otherwise sw = 0. Let X = (X1, ..., XW ) be a matrix recording

the block centroid coordinates of each well. Then the likelihood of well outcomes s conditional on

well locations X is given by:8

L(s|X,µ, ω, `) =

∫ ( W∏
w=1

ρ(Xw)1(sw=1)(1− ρ(Xw))1(sw=0)

)
dG(ρ;µ, ω, `) (3)

The integrand is the product of Bernoulli likelihoods for each well for a particular draw of ρ, which

encodes success probabilities at every location Xw. The integral is over draws of ρ with respect

to the distribution G(ρ), which is a function of the parameters. Note that I assume a �at mean

function, µ(X) = µ(X ′) = µ.

7If well success rates were independent across locations, a natural model would draw ρ(X) ∈ [0, 1] from a beta
distribution. However, it is likely that well outcomes are correlated across space. There is no natural multivariate
analogue of the beta distribution that allows me to specify a covariance between ρ(X) and ρ(X ′).

8This is a partial likelihood in the sense of Cox (1975). In Appendix B I provide a condition on the process that
determines well locations X under which this is a valid likelihood function. See also chapter 13.8 of Wooldridge
(2002). I use the hyperparameter estimation code provided by Rasmussen and Williams (2006) to implement the
maximum likelihood estimation. The integral in equation 3 is approximated using Laplace's method. See section
5.5 of Rasmussen and Williams (2006) for details.
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Table 2 records maximum likelihood estimates. The �rst column records the estimated values of

the three parameters of the Gaussian process, while the second column records implied statistics

of the distribution of ρ(X) at the estimated parameters - the expected success probability, the

standard deviation of success probability, and the correlation of success probability between two

locations one block (18 km) away from each other. The parameters are identi�ed by the empirical

analogues of these statistics in the well outcome data. Most importantly, the estimated parameter

` captures the true spatial correlation of exploration well outcomes.

Table 2: Oil Process Parameters

Parameter Estimate Implied Statistics
µ -1.728 E(ρ(X)) 0.207

(0.202)

ω 1.2664 SD(ρ(X)) 0.179
(0.146)

` 0.862 Corr(ρ(0), ρ(1)) 0.471
(0.102)

Notes: The �rst column records parameter estimates from �tting the likelihood function given by equation 3 to
data on the outcome of all exploration wells drilled between 1964 and 1990 on the relevant area of the North Sea.
Standard errors computed using the Hessian of the likelihood function in parentheses. The second column records
the implied expected probability of success, the standard deviation of the prior beliefs about probability of success,
and the correlation of success probability between two locations one block (18 km) away from each other.

3.2 Interpretation as a Bayesian Prior

The estimated parameters, (µ, ω, `), can be thought of as describing primitive geological charac-

teristics that determine the distribution of oil deposits over space. If these parameters are known

by �rms and the Gaussian process model is a good approximation to the geological process that

generates the distribution of oil, then the estimated process G(ρ|µ, ω, `) describes the rational

beliefs that �rms should hold about the probability of exploration well success at each location

X prior to observing the outcome of any wells. The parameters of this prior also determine how

beliefs are updated according to Bayes' rule after well results are observed.

In particular, �rms whose prior is described by G(ρ) update their beliefs over the entire space X

after observing a success or failure at a particular location X. Posterior beliefs at locations closer

to X will be updated more than those at more distant locations. Figure 3 illustrates how posterior

beliefs respond to well outcomes at di�erent distances under the estimated parameters. The solid

purple line illustrates the �rm's constant prior expected probability of success of around 0.2.9 The

9The assumption of a constant prior mean could be relaxed to allow µ to depend on, for example, prior knowledge
of geological features. µ represents �rms' mean beliefs in 1964, before any exploratory drilling took place. Brennand
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dotted yellow line represents the �rm's posterior expected probability of success after observing

one successful well at 0 on the x-axis. The dashed red and blue lines correspond to posteriors after

observing two and three successful wells at the same location. Notice that the expected probability

of success increases most at the well location, and decreases smoothly at more distant locations.

The true spatial correlation of well outcomes, captured by the parameter `, determines the rate at

which belief updating declines with distance. In particular, the estimated value of ` implies that

�rms should update their beliefs about the probability of success in response to well outcomes on

neighboring blocks and those two blocks away, but not in response to well outcomes three or more

blocks away. At these distances, the correlation in well outcomes dies out and thus so does the

implied response of beliefs to well outcomes.10

Figure 3: Response of Beliefs to Well Outcomes
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Notes: Figure depicts prior and posterior expected value of ρ(X) in a one dimensional space for posteriors computed
after observing one, two, and three successful wells at X = 0. The parameters (µ, ω, `) of the logistic Gaussian
process prior are set to the estimated values from Table 2.

Formally, let w ∈ W index wells, let s(w) ∈ {0, 1} be the outcome of well w, and let Xw denote

the location of well w. If prior beliefs are given by the logistic Gaussian Process G(ρ) then the

et al. (1998) emphasize that knowledge of subsea geology was extremely limited before exploration began. Using a
modern map of actual geological features as inputs to the prior mean would therefore be inappropriate. In addition,
as the maps in Appendix Figure A8 indicate, exploration did not begin in a particularly productive area, and the
geographic focus of exploration shifted dramatically after the �rst early discoveries. For these reasons, I believe it
is not unreasonable to adopt a constant prior mean.

10In Appendix Figure A3 I illustrate belief updating under di�erent values of ` in a numerical example.
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posterior beliefs G′(ρ) after observing {(s(w), Xw)}w∈W are given by

G′(ρ) = B(G(ρ), {(s(w), Xw)}w∈W ), (4)

where B(·) is a Bayesian updating operator. Since the signals that �rms receive are binary, there is

no analytical expression for the posterior beliefs given the Gaussian prior and the observed signals.

In particular, G′(ρ) is non-Gaussian. I compute posterior distributions using the Laplace approxi-

mation technique of Rasmussen and Williams (2006) which provides a Gaussian approximation to

the non-Gaussian posterior G′(ρ). I discuss the procedure used to compute B(·) in more detail in

Appendix B.

Using the Bayesian updating rule it is possible to generate posterior beliefs for any set of observed

well realizations. Figure 4 is a map of posterior beliefs for a �rm that observed the outcome

of all exploration wells drilled from 1964-1990. In the left panel, lighter regions have a higher

posterior expected probability of success, and correspond to areas where more successful wells were

drilled. Darker regions indicate lower posterior expected probability of success, and correspond to

areas where more unsuccessful wells were drilled. The right panel records the posterior standard

deviation of beliefs, with darker regions indicating less uncertainty. In general, the standard

deviation of posterior beliefs is lower in regions where more exploration wells have been drilled.11

The Gaussian process model is a parsimonious approximation to more complex inferences about

nearby geology made by geologists based on exploration well results. The method of spatial

interpolation between observed wells that is achieved by computing the Gaussian Process posterior

is known in the geostatistics literature as Kriging (see for example standard geostatistics textbooks

such as Hohn, 1999). Kriging is a widely applied statistical technique for making predictions

about the distribution of geological features, including oil deposits, over space. Standard Kriging

of a continuous variable corresponds exactly to Bayesian updating of a Gaussian process with

continuous, normally distributed signals. The model of beliefs employed here corresponds to �trans-

Gaussian Kriging�, so called because of the use of a transformed Gaussian distribution (Diggle,

Tawn, and Moyeed, 1998). Whether or not we think these beliefs are a correct representation of

how oil deposits are distributed, the model of learning described above is representative of how

geologists (and presumably oil companies) think.

In addition to being representative of industry techniques, the model of spatial beliefs is closely

linked to the literature on Gaussian processes in machine learning, as summarized by Rasmussen

and Williams (2006). In this literature, optimal Bayesian learning based on Gaussian process priors

is used to construct algorithms for e�ciently maximizing unknown functions. In a close analogue

to the machine learning problem studied by, for example, Osborne et al. (2009), exploration

11This is not necessarily the case everywhere. In particular, if the realized outcome of a well at location X is
unlikely given prior beliefs, posterior variance around X can increase.
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Figure 4: Posterior Oil Well Probabilities

Notes: The left panel is a map of the posterior expected probability of success of a �rm with prior beliefs given by
the parameters in Table 2 that observes every well drilled between 1964 and 1990. The right panel is a map of the
posterior standard deviation of beliefs for the same �rm.

wells can be thought of as costly evaluations of a function mapping geographical locations to

the presence of oil, with the �rm's problem being to locate the largest oil deposits at minimum

cost. The logistic Gaussian Process model of beliefs is a �exible (in terms of covariance and mean

function speci�cation) and computationally tractable model of spatial updating of beliefs with

binary signals that is applicable to settings beyond oil exploration. See for example Hodgson and

Lewis (2018) on learning in consumer search.

3.3 Beliefs and Development Payo�s

In what follows, I adopt the additional simplifying assumption that �rms have beliefs about the

probability of success at the block level. In particular, let ρj = ρ(Xj) where Xj are the coordinates

of the centroid of block j ∈ {1, ..., J}. When an exploration well is drilled anywhere on block j,

�rms update their beliefs as if the success of that well is drawn with probability ρj. One way to

rationalize this assumption is to assume that the locations of exploration wells within blocks are

random.12 The probability of success, ρj, then has a natural interpretation as the share of block j

that contains oil, and the observed success rate is an estimate of this probability which becomes

more precise as the number of wells on the block increases. For example, Figure 5 illustrates a

12In particular, that well coordinates are drawn from a uniform distribution over the area of the block.
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stylized example in which wells have been drilled at random locations within two blocks. In the

left block, the oil �eld occupies one-third of the area, and in the right block, the oil �eld occupies

one-�fth of the area. The success rates, indicated by the ratio of green wells to all wells, are equal

to the sizes of the oil �elds - with one third of wells successful on the left block and one �fth

successful on the right block.

Figure 5: Success Rate and Reserve Size

ρj = 0.333 ρj = 0.2

Notes: Stylized example. Each panel represents a block. The points are oil wells and the shaded area is the oil
�eld. Green wells are �successful� (that is, they encountered an oil column), and red wells are �unsuccessful�. The
probability of exploration well success, ρj ,on each block corresponds to the share of that block occupied by the oil
�eld.

Formally, I assume that the potential oil revenue yielded by block j, πj, is drawn from a distribution

Γ(π|ρj, P ) where P is the oil price and
∂E(πj)

∂ρj
> 0. A higher exploration success probability ρj

corresponds to higher expected oil revenue. Beliefs about exploration well success G(ρ) then imply

beliefs about the potential oil revenue on block j given by:

Γ̃j(π|G,P ) =

∫
Γ(π|ρj, P )dG(ρ). (5)

This interpretation of block-level success rates is supported by positive relationship between the

realized exploration success rate and estimated oil reserves on developed blocks, illustrated by

Figure 2. Note that the assumption that probability of success is a primitive feature of a block and

within-block location choice is random implies that the realized success rate on a block should be

constant over time. This might not be true if, for example, �rms continue to drill near previous

successful wells within the block. I test this implication in Appendix Table A5. I present the

results of regressions that show that within blocks, the success rate is not signi�cantly higher or

lower for later wells than for earlier wells. That is, the e�ect of the well sequence number on success

probability is not statistically signi�cant. This is consistent with a model in which within-block

well locations are drawn at random.
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4 Descriptive Evidence

The estimated model of beliefs suggests that there is high degree of correlation between well

outcomes on neighboring blocks. This spatial correlation is estimated from data on well outcomes

at di�erent locations. In this section, I use data on �rms' drilling decisions to test whether �rm

behavior is consistent with the estimated model of rational beliefs.

I provide evidence that �rms respond to the results of past wells, both their own wells and those of

other �rms, in a way that is consistent with the estimated spatial correlation of well results. I then

use the estimated model of beliefs to quantify the free riding incentive faced by �rms operating in

the North Sea. I provide direct evidence of free riding by showing how drilling behavior changes

when the spatial arrangement of licenses changes.

4.1 Exploration Drilling Patterns

The estimated spatial correlation illustrated by Figure 3 suggests that �rms should make inferences

across space based on past well results. I test this prediction using data on �rm behavior. Let

Sucjdot be the cumulative number of successful wells drilled on blocks distance d from block j

before date t by �rms o ∈ {f,−f}, where −f indicates all �rms other than �rm f . Failjdot is

analogously de�ned as the cumulative number of past unsuccessful wells. To provide suggestive

evidence of the extent to which �rms' exploratory drilling decisions are correlated with the results

of past wells drilled by di�erent �rms at di�erent locations, I estimate the following regression

speci�cation using OLS:

Explorefjt = αf + βj + γt +
∑
d

∑
o∈{f,−f}

gdo (Sucjdot, Failjdot)) + εfjt. (6)

Where gdo is a �exible function of cumulative successful and successful well counts for wells of type

(d, o). Explorefjt is an indicator for whether or not �rm f drilled an exploration well on block j

in month t. Notice that the speci�cation includes �rm, block, and month �xed e�ects. This means

that the e�ects of past wells are identi�ed by within-block changes in the set of well results over

time, and not by the fact that some blocks have higher average success rates than others and these

blocks tend to be explored more.

Figure 6 records the estimated marginal e�ect of an the �rst past well of each type on the probability

of exploration. I include three distance bands in the regression - wells on the same block, those 1-3

blocks away, and those 4-6 blocks away. Solid red circles indicate the e�ect on the probability of

�rm f drilling an exploration well on block j of an additional past successful well drilled by �rm

f at each distance. Hollow red circles record this e�ect for unsuccessful past wells drilled by �rm

f . The results indicate that additional successful wells on the same block and 1-3 blocks away
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Figure 6: Response of Drilling Probability to Cumulative Past Results
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Notes: Points are the estimated marginal e�ect of each type of past well on Explorefjt from the speci�cation given
by equation 6 where gdo(·) is quadratic in each of the arguments. Marginal e�ects are computed for the �rst well of
each type. The y-axis is scaled by multiplying the e�ect by 104 and taking the log. Error bars are 95% con�dence
intervals computed using robust standard errors. All estimates are from one regression which includes quadratics
in each of the 8 types of past well. The mean of the dependent variable is 0.0161. Sample includes block-months in
the relevant region up to December 1990. An observation, (f, j, t) is in the sample if �rm f had drilling rights on
block j in month t, and block j had not yet been developed. I drop observations from highly explored regions where
the number of nearby own wells (those on 1st and 2nd degree neighboring blocks) is above the 95th percentile of
the distribution in the data.

signi�cantly increase the probability of subsequent exploration, and an additional unsuccessful

wells signi�cantly decrease the probability of subsequent exploration.

The e�ect of an additional same �rm, same block well is approximately 120% of the mean of the

dependent variable, Explorefjt, which is 0.0161, and the size of the e�ect is roughly equal for

successful and unsuccessful wells. The magnitude of the e�ect decreases with distance. Notice

that the y-axis of Figure 6 is on a log scale. The e�ect of past wells at a distance of 1-3 blocks is

about 10% of the e�ect of past same-block wells. The e�ect at distances of 4-6 blocks is on the

order of 1% of the same-block e�ect and is not statistically signi�cant.

Blue squares indicate the e�ect of past wells drilled by other �rms on �rm f 's probability of

exploration. The e�ects are of the same sign but have magnitudes between 20% and 50% of the

same-�rm well e�ects. As with the same-�rm e�ects, the other-�rm e�ects diminish with distance

and lose statistical signi�cance at distances of 4-6 blocks.13

These results suggest that �rm's decisions about where to drill depend on the results of nearby

13Since the regression includes block �xed e�ects, the e�ect of other �rm wells on the same block comes from
variation in the number of wells over time when multiple �rms hold licenses on the same block. See Section 2.2 for
discussion of how I assign blocks to �rms.
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past wells, both their own wells and those of their rivals. The probability of drilling on block j

responds both to the results of past wells on block j as well as to the results of wells on nearby

blocks, suggesting that �rms make inferences across space at distances consistent with the spatial

correlation of well results illustrated by Figure 3, with the size of the drilling response declining

with distance. Exploration probability is also more responsive to own-�rm exploration results than

to other-�rm exploration results, suggesting that information �ow across �rms is imperfect.14

In Appendix Table A6 I report analogous results for di�erent sub-periods of the data. These

results indicate that the ratio of the e�ect of wells 1-3 blocks away to the e�ect of wells on the

same block is relatively constant over time. Firms do not appear to have been systematically over-

or under-extrapolating across space during early exploration. This �nding is consistent with the

assumption that the �rms are learning about the location of oil, not about the true value of the

spatial covariance parameter ` which I assume is known to �rms ex-ante.

To test directly whether �rm behavior responds to changes in beliefs, I regress �rm exploration

decisions on model-implied posteriors. Since exploration wells generate information, and their

value is in informing �rms' future drilling decisions, a natural hypothesis is that the probability

of drilling an exploration well should be increasing in the expected information generated by that

well.15 For instance, the �rst exploration well drilled on a block should be more valuable than the

tenth because its marginal e�ect on beliefs is greater.

I compute the model-implied posterior beliefs for each block j, each month t, based on all wells

drilled before that month according to the Bayesian updating rule (4).16 I obtain Et(ρj), the

posterior mean, and V art(ρj), the posterior variance of beliefs about the probability of success

on block j, ρj. To measure the expected information gain of an additional well I obtain the

expected Kulback-Leibler divergence,KLj,t, between the prior and posterior distributions following

an additional exploration well for each (j, t).17

Column 1 of Table 3 records the coe�cients from a regression of KLj,t on the computed posterior

variance and a quadratic in posterior mean at (j, t). There is an inverse u-shaped relationship

14One potential concern is that these results could be explained by the arrival over time of public information
that is independent of drilling results and is correlated over space. To test of whether the information generated by
past wells is driving these results, I use the fact that the con�dentiality period on exploration data expires 5 years
after a well is drilled. In Appendix Figure A4 I show that moving an successful other-�rm well back in time by
more than 6 months has a positive and signi�cant e�ect on the probability of exploration. The e�ect is greatest for
wells close to the con�dentiality cuto�, drilled between 4.5 and 5 years ago. For wells that are older than 5 years,
there is no signi�cant e�ect, consistent with the outcomes of these wells already being public knowledge.

15This prediction is true in the simple model presented in Appendix A. In more general settings, it is not necessarily
the case that more informative wells are always more valuable. Note that the value of an exploration well is not
just the amount of information it generates, but its e�ect on the �rm's future behavior and payo�s.

16In this section, I compute beliefs as if all �rms observe the results of all other �rms' exploration wells. This
assumption is relaxed in the structural model developed in Section 5.

17The KL divergence is a measure of the di�erence between two distributions. It can be interpreted as the
information gain when moving from one distribution to another (see Kullback and Leibler, 1951, and Kullback,
1997). See Appendix B for details.
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between expected KL divergence and Et(ρj) that is maximized when Et(ρj) = 0.48. This re�ects

the classic result in information theory (see for example MacKay, 2003) that the information

generated by a Bernoulli random variable is maximized when the probability of success is 0.5.

There is a positive relationship between V art(ρj) and KLjt. It is clear that as variance goes to 0,

the change in beliefs from an additional well will also go to 0.

The second column of Table 3 presents estimated coe�cients from a regression of Explorefjt on

V art(ρj), a quadratic in Et(ρj), and (f, j) level �xed e�ects. Note that the coe�cients follow the

same pattern as those in the �rst column: �rms are less likely to drill exploration wells on blocks

with very high or very low expected probability of success, and are more likely to drill exploration

wells on blocks with higher variance in beliefs. Firm behavior aligns closely with the theoretical

relationship between moments of the posterior beliefs and the expected information generated by

exploration wells. This is con�rmed by the results in column 3, which presents the estimated

positive and signi�cant coe�cient from a regression of Explorefjt on KLjt.

Table 3: Response of Drilling Probability to Posterior Beliefs

Dependent Variable: KL Divergence Exploration Well Develop Block
Posterior Mean .547*** .275*** . .011***

(.001) (.062) . (.003)

Posterior Mean2 -.570*** -.188** . .

(.002) (.089) . .

Posterior Variance .092*** .029*** . .001

(.000) (.008) . (.001)

KL Divergence . . .190*** -.039***

. . (.070) (.010)

R2 .914 .045 .043 .077

N 95690 95330 95330 93569

Firm-Block and Month FE No Yes Yes No

Firm-Month FE No No No Yes

Notes: Standard errors clustered at the �rm-block level. Mean, variance, and KL divergence of posterior beliefs
computed for each (f, j, t) as if all wells drilled by all �rms up to month t−1 are observed. Sample is all undeveloped
�rm-block-months in the relevant region,. *** indicates signi�cance at the 99% level. ** indicates signi�cance at
the 95% level. * indicates signi�cance at the 90% level.

The last column of Table 3 present the results of a regression with Developfjt, an indicator for

whether �rm f developed block j in month t, as the dependent variable. As illustrated in Figure

2, a block's exploration well success rate is positively correlated with size of the oil �eld located on

that block. Consistent with this, the results indicate that probability of development is increasing

in E(ρj). In contrast to the exploration results there is a negative e�ect of KLjt on development

- the more information could be generated by an additional exploration well on a block, the less

likely is a �rm to develop that block.18

18The development regression includes a �rm-month �xed e�ect rather than a �rm-block �xed e�ect because
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4.2 The Value of Information and the Incentive to Free Ride

The results presented in Section 4.1 suggest that information spillovers across space and �rms have

a signi�cant e�ect on drilling behavior. To what extent do these externalities provide an incentive

for �rms to delay exploration and free ride o� the information generated by other �rms' wells?

Using the estimated model of beliefs, it is possible to perform a back of the envelope quanti�cation

of the incentive to delay exploration without invoking a further structural model of �rm behavior.

I consider a �rm f 's decision to delay drilling the �rst exploration well on block j by one year.

I suppose that the �rm's beliefs are given by the estimated prior process and that, each month,

each block held by another �rm is drilled with a �xed probability QE, which I set equal to the

empirical mean exploration rate of 0.0219. I further assume that �rm f observes the results of each

well drilled by another �rm with probability α. For a given arrangement of licenses, I run twelve

month simulations of other �rms' drilling behavior and update the beliefs of �rm f . For each

simulation, I calculate the information gained about block j by �rm f from observing the results

of other �rms' wells, and compare the mean information gain across simulations (in particular, the

expected Kullback-Leibler divergence between the �rm's prior beliefs and the posterior after 12

months) to the expected information gain from �rm f drilling its own exploration well on block j.

Table 4: Information Gain from Delay of Exploration

Other Firm Neighbors One Year Delay at α = 0.4
Percentile Same Block First Degree Second Degree Info. Generated Net Gain

1 0 0 0 0 -43.02
25 0 3 5 0.080 -15.42
50 0 5 9 0.120 -1.51
75 0 7 12 0.174 17.23
90 1 8 13 0.335 72.67
99 2 14 22 0.603 165.45

Notes: The �rst three columns report percentiles of the distribution of other �rm neighbors across all (f, j, t)
observations in the relevant area from 1964-1990. First and second degree neighbors are those one or two blocks
away (including diagonal neighbors). Columns 4 reports the mean information generated from 1000 12 month
simulations, as described in the text. Column 5 presents the implied net gain in millions of dollars from delaying
exploration for 12 months, as described in the text.

Table 4 presents the expected information generated from 12 month delay as a fraction of the

information generated by drilling an exploration well for six di�erent arrangements of licenses.

Each row corresponds to a license arrangement where the numbers of other �rms holding licenses

at di�erent distances from block j are drawn from percentiles of the empirical distribution. The

fourth column records the information generated from one year of delay when α = 0.4, as a fraction

of the information generated by drilling one exploration well. The information gain from delay is

development happens at most once within each (f, j), at the end of that �rm-block's time series. Results with
�rm-block �xed e�ects would therefore capture the fact that variance and KLjt tend to decline over time.
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increasing in the density of other �rm neighbors. For the 25th percentile arrangement, delaying

exploration by one year generates 8% of the information of an exploration well. For the 99th

percentile arrangement, delay achieves 60% of the information generation of an exploration well.

The �fth column records an approximation of the net gain in millions of dollars from delaying

exploration by one year, suggesting that �rms with an arrangement of neighboring licenses in the

1st, 25th, and 50th percentiles would not bene�t from delay, while �rms above the 75th percentile

would gain on net.19 To illustrate how these incentives change with the �ow of information be-

tween �rms, Appendix Figure A7 records the net gain from delay for di�erent license arrangement

percentiles and for values of α ∈ [0, 1]. The gain from delay is increasing in α.

These results suggest that, if there is su�cient �ow of information between �rms, variation in

spatial arrangement of licenses in the data should result in changes in the incentive to free ride by

delaying exploration. To provide direct empirical evidence that such free riding incentives matter,

I run regressions exploiting the variation in the spatial arrangement of licenses.

The number of licensed blocks in a region is likely to be correlated with, for example, the arrival

of information that is not captured by well outcomes or changes in region speci�c drilling costs.

To isolate the causal e�ect of changes in license distribution on the incentive to explore, I focus

on quasi-experimental variation by selecting (f, j, t) observations before and after discrete jumps

in the number of licenses issued, corresponding to the months before and after the government

announces the results of licensing rounds. In particular, I identify (f, j, t) observations for which

the total number of licensed blocks neighboring block j increases from the previous month. I

select nine month windows centered on these licensing events and index these windows with γ. For

observations in a licensing window, I de�ne ∆(f, j, t) ∈ {−4,−3, ..., 4} as the number of months

before or after the relevant licensing event. I estimate the following speci�cation on the set of

observations in licensing windows:

Explorefjt = αγ + α∆(f,j,t) + β1BlocksOwnfjt + β2BlocksOtherfjt +Xfjtδ + εfjt. (7)

Where Xfjt contains all the regressors in equation 6. BlocksOwnfjt is the number of neighboring

blocks licensed to �rm f and BlocksOtherfjt is the number of neighboring blocks licensed to other

�rms. The change in the number of licensed blocks near block j within a window is unlikely to

re�ect the arrival of new information about the productivity of block j, since issued licenses are the

result of applications that are made before the beginning of the window. Any changes in drilling

19Suppose the information generated from delay as a share of one well is s. If the cost of drilling an exploration
well is c, then delaying the �rst exploration well reduces the expected cost of exploration by sc. The cost of delay
is the resulting discounting of future pro�ts, V . If the annual discount rate is β, then I compute the net gain from
delay as sc − (1 − β)V . I set β = 0.9. I set V = 43.02 based Hunter's (2015) account of the per-block auction
revenue generated by one-o� auction licensing round held by the UK regulator in 1971, in�ated to millions of 2015
dollars. I set c = 34.55 based on the average per-well capital expenditure between 1970 and 2000 reported by the
regulator, in�ated to million of 2015 dollars.
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costs or arrival of information within each window is therefore likely uncorrelated with changes in

BlocksOwnfjt and BlocksOtherfjt.

Table 5: Regressions of Drilling Probability on Nearby Licenses

Exploration Well Develop Block

BlocksOwnfjt 4.739 . 3.300*** -.101

(5.800) . (.961) (.256)

BlocksOtherfjt -1.446 . .915*** -.059

(1.330) . (.267) (.064)

log(BlocksOwnfjt) . .028** . .
. (.014) . .

log(BlocksOtherfjt) . -.013*** . .
. (.004) . .

N 21971 21618 136430 136430

Firm-Block, and Month FE No No Yes Yes

Experiment Fixed E�ects Yes Yes No No

Coe�cients Scaled by 103 Yes No Yes Yes

Notes: Standard errors clustered at the �rm-block level. Observations are at the (f, j, t) level. Sample includes all
(f, j, t) observations that are within 4 months of a licensing event, for which the �rm f has held a license on block
j for at least 6 months. Block counts are of all licenses on block j and neighboring blocks on date t. *** indicates
signi�cance at the 99% level. ** indicates signi�cance at the 95% level. * indicates signi�cance at the 90% level.

The �rst column of Table 5 reports the coe�cients on BlocksOwnfjt and BlocksOtherfjt. Within-

window increases in the number of own-�rm blocks are correlated with increased exploration prob-

ability, and within-window increases in the number of other-�rm blocks are correlated with de-

creased exploration probability. The second column reports results using the log of BlocksOwnfjt

and BlocksOtherfjt, with both coe�cients signi�cant and of the same sign as in the �rst col-

umn. These results suggest that doubling the number of neighboring blocks licensed to �rm f

will increase the probability of exploration by �rm f on block j by 0.8 percentage points, and

doubling the number of blocks licensed to other �rms will reduce the probability of exploration by

0.4 percentage points. Notice that these e�ects are large relative to the mean of the dependent

variable, which is 0.016 in this sample. This �nding is suggestive of a signi�cant incentive to delay

investment in exploration when the probability that another �rm will explore nearby increases. In

particular, changes in the number of blocks licensed to other �rms should not change the value to

�rm f of the results of exploration on block j, but can increase the value of delaying exploration.

The third and fourth columns of Table 7 presents regressions of Explorefjt and Developfjt on

BlocksOwnfjt and BlocksOtherfjt that do not restrict the sample to licensing windows. Notice

that the probability of exploration is increasing in both measures of nearby licenses, but the e�ect

of BlocksOwnfjt is substantially larger. The distribution of licenses neighboring block j is not

signi�cantly correlated with the probability that block j is developed. It seems reasonable that

a �rm would not delay development on a block known to hold large reserves because of expected
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exploration by rivals on nearby blocks, and the revenue produced by a development well is not a

function of the number of surrounding blocks owned by the same �rm.20

In Appendix Figures A5 and A6 I present further evidence that is suggestive of free riding. In

particular, I reproduce a result from Hendricks and Porter (1996), who showed that the probability

of drilling an exploration well on unexplored tracts in the Gulf of Mexico increased near the drilling

deadline imposed by the tract lease. The authors argue that this delay until the end of the lease

term is evidence of a free riding incentive. I show that the same pattern obtains on North Sea

blocks when the drilling deadline (which, as discussed in Section 2, is not as strict as the deadline

imposed in the Gulf) approaches. I also show that this pattern obtains for license blocks with a

large number of other �rm license nearby, but is not present for blocks that are far from other �rm

licenses, consistent with the predictions presented in Table 4.

5 An Econometric Model of Optimal Exploration

To measure the extent to which information externalities a�ect industry surplus, I estimate a

structural econometric model of the �rm's exploration problem in which I assume that �rm beliefs

follow the logistic Gaussian process model of Section 3.2. I set up the �rm's problem by specifying

a full information game in which �rms observe the results of all wells. Motivated by the empiri-

cal �ndings described in Section 3, I then extend the model to one of asymmetric information in

which �rms do not observe the results of other �rms' wells with certainty. I describe a simplify-

ing assumption on �rm beliefs and specify an equilibrium concept that makes estimation of the

asymmetric information game feasible.

5.1 Full Information

I start by specifying a full information game played by a set of �rms F . Firms are indexed by

f , discrete time periods are indexed by t, and blocks are indexed by j. J is the set of all blocks.

Jft ⊂ J is the set of undeveloped blocks on which �rm f holds drilling rights at the beginning of

period t. J0t ⊂ J is the set of undeveloped blocks on which no �rm holds drilling rights at the

beginning of period t. Pt is the oil price.

Exploration wells are indexed by w, and each well is associated with an outcome s(w) ∈ {0, 1},
a block j(w), a �rm f(w), and a drill date t(w). The set of all locations and realizations of

exploration wells drilled on date t is given by Wt = {(j(w), s(w)) : t(w) = t}.
20One exception to this is the case of an oil reservoir which crosses multiple blocks operated by di�erent �rms. In

these cases the oil reservoir is �unitized� by regulation, and revenue is split proportionally between operators of the
blocks. This provision removes the �common pool� incentive discussed by Lin (2013) and the incentive to develop
an overlapping reservoir before a neighboring rival.
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The �rm's prior beliefs about the probability of exploration well success on each block are given by

the logistic Gaussian process G0 de�ned in equation X. Gft is �rm f 's posterior at the beginning

of period t. Under the assumption of full information �rms observe the results of all wells, so

Gft+1 = B(Gft,Wt) and Gft = Gt for all �rms f ∈ F , where B(·) is de�ned in equation 4.

The industry state at date t is described by

St = {Gt, {Jft}f∈F∪{0}, Pt}. (8)

Each period, the �rm makes two decisions sequentially. First, in the exploration stage, it selects

at most one block on which to drill an exploration well. Then, in the development stage, it selects

at most one block to develop.

Drilling an exploration well on block j incurs a cost which I allow to depend on the state, c(j,St)−
εftj. Developing block j incurs a cost κ − νftj. εftj and νfjt are private information cost shocks

drawn iid from logistic distributions with variance parameters σε and σν . Developing block j at

date t yields a random payo� πjt. Firms' beliefs about the distribution of payo�s on block j are

Γ̃j(π|Gt, Pt), de�ned in equation 5.

The timing of the game is as follows:

Exploration Stage

1. Given state St, each �rm f observes a vector of private cost shocks εft.

2. Firm f chooses an exploration action, aEft ∈ Jft ∪ {0}. If aEft 6= 0, then �rm f incurs an

exploration cost.

3. Exploration well results Wt are realized.

4. The industry state evolves to S ′t = {Gt+1, {Jft}f∈F∪{0}, Pt}.

Development Stage

1. Given state S ′t , each �rm f observes a vector of private cost shocks νft.

2. Firm f chooses a development action, aDft ∈ Jft ∪ {0}. If aDft 6= 0, then �rm f incurs a

development cost.

3. If aDft = j then the �rm f draws oil revenue πjt.
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4. The industry state evolves to St+1 = {Gt+1, {Jft+1}f∈F∪{0}, Pt+1}.21

State variables evolve at the end of the development stage as follows. I assume that log oil price

follows an exogenous random walk, so Pt+1 = exp(log(Pt) + ζt) where ζt ∼ N(0, σζ). I assume

that �rm licenses on undeveloped blocks are issued and surrendered according to an exogenous

stochastic process de�ned by probabilities P (j ∈ Jft+1|{Jgt}g∈F∪{0}, aDft). Developed blocks are

removed from �rms' choice sets, so P (j ∈ Jft+1|aDft = j) = 0 and P (j ∈ Jft+1|j /∈ ∪{Jgt}g∈F∪{0}) =

0. This assumption eliminates any strategic consideration in the timing of drilling with respect

to regulatory deadlines, the announcement of new licensing rounds, and the �rm's decision to

surrender a block.

The �rm's continuation values at the beginning of the exploration and development stages (before

private cost shocks are realized) are described by the following two Bellman equations:

V E
f (St) = Eεft

[
max

aEt ∈Jft∪{0}

{
ES′t

[
V D
f (S ′t)|aEt ,St

]
− c(aEt ,St) + εftj

}]
(9)

V D
f (S ′t) = Eνft

[
max

aDt ∈Jft∪{0}

{
Eπ

aDt
,St+1

[
βV E

f (St+1) + πaDt |a
D
t ,S ′t

]
− κ(aDt |S ′t) + νftj

}]
.

Where β is the one period discount rate. The inner expectation in the exploration Bellman equation

is taken over realizations of the intermediate state S ′t, with respect to the �rm's beliefs Gt and

beliefs about other �rms' exploration actions. The inner expectation in the development Bellman

equation is taken over realizations of development revenues πaD and realizations of next period's

state variable St, with respect to the �rm's beliefs Gt+1 and beliefs about other �rms' actions.

De�ne choice speci�c ex-ante (before private cost shocks are realized) value functions as,

vEf (aEt ,St) =ES′t
[
V D
f (S ′t)|aEt ,St

]
− c(aEt ,St)

vDf (aDt ,S ′t) =Eπ
aDt

,St+1

[
βV E

f (St+1) + πaDt |a
D
t ,S ′t

]
− κ(aDt ,S ′t). (10)

A Markov perfect equilibrium of this game is then de�ned by strategies aEf (S, ε) and aDf (S,ν)

that maximize the �rm's continuation value, conditional on the state variable and the privately

21Note that I have assumed that �rms do not update their beliefs based on the outcomes of development decisions.
Formally, this assumption means that although �rms obtain revenues πj after making development decisions, they
do not observe πj . The assumption that �rms do not update their beliefs based on this realization is likely not
unreasonable. In reality oil �ow is obtained from a reservoir over many years, and additional information about
the true size of the �eld is gradually obtained. Furthermore, since development platforms are very expensive, the
information value of development is unlikely to be pivotal to the development decision, and the marginal e�ect of
information revealed by the development outcome is likely to be small since development takes place only after
extensive exploration.
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observed cost shocks,

aEf (S, ε) = arg max
aE∈Jf∪{0}

{
vEf (aE,S) + εtaE

}
(11)

aDf (S ′,ν) = arg max
aD∈Jf∪{0}

{
vDf (aD,S ′) + νtaD

}
,

where the �rm forecasts all �rms' actions conditional on the industry state using the true condi-

tional choice probabilities (CCPs) given by:

P (aEf = j|St) =
exp

(
1
σε
vEf (j,St)

)
∑

k∈Jft∪{0} exp
(

1
σε
vEf (k,St))

) . (12)

With a similar expression for the CCP of development action j, P (aDf = j|S ′t).

5.2 Asymmetric Information

A key assumption made in the model described above is that �rms can perfectly observe the results

of each other's exploration wells as soon as they are drilled. In reality, industry regulation allows

for con�dentiality of well data for the �rst �ve years after an exploration well is drilled, and the

empirical evidence presented in Section 3 suggests imperfect spillover of information between �rms.

The extent to which information �ows between �rms before the end of the well data con�dentiality

period is a potentially important determinant of �rms' incentive to delay exploration.

To allow for imperfect spillovers of information in the model, I make an alternative assumption

about when �rms observe the results of exploration wells. In particular, when a well w is drilled

by �rm f , I let each �rm g 6= f observe the outcome, s(w), with probability α. s(w) is revealed to

all �rms τ periods after the well is drilled, on expiry of the con�dentiality window.

Formally, let of (w) ∈ {0, 1} be a random variable drawn independently across �rms after the

exploration stage of period t(w) where P (of (w) = 1|f(w) 6= f) = α and P (of (w) = 1|f(w) = f) =

1. The set of well results observed by �rm f in period t is

Wft = {(j(w), s(w)) : (of (w) = 1 and t(w) = t) or (of (w) = 0 and t(w) = t− τ)} . (13)

Firms observe the location, j(w), and the drill date, t(w), for all wells. This assumption re�ects

the fact that the regulator makes this data public immediately after a well is drilled. Firms f 's

information about past wells with unobserved outcomes is

WU
ft = {(j(w), t(w)) : of (w) = 0 and t(w) > t− τ} . (14)
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The introduction of this asymmetric information structure complicates the �rm's problem. In

general, Gft 6= Ggt since �rms observe di�erent sets of well outcomes. To forecast next period's

state in equilibrium, �rm f must form beliefs about every other �rm g's beliefs, Ggt. The history

of �rm g's actions is informative about Ggt and about well outcomes unobserved by �rm f . Firm f

should therefore update its beliefs based not only on observed outcomes, but on the past behavior

of other �rms. For instance, if �rm g drilled many exploration wells on block j, this should signal

to �rm f something about the success probability on that block, even if �rm f did not observe the

outcome of any of those wells directly. In contrast to the full information game, this means that

the entire history of drilling and license allocations should enter the �rm's state.

These complexities make estimating the asymmetric information game and �nding equilibria com-

putationally infeasible. To make progress, I impose the following simplifying assumption on �rms'

beliefs about other �rms' actions.

� Assumption A1: Firm f believes that at every period t the probability of a new exploration

well being drilled by a �rm g 6= f on block j ∈ Jgt is given by QE
t ∈ [0, 1]. Likewise �rm

f believes that at every period t the probability of �rm g 6= f developing block j ∈ Jgt is
QD
t ∈ [0, 1].

Assumption A1 says that �rms believe that blocks held by other �rms are explored at a �xed rate

QE and developed at a �xed rate QD. Under this assumption I can rede�ne the state variable as:

Sft = {Gft, Jft,∪{Jgt}g 6=f , J0t, Pt,W
U
ft}. (15)

This �rm-speci�c state is su�cient for �rm f 's date t decision under asymmetric information.

Note that �rm f only needs to know which blocks it holds and which are held by some other �rm

(∪{Jgt}g 6=f ), not the identity of the license holding �rm for each block, since the identity of the

block owner does not a�ect drilling probability under �rms' beliefs.22 Further, Gft+1 = B(Gft,Wft)

as before. In particular, Gft+1 does not depend on WU
ft since �rms believe past wells were drilled

at an exogenous rate and drilling history does not contain information about other �rms' beliefs.

The state variable includes WU
ft since �rms anticipate the release of well outcome data at the end

of each well's con�dentiality period.

Fixing QE and QD, the �rm's problem becomes a single agent problem where other wells are drilled

at an exogenous rate. The �rm's optimal strategy is given by equation 11 and CCPs are given by

12, where �rm's expectations about the future actions of other �rms are now given by (QE, QD),

not the true CCPs. Fixing the initial conditions, de�ned by J0 and P0, and a value of (QE, QD),

22Formally this requires additional assumptions on the stochastic process that governs the issuing and surrender
of licenses. In particular, P (j ∈ Jft+1|{Jgt}g∈F∪{0}, aDft) = P (j ∈ Jft+1|Jft,∪{Jgt}g 6=f , J0t, aDft), and P (j ∈
∪{Jgt+1}g 6=f |{Jgt}g∈F∪{0}, {aDgt}g∈F ) = P (j ∈ ∪{Jgt+1}g 6=f |Jft,∪{Jgt}g 6=f , J0t, {aDgt}g∈F ). I also assume Jf0 = {}
for all f ∈ F .
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�rms' optimal strategies imply probability distributions over realized states for each (f, t). I use

these distributions to de�ne equilibrium in the asymmetric information model as follows.

� Assumption A2: Let P (aEf,t = j|Sf,t) and P (aDf,t = j|S ′f,t) be �rms' equilibrium CCPs. Fix

a time horizon T . In equilibrium, �rms have beliefs about other �rms' exploration and

development rates given by:

QE = E

 1

TF

T∑
t=1

F∑
f=1

1

|Jft|
∑
j∈Jft

P (aEft = j|Sft)

 (16)

QD = E

 1

TF

T∑
t=1

F∑
f=1

1

|Jft|
∑
j∈Jft

P (aDft = j|S ′ft)

 .
Where the expectations are taken over states with respect to equilibrium state distributions.

This assumption means that in equilibrium, a �rm's beliefs about the probability of exploration

and development by other �rms are on average correct. QE is equal to the average over �rms,

periods, and blocks of the expected equilibrium probability of exploration. This means that QE

is an equilibrium object, and, for example, policy changes that change �rms' incentive to explore

will change QE in equilibrium.

Assumptions A1 and A2 retain the asymmetric information structure but greatly simplify estima-

tion and computation of equilibria. These assumptions also simplify the behavioral implications of

the model in three signi�cant ways. First, �rms' beliefs about the actions of other �rms are iden-

tical at all locations and times. This means that free riding incentives only vary with the number

of other �rms' blocks near a block j, not with, for example, the number of unique �rms that hold

drilling licenses nearby. Secondly, the model does not allow �rms to reason about how their actions

a�ect other �rms' future behavior. For example, Assumption A1 precludes the �encouragement

e�ect� discussed by Dong (2017), which mitigates the free riding incentive because �rms have an

added incentive to explore if doing so encourages other �rms to explore. Third, this assumption

shuts down any signaling incentives, since �rms to not update their beliefs based on the presence

of wells, only well results.

6 Estimation & Identi�cation

6.1 Sample & Parameterization

I estimate the model using the subsample of the data that records activity on a 270 block region

corresponding to the northern North Sea basin. This region contains many of the large oil deposits
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discovered on the UK continental shelf.23 I restrict the estimation sample to this region in order

to reduce computational time. I use the monthly Brent crude price in�ated to 2015 dollars using

the UK GDP de�ator to measure the oil price. For years before 1980 where the Brent price is

unavailable I use projected values from a regression of Brent on the West Texas Intermediate price.

I let a period be one month, and set the number to periods after which well outcomes are made

public to τ = 60.24 This corresponds to the 5 year con�dentiality period imposed by the regulator.

I set the one month discount rate to β = 0.992, which corresponds to a 10% annual discount.

I impose the following parametric restrictions on exploration costs:

c(j,Sft) = c0 + c1 ln(Nearbyjt). (17)

Where Nearbyjt be the number of licensed blocks �near� block j at date t, counting same-block

licenses, �rst and second degree neighbors. This speci�cation allows for information and technology

spillovers in exploration drilling that are not explicitly modeled. For example, more heavily licensed

areas are likely to be better understood in terms of geology and optimal drilling technology (see

for example Covert (2015) and Steck (2018) on inter-�rm learning about location-speci�c drilling

technology).

The model parameters are therefore {θ1, θ2, α, σζ}, where θ1 = {µ, ω, `} are the parameters of the

�rm's beliefs de�ned in Section 3, θ2 = {c0, c1, κ0, σc, σκ} are the cost parameters, α is the proba-

bility of observing another �rm's well outcome before it is made public, and σζ is the variance of

innovations to the oil price random walk. Other objects to be estimated are the transition prob-

abilities of the license issuing process P (j ∈ Jft+1|Jt, {Jgt}∀g∈F ), the distribution of development

pro�ts, Γ(π; ρj, Pt), and �rm beliefs about other �rms' actions, QE and QD.

6.2 Estimation

Parameters θ1 are taken from the estimation procedure described in Section 4.1. I estimate σζ

with the variance of monthly changes in the log oil price. I estimate Γ(·) using data on realized

oil �ows from all developed wells. I detail this part of estimation in Appendix C.4. Probabilities

P (j ∈ Jf,t+1|Jt, {Jg,t}∀g∈F ) that are used by �rms to forecast the evolution of license assignments

are estimated using two probit regressions. First, I estimate the probability of a block j being

licensed to any �rm in period t+ 1 as a function of whether it was licensed to any �rm in period

23Speci�cally, this region corresponds to the area north of 59◦N , south of 62◦N , east of 1◦W , and west of the
UK-Norway border.

24The choice of a one month period imposes an implicit capacity constraint - each �rm can choose at most one
block to explore and one block to develop each month. In practice, in 94% of (f, t) observations where exploration
takes place, only one exploration well is drilled. I never observe more than one block developed by the same �rm
in the same month. In my detailed discussion of the estimation routine in Appendix C, I describe how I deal with
observations where there are multiple exploration wells in a month.
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t and the number of neighboring blocks licensed in period t. I then estimate the probability of

block j being licensed to �rm f in period t + 1 conditional on it being licensed to some �rm as a

function of whether it was licensed to �rm f in period t, whether it was licensed to any �rm in

period t, and the number of neighboring blocks licensed to �rm f in period t. I detail this part of

estimation in Appendix C.5.

The remaining parameters, θ2 and α, are estimated using a two step conditional choice probability

method related to those described by Hotz, Miller, Sanders and Smith (1994) and Bajari, Benkard

and Levin (2007). In the �rst step, I obtain estimates of the conditional choice probabilities (CCPs)

given by equation 12 and the parameter α. Using these estimates, I compute the �rm's state-speci�c

continuation values (9), as functions of the remaining parameters θ2 by forward simulation. I then

�nd the value of θ2 that minimizes the distance between the �rst step estimates of the CCPs and

the choice probabilities implied by the simulated continuation values. First step estimates of the

CCPs are also used to estimate the average exploration and development rates QE and QD which

correspond to �rms' beliefs. I describe this two step procedure in detail in Appendix C.

6.2.1 Estimation of Conditional Choice Probabilities

The most important di�erence between the procedure I implement and the existing literature is

in the �rst step estimation of CCPs P̂ (aE = j|S) and P̂ (aD = j|S) - the probabilities that a �rm

takes an action j in the exploration and development stages of the game conditional on its state

S.

If the state variable were observable in the data, then P̂ (aEf = j|S) could be estimated directly using

the empirical choice probability conditional on the state. However, the asymmetric information

structure of the model means that the true state is not observed by the econometrician. In

particular, the econometrician knows the outcome of every well, but does not know which outcomes

were observed by each �rm. Formally, the data does not include the vector of that records which

other-�rm well outcomes were observed by �rm f . Di�erent realizations of of imply di�erent states

through the e�ect of observed well outcomes on Gft and WU
ft. The data is therefore consistent

with a set of possible states S̃f for each �rm.25

To recover CCP estimates, observe that di�erent values of the parameter α de�ne distributions

P (Sf |S̃f , α) over the elements of S̃f . For example, suppose at date t there was one other-�rm well

w that may have been observed by �rm f . The data is consistent with two possible states: let S1
ft

be the state if of (w) = 1 and S0
ft be the state if of (w) = 0. From the econometrician's perspective,

P (S1
ft|{S1

ft,S0
ft}, α) = α. I provide a formal de�nition of the distribution P (Sf |S̃f , α) in Appendix

C.

25More precisely, and element of S̃f is a particular sequence of �rm-f states Sf = {Sft}Tt=1. See Appendix C for

a formal de�nition of S̃f .
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Given this distribution over states, the likelihood of a sequence of exploration choice observations

is:

LEf =
∑
Sf∈S̃f

 T∏
t=1

∏
j∈Jft∪{0}

1(aEft = j)P (aE = j|Sf )

P (Sf |S̃f , α)

 . (18)

I maximize this likelihood to obtain estimates of the conditional choice probabilities P̂ (aEf = j|S)

and the information spillover parameter, α̂, which controls the probability weight placed on each of

the di�erent states Sf ∈ S̃f that could have obtained given the data. Since the state variable is high
dimensional, I use the logit structure of P̂ (aEf = j|S) implied by equation 12 and approximate the

choice speci�c value function for each alternative with a linear equation in summary statistics of the

state variable. Full details are provided in Appendix C. In approximating a high dimensional state

variable with lower dimensional statistics I follow much of the applied literature that estimates

dynamic discrete choice models with conditional choice probability methods. For example, see

Ryan and Tucker (2011) and Collard-Wexler (2013).

6.3 Identi�cation

6.3.1 Identi�cation of CCPs

The �rst step of the estimation procedure recovers the parameter α and conditional choice proba-

bilities P̂ (a = j|S) at each state S from data in which each observation is consistent with a set of

states S̃. The model's information structure means these objects are separately identi�ed despite

the fact that the econometrician does not observe the full state. In particular, I claim that the

list of choice probabilities P (a = j|S̃) for each set of states S̃ that it is possible to observe in the

data can be inverted to uniquely identify choice probabilities conditioned on the unobserved states

P (a = j|S) and the information spillover parameter α.

To illustrate identi�cation, consider the following simpli�ed example. Suppose that a state is

described by a triple, S = (suc, fail, unobs), where suc is the number of successful wells observed,

fail is the number of unsuccessful wells observed, and unobs is the number of wells with unobserved

outcomes. Consider data that contains observations consistent with the following sets of states:

S̃A = {(1, 0, 0)} (19)

S̃B = {(0, 1, 0)}

S̃C = {(1, 0, 0), (0, 0, 1)}

S̃D = {(0, 1, 0), (0, 0, 1)}.

S̃A and S̃B are observed by the econometrician when there is one own-�rm well outcome. The

econometrician then knows the state with certainty since the �rm always observes their own well
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outcome. S̃C and S̃D are observed by the econometrician when there is one other-�rm well out-

come. In this case, the econometrician knows whether the well was successful or unsuccessful,

but not whether the �rm observed the outcome or not. Given a value of the parameter α, choice

probabilities conditional on the observed set of states can be written as:

P (a = j|S̃A) = P (a = j|S = (1, 0, 0)) (20)

P (a = j|S̃B) = P (a = j|S = (0, 1, 0))

P (a = j|S̃C) = αP (a = j|S = (1, 0, 0)) + (1− α)P (a = j|S = (0, 0, 1))

P (a = j|S̃D) = αP (a = j|S = (0, 1, 0)) + (1− α)P (a = j|S = (0, 0, 1)).

The left hand side of each equation is a probability that is observable in the data. Notice that there

are four equations and four unknowns - three conditional choice probabilities and the parameter

α. The �rst two equations yield estimates of P (a = j|S = (1, 0, 0)) and P (a = j|S = (0, 1, 0))

directly. Rearranging the third and fourth equations yields:

α =
P (a = j|S̃C)− P (a = j|S̃D)

P (a = j|S̃A)− P (a = j|S̃B)
. (21)

This says that α is identi�ed by the di�erence between how much the �rm responds to other �rm

wells (the numerator) and how much the �rm responds to its own wells (the denominator). As

documented in Figure 6, �rms' exploration choices respond more to the results of their own wells

than to those of other �rm wells, implying 0 < α < 1. P (a = j|S = (0, 0, 1)) is then identi�ed by

the level of P (a = j|S̃C) or P (a = j|S̃D).

This identi�cation argument relies on two features of the model's information structure. First, the

belief updating rule (4) treats own-�rm and other-�rm well results identically. This means that we

can use the �rm's response to their own wells to infer how they would have responded if they had

observed another �rm's well. For example, P (a = j|S = (1, 0, 0)) enters both the �rst and third

equation in (20). Second, if �rm f does not observe the outcome s(w) of well w at date t, then the

s(w) does not enter Sft. This means that if a well was not observed, then the �rm's actions should

not depend on the well's outcome. That is, the second terms of the third and fourth equation in

(20) are identical. Relaxing either assumption would break identi�cation by introducing an extra

free parameter.

This argument extends to states with multiple well results and well results at di�erent distances

and dates. In particular for states with n wells there are always at least as many equations as

unknowns in the n well analogue of (20). This means that the number of observable sets of states

S̃, which correspond to equations, is always at least one greater than the number of true states S.
In Appendix D I provide a proof that shows, in general, how P̂ (a = j|S) can be identi�ed from

observable quantities for any S. In practice, additional identi�cation comes from the approximation
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of the state variable which smooths choice probabilities across states and allow extrapolation to

states not observed in the data.

This procedure, which estimates the conditional choice probabilities and α in one step, is sig-

ni�cantly less computationally intensive than alternatives such as the Expectation-Maximization

procedure proposed by Arcidiacono and Miller (2011), which requires iteration of the two step esti-

mator. Although calculation of the sum in equation 18 for di�erent values of α is computationally

expensive, this �rst estimation step only has to be performed once.

6.3.2 Identi�cation of Cost Parameters

The cost parameters are estimated in the nonlinear regression given by equation 33. Intuitively,

cost parameters c0 and κ are identi�ed by the average probability of exploration and development.

Lower average probability of drilling is rationalized by higher costs. Cost parameter c1 is identi�ed

by the extent to which the probability of drilling is higher on blocks with more licensed blocks

nearby. Additional identifying variation comes from the di�erence in the response of drilling

probability to nearby own-�rm and other-�rm licenses. Higher exploration drilling costs, c0, imply

that �rms have more of an incentive to free ride and should have a lower exploration probability

when the surrounding blocks are owned by other �rms than when they are owned by the same

�rm.

The exploration variance parameter σε is identi�ed by the extent to which �rms are more likely to

explore blocks for which the expected future revenue stream conditional on exploration is higher.

The development variance parameter σν is similarly identi�ed. To see this, notice that 1
σε
multiplies

the choice speci�c continuation value vEf (j,St) in equation 12, and the sum of future revenue

enters linearly in the �rm's continuation value.26 As the variance of cost shocks becomes large, the

probability of any choice j ∈ Jft ∪ {0} tends to 1
|Jft|+1

.

Finally note that, as discussed by Bajari, Benkard, and Levin (2007), the two step procedure ob-

tains consistent estimates of the model parameters if the data is generated by a single equilibrium.

I assume this here since I cannot guarantee that there is a unique equilibrium of the asymmetric

information game.

7 Results

7.1 Estimates

Detailed results for each part of the estimation procedure are presented in Appendix C. Appendix

Table A1 reports descriptive statistics on the estimated conditional choice probabilities (CCPs)

26See equation 30 in Appendix C.
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P̂ (aE = j|S) and P̂ (aD = j|S). In particular, I report the marginal e�ects of varying di�erent

elements of the approximation to the state variable on the estimated choice probabilities. The

patterns are broadly as expected. The probability of exploration is increasing in the expected

probability of success and in the variance of beliefs, in line with the descriptive results recorded in

Table 3. Development probability is increasing in expected probability of success and decreasing

in variance, also consistent with the descriptive results. Exploration probability is also increasing

in both the number of neighboring own-�rm licenses and other-�rm licenses. However, the e�ect of

own �rm licenses of the probability of exploration is almost twice the e�ect of other �rm licenses.

The level of these e�ects is rationalized in the model by the parameter c1, which allows exploration

costs to be lower in regions with a high number of licenses. The di�erence between these two

e�ects is then explained by the free riding incentive induced by additional other-�rm licenses and

the increased value of information when there are more same-�rm licenses nearby.

Table 6 reports estimated model parameters and the average exploration and development proba-

bilities, QE and QD. The parameter α, which is estimated simultaneously with the CCPs indicates

that �rms behave as if they observe the results of 36.6% of other �rm wells before they are made

public. This �nding is in line with the descriptive results reported in Figure 6, which indicated

that the marginal e�ect of an additional other-�rm well on the probability of exploration was

between 20% and 50% of the e�ect of an own-�rm well. Recall that the exploration cost is given

by c(j,Sft) = c0 + c1 ln(Nearbyjt). The estimated value of c1 indicates that the cost of exploration

is, as expected, decreasing in the number of nearby licenses. Exploration cost at the average value

of Nearbyjt, reported as c̄ in Table 6, is about 25% of the development cost κ.

Table 6: Parameter Estimates

Parameter Estimate SE Parameter Estimate SE
α 0.3661 0.0412 κ0 16.3400 0.2431
c0 10.3514 0.1861 σc 1.4484 0.0354
c1 -1.9910 0.0464 σκ 2.0523 0.0720
c̄ 4.0571 0.1002 σ2

ξ 0.0048 0.0004

Average Choice Probabilities
QE 0.0223 QD 0.0017

Notes: Cost parameters are in billions of 2015 dollars. c̄ is computed as the value of the expression given by equation
17 at the average value of Nearbyjt. Standard error of α is computed using the Jacobian of the likelihood function
given by equation 18 at the estimated parameter values. Standard error of σ2

ξ is computed using the fourth centered
moment of month to month changes in log price. Standard errors for the remaining (cost) parameters are computed
using the Hessian of the second step nonlinear least squares speci�cation given by equation 33 in Appendix C. Note
that the standard error for the cost parameters does not take into account the �rst step error, and is therefore likely
to be biased down.

Cost parameters are reported in billions of 2015 dollars. The estimated cost parameters are sub-

stantially larger than estimates of the capital costs of exploration and development from data on

expenditure provided by the regulator. The average capital expenditure per exploration well is
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$34.6 million and per development platform is $1.9 billion. To understand the discrepancy, notice

that the estimated cost parameters likely include frictions such as the cost of relocating capital

equipment, redeploying labor, and other capacity constraints. For example, I model exploration

as a monthly decision. If, in reality, drilling an exploration well ties up capital equipment for

several months, this would in�ate estimated costs. Furthermore, since the model is estimated on

a small region of the North Sea, the cost parameters implicitly contain the opportunity cost of

drilling in this region rather than elsewhere. Realized costs also include the random terms ε and

ν, which I have interpreted as cost shocks but could also capture shocks to information. One can

think of the estimated costs as being equal to the sum of engineering costs and the additional

frictions due to capacity constraints, opportunity costs, and information shocks. Although these

frictions are relevant to the �rm, it is not clear that they should be included in the calculation

of industry surplus used by the policy maker. In what follows, I use the estimated parameters

to compute counterfactual �rm actions. However, when I add up revenues and expenditures to

compute industry pro�t for a given sequence of actions I will use the engineering costs obtained

from average capital expenditure rather than the model-implied costs.

To examine the �t of the model to the data, I simulate the model from 1964 to 1990. Simulations

are generated by drawing an action for each �rm, each month, and updating �rms beliefs based on

the observed results. For each month, I set the distribution of licenses {Jft}f∈F and the oil price

Pt equal to the truth. I use mean values of the posterior success probability recorded in Figure

4, which is estimated using the true outcomes of all wells drilled before 1990, to draw exploration

well outcomes and development revenue.

Table 7 records statistics on �rm activity from the data and two simulations. The �rst column

records the total the number of exploration wells, blocks developed, blocks explored, and the

average number of exploration wells drilled on developed and undeveloped blocks from the data.

The second column records the average of these statistics over 40 simulations of the model using

the �rst step CCPs, P̂ (aE = j|S) and P̂ (aD = j|S), to draw �rm actions. Since the CCPs are

estimated directly from the data, it is not surprising that the total number of exploration wells

drilled and blocks developed in these simulations match the data closely. The estimated choice

probabilities slightly overstate the number of exploration wells drilled on blocks that are eventually

developed, although the qualitative pattern that more wells are drilled on blocks that are developed

is preserved. This slight mismatch is likely due to the approximation to the state variable used in

the �rst step of the estimation procedure.

The third column records the average of these statistics over 40 simulations of the model using

approximate equilibrium choice probabilities. Equilibrium choice probabilities are computed by

forward simulating the model-implied choice probabilities, P (aE = j|S, θ̂2) using estimated pa-

rameters θ̂2 to obtain new estimates of the value function given by equation 30. These new value

function estimates are then used to compute new choice probabilities. The process is iterated until
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Table 7: Model Fit

Data Simulation

First Step Probabilities Equilibrium Probabilities

Exploration Wells 476 473.90 503.65

Blocks Explored 99 95.55 97.25

Blocks Developed 20 22.95 22.43

Exp. Wells on Dev. Blocks. 8.75 12.45 13.19

Exp. Wells on Undev. Blocks. 3.81 3.79 3.91

Notes: Column 1 records statistics from the data covering 1964-1990 for the relevant region. Columns 2 and 3 are
averages over 40 simulations that cover 1964-1990. . For each month the assignment of blocks to �rms and the
oil price in the simulations are set at their realized values. Simulations in column 2 draw �rm actions using the
�rst step estimates of the conditional choice probabilities. Simulations in column 3 use approximate equilibrium
conditional choice probabilities at the estimated parameter values.

the estimated choice probabilities converge. On each iteration, the average exploration probabil-

ity Q̂E is also updated. These equilibrium choice probabilities are approximate because I place

restrictions on how the probabilities can change on each iteration to improve stability and reduce

computational time. Details on this procedure are provided in Appendix E.

The di�erence between the second and third columns of Table 7 therefore re�ects the di�erence

between the �rst step choice probabilities estimated directly from the data, and the equilibrium

choice probabilities implied by the model given the estimated cost parameters, θ̂2. Equilibirium

choice probabilities overstate the number of exploration by about 6% wells and the number of blocks

developed by about 2% relative to the �rst step probabilities. When I examine the predictions of

the model under counterfactual scenarios, I use these equilibrium simulations as a baseline.

As an additional test of the �t of the model, I compare the spatial distribution of exploration wells

in the data to simulations using the equilibrium choice probabilities. The left panel of Figure 7 is

a heat map that records the number of exploration wells drilled between 1964 and 1990 on each

block in the data. Lighter colored blocks were drilled more often than darker blocks. The large

dark region on the left side of the map was never licensed. Notice that there are three regions

of concentrated drilling activity - in the south, centered on coordinate (13, 3), in the middle of

the map, centered on coordinate (14, 10), and in the north, centered on (13, 15). The right panel

records equivalent well counts from the average of 40 simulations using the equilibrium action

probabilities. Drilling is concentrated around the same points in the south and middle of the map,

but not at the point (13, 15) in the north. Many wells were drilled on this block despite it having

been licensed for a relatively short period of 134 months (compared to 290 and 434 month-�rm

observations for (13, 3) and (14, 10) respectively). The observed monthly drilling rate on this block

is an outlier that is di�cult for the model to rationalize.
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Figure 7: Model Fit: Well Locations
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Notes: The left panel is a heat map recording the number of exploration wells drilled on each block of the region
used for structural estimation from 1964 to 1990. More exploration wells were drilled on lighter blocks. The right
panel is an analogous heat map of the average number of wells drilled on each block over 40 simulations using the
baseline equilibrium choice probabilities. In both panels, the number of wells per block is truncated at 20 to better
illustrate the cross-block variance.

7.2 Quantifying the E�ects of Information Spillovers

To illustrate how information spillovers a�ect the equilibrium speed and e�ciency of exploration,

I simulate counterfactual exploration and development decisions. I separately quantify the e�ect

of free riding and wasteful exploration on the equilibrium rates of exploration and development

and on industry surplus by removing these sources of ine�ciency from the model, �rst one at a

time and then jointly.

First, I remove the free riding incentive by computing �rm's optimal policy functions under the

assumption that QE = 0. That is, I ask how �rms would behave if, at each period, they believed

that no new wells would be drilled by other �rms at any period in the future. Under this assumption

there is no incentive to strategically delay exploration. This counterfactual is not an equilibrium as

de�ned in Section 5.2, since �rms beliefs about the average exploration probability are inconsistent

with the actual probability of exploration. Simulation of �rm behavior under these non-equilibrium

beliefs isolates the direct e�ect of free riding on �rm behavior since I allow �rms to learn the results

of past wells as in the baseline, but I remove the forward-looking incentive to delay.

The e�ect of eliminating the incentive to free ride on industry outcomes is illustrated by comparing

the �rst and second columns of Table 8. The �rst column records statistics on exploration wells

drilled, blocks developed, and industry revenue and pro�t for the baseline simulation. The second

column records the same statistics for the no free riding counterfactual.

The �rst �ve rows record statistics on exploration well and development counts. Removing the
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free riding incentive brings exploration and development forward in time. The average number of

exploration wells drilled up to 1990 increases by 7.4% from 503.65 to 541.15. The number of blocks

developed before 1990 increases by 28% from 23.37 to 27.38. The e�ciency of exploration, which I

measure using the number of exploration wells drilled per development well, and the distribution

of exploration wells between developed and undeveloped wells remain relatively constant. The

sixth and seventh rows record the 1964 present discounted value of industry revenue and pro�t.

Moving from the baseline to the no free riding counterfactual increases discounted revenue by $6.21

billion or about 26% by bringing development forward in time. 45% of this increase in revenue

comes from the bringing the development of the �rst 22.43 blocks forward in time, increasing the

discounted value of revenue. The remaining 55% comes from the development of additional blocks

before 1990 that were not developed in the baseline.

Table 8: Decomposition of E�ects

Baseline No Free Riding Info. Sharing Both

QE 0.0223 0 0.0223 0

α 0.3661 0.3661 1 1

Exp. Wells 503.65 541.15 567.30 604.83

Blocks Dev. 22.43 28.45 35.48 38.18

Exp. Wells/Dev 22.45 19.02 15.99 15.84

Exp. Wells on Dev. Blocks. 3.91 4.01 4.01 4.09

Exp. Wells on Undev. Blocks. 13.19 14.17 14.80 15.00

Revenue 24.09 30.30 37.74 40.15

Pro�t 13.85 18.12 23.59 25.06

Notes: Results are averages over 40 simulations that cover 1964-1990. The assignment of blocks to �rms and the
oil price are set at their realized values. Well outcomes and development revenue are drawn using the posterior
success probabilities computed using the true outcomes of all wells drilled before 1990. Revenue and pro�ts are in
billions of 2015 dollars. Pro�ts are computed using estimates of exploration well and development cost from OGA
data on capital expenditure. PDV revenue and pro�t are 1964 values where the annual discount factor is 0.9.

The e�ect of removing free riding on the timing of exploration and development is illustrated by

comparing the solid and dashed lines in Figure 8. The left panel records the average number of

exploration wells and blocks explored each month from 1975 to 1990. The right panel records the

average number of blocks developed for the same period. Removing the free riding incentive shifts

the date that a block is �rst explored back in time by around one year. This increase in exploration

speed translates to more rapid development. In the baseline simulation, 22.43 blocks are developed

by the end of 1990. Under no free riding, this development level is attained 13 months earlier, at

the end of 1989.

The second quanti�cation exercise removes wasteful exploration due to imperfect information

spillovers. I simulate the model at the baseline equilibrium choice probabilities but allow �rms to

observe the results of each other's wells with certainty. That is, I set α = 1. I hold �rms' choice
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probabilities (and, implicitly, their policy functions) �xed at the baseline level. This means that

�rms behave as if they expect the results of other �rms' wells to be revealed with probability equal

to the estimated value of α, 0.3661. This isolates the direct e�ect of increased �ow of information

from the equilibrium e�ects of setting α = 1 on �rms' drilling decisions.

Figure 8: Decomposition of E�ects
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Notes: The left panel plots the cumulative number of exploration wells drilled and blocks explored (blocks on
which at least one exploration well has been drilled) for each month from 1975 to 1990 for three simulations.
Thick red lines plot the number of blocks explored and correspond to the right axis. Thin blue lines plot the
number of exploration wells and correspond to the left axis. The solid lines are the average of 40 simulations using
the baseline equilibrium choice probabilities. The dashed lines are the average of 40 simulations under the no free
riding counterfactual. The dotted lines are the average of 40 simulations under the no free riding and information
sharing counterfactual. The right panel plots the number of blocks developed for the same three simulations.

The third column of Table 8 records drilling, revenue, and pro�t statistics for this information

sharing simulation. Allowing for perfect information �ow without changing �rms' policy functions

increases the number of exploration wells drilled before 1990 by 143 relative to the baseline and

increases the number of blocks developed by 58% to 35.48. The e�ciency of exploration improves

substantially - the number of exploration wells drilled per block developed is reduced to 15.99

from 22.45 in the baseline. This increase in e�ciency is also re�ected in an increased concentration

of exploration wells on productive blocks - the average number of exploration wells on developed

blocks increases by 12% from 13.19 to to 14.80 while the average number of exploration wells on

undeveloped blocks increases by only 3% from a much lower base of 3.91.

Perfect information �ow increases discounted industry pro�t by 70% to $23.59 billion from $13.85

billion in the baseline simulation. This e�ect is about 2.28 times as large as the e�ect of removing

free riding. This change in industry surplus can be decomposed into two e�ects. First, perfect

information �ow increases industry surplus by reducing wasteful exploration of unproductive areas

and per-development costs, thereby reducing expenditure on exploration wells. Second, increased
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information �ow allows �rms to identify productive areas faster, bringing development forward in

time. The relative importance of these two e�ects can be examined using the following back of the

envelope calculation. In the information sharing counterfactual pro�t is 62.5% of revenue, while in

the baseline the margin is 57.5%. Applying the information sharing margin to the baseline revenue

results in a pro�t increase of $1.2 billion. This suggests that increased cost e�ciency is responsible

for about 19% of the increase in pro�t from information sharing, with the rest coming from faster

development.

Finally, I run a counterfactual simulation that removes both free riding and wasteful exploration.

That is, I set α = 1 and QE = 0.27 The results of this simulation are recorded in the fourth

column of Table 8. Eliminating both sources of ine�ciency increases exploration drilling by 20%

and development before 1990 by 70%. The dotted lines in Figure 8 illustrate the path of exploration

and development over time when both sources of ine�ciency are removed. Relative to the baseline,

development is brought forward in time by about three years. However, notice that the speed at

which new blocks are explored is actually reduced relative to the no free riding counterfactual - the

thick red dotted line in the left panel is below the thick red dashed line. Because of the increased

information �ow, fewer blocks are explored more intensively and wasteful exploration is reduced.

The combination of bringing development forward in time and reducing ine�cient exploration

increases discounted pro�ts by $11.21 billion, or 81% of the baseline.

The large gains from information sharing raise the question of why �rms do not engage in more

exchange of information before the con�dentiality windows expires. Indeed, the Coase theorem

suggests that �rms should be able to achieve the �rst-best outcome by sharing information through

bilateral contracts, eliminating both ine�cient exploration and free riding by allowing �rms to

internalize the bene�ts of their discoveries to other �rms. The empirical evidence indicates that this

e�cient exchange of information does not take place in reality. Furthermore, anecdotal evidence

(Moreton, 1995) describes a culture of secrecy around exploration outcomes. There are several

potential sources of transaction costs that might limit e�cient trade. First, sharing well data

is not costless to the �rm because it may be valuable in future competitive license applications.

Second, �rms have asymmetric information about the value of additional well data. There is a large

literature which documents the role of such asymmetric information in preventing e�cient trade

(Myerson and Satterthwaite, 1983; Farrell, 1987; Bessen, 2004). Beyond the standard problem of

trade under asymmetric information, there is an additional set of barriers to e�cient trade when the

object being traded is information. For example, it is di�cult to signal the value of information to a

buyer without revealing that information (Anton and Yao, 2002), and the potential for information

to be costlessly resold prevents the original seller from capturing the entire social surplus that it

generates (Ali, Chen-Zion, and Lillethun, 2017).

27Note that this is not equal to the �rst best outcome where �rms jointly maximize industry pro�t. In this
counterfactual, �rms do not internalize the bene�t of their drilling activity on other �rms' pro�t.
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8 Counterfactual Property Rights Policy

The results indicate that the presence of a free riding incentive and the limited spillover of infor-

mation between �rms both have signi�cant e�ects on industry surplus. Removing both of these

sources of ine�ciency would result in a 81% increase in the present discounted value of 1964-

1990 pro�ts by bringing development forward in time and increasing the e�ciency of exploration.

These large ine�ciencies suggest that the design of drilling rights and property rights over well data

should take information externalities into account. In this section I ask how much industry surplus

could be increased in equilibrium through alternative design of property rights that minimize the

ine�ciencies resulting from information spillovers.

I consider two main regulatory levers which the government can use to manipulate the �ow of infor-

mation between �rms. First, the regulator can de�ne property rights over data on well outcomes.

In particular, well outcome data is property of the �rm that drilled the well until the con�dential-

ity deadline, after which it becomes public knowledge. By changing the con�dentiality deadline,

the government can increase or decrease the speed with which information �ows between �rms

and manipulate �rms' incentive to delay exploration. Second, �xing the con�dentiality window,

the government can change the spatial distribution of property rights. When each �rm's drilling

licenses neighbor fewer other-�rm licenses the incentive for �rms to delay exploration is reduced.

8.1 Con�dentiality Window

UK regulations specify well outcomes are made public �ve years after the date a well is drilled.

Changing the length of the well data con�dentiality period has two potential e�ects on �rms'

equilibrium drilling behavior. First, increasing the con�dentiality period decreases the incentive

to free ride. For example, when licenses are issued on two neighboring blocks to two di�erent

�rms, each �rm's drilling strategy depends on their expectations about the �ow of information

from the other �rm's wells. If the release of well data is pushed further into the future, then

the cost of delaying exploration is increased due to the discounting of future pro�ts, and the

equilibrium probability of exploratory drilling should increase. On the other hand, lengthening

the con�dentiality window will reduce the e�ciency of exploration by increasing wasteful drilling.

When well data is held con�dential for longer, �rms are more likely to explore blocks that other

�rms already believe to be unproductive.

The regulatory problem of setting the optimal con�dentiality window is therefore a case of trading

o� these two e�ects. If the free riding e�ect dominates and there is �too much� information �ow

between �rms, then it may be optimal to lengthen the con�dentiality window. On the other hand if

the wasteful exploration e�ect dominates, and there is �too little� information �ow between �rms,

then it may be optimal to shorted the con�dentiality window. Whether one e�ect or the other
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dominates at the current window length of �ve years is an empirical question.

To determine the e�ect of changing the con�dentiality window on industry surplus, I run coun-

terfactual simulations of the model under di�erent window lengths. For each window length, I

�rst compute the approximate equilibrium choice probabilities implied by the estimated model

parameters using the �xed point algorithm described in Appendix E. I then simulate the model

using these choice probabilities, imposing the relevant con�dentiality window lengths. The left

panel of Figure 9 records the average over 40 simulations of industry surplus under con�dentiality

windows of 0, 2.5, 5 (the baseline), 7.5, and 10 years.

Figure 9: Con�dentiality Window
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Notes: The left panel records the 1964 present discounted value of 1964-1990 pro�t in counterfactual simulations
with di�erent con�dentiality window lengths. In the right panel, the blue line, corresponding to the left y-axis,
records the average exploration probability over �rms, blocks, and dates using equilibrium exploration choice
probabilities computed under di�erent window lengths. The exploration probabilities are computed at the
baseline distribution of states. That is, the reported numbers are the average counterfactual drilling probabilities
at the states realized in a simulation that uses the baseline drilling probabilities. The dashed red line,
corresponding to the right y-axis, records the average present discounted value of revenue per exploration well in
equilibrium under di�erent window lengths. Revenue and pro�t are in 2015 dollars, billions in the left paenla nd
millions in the right panel. All �gures are average over 40 simulations.

The results suggest that moving the con�dentiality window in either direction from the 5 year

baseline will increase expected industry surplus. In particular, lengthening the con�dentiality

window to 7.5 raises surplus by 2% of the baseline value of $13.44 billion. Lengthening the

con�dentiality further to 10 years increases surplus to $15.37 billion, 11% higher than the baseline.

At 10 years, the gain in industry surplus is 36% of the gain from eliminating free riding recorded

in Table 8. The no free riding counterfactual provides a theoretical maximum on the increase

in surplus that can be obtained by increasing the con�dentiality window. Surplus under longer

con�dentiality windows is less than this maximum because the no free riding counterfactual holds

information �ow �xed at the baseline level, while longer con�dentiality windows reduce the �ow

of information between �rms and therefore reduce the e�ciency of exploration.
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Reducing the length of the con�dentiality window leads to a steeper rise in surplus, increasing to

$15.03 billion at 2.5 years. Surplus increases to $21.81 billion, or 57% higher than the baseline,

when the window is reduced to 0 years and well data is released immediately. When well data is

released immediately, the gain in surplus is 82% of the gain in the information sharing counterfac-

tual. Surplus is lower than under the information sharing counterfactual because of the additional

free rising incentive induced by reducing the exploration window. The information sharing coun-

terfactual in Table 8 held �rm choice probabilities �xed at the baseline, while the 0 con�dentiality

window simulation uses counterfactual equilibrium exploration choice probabilities.

The U-shaped relationship between the length of the con�dentiality window and industry surplus

suggests that at window lengths greater than 5 years, the e�ect of limiting information �ow on

the free riding incentive dominates the e�ect on the e�ciency of drilling, and that at window

lengths less that 5 years the e�ciency e�ect dominates. The right panel of Figure 9 illustrates

these two e�ects separately. The solid blue line records the average probability of exploration

(QE) for each con�dentiality window. To illustrate the free riding e�ect independently from the

e�ect of improved information �ow on the speed of learning I �x the distribution of states at the

baseline - the �gure indicates that for any given state the probability of exploration decreases

with shorter con�dentiality window lengths. The dashed red line records revenue per exploration

well at the equilibrium distribution of states under each con�dentiality window. This measure of

drilling e�ciency is higher and the marginal e�ect of window length on e�ciency is greatest for

shorter window lengths. Indeed, for window lengths greater than 5 years, the e�ect of extending

the window approaches 0. At these longer window lengths the e�ect on free riding dominates -

extending the window increases the rate of exploration without substantially decreasing the rate

at which exploration is converted into development.

The result that the true con�dentiality window is close to the least optimal length begs the question

of why this length was chosen by the regulator. Kemp's (2012a) account of the process by which

the regulations were designed indicates that the 5-year window was arrived at through negotiations

between the government, who wanted information to be made public earlier, and the major oil

companies, who were resistant to any regulation that diminished their property rights over well

data. The results reported in Figure 9 suggest that the settlement the parties arrived at, limiting

well data con�dentiality to �ve years, actually reduced industry surplus. The regulator's imposition

of a �ve-year window was not short enough for the e�ciency e�ect to substantially kick in, but

did increase �rms' incentive to strategically delay exploration relative to the no-regulation default

of total con�dentiality.

Although the results indicate that it is optimal to set the con�dentiality window to 0, this his-

torical background suggests that the optimal politically feasible policy change might be to extend

the con�dentiality window. This �nding is speci�c to the UK setting, and is a function of the

political process that determined the initial regulations. In other regulatory environments where
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con�dentiality periods are already short, for example the Bakken Shale �elds of North Dakota

where well data is con�dential for 6 months, lengthening the con�dentiality would likely have a

negative e�ect on industry surplus.28

8.2 Spatial Arrangement of Licenses

In addition to manipulating the �ow of information between �rms, the regulator can change the

spatial arrangement of property rights. If, as suggested by the results in Table 8, the potential to

learn from the results of other �rms' wells reduces the exploration rate in equilibrium, then the

regulator should take this e�ect into account when assigning blocks to �rms. In particular, spatial

arrangements of property rights in which each �rm's blocks are clustered together should minimize

the free riding problem and improve the speed at which each �rm learns about their blocks. First,

since there are fewer inter-�rm boundaries in the spatial allocation of licenses there is less incentive

for �rms to delay exploration in order to learn from other �rms' exploration. Second, the spatial

correlation of well outcomes means that value of exploration to the �rm is higher when a block is

surrounded by more same-�rm licenses. Finally, the e�ciency of exploration should be improved

under a clustered license assignment since each well provides more information to the �rm about

the probability of success on its blocks, and fewer wells are therefore required to obtain a given

amount of information.29

To quantify the e�ect of spatial reallocation of licenses, I construct an alternative license allocation

for each month in the data using an algorithm that maximizes the spatial clustering of �rms'

licenses. Each year, the algorithm reallocates the licenses that are issued to year to �rms using a

deferred acceptance algorithm in which blocks propose to �rms and are accepted or rejected. The

algorithm increases clustering because blocks prefer to be allocated to �rms with more existing

licenses nearby, and �rms would like to be assigned the blocks that are nearest to their existing

blocks. The new assignment holds �xed the number of blocks assigned to each �rm in each year.

The drilling capacity of the industry (one well per �rm per month in the model) is therefore held

�xed relative to the baseline, and only the location of each �rm's licenses changes. Details of the

license clustering algorithm are provided in Appendix F.

Figure 10 illustrates the true and counterfactual license assignments in January 1975. The left

panel maps the licenses held by the largest 5 �rms, with licenses held by other �rms in red. The

28Of course, other oil and gas producing regions such as the Bakken Shale are subject to di�erent drilling
technology, geology, tract sizes etc. and the shape of the e�ects illustrated in Figure 9, which are a function of the
underlying model parameters, are likely di�erent.

29Note that clustering licenses has an additional e�ect on drilling capacity. For instance, if a set of four neighboring
blocks are licensed to four di�erent �rms, the drilling capacity for that set of blocks is higher than if all four blocks
are licensed to the same �rm. Clustering licenses therefore reduces local drilling capacity, although total capacity
across the entire region is held �xed. This e�ect is likely not of �rst order importance in practice since the average
exploration probability per �rm-block-month is around 2%, and the one block per month capacity constraint is far
from binding.
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Figure 10: Clustered Licenses

2 4 6 8 10

True Assignment

2

4

6

8

10

12

14

16

18

2 4 6 8 10

Clustered Assignment

2

4

6

8

10

12

14

16

18

Notes: Left panel illustrates the location of drilling licenses for the �ve largest �rms in January 1975 on the region
of the North Sea used for structural estimation. Orange corresponds to Total, green to Conoco, yellow to Shell,
purple to BP, and light blue to Amoco. Red blocks are licensed to other �rms, and dark blue blocks are
unlicensed. The right panel illustrates the counterfactual license assignment constructed using the clustering
algorithm discussed in Appendix F.

right panel illustrates the counterfactual clustered license assignment in the same month. The

di�erence between the allocations is visually clear - each of the largest 5 �rms holds licenses on

one or two contiguous regions in the counterfactual assignment, while in the true assignment these

�rms hold licenses on between 3 and 7 disconnected sets of blocks. The �rst two rows of Table

9 record how the clustering algorithm changes the average number of nearby own and other �rm

licenses (1st or second degree neighbors), where the average is taken across �rms, blocks, and

months.

The third through seventh rows of Table 9 record statistics on exploration wells, development

of blocks, revenue and pro�t in equilibrium under the baseline and counterfactual license assign-

ments.30 Clustering �rms' licenses increases the total number of exploration wells drilled between

1964 and 1990 by 8% and increases the number of blocks developed by 28%. The discounted value

of industry pro�t increases by 42% from $13.85 billion to $19.62 billion. 13% of this increase in

pro�t is from cost savings - the number of exploration wells drilled per developed blocks falls from

30Equilibrium choice probabilities change under the counterfactual license assignment because of the de�nition
of equilibrium given by Assumption A.2 in Section 5. The equilibrium value of QE , �rms' beliefs about the rate of
exploration of other �rms, is de�ned as the average exploration rate at the equilibrium distribution of states. Under
a di�erent allocation of licenses the equilibrium distribution of states changes. I estimate a new license allocation
process, P (j ∈ Jft+1|Jt, {Jgt}∀g∈F ), using the counterfactual licenses, which I use when forward simulating in the
equilibrium algorithm detailed in Appendix E.
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Table 9: Clustered Licenses

Licenses Baseline Clustered

Nearby Own Licenses 0.371 0.583

Nearby Other Licenses 3.270 2.873

Exp. Wells 503.65 543.88

Blocks Dev. 22.43 28.78

Exp. Wells/Dev 22.45 18.90

Revenue 24.09 32.40

Pro�t 13.85 19.62

Notes: Results are averages over 40 simulations that cover 1964-1990. Oil price is set at its realized values. Well
outcomes and development revenue are drawn using the posterior success probabilities computed using the true
outcomes of all wells drilled before 1990. Revenue and pro�ts are in billions of 2015 dollars. Pro�ts are computed
using estimates of exploration well and development cost from OGA data on capital expenditure. PDV revenue
and pro�t are 1964 values where the annual discount factor is 0.9. In the �rst column, the assignment of blocks to
�rms is set to the true assignment. I the second column, the assignment of blocks to �rms is set to the
counterfactual clustered assignment.

22.45 to 18.90 - with the remaining 87% due to increased revenue. Industry surplus is greater than

in the counterfactual that eliminates free riding reported in Table 8, and achieves 59% of the gain

in surplus from the information sharing counterfactual.

Under this counterfactual assignment, �rms have less incentive to free ride and are able to learn

more quickly from the results of their own wells, since each well provides more information about

other blocks owned by the same �rm than under the baseline. By taking advantage of these e�ects,

the results suggest that the government could substantially increase industry surplus through a

simple rearrangement of the spatial allocation of blocks to �rms. Indeed, there is no sense in which

this particular allocation is optimal, and it may be that other allocations would result in faster

learning and a higher surplus. Within the limits of the model, which for example rules out any

�rm speci�c knowledge about particular blocks before exploration, these results provide a lower

bound on the potential gain from spatial reassignment of licenses.

As with the con�dentiality window, it is worth asking why the actual allocation of licenses to �rms

does not appear to fully take into account information externalities. The allocation mechanism

that has been in place since the �rst licenses were issued in 1964 has relied on �rms submitting

applications for speci�c blocks. One reason that �rms may not apply for a large number of licenses

close together is that this type of clustered allocation increases the risk borne by each individual

�rm. Because of the spatial correlation of oil deposits, a risk averse �rm with a constant prior mean

would prefer to be allocated licenses that are spread over a wide area. Under risk aversion, clustered

license allocations are therefore likely to be industry-optimal but not optimal in expectation for

the individual �rms. Application data is con�dential, so I cannot empirically verify whether �rms'

applications are spatially dispersed. However, in my conversations with the regulator I learned
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that the government has occasionally recommended �rms take on licenses for blocks for which they

did not apply in order to create contiguous blocks of licenses like those generated by the clustering

algorithm. One alternative policy that could achieve some of the gain from license clustering would

be to require �rms to apply for licenses at a regional rather than block level, with the government

determining the exact allocation of blocks to �rms within the region.

9 Conclusion

In many industries the creation of new knowledge through R&D is carried out in a decentralized

manner by competing �rms. The growth of the industry-wide stock of knowledge depends on the

extent to which �rms can observe and build on each other's innovations. Allowing information

spillovers between �rms can improve the speed of cumulative research and reduce duplicative or

socially ine�cient investments. On the other hand, information spillovers can diminish �rms'

individual incentives to innovate by enabling free riding on the innovations of other �rms. The

design of property rights over innovations plays an important role in balancing these e�ects.

I study the e�ects of information spillovers on R&D in the context of oil exploration, using historical

data from the UK North Sea. Oil exploration by individual �rms can be thought of as a process of

cumulative learning about the location of oil deposits. Exploration wells are experiments located

in geographical space with observable outcomes. If �rms can learn from the results of other �rms'

wells they face an incentive to delay exploration. However, if other �rms' well outcomes are

unobserved �rms are likely to make ine�cient drilling decisions, for example exploring regions

that are known by other �rms to be unproductive.

To quantify the e�ects of information spillovers, I build and estimate a model of the �rm's dynamic

exploration problem with spatial learning and information spillovers across �rms. The estimated

model indicates that there is imperfect information �ow between �rms. In counterfactual simula-

tions, I show that removing the incentive to free ride brings exploration and development forward

in time, increasing the number of exploration wells drilled between 1965 and 1990 by 7.4% and

increasing industry surplus in the same time period by 31%. Holding the free riding incentive

�xed and allowing perfect information �ow between �rms increases surplus by 70% by increasing

the speed of learning, increasing the cost e�ciency of exploration by reducing the number of de-

velopment wells drilled per developed block, and increasing the concentration of development on

productive blocks.

Equilibrium simulations under counterfactual property rights policies highlight the tradeo� be-

tween free riding and e�cient cumulative research. Strengthening property rights by extending

the well data con�dentiality period increases industry surplus by increasing the rate of exploration,

while weakening property rights by limiting the con�dentiality period increases industry surplus by
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increasing the speed of learning and e�ciency of exploration. Over the range of policies I examine,

reducing the con�dentiality window to 0 achieves the highest industry surplus, although extending

the con�dentiality window increases surplus at the baseline of 5 years.

Notice that the gains from strengthening property rights here are due to the e�ect of limiting inter-

�rm information �ow on the incentive to free ride on other �rms' discoveries. This di�ers from the

more commonly discussed motive of allowing �rms to capture the surplus from their innovations.

In this setting, the ability of �rms to pro�t from their discoveries is held �xed across alternative

policies. Firms always have the right to extract the oil they �nd on their blocks, with only the

ability to bene�t from other �rms' investments changing across alternative policies. The speci�c

features of this setting mean that the information externality e�ects of variation in property rights

are not con�ated with changes in the ability of a �rm to pro�t from its own discoveries.31

There is a substantial body of recent work quantifying the extent to which property rights limit

follow-on research in a number of settings (Murray and Stern, 2007; Williams, 2013; Murray et al.,

2016), but little empirical work on the potential for weaker property rights to encourage free riding.

The policy results in this paper suggest that the question of the optimal generosity of property

rights is subtle, even in the absence of an e�ect of stronger property rights on �rms' ability to

extract rent from their discoveries. In some settings it may be optimal to strengthen property

rights to reduce the free riding incentive even though stronger property rights hinder cumulative

research.

The �nal set of results quanti�es the e�ect of changing the spatial allocation of licenses to �rms.

By clustering licenses, the regulator is able to reduce the incentive to free ride and increase the

speed of learning, since each �rm learns more about its own blocks from a single well. The e�ects of

clustering on industry surplus are large, increasing surplus by more than the no free riding counter-

factual. This �nding is related to the theoretical literature on learning in teams (Holmstrom, 1982;

Campbell, Ederer, and Spinnewijn, 2013), and suggests in settings where research is decentralized

but a social planner is able to assign projects to each researcher (here, oil �rms), surplus can be

enhanced by designing the assignment to minimize the extent to which each team member can

free ride o� the others' research and maximize the extent to which each team member's research

is cumulative. This insight could, for example, have applications to the organization of publicly

funded research e�orts which involve many independent researchers and labs contributing to a

common project.

Methodologically, this paper makes two contributions that are applicable to other settings. First,

the model of beliefs and learning can be used to study other industries where research takes place

31Similarly, in none of the counterfactual experiments I examine do �rms internalize the bene�t their exploration
to other �rms. In particular, simplifying assumption A1 prevents �rms from internalizing the e�ect of their own
exploration on other �rms' future behavior. Relaxing this assumption would complicate the model but would allow
me to compute, for example, �rst-best exploration behavior in a scenario with full information sharing in which
�rms collude to maximize industry surplus.
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in a well de�ned space. For example, measures of molecular similarity are important metrics in the

exploratory phase of pharmaceutical development (Nikolova and Jaworska, 2003), and measures

of the distance between molecular structures are increasingly used in the economics literature on

pharmaceutical R&D (Krieger, Li, and Papanikolau, 2017; Cunningham, Ederer, and Ma, 2018).

An application of this model to research in chemical space might be able to inform the design of

property rights, for example the disclosure of clinical trial results, in that industry. Second, the

estimation approach developed in this paper is potentially applicable to other settings in which

agents have asymmetric information and the econometrician is not fully informed about each

agent's information set.
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Appendix

A Theoretical Framework

In this section, I present a simple model of exploration to illustrate the e�ects of information

externalities on �rms' drilling decisions and structure the subsequent empirical analysis. Consider

a two period drilling game played by two �rms, i and j, who control adjacent blocks. In the �rst

period, �rms simultaneously decide whether to drill an exploration well on their respective blocks.

Exploration wells on block i provide a binary signal about the presence of oil, and are successful

with probability ρi ∈ (0, 1), which is a primitive determined by technology and the geology of

the region being explored. Each �rm always observes whether their own well is successful, and

observes whether or not a well drilled by the rival �rm is successful with probability α ∈ [0, 1].

In the second period, �rms decide whether or not to develop the block at cost κ. Development

yields a payo� π(ρi) > 0 with π′(ρi) > 0, π(0) < κ, and π(1) > κ, which can be thought of as

the expected present discounted pro�t from the �ow of oil over the block's lifetime. In reality,

although exploration wells yield more complex geological data, the success rate of wells based on a

binary wet/dry classi�cation is an important statistic in determining whether to develop, continue

exploring, or abandon a block. See for example Lerche and MacKay (1995) and Bickel and Smith

(2006) who present models of optimal sequential exploration decisions based on binary signals.

Firm i's decision in each period depends on their beliefs about ρi ∈ [0, 1], the probability of

exploration well success on their block. Suppose that �rms have a common prior belief that the

vector ρ = (ρi, ρj) is drawn from a distribution F (ρ). Let σij be the correlation between ρi and

ρj implied by F (ρ). Let Iit = (ownit, otherit) be �rm i's information at the beginning of period

t. ownit ∈ {−1, 0, 1} records �rm i's exploration well outcomes from period t − 1. If ownit = 1,

�rm i drilled a successful exploration well, if ownit = −1, �rm i drilled an unsuccessful well, and

if ownit = 0, �rm i did not drill an exploration well. otherit ∈ {−1, 0, 1} is �rm i's information

about �rm j's exploration well outcomes, de�ned analogously except that otherit = 0 if �rm j

drilled a well and �rm i did not observe it. Let G(ρ|I) be the Bayesian posterior distribution of

ρ given observed outcomes I. Assume Ii1 = (0, 0) and therefore G(ρ|Ii1) = F (ρ) for both �rms.

Firms start period 1 with identical information and beliefs. Firms then decide whether to drill

an exploration well, and the results of wells are observed, with the results of a rival �rm's well

being observed with probability α. At the beginning of period 2, �rm i's beliefs are represented

by the posterior distribution G(ρ|Ii2). At this stage, �rms' posterior beliefs can di�er because of

di�erences in their information sets.

Let ρ̃(I) =
∫ 1

0
ρdG(ρ|I) be the expected success probability, and π̃(I) =

∫ 1

0
π(ρ)dG(ρ|I) be the

expected development pro�t for a given information set, I. Let ρ0 = ρ̃(0, 0). In period 2, �rm i
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will drill a development well at cost κ if and only if the expected return to doing so is positive.

That is, π̃(Ii,2)− κ ≥ 0. Therefore, de�ne a �rm's value function at the beginning of period 2 as:

V (I) = max{π̃(I)− κ, 0}

Let Wn,m be the period 1 expectation of V (I) conditional on the �rm observing the results of

n ∈ {0, 1} of their own and m ∈ {0, 1}of the other �rm's exploration wells. That is,

W0,0 = V (0, 0)

W0,1 = ρ0V (0, 1) + (1− ρ0)V (0,−1)

W1,0 = ρ0V (1, 0) + (1− ρ0)V (−1, 0)

W1,1 = ρ0ρ̃(0, 1)V (1, 1) + ρ0(1− ρ̃(0, 1)) (V (−1, 1) + V (1,−1)) + (1− ρ0)(1− ρ̃(0,−1))V (−1,−1)

In the �rst stage, �rms choose whether or not to drill an exploration well at cost c+ εi. I assume εi

private information to �rm i, and is drawn from a type-I extreme value distribution with variance

parameter σε. It is then straightforward to show that the unique Bayes-Nash equilibrium of the

exploration game is for each �rm to drill an exploration well with probability p∗ given by the

solution to equation 22. In what follows I assume W0,0 = 0. This assumption means that if not

exploration results are observed it is not optimal to develop the block. This assumption can be

relaxed without changing the nature of the equilibrium.

p∗ =
exp

(
1
σε

(p∗α(W1,1 −W1,0) +W1,0 − c)
)

exp
(

1
σε
p∗αW0,1

)
+ exp

(
1
σε

(p∗α(W1,1 −W1,0) +W1,0 − c)
) (22)

Note that the value of additional information is always positive, so W1,1 > W1,0 > W0,1 > W0,0. I

will focus on the case of diminishing marginal value of information whereW1,1−W1,0 < W0,1. That

is, I assume the marginal value to �rm i of observing the outcome of �rm j's well is higher when

�rm i does not drill a well itself.32 Under this assumption, it is straightforward to demonstrate

the following proposition.

Proposition 1. If W1,1 −W1,0 < W0,1 then ∂p∗

∂α < 0. If in addition, 0 <
∂W1,1

∂σij
<

∂W0,1

∂σij
, then ∂p∗

∂σij
< 0

Proof. Let P1 denote the right hand side of equation 22. Let P0 = 1− P1.

32That the value of additional signals should be diminishing is intuitive - in the limit additional signals have
no value as the posterior variance goes to zero. However, returns to information are not necessarily diminishing
everywhere, and it is possible to construct settings in which the second signal to be more valuable than the �rst
(see Radner and Stiglitz (1984) for a discussion of non-concavities in the returns to information).
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Applying the implicit function theorem to equation 22 yields

∂p∗

∂α
= −

(
p∗P1P0 (W11 −W10 −W01)

αP1P0 (W11 −W10 −W01)− σε

)
,

which is < 0 if W1,1 −W1,0 < W0,1.

Applying the same approach to obtain the derivative with respect to σij, noting that ∂W0,1

∂σij
6= 0,

∂W1,1

∂σij
6= 0, and ∂W1,0

∂σij
= 0, yields

∂p∗

∂σij
= −

 p∗P1P0

(
∂W1,1

∂σij
− ∂W0,1

∂σij

)
αP1P0 (W11 −W10 −W01)− σε

 ,

which is < 0 if W1,1 −W1,0 < W0,1 and 0 < ∂W1,1

∂σij
< ∂W0,1

∂σij
.

The �rst part of this theorem says that as the probability of information spillover between �rms

increases, the equilibrium exploration probability falls. If �rms are more likely to observe the

results of their rival's exploration wells, then �rms have more of an incentive to free ride since the

relative expected value of drilling their own well falls. The second part of this theorem says that

the equilibrium probability of exploration is negatively related to the correlation between ρi and

ρj, as long as 0 < ∂W1,1

∂σij
< ∂W0,1

∂σij
. This property applies, for example, if ρi and ρj are distributed

according to a transformation of a multivariate Niormal distribution, as in the Gaussian process

model developed in Section 3 of the paper. Intuitively, increased correlation between �rms' signals

has a larger e�ect of a �rm's continuation value when they only observe the other �rm's signal

and not their own. There is more incentive for �rms to free ride when the signals generated

by exploration wells on di�erent blocks are more correlated. In particular, if ρi = ρj (perfect

correlation) then information generated by �rm j's exploration well is of equal value to �rm i

as information generated by its own exploration well. In this case, W1,0 = W0,1. If there is

no correlation, then signals generated by �rm j are not informative about ρi, and W1,1 = W1,0

and W0,1 = 0. In this case, the equilibrium exploration rate, p∗, is identical to the equilibrium

exploration rate that obtains when α = 0.

This result illustrates that the extent to which �rms have an incentive to free ride in exploration

depends on the information �ow between �rms - parameterized by α - and the covariance of

signals generated by exploration wells on di�erent blocks - parameterized by σij. Information �ow

is largely a function of technology and regulation - for example, the information con�dentiality

period imposed by the UK regulator. Correlation of exploration well outcomes at di�erent locations

is a function of underlying geology and the size and arrangement of license blocks. The remainder

of this paper uses the UK data to estimate empirical analogues of these objects in the context of
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North Sea oil exploration and quanti�es the e�ect of information externalities on industry surplus

using an econometric model that builds on the simple theoretical model presented here.

A �nal theoretical result illustrates the trade o� faced by the social planner in manipulaitng

information �ow between �rms.

Proposition 2. Let p̃ be the probability of exploration that maximizes the joint expected surplus of

the two �rms. Let p be the equilibrium probability when α = 0, and p be the equilibrium probability

when α = 1. If W10 > c and W1,0 +W0,1 − c > 2W1,1 − 2c, then for some value of σε, p < p̃ < p.

Proof. First, note that if W1,0 > c, then p→ 1 and p→ 1 as σε →∞ and p→ 0.5 and p→ 0.5 as

σε → 0. Note also that p > p for any value of σε ∈ (0,∞) by Proposition 1. Since equation 22 is

continuous in σε, for any p̃ ∈ (0.5, 1) there exists a value σ̃ε ∈ (0,∞) such that p > p̃ > p.

Now, write the objective function of the planner who can set the probability of exploration and

observes all well outcomes as:

p̃ = arg max
p∈[0,1]

p2(2W1,1 − 2c) + 2p(1− p)(W1,0 +W0,1 − c).

The planner's optimum is given by:

p̃ =
1

2

(
W1,0 −W0,1 − c

W1,0 +W0,1 −W1,1

)
.

If W1,0 > c, then W1,1 > c and therefore p̃ > 0.5. furthermore, if W1,0 +W0,1− c > 2W1,1− 2c then

p̃ < 1.

The condition W10 > c says that the social planner would prefer to drill a well on one of the blocks

than none of the blocks. The condition W1,0 + W0,1 − c > 2W1,1 − 2c holds when the value of

information is su�ciently concave such that the social planner would like to drill only one well on

one of the blocks. This result shows that the decentralized equilibrium can generate either too

many or too few wells in expectation, and information �ow between �rms can be �too high� or �too

low�. Values of α that are too close to one induce too much free riding, such that the expected

number of exploration wells is too low. On the other hand, low values of α make is more likely

that more than one exploration well is drilled. This result illustrates the countervailing e�ects of

information �ow between �rms on social surplus in equilibrium. Too little information �ow results

in socially ine�cient exploration, since the social value of additional exploration wells beyond the

�rst is lower than c. On the other hand, too much information �ow between �rms increases the

free riding incentive and results in too little exploration in equilibrium.

This result suggests that exploration behavior is a decentralized equilibrium may be suboptimal,

and that government policy that manipulates the arrangement of licenses (and thus the correlation
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of signals between �rms) or the information �ow between �rms might bring equilibrium exploration

rates closer to the social optimum.

B Details of Logistic Gaussian Process Model

This section describes the Bayesian updating rule for the logistic Gaussian process model and relies

heavily on Section 3 of Rasmussen and Williams (2006). The code that I use to implement the

numerical Bayesian updating rule is a modi�ed version of the Matlab package made available by

Rasmussen and Williams.33

The latent variable, λ(X) is assumed to be distributed according at a Gaussian process. That

is, λ(X) is a continuous function, and any �nite collection of K locations {1, ..., K}, the vector

(λ(X1), ..., λ(XK)) is a multivariate normal random variable with mean (µ(X1), ..., µ(XK)) and a

covariance matrix with (j, k) element κ(Xj, Xk) where κ(Xj, Xk)→ κ(Xj, Xj) as |Xj −Xk| → 0.

I assume a constant prior mean and a covariance speci�cation given by equation 2. The prior

distribution is therefore de�ned by three parameters, (µ, ω, `). Denote the density function of

prior distribution of λ by p0(λ). Observed data is described by y = {(s(w), Xw)}w∈W for a set of

wells, W . The Bayesian posterior distribution of λ conditional on y is given by:

p1(λ|y) =
p0(λ)p(y|λ)

p(y)
(23)

p(y|λ) =
∏
w∈W

(1(s(w) = 1)ρ(λ(Xw)) + 1(s(w) = 0) (1− ρ(λ(Xw))))

p(y) =
∏
w∈W

(
1(s(w) = 1)

∫
ρ(λ(Xw))p0(λ)dλ+ 1(s(w) = 0)

(
1−

∫
ρ(λ(Xw))p0(λ)dλ

))

Where ρ(λ(X)) is de�ned by equation 1. This posterior distribution is di�cult to work with. In

particular, in order to compute the posterior E(ρ(X)|y) for some location X I must �rst compute

the marginal distribution of λ(X), which is given by:

p(λ(X) = λ̃|y) =

∫
1(λ(X) = λ̃)p1(λ|y)dλ (24)

Then the expected value of ρ(X) is given by:

E(ρ(X)|y) =

∫
ρ(λ̃)p(λ(X) = λ̃|y)dλ̃ (25)

The posterior marginal distribution of λ(X) given by equation 24 is non-gaussian and has no

33Available at http://www.gaussianprocess.org/.
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analytical expression. This means that it is computationally costly to compute E(ρ(X)|y).

To solve this problem I use a Gaussian approximation to the posterior p1(λ|y) computed using the

Laplace approximation technique detailed in Section 3.4 of Rasmussen and Williams (2006), based

on Willaims and Barber (1998). This method is widely used for Bayesian classi�cation problems

in computer science (Tipping, 2001) and in geostatistics (Diggle, Tawn, and Moyeed, 1998).

Denote the Gaussian approximation to p1(λ|y) by q1(λ|y). Since q1(λ|y) is Gaussian, the posterior

distribution over any �nite collection of K locations can be written as a N(µ1,Σ1) where µ1 is

K × 1 and Σ1 is K ×K. In particular, the marginal distribution given by equation 24 is a Normal

distribution.

Notice that, since q1(λ|y) is itself a Gaussian process, it is straightforward to update beliefs again

given a new set of data, y′, following the same procedure. This updating procedure de�nes the

operator B(·) in equation 4, where G(ρ) is the distribution of ρ implied by the prior Gaussian

distribution of λ and the logistic squashing function 1, and G′(ρ) is the distribution over ρ de�ned

by the Gaussian approximation to the posterior distribution of λ.

B.1 Gaussian Process Likelihood

Let s be a vector of well outcomes and X be a vector of well locations, both random variables.

Vectors are arranged in chronological order so that the �rst element of each vector corresponds to

the �rst well drilled, the second to the second well drilled etc. Write the wth element of each vector

as sw and Xw. Let ρ(·) : X → [0, 1] be the random function which de�nes the probability of success

at each location in the space X, drawn form a logistic Gaussian process with density g(ρ, θ) where

θ is a parameter vector. sw is a Bernoulli random draw with probability P (sw = 1) = ρ(Xw).

Adopt the following assumption about the process that generates X:

� Assumption A.3: Xw is drawn from a distribution F (Xw|θ, {(Xy, sy)}y<w). That is, the

distribution of Xw depends only on the parameters θ, and the locations and outcomes of

past wells, and not on the random function ρ directly.

The joint distribution of (ρ, s,X) is then given by:

F (ρ, s,X) =

[
g(ρ, θ)

∏
w

ρ(Xw)1(sw=1)(1− ρ(Xw))1(sw=0)

][∏
w

f(Xw|θ;{(Xy, sy)}y<w)

]
.

In the language of Cox (1975) the joint distribution is the product of two partial likelihood functions.

One that is the product of the probabilities of outcomes sw conditional on locations Xw, (the left

brackets) and one that is the product of the probabilities of locations Xw conditional on past
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locations and outcomes {(Xy, sy)}y<w (the right brackets). Wong (1986) shows that consistent

estimates of the parameters θ can be obtained by maximizing partial likelihood functions with this

nested conditioning structure. That is, once can omit one or the other of the two partial likelihood

functions and obtain consistent estimates of the parameters θ. Chapter 13.8 of Wooldridge (2002)

discusses this partial likelihood approach in detail for a panel data setting (of which this is a special

case).

To obtain the likelihood function given in equation 3, the random function ρ is integrated out of

the partial likelihood given by the left brackets. Gill (1992) shows that such a marginalized partial

likelihood function has the same properties as the partial likelihood provided that the omitted

term that appears in the full but not the partial likelihood does not depend on the variable that

is integrated out. This is exactly assumption A.3.

B.2 KL Divergence

I compute the expected KL divergence for each (j, t) according to the following equation:

KLjt = Et(ρj)

∫
gt(ρ|{j, 1}) log

(
gt(ρ|{j, 1})

gt(ρ)

)
dρ

+ (1− Et(ρj))
∫
gt(ρ|{j, 0}) log

(
gt(ρ|{j, 0})

gt(ρ)

)
dρ (26)

Where gt(ρ) is the density of the �rm's posterior beliefs over the vector ρ after observing all wells

up to date t, gt(ρ|{j, 1}) is the updated posterior after observing an additional successful well on

block j, and gt(ρ|{j, 0}) is the updated posterior after observing an additional unsuccessful well

on block j. The �rst term in the expression is the expected probability of success on block j

multiplied by the information gain from a successful well on that block. The second term is the

expected probability of failure on block j multiplied by the information gain from a failed well.

C Estimation Details

C.1 First Step: Estimating Conditional Choice Probabilities

In the �rst step, I estimate CCPs P̂ (aE = j|S) and P̂ (aD = j|S) - the probabilities that a �rm

takes an action j in the exploration and development stages of the game conditional on its state

S. With a su�ciently large data set, these probabilities could be estimated as empirical means

for each state. However, since the number of possible states is large relative to the data, I impose

some additional structure. Consider �rst the exploration decision. Notice that equation 12 can be
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rewritten as

P (aEf = j|S) =
exp

(
ṽEf (j,S)

)
1 +

∑
k∈Jft exp

(
ṽEf (k,S))

) (27)

where ṽEf (j,S) = 1
σε
vEf (j,S)− 1

σε
vEf (0,S).

I approximate ṽf
E(j,S) with a linear equation with the following terms:

� Summary statistics of the �rm's beliefs: E(ρj|Gft), E(ρj|Gft)
2, V ar(ρj|Gft), V ar(ρj|Gft)

2,

and E(ρj|Gft)V ar(ρj|Gft).

� The number of licenses held near block j by �rm f and by other �rms: |{k : k ∈ Jft and d(j, k) ≤
1}|, |{k : k ∈ ∪{Jgt}g 6=f and d(j, k) ≤ 1}|, and |{k : k ∈ ∪{Jgt}g∈F and d(j, k) ≤ 2}|, where
d(j, k) = 1 if j and k are neighbors, d(j, k) = 2 if j and k are second degree neighbors etc.

� The number of nearby unobserved wells within one year of being made public: |{w : of (w) =

0 and t(w) + τ − 12 ≤ t ≤ t(w) + τ}|.

� A quadratic in the price level: Pt and P
2
t .

� Block j and �rm f �xed e�ects.

Estimating P̂ (aEf = j|S) is then a case of estimating the parameters of this approximation to

ṽf
E(j,S).

The approximation to ṽf
E(j,S) depends on the distribution of licenses and wells �near� block j.

Intuitively, the di�erence between the value of drilling on block j and taking no action should not

depend on the distribution of licenses and wells at distant locations. Fixed e�ects are included to

account for block level heterogeneity in drilling costs or beliefs not accounted for by well results

and �rm level heterogeneity is drilling costs. If block level �xed e�ects are not included, block level

heterogeneity can lead to biased estimates of the logit coe�cients on �rms' beliefs. In particular,

blocks that have idiosyncratically low drilling costs or on which there is additional public infor-

mation indicating potential productivity are likely to be explored more intensively. Firm beliefs

about these blocks are likely to have lower variance on average because of this high exploration

rate. Across-block variation in average drilling rates and beliefs would therefore lead to the spu-

rious conclusion that greater uncertainty in beliefs reduces the probability of exploration. Since

there is no explicit block or �rm level heterogeneity in the model, I estimate the parameters of

the polynomial approximation to ṽf
E(j,S) once including �xed e�ects, then I �nd the intercept

that matches the average exploration probability without �xed e�ects, holding other parameters

at their estimated level. I use this intercept in generating predicted choice probabilities.

If the state variable were observable in the data, then P̂ (aEf = j|S) could be estimated using the

likelihood function implied by equation 27. However, the asymmetric information structure of the
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model means that the true state is not observed by the econometrician. The data does not include

the vector of that records which other-�rm well outcomes were observed by �rm f . Di�erent

realizations of of imply di�erent states through the e�ect of observed well outcomes on Gft and

WU
ft. The data is therefore consistent with a set of possible states S̃f for each �rm.34

To recover CCP estimates, observe that di�erent values of the parameter α de�ne distributions

P (Sf |S̃f , α) over the elements of S̃f . For example, suppose at date t there was one other-�rm well

w that may have been observed by �rm f . Let S1
ft be the state if of (w) = 1 and S0

ft be the state

if of (w) = 0. From the econometrician's perspective, P (S1
ft|{S1

ft,S0
ft}, α) = α. I provide a formal

de�nition of the distribution P (Sf |S̃f , α) in subsection C.3 below

Given this distribution over states, the likelihood of a sequence of exploration choice observations

is:

LEf =
∑
Sf∈S̃f

 T∏
t=1

∏
j∈Jft∪{0}

1(aEft = j)
exp

(
ṽEf (j,Sft)

)
1 +

∑
k∈Jft exp

(
ṽEf (k,Sft))

)
P (Sf |S̃f , α)

 . (28)

I maximize this likelihood to jointly estimate the coe�cients of the approximation to ṽEf (j,Sft)
and the parameter α. Since I sometimes observe multiple exploration wells for the same (f, t) I

treat these as separate observations inside the brackets in equation 28.

I derive a similar expression for the likelihood of a sequence of development choices. Fixing α at

the previously estimated value, I maximize the development likelihood to estimate the coe�cients

of the approximation to ṽDf (j,Sft). Because development of a block is a rare event (it occurs

only 20 times in the estimation sample), I include fewer statistics in the approximation to the

state variable to avoid over�tting. In particular, I omit �xed e�ects, quadratic terms in �rms'

beliefs about ρj and the oil price, and statistics on the number of nearby licenses and nearby

unobserved wells. Adding higher order terms in beliefs about ρj leads to imprecise coe�cient

estimates, suggesting that extrapolation of the predicted choice probabilities to unobserved states

would be unreliable. The estimated coe�cients imply conditional choice probability estimates,

P̂ (aE = j|S) and P̂ (aD = j|S).

I use P̂ (aE = j|S) and P̂ (aD = j|S) to estimate the �rms beliefs about the average exploration

34More precisely, and element of S̃f is a particular sequence of �rm-f states Sf = {Sft}Tt=1. See the subsection

below for a formal de�nition of S̃f .

66



rate QE and QD de�ned in equation 16 with the mean CCPs across realized states in the data,

Q̂E =
1

TF

T∑
t=1

F∑
f=1

1

|Jft|
∑
j∈Jft

P̂ (aE = j|Sft) (29)

Q̂D =
1

TF

T∑
t=1

F∑
f=1

1

|Jft|
∑
j∈Jft

P̂ (aD = j|Sft).

Logit coe�cients and marginal e�ects for he estimated CCPs are recorded in Table A1.

Table A1: Conditional Choice Probabilities: Logit Coe�cients

Exploration Development

Coe�cient SE Marginal E�ect Coe�cient SE Marginal E�ect

Beliefs about ρj

Mean 14.526 2.292 0.1764 3.022 1.680 0.0049

Variance 4.916 1.149 0.0216 -5.582 2.201 -0.0089

Mean Squared -9.041 1.967

Variance Squared -1.733 0.396

Mean ∗ Variance -1.461 1.741

Oil Price ($100s) 3.272 1.337 0.0134 -0.233 0.704 -0.0004

Oil Price Squared ($100s) -0.020 0.009

Licenses

Own Firm Neighboring 0.129 0.029 0.0028

Other Firm Neighboring 0.015 0.030 0.0003

Total Nearby 0.105 0.016 0.0023

Unobserved Wells -0.153 0.034 -0.0033

Mean Exploration Probability (Q̂E) 0.0223

Mean Development Probability (Q̂D) 0.0017

N Firms 44 44

N Firm-Months 5977 5977

Notes: Table records logit coe�cients on state var summary statistics the enter the approximation to the state
for the �rm's exploration and development decisions. Standard errors are comuted using the outer product of the
gradients of the log likelihood. Marginal e�ects are the predicted change in exploration and development probability
from a marginal change in each of the listed statistics. E�ects are calculated using the �rst derivatives of the logit
choice probability expression. All statistics are for the case of a �rm with drilling rights on a single block, j, for
which the statistics that enter the approximation to the state variable are set to the mean observed values from the
data.
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C.2 Second Step: Estimating Dynamic Parameters

In the second step, I use the estimated conditional choice probabilities P̂ (aE = j|S) and P̂ (aD =

j|S) to estimate the cost parameters θ2. The �rm's value functions (9) can be written in terms of

the expected sum of future payo�s and costs as

V E
f (S, θ2) = E

 ∞∑
t=0

βt
∑
j=Jft

(
1(aDft = j) (πj − (κ0 − νftj))− 1(aEft = j) (c(j,Sft)− εftj)

) . (30)

Where the expectations are taken over all future cost shocks, �rm actions, and realizations of

s(w), of (w), and πj with respect to the �rm's beliefs at state S, and c(Sft, j) is given by equation

17. To estimate this expectation, I forward simulate the model from initial state S using the

CCP estimates P̂ (aE = j|S) and P̂ (aD = j|S) to draw �rm f 's actions and estimates of �rm f 's

beliefs about other �rms actions Q̂E and Q̂D to draw other �rms' actions.35 Simulation proceeds

as follows:

1. Draw an exploration action using probabilities P̂ (aEft = j|St). Compute expected cost shock

εftaE , given realized action. If a well is drilled, let it be successful with probability corre-

sponding to �rm f 's beliefs at state St.

2. Draw other �rms' exploration actions using Q̂E. Let wells be successful with probability

corresponding to �rm f 's beliefs at state Sft.

3. Draw of (w) for wells drilled by other �rms using α̂.

4. Update state to S ′ft.

5. Draw a development action using P̂ (aDft = j|S ′ft). Compute expected cost shock νftaE , given

realized action. If block j is developed draw development revenue πj from the distribution

corresponding to �rm f 's beliefs at state S ′ft.

6. Draw other �rms' development actions using Q̂D.

7. Update state to Sft+1. Go to step 1.36

35Hotz and Miller (1993) obtain estimates of the �rm's value function using �nite dependence by normalizing one
state to have a continuation value of 0. This approach is complicated here since the �absorbing state� of developing
all blocks is the result of a series of choices, rather than a single choice that is available at every state (for example
exit in a standard dynamic oligopoly model).

36Notice that since cost parameters θ2 enter equation 30 linearly, I only need to perform the simulation step once.
Simulated continuation values can be obtained under di�erent parameter vectors θ2 by multiplying the simulated
costs and revenues by the relevant elements of the parameter vector (Bajari, Benkard, and Levin, 2007).
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Let r index simulation runs and V E
fr(S, θ2) be the present discounted sum of �rm f 's payo�s and

costs from run r. Given R simulations from state S, estimates of the value functions given by

equation 30 are:

V̂ E
f (S, θ2) =

1

R

R∑
r=1

[
V E
fr(S, θ2)

]
. (31)

A similar procedure is used to compute estimates of development stage value functions V̂ D
f (S, θ2)

where the simulation algorithm is started at step 5. In practice I set R = 500 and run each

simulation for 480 periods (40 years). Plugging estimated value functions into equation 10 yields

estimates of choice-speci�c value functions, v̂Ef (aE,S, θ2) and v̂Df (aD,S, θ2), which can be combined

with equation 12 to generate model-implied choice probabilities

P̃ (aEf = j|S, θ2) =
exp

(
1
σε
v̂Ef (j,S, θ2)

)
∑

k∈Jft∪{0} exp
(

1
σε
v̂Ef (j,S, θ2))

) . (32)

With a similar expression for P̃ (aDf = j|S, θ2). Dropping the E and D for simplicity, I write

the relationship between the model-implied probabilities and the empirical �rst-step probabilities,

P̂j(S), as:

P̂ (a = j|S) = P̃ (a = j|S, θ2) + ξjS (33)

Where, at the true parameters, ξjS contains the error due to sample size and approximation of the

state variables in P̂ (a = j|S) and the simulation error in P̃ (a = j|S, θ2). I estimate the parameters

θ2 by non-linear least squares, stacking exploration choice and development choice probabilities

for each state S. Note that I can compute both P̂ (a = j|S)) and P̃ (a = j|S, θ2) for any state S,
including those not directly observed in the data. In practice I select a random 25% subset of the

states observed in the data to include in the regression.

Since the simlated value functions enter non-linearly in the model implied probabilities, P̃ (a =

j|S, θ2), non-linear least squares estimation based on equation 33 is asymptotically biased if the

number of simulation draws, R, is �xed (La�ont, Ossard, and Vuong, 1995). To ensure consistency,

it is necessary either to add a bias correction term, or to assume that R goes to in�nity faster

than the square root of the number of observations (Gourieroux and Monfort, 1993) - here the

number of states included in the regression. Due to computational di�culty in obtaining the bias

correction term, I rely on the assumption of an asymptotically increasing number of simulation

draws.
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C.3 Technical Details on Distribution of States

De�ne a period t observation as

Xt = {{(j(w), s(w), f(w)) : t(w) < t}, {Jft}f∈F∪{0}, Pt}, (34)

where the data consists of T such observations, X = {Xt}Tt=1. If the states {Sft}f∈F were uniquely

identi�ed by Xt, then P̂ (aEf = j|S) could be estimated using a straightforward logit. This is not

possible since the econometrician does not observe the vector of . That is, the econometrician does

not know which well outcomes each �rm observed in reality. Di�erent realizations of of imply

di�erent states through the e�ect of observed well outcomes on Gft and W
U
ft. The state variable

Sft is therefore not directly observed in the data, and for every (f, t), the data is consistent with

a set of states.

Formally, denote a sequence of �rm f states as Sf = {Sft}Tt=1. There exists a function s(·) such

that Sf = s(of |X). De�ne S̃f (X) as the range of this function. That is, S̃f is the set of �rm f

states that are consistent with the data. There also exists an inverse correspondence s−1(Sf |X)

that maps states to (possibly multiple) vectors of that imply those states.

To recover CCP estimates, observe that di�erent values of α de�ne distributions over the elements

of S̃f . In particular, the probability of sequence of states Sf ∈ S̃f , conditional on the data is:

P (Sf |X,α) =
∑

o∈s−1(Sf |X)

(
α
∑
w o(w)(1− α)

∑
w(1−o(w))

)
. (35)

Given this distribution over true states, the likelihood of a sequence of exploration choice obser-

vations conditional on (X,α) is given by:

LEf =
∑

Sf∈S̃f (X)

 T∏
t=1

∏
j∈Jft∪{0}

1(aEft = j)
exp

(
ṽEf (j,Sft)

)
1 +

∑
k∈Jft exp

(
ṽEf (k,Sft))

)
P (Sf |X,α)

 . (36)

Note that the summation in equation 36 is an expectation. In practice, it is computationally infea-

sible to compute the action probabilities at every possible state sequence Sf ∈ S̃f . I approximate

this expectation for di�erent values of α using importance sampling methods.

C.4 Estimation of Development Payo�s

Firms decide to develop blocks based on the expected payo� from the block, πj and the �xed cost

of developing the block, κ. πj is drawn from a distribution Γ(π; ρj, P ). I assume that development

payo� is given by πj = Rjµ(P ) where Rj is the quantity of oil reserves on block j (in barrels), and
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µ(P ) is a multiplier that depends on the price per barrel. I assume that reserves are drawn from

a log normal distribution: Rj ∼ logN(αR + µRρj, σR). Note that the mean parameter depends on

the true exploration success probability of the block, ρj.

Note that I do not observe Rj directly in the data, but I do observe the realized �ow of oil from

all production wells drilled from a development platform up to 2000. I cannot use the total oil

produced from each block to measure Rj for two reasons. First, most �elds were still producing in

January 2000, the last month in my data, and the sum of all oil produced is therefore less than the

total reserves. Second, older �elds may have undergone several rounds of redevelopments (so-called

�enhanced oil recovery�. See Jahn, Cook, and Graham, 1998).

A classic production pro�le involves a pre-speci�ed number of wells being drilled, over which time

the production �ow of the �eld ramps up. Once the total number of wells is reached, production

peaks and then begins to fall o� (Lerche and MacKay, 1999). To estimate the volume of reserves

initially perceived as recoverable by the �rm, I use data on the set of wells that were drilled before

production peaked on each block, and extrapolate into the future using an estimate of the rate of

post-peak decline in production. Let t0(j) be the month that production began on block j and let

t∗(j) be the month of peak production. Let rj(t) be the observed �ow of oil from block j in month

t. I estimate a parameter bj that measures the rate of post-peak decline in production separately

for each block j by applying non-linear least squares to the following speci�cation:

rj(t) = rj(t
∗(j))exp(−bj(t− t∗(j))) + εjt (37)

Where the estimation sample includes all months after t∗(j) for all developed blocks, j. Estimated

initial reserves are then given by:

Rj =

t∗(j)∑
t=t0(j)

rj(t) +
∞∑
t=0

rj(t
∗(j))exp(−b̂jt) (38)

Where the �rst term is the realized pre-peak production, and the second term is the extrapolated

post-peak production.

Figure 2 illustrates the relationship between exploration success rate and log estimated reserves.

Notice that the expected size of the reserves is monotonically increasing in the success rate of

exploration wells on the same block, and the relationship is approximately log-linear. I assume

log-linearity and estimate the parameters of the distribution of Rj by OLS using the following

regression speci�cation:

log(Rj) = αR + µRρj + εj (39)

Where εj ∼ N(0, σR) and I measure ρj using the realized pre-development exploration well success

rate on block j. The estimated parameters are reported in Table A2.
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Finally, note that πj = Rjµ(P ) where µ(P ) = P (1 − 0.125) 1−β40

40(1−β)
, This multiplier converts the

total reserves in barrels to the present discounted value of revenue at the current price level, less

the 12.5% royalty paid to the government, where oil is assumed to �ow at a constant rate for 40

years, at which point the reserves, Rj are exhausted.

Table A2: Distribution of Development Payo�s

Parameter Estimate SE
αR 1.594 0.420
µR 5.990 0.964
σ2
R 1.949 0.115

N 80

Notes: Reported coe�cients are from OLS estimation of regression speci�cation given by equation 39. Sample
includes one observation for each of the 80 blocks developed before 2000 in the area north of 55◦N and east of 2◦W .
Left hand side variable is the log of the predicted oil reserves on block j, measured in millions of barrels. Right
hand side variable is the observed exploration well success rate for block j calculated using all exploration wells
drilled on block j before development.

C.5 Estimation of License Issuing Process

Firm f has beliefs about the evolution of the distribution of drilling licenses described by a two

step process that takes place at the beginning of each period. First, the set of all blocks that will

be licensed to any �rm that period is drawn. Next the identities of the �rms who receive licenses

on each block are drawn. The process is described by the following equations:

P (j ∈ ∪{Jgt}g∈F |Sft−1) = Φ(β0 + β1Licjt−1 + β2LicNeighborsjt−1) (40)

P (j ∈ Jft|j ∈ ∪{Jgt}g∈F ,Sft−1) = Φ(β3 + β4Licfjt−1 + β5Licjt−1 + β6LicNeighborsfjt−1)

Where Licjt−1 is an indicator for whether block j was licensed to any �rm at date t−1, Licfjt−1 is

an indicator for whether block j was licensed to �rm f at date t−1, LicNeighborsjt−1 is the number

of blocks neighboring block j that were licensed to any �rm at date t − 1, LicNeighborsfjt−1 is

the number of blocks neighboring block j that were licensed to �rm f at date t − 1, and Φ(·) is

the standard Normal distribution function.

The �rst equation describes the probability that block j is licensed to some �rm in date t. The

second equation describes the probability that block j is licensed to �rm f , conditional on it being

licensed to some �rm at date t. Notice that this speci�cation does not rule out multiple �rms

receiving licenses on the same block. However, I allow the probability block j is licensed to �rm f

in period t to be a function of whether it was licensed to another �rm in the previous period, t−1.
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Table A3: License Issuing Process

Probability of Assignment Conditional Probability
to Any Firm of Assignment to f

Dependent Variable 1(j ∈ ∪{Jgt}g∈F ) 1(j ∈ ∪Jft)
Conditional on ∀j ∈ J ∀j ∈ ∪{Jft}f∈F

Constant -3.004*** -2.001***
(.039) (.036)

Licensed in t− 1 5.334*** -1.780***
(.056) (.050)

Licensed to f in t− 1 . 6.611***
. (.056)

Neighbors Licensed in t− 1 .366*** .
(.055) .

Neighbors Licensed to f in t− 1 . .099
. (.066)

N 81270 860112

Notes: Reported coe�cients are from probit regressions of equations 40. The �rst column reports coe�cients from
the �rst equation. An observation is a block-month. The left hand side variable is an indicator for whether block j
is licensed to any �rm f ∈ F in month t. The sample includes all block-month combinations for 1965-1990 on the set
of blocks used in the structural estimation, including those never licensed. The second column records coe�cients
from the second equation. An observation is a �rm-blopck-month. The left hand side is an indicator fro whether
block j is licensed to �rm f in month t. The sample includes all possible �rm-block-month combinations for those
block-months where j is licensed to some �rm f ∈ F . This is, if block j was licensed to �rm f in month t, the
regresison would include a (g, j, t) observation for every �rm g ∈ F .

I estimate the parameters of equations 40 by running two probit regressions. The �rst equation is

estimated using a panel at the block-month level. The sample includes of all blocks for every month

from 1965 to 2000. The left hand side variable is an indicator for whether block j was licensed

to any �rm in month t. The second equation is estimated using a panel at the �rm-block-month

level. The sample includes an observation for every possible (f, j, t) combination for months t in

which block j was licensed to some �rm.

The estimated parameters for both equations are recorded in Table A3.

D Identi�cation Details

In this section I provide a proof of identi�cation of the exploration conditional choice probabilities

(CCPs) P (aEf = j|S) and the information spillover parameter, α. Identical reasoning applies to

development choice probabilities. I use the notation developed in Section 6 of the main paper

and in Appendix D. In addition, let X be the space of possible data points, where X ∈ X is an
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observation as de�ned by equation 34.

Proposition 3. Suppose P (aEf = j|S̃f (X)) is observed for all f and all X ∈ X. These observed

probabilities are consistent with a unique value of α and a unique value of P (aEf = j|Sf ) for every
possible state Sf .

Proof. First, suppose that α is known.

Let wt be a vector of length W = |{w : t(w) < t}| indexed by i ∈ [1, ...,W ] is an index which

contains the identity w of each well w ∈ {w : t(w) < t} in some order such that we can refer to well

identities by, wt(i) . Let γft be a vector of length W with ith element γft(i) = 1(f(wt(i)) = f).

γft is a vector of indicators for whether each well w was drilled by �rm f .

We can then rewrite the observable data Xt as Xt = {xt, {γft}f∈F}. Where

xt = {{(j(w), s(w)) : t(w) < t}, {Jft}f∈F∪{0}, Pt}.

xt describes the location and outcome of all wells drilled up to date t, the date t distribution of

licenses, and the oil price.

De�ne oft as a vector of length W with ith element given by oft(i) = of (wt(i)). oft is just an

ordered vector of containing indicators for whether �rm f observed each well w ∈ {w : t(w) < t}
(a subset of the elements of of ).

Suppose for simplicity that all wells w, t− t(w) < τ , so no wells are older than the con�dentiality

period τ . This assumption simpli�es notation, and the following argument easily generalizes. I

now drop the t subscript for simplicity.

Firm f 's state is uniquely de�ned by the pair (of , x). That is, there exists a function Sf =

s(f,of , x). The set of states that are consistent with the objects observed in the data is de�ned

by a correspondence S̃f = s̃(f,γf , X). In particular:

s̃(f,γf , x) = {s(f,of , x) : γf (i) = 1⇒ of (i) = 1∀i ∈ [1, ...,W ]}.

So s̃(f,γf , x) contains states implied by all possible values of of . In particular, each well drilled

by a �rm other than f may or may not have been observed.

Now �x a value of x. There are 2W possible values of γf and therefore of S̃f = s̃(f,γf , x). There

are also 2W possible values of of and therefore of Sf = s(f,of , x). Let Sf (x) be the set of possible

values of Sf and S̃f (x) be the set of possible values of S̃f . For any action choice j ∈ Jf and any

S̃f ∈ S̃f (x) we can write:

P (aEf = j|S̃f ) =
∑

Sf∈Sf (x)

P (aEf = j|S)P (Sf |S̃f ).

74



Where P (Sf |S̃f ) is a function of α given by equation 35 if Sf ∈ S̃f and P (S|S̃f ) = 0 if Sf /∈ S̃f .

There are 2W such equations which de�ne a linear system P̃ = AP where P̃ is a 2W × 1 vector

which stacks the probabilities P (aEf = j|S̃f ), P is a 2W × 1 vector which stacks the probabilities

P (aEf = j|S), and A is a 2W × 2W matrix containing the probabilities P (Sf |S̃f ) which are known

functions of α. P̃ is observed in the data. A is a known function of the single parameter α. P is

an unknown vector for which we would like to solve.

The vector of true CCPs P can be recovered from the observed probabilities, P̃ when A has full

rank. This is the case here because the system of equations can be written such that A is lower

triangular with non-zero diagonal elements. I show this by providing an algorithm to solve the

system by forward substitution, which is only possible in a triangular system of equations. The

algorithm proceeds as follows:

1. Denote the vector with all entries equal to 1 by 1 Start with γ1
f = 1. Let S̃1

f = s̃(f,1, x)

and S1
f = s(f,1, x) . Notice S̃1

f = S1
f . If all wells were drilled by �rm f , then they are all

observed. Therefore

P (aEf = j|S̃1
f ) = P (aEf = j|S1

f ).

P (aEf = j|S1
f ) is uniquely identi�ed.

2. Denote the vector with all entries except the ith equal to 1 and the ith equal to 0 by 1{i}.

Let γ2
f = 1{i}. Let S̃2

f = s̃(f,1{i}, x) and S2
f = s(f,1{i}, x) . Notice that S̃2

f = {S1
f ,S2

f}. The
�rm either did or did not observe the ith well. Therefore

P (aEf = j|S̃2
f ) = αP (aEf = j|S1

f ) + (1− α)P (aEf = j|S2
f ).

Since the other terms are already known, P (aEf = j|S2
f ) is uniquely identi�ed.

3. Repeat step 2 for each index ∀i ∈ [1, ...,W ].

4. Proceed to vectors γf with two entries equal to 0 and repeat step 2.

5. Continue iterating through vectors with increasingly more entries equal to 0 until P (aEf =

j|Sf ) has been solved for for all Sf ∈ Sf (x).

This algorithm generates the unique solution P of the system of equations P̃ = AP . This can be

repeated for any value of x.

Now I argue that α is uniquely identi�ed. Fix a pair (x, x′) where x and x′are identical except for
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the outcome of the ith well. The following four equations hold:

P (aEf = j|s̃(f,1, x)) = P (aEf = j|s(f,1, x))

P (aEf = j|s̃(f,1, x′)) = P (aEf = j|s(f,1, x′))

P (aEf = j|s̃(f,1{i}, x)) = αP (aEf = j|s(f,1, x)) + (1− α)P (aEf = j|s(f,1{i}, x))

P (aEf = j|s̃(f,1,{i} x′)) = αP (aEf = j|s(f,1, x′)) + (1− α)P (aEf = j|s(f,1{i}, x′))

The left hand side of each equation is observed. Notice that P (aEf = j|s(f,1{i}, x)) = P (aEf =

j|s(f,1{i}, x′)) since when the ith well is unobserved the two states are identical to the �rm. There

are therefore three unknown choice probabilities and the parameter α on the right hand side. α

can be solved for in terms of observed quantities.

E Simulation Details

In this section, I describe the simulation algorithm used to compute approximate counterfactual

equilibria of the estimated model. Inputs to the simulation are a vector of model parameters, θ, a

con�dentiality window, τ , a license assignment{Jft}f∈F for each period, and �rst step conditional

choice probability (CCP) estimates, P̂ (aE = j|S) and P̂ (aD = j|S). The output of the simulation

are equilibrium CCPs, P ∗(aE = j|S). Note that I hold development choice probabilities �xed.

The algorithm works by taking a set of CCPs as input and forward simulating those probabilities

from each state Sf . The simulation generates model-implied choice probabilities. If the probability

of exploration is, on average, higher (lower) according to the model implied probabilities than the

input CCPs then the CCPs are adjusted by increasing (decreasing) the intercept term in the linear

approximation to the relative continuation values, ṽEf (j,S), that enter the logit expression of

CCPs given by equation 27. The procedure is repeated using the adjusted CCPs and and adjusted

value of QE until the di�erence in implied probability of exploration between the model-implied

probabilities and the input CCPs converges to 0. In particular,

Note that this procedure adjusts the average exploration probability, allowing the rate of explo-

ration to vary under di�erent counterfactual scenarios for example because of increased or decreased

incentive to free ride, but holds �xed the response of relative continuation values, ṽEf (j,S), to vari-

ation in the state variable. I make this simpli�cation to improve the stability of the procedure

while using a computationally feasible number of simulation runs.

The algorithm proceeds as follows:

1. Fix a set of states, S and use �rst step CCPs P̂ 1(aE = j|S) and P̂ (aD = j|S) and �rst step

estimates of Q̂E1 and Q̂D1 to perform the forward simulation described in Appendix Section
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D.2 for each S ∈ S. This procedure generates model implied exploration probabilities,

P̃ 1(aEf = j|S, θ).

2. Compute the the average deviation between the �rst step and model implied CCPs, ∆1 =∑
S∈S

(
P̃ 1(aEf = j|S, θ)− P̂ 1(aE = j|S)

)
. Adjust the �rst step CCPs according to:

P̂ 2(aEf = j|S) =
exp

(
v̂E1
f (j,S) + δ

)
1 +

∑
k∈Jft exp

(
v̂E1
f (k,S) + δ

)
Where ∆ is the adjustment to the estimated �rst step continuation values. δ > 0 if ∆1 > 0

and δ < 0 if ∆1 < 0. Let v̂E2
f (j,S) = v̂E1

f (j,S) + δ.

3. Simulate the model for all months from 1965 to 1990 using the distribution of licenses

{Jft}f∈F and the new CCPs P̂ 2(aEf = j|S). Generate a new average exploration and de-

velopemnt probabilities, Q̂E2 and Q̂D2.

4. Go back to step 1 and repeat with new exploration CCPs P̂ 2(aEf = j|S) and new average

probabilities Q̂E2 and Q̂D2. Repeat the algorithm k times until∑
S∈S

(
P̃ k(aEf = j|S, θ)− P̂ k(aE = j|S)

)
≈ 0.

F License Clustering Algorithm

In this section I describe the algorithm used to generate the clustered license assignment. Let

{Jfy}f∈F be the license assignment at the end of year y. Let J̃y be the set of licenses that were

issued in year y. An element of J̃y is a triple (Xj, t1, t2) where Xj identi�es the block coordinates,

t1 is the start date and t2 is the end date of the license as observed in the data. Let J̃fy ⊂ J̃y be

the set of subset of year y licenses that were assigned to �rm f in the data. Finally, let {J̃ ′fy}f∈F
be the counterfactual license assignment for year y.

Licenses and �rms have preferences over each other given by a distance metric, Ωfjy. The distance

metric is chosen such that new licenses want to be assigned to �rms which hold a larger number of

nearby licenses, and �rms want to be assigned the licenses that are close to many of their existing

licenses. In particular,

Ωfjy =
∑

k∈J ′fy−1

exp (−|Xk −Xj|) . (41)

Notice that Ωfjy is increasing in the number of licenses held by f at a given distance from block j,

and decreasing in the distance of any one license from block j, holding the locations of the other

licenses �xed.

77



The algorithm proceeds as follows.

1. Start with the initial assignment {J̃ ′f0}f∈F = {J̃f0}f∈F .

2. Let F0 be the set of �rms for which J̃ ′f0 6= {}. Let F−0 = F\F0.

3. Run a deferred acceptance matching algorithm between the set of �rms F0 and the set of

licenses J̃1. Each �rm f ranks blocks according to a distance metric Ωfj1. Each license j

ranks �rms according to Ωfj1. Each license j can only be matched to one �rm. Each �rm

has a quota given by Qf1 = |J̃f1|.

(a) Each license j proposes to its highest ranked �rm.

(b) Firm f accepts the highest ranked Qf1 licenses from those that propose to it. If fewer

than Qf1 licenses propose to it it accepts all of them. Licenses that are not accepted

are rejected.

(c) Rejected licenses propose to their second highest ranked �rm.

(d) Firm f accepts the highest ranked Qf1 licenses from those that propose to it and those

that it has already accepted. Licenses that are not accepted are rejected (including

those previously accepted).

(e) Repeat until all licenses are either accepted by some �rm or have been rejected by all

�rms.

(f) For each �rm f ∈ F0, the set of licenses that were accepted is then J̃ ′f1.

4. Denote the licenses rejected at year 1 by J̃R1 .

5. Take the �rm f ∈ F−0 with the largest quota, Qf1. Assign �rm f a random license j ∈ J̃R1 .
Compute Ωfj1 for the remaining licenses given this assignment.

6. Assign �rm f its Qf1−1 top ranked licenses. The set of licenses assigned in then J̃ ′f1. Repeat

steps 5 and 6 for all other �rms f ∈ F−0 in order of quota size.

7. Repeat for each year.

The algorithm generates a license assignment that holds �xed the number of blocks assigned to

each �rm each year and the length that each license was active. As recorded in Table 9, the average

number of nearby own-�rm blocks is higher and the average number of nearby other-�rm blocks

is lower under the clustered license assignment. I do not claim that this assignment is in any way

�optimal�, but this algorithm provides a method for systematically assigning blocks to �rms in a

way that increases the average number of same-�rm neighbors.
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G Additional Tables and Figures

Table A4: Regressions of Exploration Probability on Equity Holders' Nearby Licenses

Exploration Well

BlocksOwnfjt 2.467*** 2.479*** 2.505*** 2.401***

(.875) (.858) (.851) (.868)

BlocksOpEquityfjt -.514 . . -1.026

(1.277) . . (1.304)

BlocksEquityOpfjt . 1.351 . 1.220

. (.824) . (.816)

BlocksEquityEquityfjt . . .846 .902

. . (.617) (.623)

N 80562 80562 80562 80562

Firm-Block, and Month FE Yes Yes Yes Yes

Coe�cients Scaled by 103 Yes Yes Yes Yes

Notes: Each column records OLS estimates of the coe�cients from a regression of Explorefjt on counts on of
nearby licenses (1st and 2nd degree neighbors). BlocksOpEquityfjt is the number of blocks nearby block j at
month t on which �rm f , the operator of block j, is an equity holder but not an operator. BlocksEquityOpfjt is
the count of blocks nearby block j at date t for which one of the non-operator �rms with equity on block j is the
operator. BlocksEquityEquityfjt is the count of blocks nearby block j at date t for which one of the non-operator
�rms with equity on block j is a non-operator equity holder. Regressions also include controls for past well results
as in equation 6 Standard errors clustered at the �rm-block level. *** indicates signi�cance at the 99% level. **
indicates signi�cance at the 95% level. * indicates signi�cance at the 90% level.

Table A5: Block Level Success Rates Over Time

Dependent Variable: Well Success

Well Sequence Number .025*** -.001 .003

(.002) (.003) (.003)

Year -.005*** .005** .

(.001) (.002) .

N 2105 2105 2105

Block FE No Yes Yes

Notes: Sample includes all exploration wells drilled before 1991 on the region north of 55◦N and east of 2◦W . Left
hand side variable is an indicator for whether the well was successful. Well sequence number records the order in
which wells were drilled on a block. The �rst well on block j has well sequence number 1, the second well has well
sequence number 2, etc. *** indicates signi�cance at the 99% level. ** indicates signi�cance at the 95% level. *
indicates signi�cance at the 90% level.
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Table A6: Ratio of Response to Nearby Wells to Response to Same-Block Wells

Successful Wells Unsuccessful Wells
Years Ratio SE Ratio SE

1966-1980 0.160 0.118 0.090 0.030
1971-1985 0.103 0.066 0.048 0.036
1976-1990 0.124 0.057 0.078 0.045
1981-1995 0.090 0.067 0.082 0.040
1986-2000 0.131 0.168 0.049 0.029

Notes: Table reports the ratio of the estimated marginal e�ect of past wells on nearby blocks (1-3 blocks away) to
past wells on the same block on Explorefjt from the speci�cation given by equation 6 where gdo(·) is quadratic in
each of the arguments. Marginal e�ect is computed for the �rst well of each type. Sample includes block-months in
the relevant region up for the time period indicated in the �rst column. An observation, (f, j, t) is in the sample if
�rm f had drilling rights on block j in month t, and block j had not yet been developed. I drop observations from
highly explored regions where the number of nearby own wells (those on 1st and 2nd degree neighboring blocks) is
above the 95th percentile of the distribution in the data. Robust standard errors are reported.

Figure A1: Top 25 Firms
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Notes: Figure plots the number of block-month pairs for 1964-1990 licensed to each of the top 25 �rms, and the set
of all other �rms.
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Figure A2: Gaussian Process Draws
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Notes: Figure plots two draws (solid lines) from a logistic Gaussian process with parameters µ = 0, ω = 5, and
ρ = 5 on a one-dimensional space. The dashed line corresponds to the prior mean.

Figure A3: Gaussian Process Learning
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Notes: The x-axis of both panels represents the one dimensional space [0, 1] on which the Gaussian process is
de�ned. The dashed yellow line in the left panel plots the expected value of ρ(X) for X ∈ [0, 1] under prior beliefs
represented by a logistic Gaussian process de�ned according to equations 1 - 2 with µ(X) = 1 and ω = 5. The solid
blue line in the left panel represents the posterior expectation of ρ(X) after observing a successful well at X = 60
and an unsuccessful well at X = 30 when ` = 15. The dotted red line represntes the posterior expectation when
` = 5. The right panel plots the standard deviation of ρ(X) under the same prior (red dashed line) and posterior
(solid blue line) beliefs.
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Figure A4: E�ect of Well Age on Exploration
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Notes: Figure plots OLS estimates of coe�cients from a speci�cation 6 with additional controls for the number
of past successful other-�rm wells 1-3 blocks away and more than T months old (SucT ) and the number of such
wells more than T − 6 months old (SucT−6). Each point is the coe�cient on SucT for a di�erent regression, where
the de�nition of T is given by the x-axis. For example, the �rst point plots the e�ect of increasing the number of
successful other �rm wells more than 1 year old, holding �xed the total number of past successful wells and the
number of past successful wells more than 6 months old. It can therefore be interpreted as the e�ect of moving a
well drilled 6-12 months ago back in time so it is more than 12 months old. Solid lines indicate a 95% con�dence
interval computed using robust standard errors. Vertical line indicates 5 year expiry date for well con�dentiality.

Figure A5: Distribution of Months to First Exploration
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Notes: Each panel plots the distribution of time to �rst exploration across blocks. The left panel records this
distribution for blocks with a 72 month initial drilling deadline, and the right panel records this distribution for
blocks with a 48 month initial drilling deadline, with the deadlines indicated by vertical lines. The sample includes
all blocks on the the region north of 55◦N and east of 2◦W �rst explored before 1990.

82



Figure A6: Distribution of Months to First Exploration by Distribution of Nearby Licenses
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Notes: Figure plots the distribution of time to �rst exploration across blocks with 72 month drilling deadlines. I sort
�rm-blocks into quartiles according to the share of nearby licenses operated by the same �rm at the date the drilling
license was issued. I plot the distribution of time to �rst exploration for the top quartile - those block-licenses where
more than 91% of nearby blocks are operated by the other �rms - and the bottom quartile - those block-licenses
where less than 70% of nearby blocks are operated by other �rms. The sample includes all blocks with 72 motnh
drilling deadlines on the the region north of 55◦N and east of 2◦W �rst explored before 1990. Time to drill is
residualized against a cubic polynomial in the total number of nearby blocks licensed.
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Figure A7: Incentive to Delay Exploration by One Year
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Notes: Figure records the net gain from delaying exploration by 12 months for di�erent license arrangements and
levels of α. Computation of net gain is from 2000 simulations, as described in the text.
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Figure A8: Maps of Early Exploration
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Notes: Each map plots the location of exploration wells drilled that year. Red points are unsuccessful wells and
green points are successful wells.
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