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Abstract

This paper proposes a method for estimating consumer preferences among discrete choices, where the
consumer chooses at most one product in a category, but selects from multiple categories in parallel. The
consumer’s utility is additive in the different categories. Her preferences about product attributes as well
as her price sensitivity vary across products and are in general correlated across products. We build on
techniques from the machine learning literature on probabilistic models of matrix factorization, extending
the methods to account for time-varying product attributes and products going out of stock. We evaluate
the performance of the model using held-out data from weeks with price changes or out of stock products.
We show that our model improves over traditional modeling approaches that consider each category in
isolation. One source of the improvement is the ability of the model to accurately estimate heterogeneity
in preferences (by pooling information across categories); another source of improvement is its ability
to estimate the preferences of consumers who have rarely or never made a purchase in a given category
in the training data. Using held-out data, we show that our model can accurately distinguish which
consumers are most price sensitive to a given product. We consider counterfactuals such as personally
targeted price discounts, showing that using a richer model such as the one we propose substantially
increases the benefits of personalization in discounts.

1 Introduction

Estimating consumer preferences among discrete choices has a long history in economics and marketing.
Domencich and McFadden’s (1975) pioneering analysis of transportation choice articulated the benefits of
using choice data to estimate latent parameters of user utility functions (see also Hausman and Wise, 1978):
once estimated, a model of user utility can be used to analyze counterfactual scenarios, such as the impact
of a change in price or of the introduction of an existing product to a new market. McFadden (1974)
also highlighted strong assumptions implicit in using off-the-shelf multinomial choice models to estimate
preferences and introduced variants such as the nested logit that relaxed some of the strong assumptions
(including “independent of irrelevant alternatives”).

Analysts have applied the discrete choice framework to a variety of different types of data sets, including
aggregate, market-level data (see, e.g., Berry et al. (1995), Nevo (2001), and Petrin (2002))1, as well as data
from individual choices for a cross-section of individuals. In this paper, we focus on models designed for a
particularly rich type of data, consumer panel data, where the same consumer is observed making choices
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1This literature grapples with the challenge that to the extent prices vary across markets, the prices are often set in response
to the market conditions in those markets. In addition, to the extent that products have quality characteristics that are
unobserved to the econometrician, these unobserved quality characteristics may be correlated with the price.

1



over a period of time. Supermarket scanner data is a classic example of this type of data, but e-commerce
firms also collect panel data and use it to optimize their offerings and prices. Scanner data enables the
analyst to enrich the analysis in a variety of ways, for example to account for dynamics (see Keane and
Wasi (2013)) for a survey. The vast majority of the literature based on individual choice data focuses on
one category2 at the time, e.g. Ackerberg (2001, 2003) analyzes yogurt, Erdem et al. (2003) ketchup, Dubé
(2004) soft drinks, and Hendel and Nevo (2006) detergent. Often these analyses focus on the impact of
marketing interventions, such as advertising campaigns, coupons, or promotions.

In this paper, we analyze the demand for a large number of categories in parallel. This approach
has a number of advantages. First, there is the potential for large efficiency gains in pooling information
across categories if the consumer’s preferences are related across categories. For example, the consumer’s
sensitivity to price may be related across categories, and there may be attributes of products that are common
across categories (such as being organic, convenient, healthy, or spicy). These efficiency gains are likely to
be particularly pronounced for less commonly purchased items. Even among the top 100 categories in a
supermarket, the baseline probability of purchasing an item in the category is very low on any particular
trip, and there are thousands of categories in a typical store.3 For e-commerce, there may be millions of
products, most of which are rarely or never purchased by any particular consumer. But by pooling data
across categories, it is possible to make personalized predictions about purchasing, even for categories in
which the consumer has not purchased in the past.

A second advantage of analyzing many categories at once is that from the perspective of marketing, it is
crucial for retailers to understand their consumers in terms of what drives their overall demand at the store,
not just for individual products. For example, there may be products that are very important to high-volume
shoppers, but where they are price-elastic; avoiding stock-outs on those products and offering competitive
prices may be very important in store-to-store competition. Although this paper does not offer a complete
model of consumers’ choice across stores, we view the demand model we introduce as an important building
block for such a model.

Our model makes use of recent advances in machine learning and scalable Bayesian modeling to generate
a model of consumer demand. Our approach learns a concise representation of consumer preferences across
multiple product categories that allows for rich (latent, i.e. unobservable) heterogeneity in products as well as
preferences across consumers. Our model assumes that consumers select a single item from a given category
(a strong form of substitution, where in the empirical analysis we drop categories that have large violations
of this assumption), and further assumes that purchases are independent across categories (thus ignoring
budget constraints, which we argue are less likely to bind at the level of an individual shopping trip). From a
machine learning perspective, we extend matrix factorization techniques developed by Gopalan et al. (2013)
to focus on the case of shopping, which requires incorporating time-varying prices and demand shifts as well
as an appropriate functional form. We introduce “sessions,” where prices and the availability of products
are constant within a session; but these elements may change across sessions. It is common in stores for
products to go in and out of stock, or to be promoted in various ways; accounting for these factors is helpful
in allowing the model to estimate the parameters that are most useful for counterfactual inference. Finally,
relative to the machine learning approach, we tune our model hyper-parameters on the basis of performance
on counterfactual estimates, and we show that this makes a difference relative to focusing on the typical
machine learning objective, prediction quality. We are able to do this because our data contains a large
number of distinct price changes and examples of products going out of stock, and thus we can hold out data
related to some of these changes and evaluate performance of the model in predicting the impact of those
changes.

The primitives of our model include the latent characteristics of products (a vector, whose dimension is
tuned in the process of estimation on the basis of goodness of fit), as well as each consumer’s latent preferences
for each dimension. These latent characteristics and preferences are constant over time. In addition, we do
not assume that the consumer’s price sensitivity is constant across products; instead, each product has
a vector of latent characteristics that relate to consumers’ price sensitivity toward the product, and each

2Throughout the paper we use category to refer to disjoint sets of products, such that products that are within the same
category are partial substitutes.

3In the sample we use in our empirical exercise, among the top 123 categories the average category is only purchased on
3.7% of shopping trips. Only Milk, Lunch Bread, and Tomatoes are purchased on more than 15% of trips. Things are even
sparser at the individual UPC level. The average purchase rate is 0.36% and only one, Avocados, is purchased in more than
2% of the trips in our Tuesday-Wednesday sample.
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consumer’s price sensitivity is the inner product of a consumer-specific latent vector and the product’s latent
characteristics that relate to price sensitivity. Thus, both the consumer mean utility and the consumer
price sensitivity varies at the individual consumer level, as well as across products within a consumer.4 In
addition, the model includes controls for week-specific demand for products. We use a Bayesian approach,
so our model produces a posterior distribution over each latent factor.

We apply our model to data from a single supermarket over a period of 23 months, where we observe
the same consumers shopping over time. The data originate from shopper loyalty cards. Unlike many
panels collected by third parties, the data is available at the level of the trip rather than aggregated to the
weekly level, and we see shopping at a high enough frequency to identify the timing of price changes and
stock-outs. In particular, we observe many weeks where prices change at midnight on Tuesday night; and
otherwise, behavior is very similar between Tuesday and Wednesday. This allows us to identify the effects
of price changes and be able to make counterfactual predictions. We conduct a variety of tests that assess
our identification strategy, and in a departure from the machine learning literature on which we build, we
evaluate model fit on the basis of the model’s ability to predict how behavior changes when prices change. We
compare our model to a variety of commonly-used category-by-category models, including nested logit and
mixed logit, showing that our model performs better both in terms of overall ability to fit on a representative
test set, but also in terms of the model’s ability to predict responses to price changes. We examine both
own-price and cross-price effects. We also examine whether the heterogeneity incorporated in our model is
spurious or predictive by showing that our model tends to produce more heterogeneity across groups in terms
of own-price and cross-price elasticities, and using held-out data, we show that this heterogeneity predicts
heterogeneity in consumer response to price changes. We also show that our model has key advantages in
terms of being able to predict the behavior of consumers who have rarely or never purchased in the training
data.

2 Related Work

In the traditional discrete choice literature, it has become common to include many latent variables describing
user preferences; for example, in a mixed logit model, it is common to include a user-item random effect,
as well as individual-specific preference parameters for price and other observed item attributes (e.g. Berry
et al., 2004; Train, 2009). However, it is less common to model latent item attributes, other than perhaps
a single dimension (quality). There are, however, several lines of work that estimate richer models that
incorporate latent user characteristics, exploiting panel data.5

An early example is the “market mapping” literature, where each product is described as a vector of
latent attributes. A market map can be used for a variety of exercises; for example, one can consider the
entry of a new product into a position in the product space and forecast which consumers are likely to buy
it. Empirical applications have also typically focused on a single category, such as laundry detergent (Elrod
and Keane (1995) and Chintagunta (1994)).6 Outside of shopping, there are several other social science
applications making use of panel data to estimate latent item attributes and individual preferences. Goettler
and Shachar (2001) study television viewing for a panel of users, and attempt to estimate latent attributes
of television shows based on this panel. Another application area is political science, where panel data on
legislators’ voting decisions is used to uncover their preferences and the latent characteristics of legislation.
Poole and Rosenthal (1985) use a transformed logit model to estimate both the locations of legislators’ ideal
points and the locations of legislative bills in a unidimensional attribute space.

There has been some progress on estimating multiple-discrete choice models in which consumers choose
more than one of a single item (e.g. Hendel, 1999; Kim et al., 2002; Dubé, 2004), however a substantial

4We also ran alternative specifications with the per consumer price coefficients restricted to be the same across all products,
however this lead to a substantial reduction along both the predictive and counterfactual fit measures of performance.

5In data from a single cross-section of consumers, Athey and Imbens (2007) show that only a single latent variable can be
identified (or two if utility is restricted to be monotone in each) without functional form restrictions, arguing that panel data
is critical to uncover common latent characteristics of products.

6Elrod and Keane use a factor analytic probit model with normally distributed preferences, whereas Chintagunta uses a logit
model with discrete segments of consumer types.Elrod (1988a,b) use logit models to estimate up to two latent attributes and
the distribution of consumer preferences. The former study uses a linear utility specification, and the latter uses an ideal-point
model.
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portion of the literature continues to focus on categories in which the unit-demand assumption plausibly
holds.

Despite the extensive literature making use of consumer panel data, very little literature in economics
and marketing attempts to consider multiple categories simultaneously. A few papers study demand for
bundles of products, where the products may be substitutes or complements, and where the models attempt
to estimate the nature of interaction effects. These models are limited by the curse of dimensionality and
generally have difficulty incorporating more than two or three categories (e.g. Athey and Stern (1998); see
Berry et al. (2014) for a review). The only paper we are aware of that estimates interaction effects across
many categories is Ruiz et al. (2017) which uses a similar approach to this paper, but focuses on estimating
interactions rather than exploiting available information about the category structure. We discuss this in
more detail below.

Our model focuses on sharing information about consumer preferences for item attributes across categories
where consumer preferences are additively separable across categories. Our model differs from the past
literature in social sciences in the techniques used and in the scale and complexity of the model. In order
to flexibly estimate consumer heterogeneity across multiple product categories, this paper builds on the
Bayesian Hierarchical Poisson Factorization (HPF) model proposed in Gopalan et al. (2013). The HPF
model predicts the preferences each user (decision maker) has for each item (product) based on a sum of
the product of a latent vector of item characteristics and a latent vector of consumer preferences for each of
those item characteristics.7

Gopalan et al. (2013) demonstrate that the HPF model can make accurate predictions8 across a wide
variety of contexts, including Netflix movies, New York Times articles, and scientific articles in a researcher’s
Mendeley account. Despite the reputation that Bayesian methods have for being slow computationally, this
model is scalable across large data set sizes9 due to its use of mean-field variational inference to approximate
the computationally intractable exact posterior.

The HPF model is related to the extensive recommender systems literature that uses matrix-factorization-
based techniques to predict what items (movies, links, articles, search results, etc.) that a user will enjoy
based on their previous choice behavior (Koren et al., 2009; Bobadilla et al., 2013). A core insight of this
literature is that it is often very effective to predict a user’s interests based on the preferences of other users
who have similar tastes. These approaches try to find a lower dimensional approximation of the full matrix
of user and item preferences.10 The resulting factorization often is able to make accurate predictions and can
also provide an interpretable representation of the user preferences in the data. Jacobs et al. (2016) applies
a related approach known as latent Dirichlet allocation (LDA) towards the task of predicting consumer
purchases in online markets with large product assortments. However, their approach stays closer to the
existing recommender systems literature. They focus on predicting which new products a consumer will buy,
rather than focusing on predicting responses to price changes or patterns of substitution between similar
products as we do in this paper.

In our empirical exercise using data from a supermarket loyalty program, we show that simultaneously
modeling consumers’ decisions across multiple product categories helps improve our ability to characterize
individual level preferences relative to estimating preferences in each category independently. This has
similarities to the growing area of transfer learning in machine learning (Pan and Yang, 2010; Oquab et al.,
2014) in which training a model on one domain (e.g. one for which large amounts of data are available)
can help improve the model’s ability to make predictions in a different domain (potentially one for which
less data is available). This insight may have applications in other economics and marketing contexts, e.g.
data on consumers’ purchasing decisions in one domain in which purchases are frequent (grocery stores)

7This approach has similarities to the econometrics literature on “interactive fixed effects models” although that literature
has focused primarily on decomposing common trends across individuals over time rather than identifying common preferences
for products across individuals (Moon and Weidner, 2015; Moon et al., 2014; Bai, 2009)

8As is standard in the machine learning literature, the accuracy is estimated on a “held out” or “test” data set that is
not used during the training of the model. This is a more accurate way to evaluate how well a model will be able to make
predictions on new data that has not yet been observed.

9For example, when trained on Netflix data with 480,000 users, 17,700 movies, and 100 million observations, they report the
model took 13 hours to converge on a single CPU.

10The matrix has one row for each user and one column for each item. The i, j entry corresponds to how much user i “likes”
item j. We often only observe some of the entries of this large matrix, and would like to make predictions for the unobserved
entries. e.g. predict how much a user will like a movie that they haven’t watched or rated yet.
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may be able to improve our ability to estimate consumer demand in a seemingly unrelated domain in which
purchases are much less frequent (cars).

A closely related paper to this one is Ruiz et al. (2017), which uses a similar approach in terms of
matrix factorization, but focuses on estimating whether items are substitutes or complements, rather than
exploiting observed information about the product hierarchy. This paper differs in that it fits more directly
into the existing literature on choice in marketing and economics. This paper also systematically evaluates
the assumptions required to identify price elasticities, and conducts a comparison of alternative category by
category demand models.

Another closely related paper is Wan et al. (2017) which uses a latent factorization model with three
stages. In the first stage, the consumer makes a binary choice for each category about whether or not to
purchase something from the category. Next the consumer makes a multinomial choice of which item from
the category to purchase. Finally the consumer makes a choice of how many of this item to purchase, drawn
from a Poisson distribution. Latent factorization is carried out independently for each stage. Our paper
differs in the linkage we propose between the utilities of the items in a category and the decision of whether
or not to purchase something from the category. Our paper is also more systematic in the evaluation of
the ability of the model to make counterfactual predictions about changes in individual level and aggregate
demand in response to own price and cross price changes as well as to changes in item availability caused by
stock outs.

3 The Model

3.1 Random Utility Models and Independence of Irrelevant Alternatives

In this section we introduce the canonical Random Utility Model (RUM) that we will use in this paper.
Consider shopper i on a shopping trip at time t. In each product category c = 1 . . . C (e.g. bananas, laundry
detergent, yogurt) there are j = 1 . . . Jc products to choose between. Within each category, the shopper
has unit demand and will purchase at most one item. To simplify the model, we assume that the product
categories are disjoint and that there is no substitution or complementarity between products in separate
categories. The shopper purchases the item that provides her with the highest utility among the options in
the category.

Uijt = log(uijt) + εijt

yijt = 1 if j = arg max
k∈1...Jc

Uikt

If we assume that the εijt are drawn i.i.d. from an Extreme Value Type 1 distribution11, then

P (yijt = 1) =
uijt∑Jc

j′=1 uij′t
(1)

The ratio of purchase probabilities between any two items j and j′ in the same category depend only on
the ratio of their u values.

P (yijt = 1)

P (yij′t = 1)
=

uijt
uij′t

(2)

Similarly if we consider some subset of the products in a category Sc ⊂ Jc, then conditional on the
purchase of an item from the subset, the relative purchase probability for item j ∈ Sc is given by

P

yijt = 1
∣∣ ∑
j′∈Sc

yij′t = 1,
∑
j′ /∈Sc

yij′t = 0

 =
uijt∑Sc

j′=0 uij′t
(3)

This property is known as “Independence of Irrelevant Alternatives” (IIA). IIA is clearly inappropriate
in many cases. However, much of the problematic implications of IIA are caused by insufficient allowance for

11Also known as the Gumbel distribution.
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heterogeneity in preferences across the decision makers. If it were feasible to estimate each uijt independently,
the proportional substitution implied by IIA is much less restrictive when applied at the individual level.12

The IIA property however has the advantage of providing substantial leeway to the econometrician in how
to approach the estimation. As Train (2009, p. 53) points out, it is possible to generate consistent estimates
of the model parameters using any subset of the alternatives. For example, it is possible to estimate the
ratio of the u for any two products based on data for the purchases of those two items regardless of whatever
other items might have been available in the category. In particular, after normalizing the utility of one

product to be ui1t = 1, then uijt can be recovered from
P (yijt=1)
P (yi1t=1) . This approach has been used for estimating

multinomial logit models with individual level fixed effects, where the analyst estimates a series of binary
logit models using only data where one of two items is purchased, and then parameter estimates are averaged
to form a final estimate.

3.2 Estimation of the RUM using Nested Hierarchical Factorization Model

3.2.1 Nested Factorization Model

The Nested Factorization model builds on the Hierarchical Poisson Factorization (HPF) model proposed by
Gopalan et al. (2013), adding a number of additional features important for capturing shopping behavior.
It also extends the Time Travel Factorization Model (TTFM) introduced in Athey et al. (2018). A core
difference is that while the TTFM model predicted choice of restaurant conditional on the choice to go out
to eat, whereas in this paper we wish to predict the unconditional purchase probabilities for each product,
since this is critical for the stores ability to make pricing decisions.13 In the grocery context, the typical
purchase rates for any particular product are almost always less than 1%, which makes the assumption of
IIA problematic with respect to the outside good, especially if we are interested in cross price elasticities. If
consumer purchases nothing from a category on 90% of trips, then assuming IIA implies that any decrease
in sales caused by a price increase will almost never cause a consumer to purchase a different product from
the same category. Under this assumption, because granulated sugar is purchased relatively infrequently,
a price increase for one brand of sugar will mostly cause consumers to buy no sugar at all, with very few
consumers to substitute to a different brand. To address this concern, we introduce a structure similar to
a nested logistic regression. This gives the model flexibility to fit the degree to which consumers substitute
between different products within a product category rather than deciding to purchase nothing instead. In
this particular application, we use a simple nesting structure with all of the products in a category in one
nest and then a second nest with the outside good for the category. However the model can allow for other
richer nesting structures, since it can be implemented via repeated runs of the same code used in the TTFM
model. First a model is fit predicting choice of UPC conditional on the purchase of a product from the
UPC’s category. The results of this model are aggregated to calculate a user-category specific “inclusive
value” term, which is used as an input into a second run that predicts from which categories each user will
make purchases.

3.2.2 UPC Choice

To estimate the Nested Factorization model we first train a model to predict the consumer’s choice of which
products they would purchase conditional on the decision to purchase one item from the corresponding
product category. For example if the consumer has decided to purchase yogurt, which brand and size of
yogurt will she select. The mapping from utility values to conditional choice probabilities follows the standard
multinomial logit form that arises from assuming a Extreme Value Type 1 distribution for εijt. Our model
differs from the standard multinomial logit in that it allows for rich heterogeneity in preferences and price
responsiveness across consumers and across items.

Similar to the HPF model, the Nested Factorization model incorporates latent item characteristics (βjk)
as well as latent user preferences for the latent item characteristics (θik). The Nested Factorization model
differs in that the HPF model did not incorporate any consumer or item level covariates, nor did it allow

12Steenburgh and Ainslie (2013) provides a nice overview of the degree to which allowing heterogeneity in preferences reduces
(but does not eliminate) the problems of the homogeneous logit model.

13We predict whether or not the shopper will make a purchase from each product category and if so, which product will she
choose. These predictions are conditional on the shopper’s decision to visit the store, which we do not model.
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for any time varying characteristics such as price or product availability (e.g. a product being out of stock).
These extensions allow for predictions at the level of individual shopping trips and for predictions of the
patterns of substitution between similar products caused by price changes and changes to product availability.
We assume consumers have latent preferences for observable item characteristics (σik), while observable user
characteristics affect user preferences differentially for each product (ρjk). We allow for heterogeneity in
price elasticities across users and items that depends on latent item characteristics (λj) and latent user
characteristics (γi). In addition, we allow for certain items to be “out of stock” or “unavailable” on a
particular shopping trip (ajt = 0 if the item is out of stock, while ajt = 1 otherwise).

P (yijt = 1 |
Jc∑
j=1

yijt = 1) =
ajt exp(uijt)∑Jc

k=1 ajt exp(uikt)
(4)

uijt = θTi βj︸ ︷︷ ︸
Latent - Latent

Intercept

+ WT
i ρj︸ ︷︷ ︸

User Observables

+ σT
i Xj︸ ︷︷ ︸

Item Observables

− γTi λjpricejt︸ ︷︷ ︸
Latent - Latent
Price Sensitivity

+ εijt︸︷︷︸
Error Term

(5)

3.2.3 Category Choice

We model the consumer’s choice of whether or not to purchase something from each category of goods as a
series of binary choices that depends on the utility values of items in the category, through their “inclusive
value” IVict = log

∑Jc

j=1 expuijt. One interpretation of the inclusive value is to notice that the expectation
(over the realizations of the εijt) of the utility of the best option in the category is equal to the inclusive
value for the category.14

IVict ≡ E
[

max
j=1...Jc

uijt

]
= log

Jc∑
j=1

expuijt (6)

The coefficient on IVict is allowed to vary across users and categories by means of a latent factorization.
Observable user characterstics, category characterstics, and a latent factorization linearly enter the utility
function for the choice to make a purchase from each category. In addition we control for seasonal trends
and day of week effects in order to separately control for time trends in each category.15

P (yict = 1) =
exp(uict)

1 + exp(uict)
(7)

uict = θTi βc︸ ︷︷ ︸
Latent - Latent

Intercept

+ WT
i ρc︸ ︷︷ ︸

User Obs.

+ σT
i Xc︸ ︷︷ ︸

Item Obs.

− γTi λc log IVict︸ ︷︷ ︸
Latent - Latent
Inclusive Value

+ µcδt︸︷︷︸
Week Trends

+ wct︸︷︷︸
Day of Week

+ εict︸︷︷︸
Error Term

(8)

3.2.4 Estimation with Variational Bayes and Stochastic Gradient Descent

To estimate the Nested Factorization model, we build on the approach described in Ruiz et al. (2017) and
Athey et al. (2018) to fit a hierarchical Bayesian model to the structure described in Section 3.2.1. As is
common in many Bayesian models, the exact posterior distribution over the latent variables does not have
a closed-form solution. We instead approximate the posterior distribution using variational inference, which
is typically substantially faster to compute on large scale Bayesian problems than classical methods such as
Markov Monte Carlo sampling (Blei et al., 2017). In variational inference, we posit a parameterized family
of distributions q (·|η) over the latent variables of the model l and then use stochastic optimization to find a

14If the ε are a standard Extreme Value Type 1 distribution, then there will be an extra term γ = mean(ε) ≈ 0.577 added
which in practice does not matter since it can be absorbed into the constant term. Alternatively we can define ε = EV 1(−γ, 1)
to get rid of the extra term without affecting any of the choice probabilities.

15In order to reuse the variational inference code from the UPC level model, we fit the category choice model as if there were
two products for each category: the “inside good” with IV calculated based on the UPCs in the category, and “outside good”
with IV = 0. We then can transform the estimated parameters by subtracting the outside good’s parameters from both, to be
equivalent with a model with the utility of the outside good equal to 0.
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value of η such that q (·|η) is “close” to the true posterior as measured by the Kullback-Leibler divergence.
See Blei et al. (2017); Ruiz et al. (2017); Athey et al. (2018) for a more detailed explanation.

The core difference in the model in this paper is the nested decision making process across multiple distinct
product categories. In order to fit the Nested Factorization using essentially the same computational code
as in Athey et al. (2018), we manipulate the data input to the model in a two stage process. First, we fit
the factorized model described in Section 3.2.2 to learn a UPC level model using only the data from product
categories the household actually made a purchase from on each particular shopping trip. Conditional on
purchasing something from a product category, the model predicts which particular UPC the household will
choose. If a household purchases from 5 categories on a particular shopping trip, only the UPC choices from
those 5 categories enter the likelihood. We then create a second data set that contains each household’s
decisions of whether or not to buy something from each product category on each trip they make to the
store. This second data set depends on estimated parameters from the UPC through the “inclusive value”
term as described in equation 6 which depends on the household’s predicted utilities for each of the UPCs
in the product category.

4 Supermarket Application

4.1 Data

We apply the Nested Factorization model to scanner panel data from one store in a large national grocery
store chain, using a data set originally assembled by Che et al. (2012). This store is located in an isolated
mountain region and has no other large grocery competitors within a 5 mile radius. For each transaction
that a loyalty-card household makes between May 2005 and March 2007, we observe the price and quantity
of each product purchased. In addition we incorporate several household demographic variables that the
store has compiled from a variety of sources, including estimated age, gender, income, and household size
(there are additional demographics in our data set but we restricted attention to a subset). We restrict our
analysis to a sample of 2068 households who make between 20 and 300 shopping trips. These households
collectively make 1,551,213 purchases during 333,585 shopping trips.16 Of these, 455,445 purchases and
100,504 trips occur on a Tuesday or Wednesday. We use only the data from Tuesday and Wednesday and
exclude weeks with major US Holidays17 in our estimation approach due to concerns about the potential for
price endogeneity as discussed in Section 5.

The data includes a product hierarchy for each product, with the smallest unit of analysis (the unit at
which prices are set) being the universal product code (UPC). From examining the data, it is not a priori
perfectly clear which level of the hierarchy best matches our desiderata for a “category,” which would be for
the consumers to buy at most one item from each category, while purchasing decisions are not correlated
across separate categories.18 To ensure a good match between the model and the application, we use the
“category” level of the UPC hierarchy, and we focus on categories and items that pass certain filters, reducing
the number of product categories from 235 to 123. The filters are reviewed in appendix Section 8.1, but
important restrictions include eliminating highly seasonal categories, as well as categories without sufficient
price variation, or where within-category price changes are highly correlated across products.

Figure 1 illustrates summary statistics on household shopping frequency and basket size in our restricted
data set.

4.2 Models

4.2.1 Nested Factorization

Our primary model is the Nested Factorization model, as outlined in Section 3.2.1. The key hyper-parameters
of the model are the dimensionality of the latent factorizations of the user preferences and elasticities.

16We define a shopping trip as a set of all purchases a household makes on a calendar day.
17We exclude data from the week prior to Halloween, Thanksgiving, Christmas, 4th of July, and Labor Day.
18At higher levels of aggregation, it was much more common to see multiple purchases in the same grouping on a single

trip. At lower levels of aggregation, many categories were split into classes that contained products that seemed likely to be
substitutes. For example, the category Apples is split into classes such as Fuji and Gala apples. Sharp Cheddar is in a separate
class (but same category) as Mild Cheddar.
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Figure 1: Household Summary Statistics: Tuesday and Wednesday Only
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Allowing for a higher dimensional factorization allows for more flexibility in the shopping patterns the model
is able to fit, at the expense of slower estimation speeds and larger potential for overfitting the data. In
order to choose the values for these hyper-parameters we follow the standard practice in the computer science
literature of selecting based on performance on “validation” subset of the data that is distinct from the subset
used to train the models (and distinct from the “test” subset that is “held out” and not used until the final
comparison between models). We discuss the model selection criteria in more depth in Section 6. We compare
the performance of the Nested Factorization model against several alternative approaches described in the
following sections.

4.2.2 Multinomial Logit

The simplest and most commonly used discrete choice model is the multinomial logit (Train, 2016), which
has a long history in economics tracing back to Luce (1959) and McFadden (1974).

We focus on a baseline specification that controls for household demographics (gender, age, marital status,
and income19) and include the weekly mean category purchase rates as pseudo-fixed effects for each calendar
week, which helps control for seasonal trends that shift the demand for the product category and which may
be correlated with the product prices. We have also tried alternative specifications that add behavioral
controls based on splitting the population into 20% buckets based on total spending in the store and a model
without demographic controls all of which had similar predictive performance. Because of its poor predictive
performance across all of the measures we focus on in this paper, we have omitted the multinomial logit
results from some of the results charts and tables, when the additional entries detract from clarity.

Homogeneous with Demographic Controls: Uijt = αj + η log pjt + βjDi + weekt + weekdayt + εijt

Ui0t = εi0t

4.2.3 Mixed Logit

The mixed, or random coefficients, logit is one approach for increasing the flexibility of the multinomial
logit. By allowing the coefficients of the model to vary across the population, the mixed logit allows for
correlation in unobserved factors over time and for more flexible patterns of substitution between products.
McFadden and Train (2000) show that any choice probabilities derived from random utility maximization
can be approximated arbitrarily well by a appropriately chosen mixed logit model. As Steenburgh and
Ainslie (2013) point out, the mixed logit still constrains demand at the individual level to satisfy IIA, so it
“improves upon, but does not completely solve the problems of the homogeneous logit model.”

19We divide age into buckets {Under 45, 45-55, Over 55}. We split income at $100k, which is roughly the median for this
store.
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Mixed with Demographic Controls and Random Price: Uijt = αj + ηi log pjt + βjDi + weekt + weekdayt + εijt

Mixed with Random Intercept and Price: Uijt = αij + ηi log pjt + weekt + weekdayt + εijt

Ui0t = εi0t

4.2.4 Nested Logit

Another method for relaxing the homogeneous logit model to allow for more flexible patterns of substitution
is the nested logit model. In the nested logit model, the decisions a user faces are partitioned into “nests.”
One interpretation of the nested logit structure is that a user first chooses which nest to purchase from, and
then which product to choose from within the nest. Within each nest, the choices satisfy the IIA substitution
pattern, but the substitution between products in different nests is able to vary more flexibly. We choose
a very simple nesting structure. We put the outside good in its own nest, and the remaining products in
each category are in a single shared nest. An additional term called the “nesting coefficient” or “inclusive
value term” controls how the decision of which nest to choose depends on the utilities of the items within the
nest. This nesting coefficient is analogous to the γTi λc term in the Nested Factorization (equation 8) with
the restriction that the value be homogeneous across households. Within the product nest, choice follows
the same functional form as used in the homogeneous logit model with demographic controls. In essence, the
Nested Factorization can be thought of as an extension to a nested logit that allows for rich heterogeneity
in consumer preferences and price sensitivities by means of a latent factorization approach.

Nested with Demographics: Uijt = αj + η log pjt + βjDi + εijt

Ui0t = εi0t

4.2.5 Discrete Choice Models with HPF Controls

One disadvantage of the Nested Factorization functional form relative to the HPF form used in Gopalan et al.
(2013) is that leads to substantially slower estimation of the approximate posterior. The choice of functional
form and priors in the original HPF form allows for a closed form for the gradient of the variational Bayes
objective function. With the Nested Factorization model, we have to perform stochastic gradient descent
using a noisy estimate of the gradient. In practice this leads the model to require substantially more time
and iterations before convergence.

Hierarchical Poisson Factorization (HPF)20:

yijt ∼ Poisson(µij)

µij = θTi βj︸ ︷︷ ︸
Latent - Latent

+ WT
i ρj︸ ︷︷ ︸

User Observables

+ σT
i Xj︸ ︷︷ ︸

Item Observables

This model predicts user i will purchase item j at a mean rate of µij , so we can analogize it to a discrete
choice model within a category with utility taking the form uijt = log(µijt) + εijt, which will generate the
same choice probabilities for each item in the category c (with an appropriate choice of utility for the outside
good21).

This motivates an alternative approach that approximates the full Nested Factorization model with a
two step approach. First, estimate each shopper’s preferences over items using the HPF model without
controlling for prices. Second, take the estimated utility values for each shopper and item and plug these
values in as covariates into standard discrete choice models. This “HPF controls” approach can be thought of
as an approximation to the generally infeasible approach of having separate fixed effects for each household
item pair (i.e. N × J separate parameters).

20We have extended the original HPF model to allow for observed user and item characteristics (including time varying
characteristics), however on this dataset we found little or no improvement for out of sample predictive fit relative to a purely
latent factorization.

21In this case, ui0 = 1−
∑

k∈c log(µik)
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This two step procedure may also proved helpful in contexts where it is important to incorporate addi-
tional complications that are difficult to directly embed into the full NF Bayesian model. For example it
may be effective to include these HPF controls into models of dynamic discrete choice such as those that
arise from storable goods (Hendel and Nevo, 2006) or from consumer learning (Ackerberg, 2003) as a simple
way to allow richer heterogeneity in consumer preferences (at the cost of lower statistical efficiency and
potentially bias from estimating as a two step procedure rather than simultaneously).

5 Identification and Placebo Tests

In our data, almost all price changes occur on Tuesday nights, at a time (midnight) when very few customers
are shopping. Thus, we can think of the price change as separating Tuesday and Wednesday. This motivates
an empirical specification in which we use only the data from Tuesday and Wednesday in order to focus
narrowly to the days immediately before and after price changes. We then include controls at the category
level for each week and a dummy variable for Wednesday. The “identifying assumption” for learning price
elasticities from this specification is that any differences in a particular consumer’s preferences for items
between Tuesday and Wednesday are constant across weeks; in other words, weeks may differ from one
another, but the Tuesday to Wednesday trend is constant over time. We also exclude the data from weeks
immediately prior to major US Holidays out of a concern that this assumption is less likely to hold in these
weeks e.g. the difference between the shopping patterns on the Tuesday and Wednesday before Thanksgiving
may systematically differ from pattern that holds during more typical weeks.

In order to assess the validity of our assumptions, we present some supplementary analysis in the spirit of
the literature on treatment effects (Athey and Imbens, 2017). In particular, we test for the presence of certain
types of price endogeneity by taking the price coefficients we get from the actual price data and comparing to
the price coefficients we would get from a model fit on a data with the prices shifted forwards or backwards
across time. We do this in two ways, first by shifting the price of a single UPC in each category (and giving
that UPC a separate price coefficient), and second by simultaneously shifting the prices of all items in the
category. To create the forward shifted price series for a product, we move each week with a price change
forward to the first week that had no price changes in the real data.22 We repeat this process for each of
the 123 product categories and plot the resulting distribution of price coefficients and p-values for the price
coefficients. The desired result is that the shifted price series result in an approximately uniform distribution
of p-values, since the artificial price changes should have no effect on consumer purchase behavior. The
following results are based on the basic multinomial logit specification (with the pseudo week effects, which
are calculated as the category level mean purchase rate in the week).23

Out of the 123 categories, 13 fail one of the four placebo tests at the 1% level. If we only considered
unconfoundedness checks that shift prices backwards, only 4 categories fail one of the two backward shifting
tests. Backwards shifts would fail in the presence of consumers who are aware of future price changes.
Forward shifts can fail for goods for which stockpiling is possible. Some of the categories that fail with the
forward shifted price are durable/storable (e.g. Baking Mixes, Ketchup, and Bag Frozen Vegetables), but
other categories seem more likely be failing for other reasons (e.g. Refrigerated Turkey and Tomatoes).

6 Assessing Model Performance and Fit

In the machine learning literature, it is typical to split data into three non-overlapping parts: a training
set, a validation set, and a test set. The training data is used to fit the parameters of the model. To the
extent the model has hyperparameters24that must be set prior to estimation, the model estimation can be

22Thus in the shifted data all price changes occur on weeks without price changes in the real data and all weeks with price
changes in the real data have no price changes in the shifted data. A naive shift of all prices by exactly 1 week fails to break
the correlation between the price changes in the shifted and real price data, due to the frequency of week-long temporary price
changes.

23We focus on the basic multinomial logit specification due to it’s computational speed and relative simplicity. Running similar
tests for the other specifications including the Nested Factorization is possible in theory, but requires a larger computational
cost.
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repeated under different values of the hyperparameters. The validation set is used to select a model (i.e.
to make a choice of hyperparameters) based on each model’s predictive performance on the validation set.
Finally, the predictive performance on held out test data is used to evaluate the performance of the chosen
model. Under the assumption that all observations are drawn from the same data generating process, then
the predictive performance on the test set is an unbiased estimate of the model’s ability to make predictions
on new data. In Section 6.1, we compare Nested Factorization and the set of alternative models in terms of
their predictive fit on the held out test sample of data.

However, this notion of predictive performance on held out data does not evaluate the ability of a model
to make causal predictions of what “would” happen if we took actions that changed the distribution of the
data. For example, a model trained to predict the demand for hotel rooms, might correctly identify that
hotels are often full when prices are high and have many empty rooms when prices are low. This, however,
may be due to hotels setting prices in expectation of demand, rather than because consumers prefer to pay
high prices. Such a model could be highly predictive of hotel demand based on a randomly selected held
out test set (which is drawn from data generated under the existing data generating process), however such
a model would perform poorly at predicting what prices a hotel ought to charge (since changing prices will
change the data generating process). It is concerns about such endogeneity of prices25 that motivates our
identification approach that relies on focusing on data immediately before and after price changes (Tuesdays
and Wednesdays), including weekly time controls (which can absorb any seasonal/holiday trends), including
a dummy variable for Wednesdays (to absorb any consistent differences in Tuesday vs Wednesday demand),
and excluding data from the weeks of major US Holidays. Since all models include the weekly controls at
the category level, they all have the ability to predict average demand in a week at that level. However,
in weeks with price changes, only a model that has well estimated consumer preferences about price can
account for which day within the week is expected to have more purchases.

To validate the ability to make predictions about counterfactuals, we focus on three types of changes that
can occur during a week for a particular UPC: (a) change in the price of the UPC (b) a change in the price
of a different product in the same category and (c) another item in the category going into or out of stock.
If the identifying assumptions26 of our models hold, then we can think of each of these events as a small

24For example the regularization coefficient λ in a LASSO regression, or in the case of Nested Factorization, the number of
latent factors of each type to include.

25As discussed in Rossi (2014), with consumer level data, our biggest concern for the identification of price effects, is that
the store may be setting prices in response to variations in expected demand caused by seasonal trends or advertising. For
example, there is more demand for fresh berries when they are in season or for turkeys immediately before Thanksgiving. It is
not always clear which direction such price endogeneity will bias our estimates. The retailer may decide to take advantage of
high demand by raising prices, but in other cases we prices reduced during high demand periods e.g. bags of candy going on
sale before Halloween.

26i.e. that controlling for week and day of week effects at the category level is sufficient to make potential demand orthogonal
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Table 1: Comparison of Predictive Fit

Mean Log Likelihood Mean Squared Error

Model Train Test Train Test

Nested Factorization -4.2271 -4.9096 0.8981 0.9268
Mixed Logit with Random Price and HPF Controls -4.9233 -5.3125 0.9473 0.9660
Nested Logit with HPF Controls -5.2345 -5.4230 0.9583 0.9650
Multinomial Logit with HPF Controls -5.2307 -5.4248 0.9583 0.9651
Mixed Logit with Random Price and Demographics -5.2976 -5.5690 0.9780 0.9898

Mixed Logit with Random Price and Random Intercepts -5.3956 -5.5827 0.9785 0.9849
Nested Logit with Demographic Controls -5.6080 -5.6779 0.9788 0.9801
Multinomial Logit with Demographic Controls -5.6142 -5.6791 0.9791 0.9803

sources of quasi-experimental variation. In Section 6.2, we compare the log likelihoods of the individual
household level predictions during weeks in which one of these “counterfactuals” occurs in order to evaluate
how well each model is able to make predictions that capture the change in predicted demand before and
after the change (relative to the week-level average captured by the weekly time controls). In addition, we
also compare the ability of each model to make predictions about the change in aggregate demand from
Tuesday to Wednesday during weeks in which one of these events occurs. Our test sets hold out data at
the household-week level; this allows us to estimate overall consumer preferences, and we test our ability
to predict household purchases on trips outside the training data, and in particular in weeks where the
week-category effect estimated using other consumers’ purchases in that week is insufficient to predict the
average probability of consumers purchasing on a particular day of the week (since prices differ across days).
We use select hyper-parameters (tune the model) using only data from item-weeks with price changes, and
we evaluate performance in the test set based on the three changes (a)-(c) outlined above.

In Section 6.3, we further evaluate the performance of our model at making predictions in scenarios of
interest for counterfactual inference. We compare models in terms of their ability to capture heterogeneity in
preferences across the population of households and evaluate the degree to which the predicted heterogeneity
is predictive of actual behavior in the held out test set. For example, we compare the predictions made for
households who in the training data sample never purchased a particular UPC or have made no purchases
at all from an entire product category. Among this group of “never buyers,” we show that the Nested
Factorization model is able to correctly predict which of these households are relatively more or less likely
to make a purchase in the held out test data.

Section 6.4 examines the estimated own price and cross price elasticities. Finally, Section 6.5 looks at
the potential for targeted marketing efforts that are personalized based on the rich heterogeneity estimated
by the Nested Factorization model.

6.1 Predictive Fit

In Table 1, we compare the predictive fits of each of the models.27 Comparing the overall predictive accuracy
across all models, Nested Factorization Model has the highest likelihood and the lowest sum of squared errors
among all models on both the training data and the held out test sample. In addition, each of the models
that include HPF controls28 perform better than the models that use control only for demographics.29

to price level and product availability.
27Mean Log Likelihood and Mean Squared Error are calculated by dividing by the total number of purchases in order to

make the values comparable between the test and training sets.
28i.e. user-item specific covariates that are estimated from the HPF model run on all categories simultaneously as described

in Section 4.2.5
29These trends also hold in additional specifications of the alternative logit models that included controls for shopping

frequency and previous purchase behavior.
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Table 2: Comparison of Predictive Fit By Category

Mean Rank % Best Performance

Model Log L SE Log L SE

Nested Factorization 1.53 1.10 86.2% 95.9%
Mixed Logit with Random Price and HPF Controls 2.40 5.33 9.8% 0.8%
Nested Logit with HPF Controls 3.87 3.38 0.0% 0.8%
Multinomial Logit with HPF Controls 4.21 3.63 0.8% 0.8%
Mixed Logit with Random Price and Random Intercepts 4.69 5.65 0.8% 1.6%

Mixed Logit with Random Price and Demographics 5.21 7.07 2.4% 0.0%
Nested Logit with Demographic Controls 6.96 4.93 0.0% 0.0%
Multinomial Logit with Demographic Controls 7.13 4.91 0.0% 0.0%

6.1.1 Comparison of Predictive Fit by Category

We can also compare how each model performs relative to the NF model at the level of individual categories.
In Table 2, we calculate the relative rank of each model’s performance in the test set separately for each
category. The Nested Factorization model has the highest log likelihood in 86% of categories and the lowest
squared error in 96%. This demonstrates the effectiveness of learning preferences simultaneously across many
product categories. Even if we were only interested in understanding consumer preferences in one particular
category, e.g. yogurt, it can be effective to train a model using the data from other categories as well, either
using the full Nested Factorization model or by using the HPF controls, which also consistently improve
predictive performance on the held out test data in most categories.

6.1.2 Comparison of Fits by Household and UPC

To analyze which households or products for which we are gaining the most improvement to test set pre-
dictive fit. In figure 2, we can see that all models are more accurate in their predictions for the more
commonly purchased UPCs (percentile 100) than for the less common items. Across all percentiles, the
Nested Factorization model does consistently better than the alternative models. The models that use HPF
effects (solid lines) have much smaller, but consistent gains over the nested and mixed logit models that use
demographic or behavioral controls. Similar trends can be seen when we divide the results based on the
number of purchases each household made in the training data in figure 3.

6.2 Price Change and Availability Counterfactuals

In the economics and marketing literatures, models of consumer demand are used to make inferences about
what “would” happen if change were made to a market. For example, such models have been used to predict
what would happen if prices were changed, if products are added or removed from a market, or if competing
firms in the market were to merge. As discussed in Section 6, evaluating the predictive fit of a model,
even when done on a held out test sample, does not reliably determine whether a model can be used to
make predictions under counterfactual states of the world such as these. To evaluate the ability to make
predictions under changes to prices or product availability, we focus on each model’s predictions on held out
test set data immediately before and after such changes occur. Under the assumption that these changes
are exogenous conditional on our week and weekday controls, we can think of each of these changes as a
miniature experiment. By pooling across many such small noisy experiments, we can increase our precision
in detecting differences in performance. We focus on three types of changes that can occur between Tuesday
and Wednesday for a particular UPC. First, we look at weeks in which the focal product’s price changes,
which we can think of as evaluating the accuracy of the model’s own-price elasticity estimates. Second, we
look at weeks in which some other product in the focal product’s category has a price change, in order to
evaluate the predicted cross-price elasticities. Finally, we look at weeks in which some other product in the
focal product’s category goes into or out of stock, which is another measure of the patterns of substitution
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Figure 2: Test Set Predictive Fit by UPC Purchase Frequency
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Individual Aggregate

Model Popular Less Common Popular Less Common

All Weeks
Nested Factorization -0.1070 (0.0004) -0.0173 (0.0001) -2.5356 (0.0146) -1.3072 (0.0044)
No Item Price Heterogeneity -0.1124 (0.0004) -0.0183 (0.0001) -2.5601 (0.0141) -1.3099 (0.0041)
Mixed Logit with Random Price and HPF Controls -0.1156 (0.0004) -0.0188 (0.0001) -2.5562 (0.0145) -1.3365 (0.0037)
Nested Logit with HPF Controls -0.1194 (0.0005) -0.0191 (0.0001) -2.5568 (0.0154) -1.3105 (0.0040)
Multinomial Logit with HPF Controls -0.1194 (0.0005) -0.0191 (0.0001) -2.5554 (0.0154) -1.3086 (0.0040)
Mixed Logit with Random Price and Random Intercepts -0.1263 (0.0005) -0.0194 (0.0001) -2.5712 (0.0146) -1.3316 (0.0037)
Mixed Logit with Random Price and Demographics -0.1240 (0.0004) -0.0195 (0.0001) -2.5934 (0.0153) -1.3543 (0.0038)
Multinomial Logit with Demographic Controls -0.1290 (0.0005) -0.0197 (0.0001) -2.5722 (0.0157) -1.3105 (0.0040)
Nested Logit with Demographic Controls -0.1289 (0.0005) -0.0197 (0.0001) -2.5740 (0.0157) -1.3113 (0.0041)

Cross Price Weeks
Nested Factorization -0.0925 (0.0008) -0.0149 (0.0001) -2.4527 (0.0262) -1.2017 (0.0084)
No Item Price Heterogeneity -0.0972 (0.0009) -0.0158 (0.0001) -2.4844 (0.0268) -1.2175 (0.0078)
Mixed Logit with Random Price and HPF Controls -0.1006 (0.0008) -0.0163 (0.0001) -2.4846 (0.0258) -1.2584 (0.0069)
Nested Logit with HPF Controls -0.1041 (0.0009) -0.0164 (0.0001) -2.4844 (0.0277) -1.2177 (0.0076)
Multinomial Logit with HPF Controls -0.1041 (0.0009) -0.0164 (0.0001) -2.4836 (0.0276) -1.2165 (0.0076)
Mixed Logit with Random Price and Random Intercepts -0.1139 (0.0009) -0.0168 (0.0001) -2.5002 (0.0260) -1.2527 (0.0069)
Mixed Logit with Random Price and Demographics -0.1111 (0.0009) -0.0170 (0.0001) -2.5132 (0.0280) -1.2752 (0.0071)
Nested Logit with Demographic Controls -0.1161 (0.0010) -0.0170 (0.0001) -2.5066 (0.0292) -1.2194 (0.0078)

Own Price Weeks
Nested Factorization -0.1374 (0.0009) -0.0229 (0.0001) -2.7871 (0.0360) -1.5544 (0.0104)
No Item Price Heterogeneity -0.1441 (0.0009) -0.0241 (0.0001) -2.8134 (0.0350) -1.5402 (0.0095)
Mixed Logit with Random Price and HPF Controls -0.1465 (0.0009) -0.0243 (0.0001) -2.8004 (0.0357) -1.5475 (0.0086)
Nested Logit with HPF Controls -0.1493 (0.0009) -0.0249 (0.0001) -2.7986 (0.0371) -1.5356 (0.0092)
Mixed Logit with Random Price and Random Intercepts -0.1530 (0.0009) -0.0251 (0.0001) -2.8003 (0.0348) -1.5408 (0.0085)
Mixed Logit with Random Price and Demographics -0.1525 (0.0009) -0.0251 (0.0001) -2.8544 (0.0374) -1.5709 (0.0090)
Multinomial Logit with Demographic Controls -0.1557 (0.0010) -0.0256 (0.0002) -2.8097 (0.0369) -1.5344 (0.0092)
Nested Logit with Demographic Controls -0.1555 (0.0010) -0.0256 (0.0002) -2.8186 (0.0372) -1.5377 (0.0093)

Out of Stock Weeks
Nested Factorization -0.0924 (0.0040) -0.0159 (0.0002) -2.3349 (0.1114) -1.2746 (0.0129)
No Item Price Heterogeneity -0.0986 (0.0041) -0.0168 (0.0002) -2.3688 (0.0934) -1.2778 (0.0118)
Mixed Logit with Random Price and HPF Controls -0.1033 (0.0044) -0.0173 (0.0002) -2.3679 (0.1225) -1.3064 (0.0111)
Nested Logit with HPF Controls -0.1068 (0.0046) -0.0176 (0.0002) -2.3427 (0.1243) -1.2817 (0.0122)
Multinomial Logit with HPF Controls -0.1068 (0.0046) -0.0176 (0.0002) -2.3446 (0.1259) -1.2774 (0.0121)
Mixed Logit with Random Price and Demographics -0.1091 (0.0045) -0.0180 (0.0002) -2.3669 (0.1132) -1.3249 (0.0118)
Mixed Logit with Random Price and Random Intercepts -0.1125 (0.0046) -0.0181 (0.0002) -2.3403 (0.1156) -1.3068 (0.0113)
Nested Logit with Demographic Controls -0.1145 (0.0047) -0.0183 (0.0002) -2.2974 (0.0990) -1.2840 (0.0123)

Table 3: Mean Log Likelihood by Counterfactual Event

between products.30 We asses fit on the test data using three measures. The first measure is the mean log
likelihood of the individual household level predictions for product weeks that experienced the corresponding
counterfactual event. The second and third measure compare the actual aggregate demand to the predicted
aggregate demand across all households in the test set who shopped during the corresponding weeks. For
products that are purchased at least 2.5 times on average per day, we calculate the likelihood of the Tuesday
to Wednesday change in aggregate demand as approximated by a Skellam distribution.31 For less popular
products, we calculate the likelihood of observing aggregate demand greater than zero, which we approximate
with a Bernoulli distribution whose mean is the sum of the household level predictions.

6.3 Comparison of Degree of Personalization across Households

To examine the extent to which each of these models is able to flexibly model the differences in preferences
between households, we calculate two measures of the degree of “personalization” of the predicted purchase

30In all cases we exclude weeks in which the focal product is out of stock on either day. For the cross price and out of stock
counterfactuals, we exclude weeks in which the focal product has a price change. For the price change counterfactuals, we
exclude weeks in which the magnitude of the price change is less than $0.10

31If the individual purchasing decisions are distributed as independent Bernoulli variables, then their sum, the aggregate
demand has a Poisson distribution. Then the Tuesday-Wednesday change in aggregate demand has a Skellam distribution,
which is the difference between two independent Poisson distributions
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Coef of Variation Regression Coef

Model UPC Category UPC Category

Nested Factorization 3.2546 1.7756 0.9955 1.0023
No Item Price Heterogeneity 2.4101 1.3038 0.8604 0.8075
Mixed Logit with Random Price and HPF Controls 2.0747 1.6085 0.6861 0.7007
Mixed Logit with Random Price and Demographics 1.3869 1.5724 0.4718 0.5968
Multinomial Logit with HPF Controls 1.2590 0.7276 0.8402 0.8893
Nested Logit with HPF Controls 1.2368 0.7520 0.8417 0.8725

Mixed Logit with Random Price and Random Intercepts 1.0834 1.0446 0.4666 0.6959
Nested Logit with Demographic Controls 0.4465 0.2967 0.8947 0.9314
Multinomial Logit with Demographic Controls 0.4337 0.2756 0.9077 0.9411

Table 4: Comparison of Degree of Personalization of Predictions across Models

rates that each model predicts for each household. First, we compare the coefficient of variation of a models
predictions at the UPC level and the category level.32 As a second measure, we regress the predicted purchase
rate on the actual purchase rate in the in the held out test sample.33

Table 4 shows that the Nested Factorization model has the largest variation in the predictions across
households and that this variation is strongly correlated with variation in the actual purchase rates in the
held out test data. For each 1% increase in the Nested Factorization model’s prediction of a household’s
purchase for a UPC, the household’s actual purchase rate in the test set increases by 0.9955%.

6.3.1 Predicting Preference for Products a Household has Not Yet Purchased

The Nested Factorization model is also able to make predictions about the strength of a households prefer-
ences for a given UPC, even if the household has never purchased that particular item before. To demonstrate
this, we look at the set of all households who have made 0 purchases of a particular UPC in the training
sample. For each UPC and each predictive model, we can rank these households based on their predicted
purchase rate and group them into deciles. We carry out a similar analysis of households who made no
purchases from an entire product category during the training sample. Figure 4 shows that the Nested Fac-
torization model is able to correctly predict which households are relatively more or less likely to purchase
a category or UPC that they never purchased during the training sample. The decile of households with
the highest predicted likelihood to purchase a product category for the first time, purchases at roughly 3
times the frequency of the lowest decile. At the UPC level, this ratio of purchase rates in the held out test
sample is more than 10 fold difference. The models with HPF controls (solid lines) are able to capture a
smaller amount of this variation The models without either approach for latent factorization (dotted lines)
have substantially less predictive power for these first time buyers. This may be useful to applied market-
ing practitioners who may be interested in targeting advertising or promotions towards new customers who
might be interested in a product that they have not yet tried.

6.4 Estimated Elasticities

6.4.1 Cross Price Elasticities Within and Between Products Subcategories

None of the models were given data from the product hierarchy data about the “class” or “subclass” each
product is categorized under. These groupings are more fine grained than the “category” level that we
focused on for modeling product substitution. Nevertheless, we show that the Nested Factorization model
correctly infers that products that are in the same class or subclass are more similar to each other, and as

32Coefficient of variation is defined as sd
mean

33The coefficients are from a regression of actual purchase rate on the predicted purchase rate (both calculated on the test
set) with item/category specific fixed effects to absorb heterogeneity in the mean purchase rates across items/categories.
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Figure 4: Test set purchase rate for households with 0 purchases of the UPC/Category in the training set.

a result these models predict higher levels of cross price elasticities between products that are in the same
class or subclass than between items that are in different classes/subclasses.

6.4.2 Aggregate Demand Curves

In figure 7, we validate whether the households with higher predicted elasticities do in fact respond more
to price changes in held-out test data. To do this, for each UPC we split households into terciles based on
their predicted elasticity. We then compare the Tuesday-Wednesday change in aggregate demand in the test
set depending on the size of the price change during the week. The household’s with the higher predicted
elasticities do in fact appear to have aggregate demand that is more responsive to price changes. This
establishes that the heterogeneity we estimate is useful for counterfactual predictions about heterogeneity in
consumer response to price changes.

6.5 Target Marketing

In Table 6, we evaluate the ability of the store to target a coupons to its customers. For each product
category, we use each model to select the 30% of households for whom it would be most profitable for the
store to offer a 30% off coupon for the most popular UPC in the category.34 We then evaluate how profitable
this coupon targeting would be using the Nested Factorization model as ground truth. For each model
we evaluate three approaches to targeting the coupons. Under individualized targeting, the store is able to
select individual households when choosing whom to target with the coupons. Under demographic targeting,
the coupons must be allocated in a way that is uniform within demographic groups.35 Under behavioral
targeting, the coupons must be allocated based on the number of times a household has made purchases in
the product category. Under each scenario, we compare the predicted store profits to the profits that would
have been earned if the store had allocated the coupons uniformly at random.

34Profits are calculated as price - marginal cost. Marginal costs come from the retailer’s records, which are available for most
products. For items with no marginal cost data, we treat the minimum retail price in the data as the marginal cost.

35We define demographic groups in terms of marital status, income level, age, and number of children.
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Own Price Class Cross Price Subclass Cross Price

Model Median SD(Mean) Mean(SD) Inside Outside % Inside Outside %

No Item Price Heterogeneity -0.7602 0.5679 0.7352 0.0020 0.0003 499% 0.0020 0.0019 8.2%
Nested Factorization -1.7121 1.2008 1.7774 0.0186 0.0080 132% 0.0196 0.0181 8.4%
Nested Logit with Demographic Controls -1.2976 1.0377 0.0532 0.0119 0.0086 37% 0.0125 0.0115 8.5%
Mixed Logit with Random Price and Random Intercepts -2.2024 1.7822 0.8387 0.0062 0.0053 16% 0.0062 0.0062 -0.7%
Mixed Logit with Random Price and HPF Controls -2.7077 1.9084 1.1294 0.0063 0.0054 16% 0.0063 0.0065 -3.9%
Multinomial Logit with HPF Controls -1.1841 0.8904 0.0060 0.0035 0.0030 16% 0.0036 0.0035 0.8%

Multinomial Logit with Demographic Controls -1.1813 0.8837 0.0017 0.0034 0.0029 16% 0.0034 0.0034 2.1%
Mixed Logit with Random Price and Demographics -3.0897 2.4546 1.4785 0.0067 0.0060 13% 0.0066 0.0069 -4.6%
Nested Logit with HPF Controls -1.1017 0.8783 0.0182 0.0148 0.0158 -7% 0.0140 0.0157 -10.7%

Table 5: Comparison of Own and Cross Price Elasticities
SD(Mean) is the standard deviation across the mean product level own price elasticities. This captures how
much variability there is in elasticities across products. Mean(SD) is the mean of the standard deviation of
elasticities across consumers within a specific product. This captures the amount of variability in elasticities
across consumers for the same product.
We also compare the mean estimated elasticities for products that are/aren’t in the same product class or
product subclass. We would expect the cross price elasticities inside of a class or subclass to be higher than
those outside the class, since this implies substitution towards products that are more similar.
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% Gains Relative to Uniform

Model Behavioral Demographic Individualized

Nested Factorization (linear) 2.57% 4.55% 28.5%
Mixed Logit with Random Price Effects and HPF Controls (linear) 1.51% 2.38% 5.7%
Multinomial Logit with HPF Controls (linear) 1.37% 1.60% 5.7%
Nested Logit with HPF Controls (linear) 1.41% 1.57% 5.4%
Nested Logit with Demographic Controls (linear) 0.56% 3.03% 4.7%

Multinomial Logit with Demographic Controls (linear) 0.77% 2.17% 3.4%
Mixed Logit with Random Price Effects and Demographics (linear) 0.75% 2.53% 3.1%
Mixed Logit with Random Price and Random Intercepts (linear) 0.86% 1.31% 2.5%

Table 6: Gains from Targeted Discounts:
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Figure 8: Distribution of Gain in Profit from Targeted Price
Percent gain calculated as Difference in Average Profit

Average Profit for each item and price group, where the difference in
average profit is the mean profit per shopping trip under the preferred price minus the mean profit per
shopping trip under the alternative price.

Unfortunately, without the ability to run an experiment, it is difficult to validate our model’s predictions
of the household specific profitability of pricing decisions. We can however approximate such an experiment
by looking at consumers’ purchasing behavior under the various price regimes that happened to have occurred
during each consumer’s test sample shopping trips. For each UPC, we identify the two most common prices36,
and for each consumer use our model to predict which of the prices will lead to higher store profits. We
can then compare the average profit per shopping trip from the focal UPC under the two chosen prices. We
aggregate these profits across the two groupings of households37 and calculate the increase in average profits
per shopping trip from households shopping at their targeted price relative to the other price.38 In figure 8,
we can see that on average the store earns substantially more profit from households when they shop on
days with the price that we predicted would lead to higher profits. We further decompose these results in
figure 9 by splitting the results based on what fraction of households were assigned to each of the pricing
groups. When 95-100% of households were all predicted to yield more profit under the same price, then that
price on average leads to more than double the profit of the alternative price.

36We exclude all prices that are less than the item’s marginal cost, since those prices would lead to negative profits, and thus
would never be chosen as the more profitable price for any consumer.

37i.e. the household’s who are predicted to have higher profits under price 1 and the households who are predicted to have
higher profits under price 2.

38We restrict ourselves to the two most common prices in order to increase the frequency with which we observe shopping
trips with the selected prices in the test sample.
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Figure 9: Average Profit Gain by Fraction of Shoppers Targeted

7 Conclusion

This paper proposes the Nested Factorization model for learning consumer preferences from panel data.
This model allows rich heterogeneity in preferences and price responsiveness across consumers, and it gains
efficiency and precision from simultaneously learning consumer preferences across many product categories.
Using recent advances in variational Bayesian inference with stochastic gradient descent allows the model
to remain tractable on the types of relatively large data sets that are increasingly becoming available as
digitization progresses. We show that this approach can yield substantial improvements in out of sample
predictive accuracy. This model is also able to predict price elasticities and patterns of substitution between
products, which are often ignored or explicitly assumed away in most of the related recommender systems
literature from computer science. Using the nested functional form, inspired by the nested logit model,
allows our model to more efficiently learn these patterns of cross product substitution. We demonstrate an
approach for validating a model’s ability to make predictions for counterfactual questions, by leveraging the
large number of price changes and changes in product availability that occur in the data. Treating each such
change as a “mini experiment,” we can evaluate a model’s predictions before and after the change on held out
data that was not used to fit the model. Pooling across many such sources of variation in the data reduces
the noise and allows us to compare models in terms of their ability to make counterfactual predictions. We
evaluate the potential gains from using flexible personalized models such as the one we propose here for
targeting marketing efforts such as personalized price discounts or for identifying new consumers who might
be interested in trying a product. More generally, we believe that flexible models of consumer demand, such
as the Nested Factorization model proposed here, can be a useful tool for guiding the marketing strategies
of firms or as part of a larger model for understanding patterns of competition between firms.
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8 Appendix

8.1 Data Construction and Sample Selection

The filters we use to select categories for study are outlined as follows:

1. For many of the mixed and nested logit specifications, we encountered difficulty with convergence in
some of the product categories. To reduce these issues we ran all of the logit specifications using the
top 10 items in each category along with an eleventh “pooled” option that combined all of the less
popular items in the category. The NF and HPF models were run without any pooling of items. To
make for a fair comparison, we evaluate model fit using only the top 10 items in each category. The
relative performance of the NF model improves further if we compare the sum of the predicted purchase
probabilities for the pooled items to the pooled item prediction from the logit models.

2. We eliminate categories in which more than 15% of shopping trips contain multiple items from the
category or more than 10% of trips contain multiple top 10 items. Since for these categories the
assumption of unit demand was substantially violated. For any remaining shopping trips in which
multiple items from the same category were purchased, we selected one item at random from among
the purchased items (and treated the remaining items as unpurchased).

3. We eliminate categories where the average absolute within-category correlation of the top 10 items’
prices is greater than $0.75.

4. We only include categories where at least 2 of the top 10 items have price variation from Tuesday to
Wednesday in one of the sample weeks and at least 1 of them top 10 UPCs has price changes of at
least 10 cents in a least 10% of the sample weeks.

25

http://ieeexplore.ieee.org/document/5288526/
http://ieeexplore.ieee.org/document/5288526/
http://www.jstor.org/stable/10.1086/340779
http://www.jstor.org/stable/10.1086/340779
http://www.jstor.org/stable/2111172
http://www.jstor.org/stable/2111172
http://pubsonline.informs.org/doi/abs/10.1287/mksc.2014.0860
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1535329
http://www.sciencedirect.com/science/article/pii/S1755534516300136
http://www.sciencedirect.com/science/article/pii/S1755534516300136
http://cseweb.ucsd.edu/jmcauley/pdfs/www17.pdf


5. We eliminate the bottom 15% of categories in terms of seasonality. For each UPC, we first calculate
seasonality as the Herfindahl index of daily demands over the sample period. We then calculate the
percentile of each UPCs Herfindahl index over all UPCs and define a category’s seasonality as the
average of the category’s top 10 items’ percentiles.

We also need to specify prices as well as out-of-stock status for products. We consider an item unavailable
to all shoppers on any days in which it is listed as out-of-stock during more than 75% of shopping trips on
that day.
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