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Abstract

We examine the relation between liquidity, volume, and volatility using a comprehensive sample

of U.S. stocks in the post-decimalization period. For large stocks, effective spread and volume

are positively related in the time series even after controlling for volatility, contrary to most

theoretical predictions. This relation is mostly driven by the systematic component of volume.

In contrast, for small stocks the evidence matches the predictions of standard adverse selection

models. In line with a continuous-time inventory model, we show that the volatility of order

imbalances can reconcile our puzzling finding with standard intuition. Order imbalance volatility

is strongly associated with spreads both in the time series and cross-section. Evidence from

alternative liquidity measures (price impact and depth), spread decomposition, and intraday

patterns support our interpretation of order imbalance volatility as a measure of inventory risk.

Furthermore, order imbalance volatility is priced in the cross-section of weekly returns.

1 Introduction

This paper examines the relation between stock liquidity, trading volume, and price volatility.

Microstructure models based on Kyle (1985) suggest that higher volume should be associ-

ated with lower trading costs, as volume is mainly driven by uninformed trading, which re-

∗We thank our discussants: David Cimon, Itay Goldstein, Andrei Kirilenko, Dmitry Livdan, and Bart Yueshen.
We also thank Pierluigi Balduzzi and conference and seminar participants at Bentley University, Boston College,
CFM-Imperial workshop, CEPR ESSFM Asset Pricing, EFA, FRIC, IMFC, Laval, LBS Summer Symposium, NFA,
and SFI Research Days for helpful comments.
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duces adverse selection risk.1 There is considerable empirical evidence that trading volume is

positively related to the stochastic stock price volatility.2 However, the relation between price

volatility and trading costs is theoretically ambiguous. Microstructure models of spreads based

on adverse selection predict that price volatility and trading costs should be negatively related if

price volatility is mostly driven by shocks to uninformed volume (Admati and Pfleiderer (1988),

Collin-Dufresne and Fos (2016a)), but positively related if price volatility is mostly driven by shocks

to information (Foster and Viswanathan (1990), Collin-Dufresne and Fos (2016b)). Inventory-

based models on the other hand suggest that price volatility and trading costs should be positively

related (Stoll (1978b)).

Thus, the relation between trading costs, volatility, and volume is ultimately an empirical

question. Early papers provide cross-sectional evidence that trading costs tend to be higher for low

volume and high volatility stocks (e.g., Stoll (1978a)). In the time series, however, trading costs and

volume seem to be positively related both at the index level (Chordia, Roll, and Subrahmanyam

(2001)) and at the individual stock level (Lee, Mucklow, and Ready (1993)), though the latter

study does not control for changes in stock volatility.3

In this paper, we take a systematic look at the relation between trading costs as measured by

daily effective spreads, volume as measured by daily turnover, and volatility measured using both

daily absolute return and high-frequency realized volatility. Our sample covers U.S. stocks from

2002 to 2017. We focus on the time-series relation but find that most of our results hold in the

cross-section as well. We find that daily effective spreads are negatively related to volume and

positively related to volatility both in the cross-section and in the time series. This is consistent

with the intuition from Kyle-type adverse selection models and in line with the literature cited

above. However, when we sort stocks into quintiles based on market capitalization, we observe a

different pattern for large stocks. Specifically, for large stocks effective spreads are increasing in

volume in the time series even when controlling for volatility. This result holds consistently across

our sample period and is robust to using changes or levels in the variables, or vector autoregressions.

1Though higher volume can be associated with higher trading costs if the increase in trading volume reflects an
increase in the likelihood of informed trading (Easley and O’Hara (1992)).

2See, e.g., Clark (1973); Tauchen and Pitts (1983); Epps and Epps (1976); Gallant, Rossi, and Tauchen (1992);
Andersen (1996).

3See also Foster and Viswanathan (1993) for an early empirical examination of variations in volume, volatility,
and trading costs in a sample of stocks in 1988.
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In the cross-section of large stocks, we find that spreads are mostly unrelated to volume, even after

controlling for volatility.

The results suggest that factors other than adverse selection play an important role in driving

effective spreads of large stocks. To gain more intuition, we decompose volume and volatility into

common and idiosyncratic components.4 Intuition suggests that adverse selection risk should be

mostly driven by the idiosyncratic component of volatility. Similarly, the common component of

volume is less likely to be driven by firm-specific information events. For small stocks, we find that

the idiosyncratic component of volume is significant and negatively related to effective spreads while

the idiosyncratic component of volatility is significant and positively related to effective spreads.

Common volume and volatility components are only weakly associated with spreads. These findings

support Kyle-type adverse selection models, where idiosyncratic volume is mostly driven by noise

trading and idiosyncratic volatility is a proxy for the amount of private information in the market.

For large stocks, we find that trading costs are also positively related to idiosyncratic volatility.

However, they are positively related to both idiosyncratic and common components of volume.

Moreover, it is the common component of volume that is economically more significant. Since it

is unlikely that the common component of volume proxies the likelihood of an information event,

which could have explained the positive volume-spread relation as shown by Easley and O’Hara

(1992), these findings further suggest that trading costs for large stocks are likely driven by other

factors than solely adverse selection.5

To better understand the findings, we develop a theoretical model of a risk-averse liquidity

provider who faces stochastic arrival of buyers and sellers. In this model, a bid-ask spread arises as

a result of inventory costs incurred by the liquidity provider as long as she waits for offsetting order

flow, as in Grossman and Miller (1988). In the model, one can compute the equilibrium bid-ask

spread charged by the liquidity provider in response to stochastically arriving buy and sell orders.

The model shows that when buy and sell orders arrive at the same intensity, then increasing the

4In a study of commonality in liquidity, Chordia, Roll, and Subrahmanyam (2000) show that industry and market
trading volumes affect individual stocks’ spreads. They do not control for volatility in their time-series tests, however.

5Hendershott and Menkveld (2014) find economically large price pressures in a sample of NYSE stocks from 1994
to 2004. In a cross-sectional study, Bollen, Smith, and Whaley (2004) find that the adverse selection component of
the spread is small. This contrasts with prior work such as Glosten and Harris (1988). We do not mean to imply that
adverse selection is unimportant for large stocks. Intraday patterns in spread and volatility strongly suggest that
asymmetric information is an important driver of spreads (see Section 5.2). More generally, the fact that trades have
a permanent price impact supports the role of asymmetric information in the trading process (Hasbrouck (1991)).
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intensity of both buyers and sellers both increases trading volume and reduces the inventory risk

of the liquidity provider, who will more easily find an offsetting trade, thus generating a negative

volume-spread relation. However, if buy and sell order intensities are asymmetric then changes in

these intensities that leave average volume constant but increase the volatility of order imbalance

lead to a higher equilibrium bid-ask spread. The intuition is that controlling for an average rate

of trading, the higher the volatility of the order imbalance the greater the inventory risk faced by

the liquidity provider. The model’s insights apply equally well to the time-series than to the cross-

sectional evidence we document.6 From a microstructure point of view, it is natural to distinguish

between volume and order imbalance (e.g., Chordia, Roll, and Subrahmanyam (2002)).

In the data, we find that when we introduce a measure of the volatility of high-frequency order

imbalances over the trading day, we can reconcile the behavior of small and large stocks. Consistent

with the model, once we control for order imbalance volatility, the relation between turnover and

effective spread becomes strongly negative. Furthermore, order imbalance volatility increases the

explanatory power of both levels and changes regressions by more than 10 percentage points on

average. Interestingly, controlling for the volatility of order imbalances makes sensitivities of trading

costs to volatility and volume similar in magnitude for large and small firms. Both coefficients also

line up more closely with the plus two-third and minus one-third coefficients predicted by the

‘microstructure invariance hypothesis’ of Kyle and Obizhaeva (2016), though the null hypothesis

of equality is rejected for most years of the sample. When we do not control for the volatility

of order imbalances, large firms’ volume elasticity of spread is in fact positive, which is opposite

from the prediction of the invariance theory. We find similar results for the cross-sectional relation

between spread, volume, and volatility. Order imbalance volatility substantially increases the fit of

the regression across stocks in both small and large size quintiles.7

We consider how order imbalance volatility relates to alternative liquidity measures. Order

imbalance volatility is positively related to an Amihud-type measure computed using intraday

6Johnson (2008) proposes a model to explain the lack of relation between volume and liquidity in the time-series
at the aggregate level. In this paper, we find that the relation can be negative.

7In a empirical study of market liquidity at the daily frequency, Chordia et al. (2002) find that absolute aggregate
imbalance is negatively associated with spreads even when controlling for contemporaneous volume and absolute
return. Our results are consistent with their findings. An important difference is that, in line with a simple inventory
model, we focus on the volatility of order imbalance. Furthermore, we examine the cross-section of U.S. stocks in the
post-decimalization era while they examine variables aggregated from the S&P 500 components over 1988 to 1998.

4



data.8 Furthermore, order imbalance volatility is negatively related to total depth at the best

prices. Hence, more volatile imbalances are associated with lower liquidity as measured by spread,

depth, and Amihud’s measure. Moreover, in line with our interpretation based on inventory risk, a

standard effective spread decomposition shows that order imbalance volatility is mostly associated

with realized spread (liquidity provision) rather than price impact (adverse selection).

To complement our daily empirical results, we examine the intraday relation between volume,

volatility, and spread. In line with the daily results, the intraday relation between volume and

spread is generally positive and significant. Interestingly, spreads tend to be the most sensitive to

volume around the close. We also document that absolute order imbalances tend to be highest in

the last thirty minutes of trading, which has to the best of our knowledge not been documented

before. This increase at the end of the trading day, a time when inventory considerations likely

dominate, supports our interpretation based on inventory risk.

Finally, we show that order imbalance volatility predicts the cross-section of weekly returns.9

This predictability holds for value-weighted returns even after controlling for many other liquidity

variables. This evidence supports the idea that inventory risk is priced and is of interest since many

high-frequency liquidity measures do not appear to be priced (Lou and Shu (2017)).

Our results hold when we use realized volatility computed from five-minute intraday midquote

returns as our measure of volatility. Even though realized volatility improves substantially the

explanatory power of the spread regressions, volume remains in general positively and significantly

associated with spread in the time-series. We examine why realized volatility has a significantly

higher explanatory power for the spread compared to cruder measures such as the daily absolute

return. We show that realized volatility is linked to the profit of an intraday reversal strategy,

which is naturally linked to the spread.

This paper is organized as follows. Section 2 reviews the determinants of spreads. Section 3

explores empirically the relation between spread, volume, and volatility. Section 4 develops a

continuous-time inventory model to explain our findings. Section 5 examines order imbalance

volatility. Section 6 concludes.

8By construction order imbalance volatility should be negatively related to price impact measures that employ
order flow as a measure of trading activity. We discuss this point in Section 5.1.

9Chordia, Hu, Subrahmanyam, and Tong (2018) compute order imbalance volatility at the monthly level using
daily imbalances. They argue that this measure is a proxy for informed trading and is priced. Our measure differs
from theirs along several dimensions and is not subsumed by it (see Section 5.3).
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2 Determinants of Spreads

In this section, we discuss the determinants of spreads with a special focus on the role of volume

and volatility. A more comprehensive review of market microstructure theories can be found in the

survey of Biais, Glosten, and Spatt (2005).

2.1 Adverse Selection

Consider the classic continuous-time model of informed trading (Kyle (1985)). Informed trader

and noise traders send order flow to a risk-neutral market maker. Denote noise trading volatility

by σnoise and the market maker’s prior uncertainty about the informed’s signal by σinformed. The

latter reflects how much information is going to be eventually revealed in the price. In this model,

it can be shown that:

price impact =
σinformed

σnoise
,

price volatility = σinformed, and

volume = σnoise.

Noise trading drives volume and informed trading drives volatility. All else equal, an increase in

noise trading volatility results in a higher volume and a lower price impact. This is intuitive as noise

trading reduces the market maker’s adverse selection problem. For price impact to be positively

associated with volume, ∂σinformed/σinformed

∂σnoise/σnoise
> 1. This condition is difficult to satisfy. To illustrate,

in the Internet Appendix we solve the simple one-period adverse selection model of Glosten (1989),

which extends the Kyle (1985) model to a risk-averse informed trader and replaces noise traders

with endowment shocks.10 In that model, we compute the relation between volume and spread

as we move various parameters such as risk-aversion and the variances of the informed signal,

of the endowment shock, and of the fundamental. In all cases, the model generates a negative

volume-spread relation.

A negative relation between volume and spreads also arises in most dynamic extensions of Kyle’s

model that generate time-varying volume and volatility by introducing time-varying noise trading

10The Internet Appendix is available at http://www.vincentbogousslavsky.com/liquidity_appendix.pdf
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volatility (e.g, Admati and Pfleiderer (1988), Collin-Dufresne and Fos (2016a)), or time-varying

rate of news arrival (Foster and Viswanathan (1990), Collin-Dufresne and Fos (2016b)). This is

because the informed agent’s trading is endogenous and it is never optimal to trade so as to move

price impact adversely.

On the other hand, more informed trading is always associated with higher price volatility (as

more information is released) in a Kyle-type framework. Thus, adverse-selection models generate a

positive relation between volume (or market depth, i.e., inverse price-impact) and volatility if the

variation in informed trading is an endogenous response to variation in uninformed noise trading11

(e.g, Admati and Pfleiderer (1988), Collin-Dufresne and Fos (2016a)), but can generate a negative

relation between volume (or market depth) and volatility, if the higher volume is associated with

a lower rate of news arrival12 (Foster and Viswanathan (1990), Collin-Dufresne and Fos (2016b)).

Lastly, we note that price impact can be positively linked to volume and volatility if there is a direct

positive link between volume and information. For example, if the increase in trading volume reflects

an increase in the likelihood of informed trading (Easley and O’Hara (1992)) or if the increase in

trading volume comes with an increase in the rate of news arrival (Collin-Dufresne and Fos (2016b))

then volume, volatility and spreads may all be positively related.

A final remark on the definition of volume and order imbalance in these adverse selection

models. As the net order flow comes from three groups of traders (informed, noise, and market

maker), volume is naturally defined (e.g., Admati and Pfleiderer (1988)) as as one-half of the sum

of the absolute value of each. In a continuous time model, where it is optimal for the informed to

trade in an absolutely continuous fashion, the expected volume (per unit time) is proportional to

the noise trading volatility (as the volume due to noise trading dwarfs the volume due to informed

traders), which is also equal to the volatility of the cumulative net order flow submitted to the

market maker.13

Instead, below we will propose an inventory model where it is natural to distinguish the two

11This is because a higher noise trading volatility increases the average volume and leads to more aggressive
informed trading which increases price volatility.

12A higher volume pushes the insider to trade more aggressively, but a lower rate of news arrival reduces her
incentives to trade aggressively. The latter effect can dominate and lead to a decrease in price volatility.

13Volume is defined as V OL = 1
2
(|dXi

t |+|dXu
t |+|dXi

t +dXu
t |). Now, in continuous time, it is optimal for the insider

to trade in absolutely continuous fashion, that is dXi
t = µidt, whereas dXu

t = σudZt for some Brownian motion Zt.
It follows that (dropping terms of order higher than dt and recalling that if dX ∼ N(0, σ2) then E[|dX|] =

√
2/πσ)

squared expected volume (per unit time) is proportional to the variance of noise trading, that is E[V OL]2 = 2/πσ2
udt.

Total cumulative order flow is Yt = Xu
t +Xi

t and again V ar[dYt] = σ2
udt.
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notions and indeed, they have different implications for spreads.

2.2 Inventory Risk

Liquidity providers face inventory risk. This inventory risk is lower when it is easier for them to

find an offsetting trade. Hence, as long as volume is not one-sided, a higher volume is generally

associated with improved liquidity in inventory models.

In contrast, risk-averse liquidity providers require a compensation to absorb one-sided supply

shocks (Grossman and Miller (1988)). Consider a model along the lines of Campbell, Grossman, and Wang

(1993) in which liquidity providers with exponential utility and risk aversion γ absorb every period

liquidity shocks with volatility σnoise. In this model, it can be shown that:

price impact ∝ γσ2
ret,

volatility ≡ σ2
ret, and

volume ∝ σ2
noise.

Since noise trading moves prices, then ∂
∂σ2

noise
σ2

ret > 0. As a result, volume and price impact are

positively related. This positive relation depends crucially on holding fixed the number of liquidity

providers. In fact, it can be shown that if entry of liquidity providers (at a fixed cost) is allowed then

price impact decreases with noise trading volatility. The intuition being that a higher volatility

of noise trading increases the profits of incumbent liquidity providers, which attracts additional

liquidity providers and ultimately lowers price impact.14 As in the case of adverse selection, there

is a direct link between return volatility and price impact.

2.3 Competition

If liquidity provision is not perfectly competitive, then imperfect competition can affect spreads in

adverse selection and inventory models. But even absent inventory concerns and adverse selection,

the lack of competition can matter for liquidity. For instance, in the model of Foucault, Kadan, and Kandel

(2005) there is no inventory risk and no asymmetric information. An increase in the total order

14In equilibrium, the fraction of noise trading volatility that each market maker has to absorb remains constant.
The result is that the price impact per unit of noise trading volatility shock goes down while the product of price
impact and noise trading volatility remains constant. The model is detailed in the Internet Appendix.
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arrival rate lowers spread since traders wait on average a smaller amount of time before their limit

orders are executed, in line with the intuition of Demsetz (1968). An increase in the fraction of

impatient traders can, however, increase both volume and spreads due to the strategic behavior of

patient traders and imperfect competition.

3 An Empirical Exploration of the Relation between Spreads, Vol-

ume, and Volatility

We examine the time-series relation between spreads, volume, and volatility. Our focus is on the

post-decimalization period. We first discuss our data sources and methodology and then present

our empirical results.

3.1 Data

We obtain daily stock data for NYSE, Amex (NYSE American), and NASDAQ common stocks

from CRSP. We compute daily and intraday liquidity measures over 2002 to 2017 using the

Trades and Quotes dataset (TAQ) We apply the corrections and filters for TAQ data proposed

by Holden and Jacobsen (2014).15

To be included in a given month, a stock is required to have at the beginning of the month a

price greater than $5 and lower than $1,000, a market capitalization greater than $100 million, and

at least 100 days of prior trading. Observations with a missing CRSP return are excluded. Stocks

that are present in CRSP but do not have a single valid TAQ trade in a given month are excluded.

The liquidity measures (described below) are computed over the regular trading day (9:30am to

4:00pm). Days with early closures are excluded from the analysis (the NYSE closes at 1pm on the

day before Independence day, the day after Thanksgiving, and Christmas Eve).

15We rely on the TCLINK macro provided by WRDS to match a TAQ ticker to a CRSP PERMNO. Afterwards,
the data is screened for duplicates and obvious matching errors are corrected. Monthly TAQ is used before 2014 and
Daily TAQ is used since 2014.
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3.2 Variables and Descriptive Statistics

We use the percentage effective spread as our primary measure of liquidity. The percentage effective

spread on a trade t is defined as

Effective Spreadi,t = 2| lnPi,t − lnMi,t|,

where Pi,t is the trade price and Mi,t denotes the midpoint of the best quote available immediately

preceding the trade. The effective spread over an interval is computed by summing the weighted

spread associated with each transaction over the interval, where the weight equals the dollar volume

of the transaction over the total dollar volume in the interval. Importantly, our results hold if we use

as dependent variable the dollar effective spread, computed by dollar-weighting or share-weighting

2|Pi,t −Mi,t| over the day. This shows that price effects do not drive our results.16

We use daily intraday turnover as a measure of volume. We focus on intraday turnover rather

than total turnover since it is the volume associated with effective spreads. Our results are un-

changed if we use instead total turnover obtained from CRSP. We use the average absolute return

over the past five trading days (including the current day) as a measure of volatility (Chordia et al.

(2001)). Alternative measures of volatility are discussed in Section 3.6.

Figure 1 plots the daily cross-sectional median of each measure over our sample period. Spreads

tend to decline over the first part of the sample, then remain stable with large spikes during

the financial crisis. Turnover increases until the crisis then drops and remains relatively stable.

Volatility does not show any marked trend over the sample period.

In the analysis that follows we split stocks into groups based on market capitalization. We

show that it is important to consider separately large stocks from small stocks. At the beginning

of each month, stocks are sorted into quintiles by their average daily market capitalization over the

past 250 trading days. We require a stock to have a minimum of 100 observations. The results are

similar when we sort stocks based on dollar volume instead of market capitalization.

On average each quintile contains 540 stocks, with a minimum of 456 and a maximum of 634.

The median market capitalization of a stock in the lowest (highest) size quintile is $0.17 ($7.09)

16Effective spreads may be a biased measure of transaction costs due to the binding tick size (Hagströmer (2019)).
Our main results are robust to focusing on large stocks with a price above $100 (for which Hagströmer (2019) does
not find evidence of bias).
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billion in 2002 and grows to $0.23 ($17.81) billion in 2017. The median daily dollar volume of

a stock in the lowest (highest) size quintile is $0.28 ($41.34) million in 2002 and grows to $0.61

($111.68) million in 2017. Table 1 reports descriptive statistics for our main variables of interest—

percentage effective spread, turnover, and volatility—for stocks in the bottom, middle, and top size

quintiles in even years (to save space). The values confirm the evidence in Figure 1.

Most of the stocks in our sample are traded every day and therefore have a valid effective spread

every day. Among stocks in the smallest size quintile, the fraction of missing effective spreads is

approximately 1.6%. Among stocks in the top two size quintiles, the fraction of missing effective

spreads is negligible.

Table 2 reports cross-sectional averages of the individual stocks’ time-series correlations for the

different variables.17 As expected, spread and volatility are positively correlated for both small and

large stocks. More surprising, spread is positively correlated with turnover for large stocks. We

show below that this relation is not explained by volatility.

3.3 Spread, Volume, and Volatility in the Time Series

Building on the theories in Section 2, our goal is to evaluate how liquidity varies with volume and

volatility for a large cross-section of stocks. We examine what drives spreads by estimating the

following panel regressions:

log si,t = αi + βuτ log τi,t + controls + εi,t, and (1)

log si,t = αi + βuσ log σi,t + controls + εi,t, (2)

where the (log) effective spread si,t is regressed on (log) turnover τi,t and (log) volatility σi,t for

stock i on day t. The regression includes stock fixed effects since we focus on the time-series relation

between spread, volume, and volatility. We include as controls calendar indicators for the day of

the week and the month of the year (when the regressions are estimated on a yearly basis). We

also control for market capitalization and price (in logs). The results are, however, similar if we

do not include these controls. Furthermore, as mentioned above the results hold if we use dollar

17Correlations between log variables are reported since log transformed variables are used in the analysis. The cor-
relations between raw variables are not substantially different. Additional measures of volatility and order imbalance
are introduced later in the analysis.
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effective spreads instead of percent effective spreads.

Even though we focus on the post-decimalization period, Figure 1 shows that spread and

turnover still exhibit trends over parts of the sample period. To avoid as much as possible issues

associated with nonstationarity, we employ several methods. First, we estimate our regressions over

short samples such as month-by-month and year-by-year. As discussed by Lo and Wang (2000),

this procedure does not make the variables stationary but should alleviate the issue and be infor-

mative about what happens in the data over time. Furthermore, it is not clear in Figure 1 that

spread and turnover exhibit any trend over the second part of the sample. Second, we estimate as

robustness checks regressions with percentage changes in the variables and vector autoregressions

(discussed below).

Figure 2 reports the results of estimating (1) and (2) on a month-by-month basis separately for

stocks in the bottom and top size quintiles as explained above. Results for the other size quintiles

lie in-between these two extremes. Surprisingly, Panel (a) shows that a higher volume is associated

with a higher spread among the quintile of large stocks. The reverse holds among small stocks.

Mid-cap stocks lie in-between (not reported). In line with theory, a higher volatility is associated

with a higher spread (Panel (b)).

Spread, volume, and volatility are endogenous quantities. It is well-known that volatility and

volume are strongly associated. Panel (c) of Figure 2 confirms the strong positive association

between volume and volatility. We next estimate the following multivariate regression:

log si,t = αi + βτ log τi,t + βσ log σi,t + controls + εi,t. (3)

Equation (3) can also be motivated from the invariance of transaction costs hypothesis developed

by Kyle and Obizhaeva (2016). Under invariance of transaction costs and additional assumptions,

si,t ∝
[

σ2
i,t

Pi,tVi,t

] 1
3

, where V is the share volume and P is the share price. This equation closely maps

to our empirical specification since we consider the logarithm of these variables.

Figure 3 reports the month-by-month estimated elasticities across size quintiles. In the Internet

Appendix, we report similar results when estimating (3) year-by-year. Spread is positively related

to turnover for large stocks (Figure 2) and controlling for volatility does not explain this positive

relation (Figure 3). Economically, a one (within) standard deviation increase in turnover from its
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mean level leads to a roughly 10% increase in spread for large stocks. For small stocks, the spread

decreases by more than 15%. The average monthly adjusted R2 is 7.0% for large stocks and 3.7% for

small stocks and peaks during the Financial crisis. Figure 3 highlights the importance of separating

large stocks from small stocks. When all stocks are pooled together, the conventional intuition holds

as a higher volume is associated with a lower spread (reported in the Internet Appendix). But this

relation breaks down and turns positive once we focus on large stocks.18

As a first robustness check, we use percentage changes in the variables like Chordia et al. (2000).

First-differencing helps assuage nonstationarity concerns but makes the results harder to interpret

theoretically. The (log) percentage change in daily spread is regressed on the percentage changes

in daily turnover and volatility:

∆si,t = αi + βτ∆τi,t + βσ∆σi,t + controls + ui,t, (4)

where ∆xt ≡ log( xt
xt−1

), and the controls are daily market capitalization, daily price, and day-of-

the-week and month-of-the-year indicators.19

The previous results are robust when we estimate equation (4). Among large stocks changes in

spreads are positively associated with changes in volume and among small stocks this relation is in

general negative (reported in the Internet Appendix). As another robustness check, we estimate for

each stock a time-series regression of spread on turnover and volatility each year and then examine

the distribution of volume and volatility betas across stocks in a given size quintile (we use the

size quintile allocation at the beginning of each year). The results are reported in the Internet

Appendix and confirm the panel evidence. For large stocks, the median sensitivity of spread to

turnover is positive while it is negative for small stocks. Over 2002 to 2012, more than two-thirds

18Most of the evidence for a positive volume-liquidity relation is cross-sectional (e.g., Stoll (2000)). An exception
is Barinov (2014), who finds that quarterly turnover is positively related to spread in the cross-section and proposes
an explanation based on volatility. We estimate (3) with day fixed effects to study cross-sectional variation with the
same controls as before except for the calendar indicators. The cross-sectional relation between volume and spread
is strongly negative for stocks in the bottom and middle size quintiles. Among large stocks, the relation is mostly
insignificant. Among stocks in the top market capitalization decile, the cross-sectional relation between turnover and
spread is often positive and statistically significant. These results are reported in the Internet Appendix and suggest
that the cross-sectional relation between spread, volume, and volatility in the post-decimalization period may be
more complicated than previously thought.

19We also employ a procedure similar to that of Gallant et al. (1992). For each stock, the spread and turnover series
are regressed on a set of calendar and trend control variables. The residuals from this regression (further adjusted
using a variance equation) are then employed instead of the raw spread and turnover series. The results are similar
and not reported.
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of the volume betas are positive and statistically significant at the level of 10%. In recent years,

this proportion is closer to 40%, but only few large stocks have negative and significant turnover

betas.

Reverse causality is a concern in (3). Our specification builds on microstructure theories that

suggest that volume and volatility are likely to have exogenous drivers, while spreads are mostly en-

dogenous. Furthermore, for large stocks reverse causality cannot explain the empirical result since it

seems implausible that an increase in spread could cause an increase in volume. To provide another

perspective on the previous findings, we estimate vector autoregressions (VAR) of spread, volume,

and volatility. More precisely, we estimate a reduced-form VAR using ordinary least squares, where

the number of lags is chosen based on the Akaike information criterion. We then perform a Cholesky

decomposition to orthogonalize the error terms and obtain a recursive VAR. The Cholesky decom-

position is sensitive to the ordering of the variables. We report results with the following ordering:

volume, volatility, and spread. The results are not substantially affected if we switch volume and

volatility in the ordering. At the daily level, market microstructure theory suggests that volatility

and volume drive spreads rather than the opposite. Chordia, Sarkar, and Subrahmanyam (2005)

make a similar point when estimating VAR of aggregate stock and bond liquidity.

We focus on large stocks in the last year of the sample (2017) and require stocks to be traded

over the whole year. The results are consistent for other years. Since we are interested in comparing

the results across stocks, all the variables are normalized. The VAR is estimated separately for each

stock. First, we perform Granger causality tests. Both volatility and volume tend to Granger-cause

spreads for the median stock. Spreads tend not to Granger-cause volatility and volume: for volume

(volatility), we cannot reject the null of no Granger-causality for more than 76% (80%) of the stocks

at a 10% level of statistical significance. Interestingly, volume Granger-causes volatility for around

73% of the stocks, but volatility Granger-causes volume for only around 21% of the stocks (at a

10% level of statistical significance).

Next, we compute impulse responses to a one standard-deviation shock for each variable. Fig-

ure 4 reports the cross-sectional median and 5th and 95th percentiles impulse responses. The plots

in the left column report the results with the baseline specification (the plots in the right columns

are discussed later). The results confirm the evidence from the panel regressions. The contempo-

raneous response of spread to a turnover shock is mostly positive across stocks. Spreads remain
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higher after one day for the majority of stocks. As expected, a volatility shock causes a large

contemporaneous increase in spread.

3.4 Decomposing Volume and Volatility

To gain more intuition about the relation between spread, volume, and volatility, we decompose

volume and volatility into common and idiosyncratic components. We are interested in understand-

ing whether the common and idiosyncratic components of volume and volatility affect liquidity in

different ways to shed light on the theories of Section 2.

We expect asymmetric information to play a more important role for liquidity via the idiosyn-

cratic component than the common component of volume and volatility. It is unlikely that the

common component of turnover reflects the likelihood of an information event in a specific stock.

Thus if we find a positive relation between the common component of volume and spreads then

it seems difficult to ascribe this to an adverse selection theory of spreads. Instead, idiosyncratic

volume could be driven by firm-specific information events that trigger more informed trading and

thus could cause a positive relation with spreads as shown in Easley and O’Hara (1992). Alterna-

tively, if idiosyncratic volume was mostly driven by noise trading, then we would expect a negative

relation with spreads as in Kyle (1985).

Similarly, we would expect idiosyncratic volatility to be tied to insider information and adverse

selection more so than the common component of volatility. Thus based on adverse selection

theories of illiquidity we expect the positive relation between volatility and spreads to be mostly

driven by the idiosyncratic component of volatility.20

The role of idiosyncratic and systematic volume and volatility shocks in inventory theories is

more difficult to evaluate. The existence of actively-traded basket securities should make systematic

volume shocks easier to hedge than idiosyncratic volume shocks for individual liquidity providers.

Further, if liquidity provider do not hold well-diversified portfolios, perhaps because they specialize

in making markets on a limited number of securities, then idiosyncratic risk should be the primary

driver of inventory cost.21 At the same time, a systematic volume shocks consumes liquidity

20That said, adverse selection could affect common volume and volatility components if there were asymmetric
information at the industry or market level, or if agents have different abilities to interpret public signals, which
might generate information asymmetry related to systematic risk shocks (Kim and Verrecchia (1994)).

21Moreover, even if a liquidity provider holds a diversified portfolio of securities, idiosyncratic risk still limits her
ability to arbitrage away any short-term price deviation (Pontiff (2006)).
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everywhere in the market. If market making capacity is limited, such shocks should matter since

the ‘aggregate’ maker maker has to absorb the shock. We discuss the impact of volume shocks on

spreads in inventory theories in Section 4 using a dynamic inventory model.

We decompose turnover into common and idiosyncratic components as follows. For each stock

i, we regress daily (log) turnover on a common turnover measure:

log τi,t = ai + biτm,t + τ Ii,t, (5)

where the common turnover, τm,t, equals the equal-weighted average daily (log) turnover of stocks

in the same size quintile as stock i, excluding stock i. The idiosyncratic component of turnover

is given by the residual from this regression, τ Ii,t, and the common component of turnover by the

fitted value (i.e., τCi,t ≡ log τi,t − τ Ii,t). For simplicity, we estimate (5) for each stock using the full

sample of data. The results are almost identical when we estimate the components on a year-by-

year basis. The results are also qualitatively similar if we decompose raw turnover instead of log

turnover. We decompose volatility into common and idiosyncratic components similarly. For each

stock i, we compute the equal-weighted daily return of stocks that belong to the same size quintile,

excluding stock i. We then regress the return of stock i on the matched quintile return. The

common (idiosyncratic) component of volatility, σCi,t (σIi,t), is given by the logarithm of the average

absolute value of the fitted return (residual) from the regression, where the average is computed

over the past five trading days including the current day.

Using the decomposed measures, we estimate the following regression:

log si,t = αi + βτ,Cτ
C
i,t + βτ,Iτ

I
i,t + βσ,Cσ

C
i,t + βσ,Iσ

I
i,t + controls + εi,t. (6)

Figure 5 reports the month-by-month estimated coefficients and associated t-statistics for the bot-

tom and top size quintiles. The year-by-year estimation results are reported in the Internet Ap-

pendix. The common volume elasticity of spread is positive and significant for large stocks over

the sample. The downward trend in the volume elasticity observed in Figure 3 is not reflected in

the pattern of the common component. In contrast, for small stocks the common volume elasticity

tends to be negative or insignificant except in the aftermath of the Financial Crisis where it is
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positive and significant. The idiosyncratic volume elasticity of spread is positive for large stocks

and negative for small stocks. For large stocks, the elasticity tends to trend downwards over the

sample period. With respect to volatility, the common component displays a very noisy pattern.

It is in general positive but not statistically insignificant. The idiosyncratic volatility elasticity is

positive and strongly significant for small stocks, consistent with asymmetric information theories.

The idiosyncratic volatility elasticity tends to be positive but is not consistently significant over the

sample period. The idiosyncratic component of volatility appears to be more important for small

stocks than for large stocks.22

Overall, the results suggest that competition and inventory effects are important as drivers of

spreads for large stocks since common and idiosyncratic volume elasticities are large and positive.

For small stocks, the evidence supports adverse selection as the primary driver of spreads. Id-

iosyncratic volatility elasticity is large and positive while common volatility elasticity is in general

insignificant. Furthermore, idiosyncratic volume elasticity is negative. The standard adverse selec-

tion intuition works well for small stocks if we interpret idiosyncratic volume as mostly driven by

noise trading, but not that well for large stocks.23 As discussed in Section 5.2, we do not mean to

imply that adverse selection does not matter for large stocks, only that competition and inventory

effects play an important role for daily liquidity fluctuations.

Results for the specification based on changes in the variables instead of levels as in (6) are

reported in the Internet Appendix. The results are similar except that, for small stocks, changes

in the common component of turnover tend to be positively associated with changes in spreads.

Moreover, this elasticity spikes during the Financial crisis. This result suggests that limited market

making capital can also be important for small stocks.

3.5 Bias in Effective Spread

Hagströmer (2019) points out that due to the minimum tick size, effective spreads of large stocks

22Evidence from individual stock time-series regression is in line with these results and reported in the Internet
Appendix. Among large stocks, common turnover betas are overwhelmingly positive. On average more than 90% of
the betas are positive and a large proportion is statistically significant. Idiosyncratic turnover betas also tend to be
positive and significant. Consistent with Figure 5, the proportion of idiosyncratic turnover betas that are significantly
negative increases notably after 2013. Among small stocks, common turnover betas are in general negative and more
likely to be significantly negative than significantly positive over the first part of the sample. This relation switches
after 2007. Idiosyncratic turnover betas are reliably negative and significant.

23We note that the evidence for small stocks does not support the Easley and O’Hara (1992) theory that higher
volume reflects, on average, an increased probability of an information event and thus more adverse selection risk.
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can be biased. For the bias to affect our results, it should be positively correlated with volume

within a given stock. Hagströmer (2019) shows that the bias is negligible for stocks with a price

above $100. In the Internet Appendix, we show that the previous results are robust to focusing on

large stocks with prices above $100 and $120. The results tend to be weaker in the first years of

the sample, but we only have a small sample of stocks that pass the price filter in these years.

3.6 Measuring Volatility: Realized Volatility

In this section, we examine the sensitivity of the previous results to the choice of the volatility

measure. The results are similar if we use the contemporaneous daily absolute return or the daily

absolute intraday return instead of the average absolute return over the past five trading days

including the current day. We focus on a more sophisticated and arguably more precise measure

of volatility: realized volatility. We argue, however, that realized volatility is correlated with the

profit of an intraday reversal strategy, which makes the interpretation of the volatility elasticities

more complicated.

We compute five-minute realized volatility using intraday midquote returns.24 We then estimate

(3) and (4) with realized volatility as measure of volatility. Table 3 reports the results for large

stocks. The results for small stocks are in line with the previous results and reported in the

Internet Appendix. Realized volatility substantially improves the fit of the regression and lowers

the importance of turnover. Turnover remains, however, positive and statistically significant except

in the last years of the sample for both level and change specifications. The results from the month-

by-month estimation are similar (not reported). The impact of turnover is lowered by the inclusion

of five-minute realized volatility but remains positive and in general statistically significant. In

particular, 150 out of 192 common turnover monthly elasticities are positive, among which 62

significantly so. We also estimate (6) using realized volatility and report the results in the Internet

Appendix. The elasticity of common turnover remains large and significant in most years of the

sample.25

To better understand the difference between realized volatility and intraday absolute return,

24To minimize the influence of noisy opening quotes (e.g., Bogousslavsky (2019)), we take the volume-weighted
average price over the first five minutes of trading as our opening price.

25Realized volatility can be decomposed into components using the methodology described in Patton and Verardo
(2012). Since the decomposition does not significantly affect the results, we focus on the estimation with raw realized
volatility for simplicity.
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we examine what drives the volume coefficient. Consider Equation (3) and subtract the deviation

from the time-mean to remove the stock fixed effects. By Frisch-Waugh’s theorem, the bi-variate

regression of (demeaned) effective spread on the residuals of (demeaned) turnover and volatility

relative to the control variables yields the same coefficients βτ and βσ as in (3). The turnover

coefficient in this (bi-variate) regression is given by

βτ =

√
Var[s]

Var[τ ](1− ρ2
τ,σ)

(ρs,τ − ρτ,σρs,σ), (7)

where ρ indicates the correlation coefficient between two variables and the variables are transformed

as explained above. Equation (7) shows that the measure of volatility (σ) used in (3) affects the

turnover elasticity through ρτ,σ and ρs,σ. Empirically, we find that ρτ,RVol ≈ 2ρτ,|r| and ρs,RVol ≈

3ρs,|r|. From (7), we see that ρs,σ unambiguously decreases βτ . To interpret the empirical evidence

it is therefore important to understand how realized volatility affects ρs,σ.

Let rt,k denote the return on day t in intraday interval k. The K-interval realized variance is

defined by
∑K

k=1 r
2
t,k. Using log returns for simplicity, it follows that

RVol(K)2
t = r2

t + Π(K)t, (8)

where Π(K)t =
∑K

k=2(−2
∑k−1

j=1 rt,j)rt,k. Hence, Πt is the daily return of an intraday reversal

strategy with weight −2
∑k−1

j=1 rt,j in the asset and weight 1 + 2
∑k−1

j=1 rt,j in the risk-free security.26

Equation (8) shows that if ρs,Π > 0, then ρs,RVol2 > ρs,r2 . In words, if the daily effective spread is

positively correlated with the daily return of an intraday reversal strategy defined as above, then

all else equal we expect the inclusion of realized volatility to lower the turnover elasticity of the

spread.

If realized volatility is computed using transaction prices, then a positive correlation is mechan-

ical from the bid-ask bounce. Even with midquotes, however, one should expect the spread to be

positively correlated with the intraday reversal strategy. For instance, a large buy trade consumes

all the displayed liquidity at the best ask. Since the best bid is unchanged, the midquote increases.

If part of the price impact is temporary (i.e., there is reversal in intraday midquote returns), then

26Since intraday trades may not get the risk-free rate due to the end-of-day settlement on transactions, we set the
risk-free rate to zero.
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a positive correlation between intraday reversal profit and average intraday spread follows. For ex-

ample, in Grossman and Miller (1988) there is a one-to-one relation between return autocorrelation

and price impact.

In what follows, we use realized volatility instead of the average absolute return as our measure

of volatility. The above caveat should be kept in mind.

4 Continuous-Time Model with Stochastic Arrival of Buyers and

Sellers

In this section, we develop a simple inventory model to shed light on the above results.

We consider a long-lived arbitrageur with constant absolute risk-aversion utility u(c, t) =

−e−βt−αct who maximizes his expected utility of intertemporal consumption by by trading con-

tinuously a stock St that pays a continuous dividend δt and whose price depends on the realization

of a continuous time Markov Chain which takes on M discrete values Nt = {1, 2, . . . ,M}. The

arbitrageur can also invest in a constant risk-free rate we set to zero for simplicity. The price and

dividend dynamics are:

dSt + δtdt = µtdt+ σtdZt +
M∑
i=1

1{Nt−=i}
∑
j 6=i

ηij(dNij(t)− λijdt) (9)

dδt = κδ(δ(Nt)− δt)dt+ σδdZ(t) (10)

dNt =
M∑
i=1

1{Nt−=i}
∑
j 6=i

(j − i)(dNij(t)− λijdt) (11)

where Nij(t) are point processes with transition intensities λij . The states characterize the expected

long-term fundamental value of the asset δ(Nt) :=
∑M

i=1 δi1{Nt=i} and the total supply or inventory

that the market maker must hold in equilibrium θ(Nt) :=
∑M

i=1 θi1{Nt=i} . We will assume ‘adverse

selection’ in the sense that δ(N) is inversely related to θ(N), that is when the liquidity provider must

absorb a larger supply of shares, the fundamental value is lower. With only two states, inventory

and fundamental are perfectly negatively correlated. However, with more than two states, we can

capture richer patterns of adverse selection risk in this model. We first present the model in full

generality and then investigate a few special cases to gain some insights.
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The risk-averse liquidity provider maximizes

max
ct,nt

E[

∫ ∞
0
−e−βt−αct ] (12)

subject to

dWt = (rWt − ct)dt+ nt(µt − rS)dt+ ntσtdZt + nt

M∑
i=0

1{Nt−=i}
∑
j 6=i

ηij(dNij(t)− λijdt). (13)

The model is solved in Appendix A. We now investigate a few special cases which shed some

light on the role of order imbalance and market liquidity.

We consider first the symmetric model where buyers and sellers arrive in a balanced fashion

(or the market maker systematically waits for a buyer after having seen a seller) and there is no

adverse selection. That we consider the simple model with two states M = 2 and

λ12 = λ21 = λ (14)

θ2 = −θ1 = θ (15)

δ1 = δ2 = 0 (16)

Note that the change in price when switching from state 1 to state 2 is given by η12 = s2−s1. (This

is the case since the long-run mean is constant and equal to zero across states.) We can prove that

there exists a unique symmetric solution characterized by s1 = −s2. In the appendix, we further

show that

−θ1ασ
2 > s1 >

−θ1αrσ
2

2λ+ r
> 0.

We see that in equilibrium there is a bid-ask spread in the sense that to absorb the supply, there

is a jump in the price the liquidity provider requires to absorb the order flow. We can define the

“price impact” by the sensitivity of price to order flow in absolute value that is PI =
|ηij |
|θj−θi| .

In the symmetric case without adverse selection, we find:

PI =
|s1|
|θ1|

. (17)
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And in particular, we have:

ασ2 > PI >
αrσ2

2λ+ r
. (18)

Clearly PI has an upper bound that is tight when volume is lowest and the frequency of trading

is smallest (i.e., λ = 0). As we would expect PI is lowest when trading intensity (λ) increases. In

fact, in this example the liquidity provider faces zero risk, when trading intensity is infinite and he

can constantly intermediate between buyers and sellers.

However, this symmetric case, does not allow to talk about order imbalance. To understand

the effect of order imbalance we solve the case where λ12 6= λ21, but otherwise keep the same

assumption (of symmetric depth and no adverse selection). That is, we consider the simple model

with two states M = 2 and

θ2 = −θ1 = θ (19)

δ1 = δ2 = 0. (20)

In the appendix, we show that solving for the equilibrium amounts to solving two non-linear

equations for s1, s2. We solve this system numerically. We can then investigate how the price

impact

PI =
|s1 − s2|
|θ1 − θ2|

(21)

changes with the expected volume and order imbalance.

The expected volume is

V OL = |θ1 − θ2|E[|dNt|]/dt = |θ1 − θ2|E[λ1Nt + λ2(1−Nt)] (22)

= |θ1 − θ2|

(
1
λ2

+ 1
λ1

2

)−1

(23)

Note that the expected volume is the harmonic average intensity times the average trade size. We

define the order imbalance as the unconditional variance of the cumulative order flow:

OI = p2θ
2
2 + p1θ

2
1 − (p2θ2 + p1θ1)2 =

(θ1 − θ2)2λ2λ1

(λ2 + λ1)2
(24)
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where pi =
λji

λij+λji
is the unconditional probability that the Markov chain is in state i.

Note that (for a given θ2, θ1) the variance of the order imbalance is maximized for λ2 = λ1 (since

λ2λ1
(λ2+λ1)2

≤ 1
4 and attains the upper bound for λ2 = λ1). Thus, suppose we hold VOL constant

equal to 2c|θ1−θ2| then this implies that 1
λ2

+ 1
λ1

= 1
c . In other words, the set of feasible intensities

belong to the open interval (c,∞). Then OI = |θ1 − θ2|2c2(1
c −

1
λ1

) 1
λ1

for 1
λ1
∈ (0, 1

c ). Note that

(1
c −

1
λ1

) 1
λ1

is a concave fonction of 1/λ1 which achieves its maximum of 1
4c2

at 1
λ1

= 1
2c , where

OI = |θ1−θ2|2
4 . So as we vary 1

λ1
from 0 to 1/(2c) holding VOL constant then OI ranges from 0 to

|θ1−θ2|2
4 .

In Figure 6, we plot equilibrium prices and show some comparative statics where we vary

trading intensities and risk-aversion. We find that the bid-ask spread s1 − s2 decreases when we

increase volume symmetrically, i.e., when λ2 = λ1 = λ increases. The bid-ask spread increases

when risk-aversion α increases. The bid-ask spread increases when we increase OI, but holding

VOL constant.

In Figure 7 we plot the bid-ask spread (s1−s2) surface as a function of expected volume (V OL)

and the variance of order imbalance (OI), which we obtain by varying λ12 and λ21 and normalizing

|θ1−θ2| = 1. The graph clearly shows that increasing volume holding order imbalance constant de-

creases spreads, but instead increasing order imbalance holding volume constant increases spreads.

We also see that the model can generate the empirical finding that increasing volume (starting form

the origin and moving diagonally towards the ‘north-east’) can lead to an increase in spread, if one

does not control for the change in order imbalance.

The intuition for this result is that increasing the trading intensity in the model has two effects.

On the one hand, it increases the likelihood of an offsetting trade, which reduces the average

holding period of inventory for the liquidity provider. This effect leads to lower spreads. On the

other hand, increasing the trading intensity can also increase the variance of the shocks to inventory,

which makes liquidity provision riskier and thus increases spreads. Thus volume does not have an

unambiguous effect on spreads unless one controls for the variance of order imbalance. Clearly,

both effects are also tied to the risk-bearing capacity of the liquidity provider. More risk-aversion

increases the impact on spreads of a change in the variance of order imbalance.
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5 Volatility of Order Imbalance

In the previous section, we propose a simple inventory model. In the model, a higher volume

reduces liquidity provider’s inventory risk since it makes it easier to offset trades. However, holding

volume constant, a more volatile order flow increases the inventory risk of the market maker,

leading to higher spreads. Hence, volume is negatively related to spread, and the volatility of order

flow is positively related to spread. Chordia et al. (2018) compute order imbalance volatility at

the monthly level using daily imbalances. They argue that this measure is a proxy for informed

trading. In contrast, Kim and Stoll (2014) argue that order imbalance is not indicative of private

information. In the simplest version of our model, there is no asymmetric information and order

imbalance volatility is positively related to spreads after we control for volume.

We now show empirically that taking into account the volatility of order flow can explain the

puzzling positive spread-volume sensitivity. We compute order imbalance (as a proportion of shares

outstanding) over every five-minute interval of the trading day using the Lee and Ready (1991)

algorithm. The daily volatility of order imbalance is the standard deviation of the five-minute

imbalance, computed over the trading day.27 We then update (3) to include the daily volatility of

order imbalance σ(OI)i,t:

log si,t = αt + βτ log τi,t + βσ log σi,t + βσ(OI) log σ(OI)i,t + controls + εi,t. (25)

Similarly, we include the change in the volatility of order imbalance in (4).

Table 4 reports the estimation results for the quintile of large stocks. First, the inclusion

of order imbalance volatility dramatically improves the explanatory power of both the level and

change regressions. Order imbalance volatility is strongly associated with effective spreads at the

daily level. Second, the inclusion of order imbalance volatility makes the volume elasticity of spread

negative and significant, consistent with the idea that a higher volume is beneficial for liquidity.

The results for small stocks are similar and not reported. Order imbalance volatility makes the

role of volume consistent across small and large stocks.28 The right plots in Figure 4 confirm these

27The choice of the aggregation interval is dictated by practical considerations. We use a five-minute interval to be
consistent with our estimate of realized volatility. When estimating volatility, a five-minute interval has been found
to provide a good balance between achieving greater precision from a higher sampling frequency and introducing
microstructure noise.

28Relative to the decomposition results in Section 3.4, we find that order imbalance volatility makes both common
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results. When order imbalance volatility is included in the VAR, a volume shock lowers spread

for most stocks. The contrast is striking relative to the impulse response of a volume shock in

the baseline model (left plots). In contrast, an order imbalance volatility shock increases spread

consistently across stocks.

Importantly, we find that the absolute value of the daily order imbalance does not explain the

positive volume-spread sensitivity. The volume result is robust to including the absolute order flow

in the regression for large stocks (reported in the Internet Appendix). Moreover, the explanatory

power of the regression is not substantially increased. This result suggests that, in the era of

algorithmic trading, daily imbalance measures are not enough to capture the dynamics of liquidity.

Interestingly, the inclusion of order imbalance volatility does not reduce the volatility elasticity

of spread. This can be seen by comparing the elasticities in Tables 3 and 4. The higher volatility

elasticity and the lower volume elasticity are much closer to the elasticities predicted by invariance

theories. Under invariance of transaction costs and additional assumptions, si,t ∝
[

σ2
i,t

Pi,tVi,t

] 1
3

, where

V is the share volume and P is the share price (Kyle and Obizhaeva (2016)). We test whether

the coefficients in (25) equal the predicted −1
3 and 2

3 for volume and volatility, respectively. The

volatility hypothesis is strongly rejected in all years of the sample. The volume hypothesis, however,

cannot always be rejected. Clearly, invariance of transaction costs does not explicitly incorporate

order imbalance volatility. Nevertheless, we view this evidence as encouraging and suggesting

interesting opportunities for future research.

5.1 Alternative Liquidity Measures

In this section, we examine how alternative daily liquidity measures relate to order imbalance

volatility. First, we look at price impact. Second, we look at depth. In summary, we find that

order imbalance volatility is negatively associated with alternative measures of liquidity, in line

with our spread results.

We consider two standard measures of price impact. First, we estimate for each stock-day: ritk =

δit+λit

√
|OI$

itk|sign(OI$
itk)+eit, where ritk is the five-minute midquote return for stock i on day t in

interval k, and OI$
itk is the dollar order imbalance. A similar measure is used in Hasbrouck (2009).

Second, we compute a measure of price impact based on Amihud (2002). We compute illiquidity

and idiosyncratic volume components consistently negative and significantly so.
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for each stock-day using intraday five-minute midquote returns and dollar volume: ILLIQit =

1
#traded intervals

∑
kε{j|DVOLitj>0}

|ritk|
DVOLitk

.

Table 5 reports the results of estimating (25) every year with the two price impact measures as

dependent variables. We focus on stocks in the top size quintile but obtain similar results with stocks

in other size groups.29 The first measure, λ, is negatively related to volume, positively related to

volatility, and negatively related to order imbalance volatility (Panel (a)). This is inconsistent with

the spread results. In contrast, ILLIQ is positively related to order imbalance volatility (Panel (b)),

in line with the spread results.

What explains this discrepancy? It is not surprising that λ is negatively related to order im-

balance volatility. If we assume that order imbalance is symmetric and equally likely to be positive

or negative, then λ = σr
E[|OI|]corr[r,

√
|OI$|sign(OI$)] for a given stock. Hence, λ is positively (neg-

atively) associated with return volatility (order imbalance volatility) by construction. Similarly,

ILLIQ is positively (negatively) associated with return volatility (volume) by construction. How-

ever, it is interesting to see that order imbalance volatility is positively associated with price impact.

Hence, a measure of price impact based on volume produces results that are consistent with the

spread evidence above, in contrast to a measure based on signed volume. The distinction between

the two goes back to the empirical interpretation of noise trading volatility in Kyle-type models.

In the context of such models, the interpretation most consistent with our results is that volume

proxies for noise trading volatility, as explained in Section 2.1.

Another important dimension of liquidity is depth. For each stock-day, we compute the average

of time-weighted share depth at the best bid and best ask (as a fraction of shares outstanding)

using TAQ data. Unfortunately, due to data limitation we only observe depth at the best bid and

best ask. This is problematic as it can lead to mechanical changes in depth. For instance, traders

may cancel their limit orders at the best ask and replace them with new limit orders at the next

level of the ask book. If other orders are unchanged we would observe an increase in depth at the

best ask, which wrongly suggests improved liquidity. To attenuate this issue, we control for spreads

in the regression. The results are, however, not sensitive to including this additional control.

Table 6 reports the results of estimating (25) every year with depth as dependent variable and

spread as an additional control. In the time-series, depth is positively associated with volume

29Since we use log variables, we exclude the small number of estimated λit that are negative.
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and negatively associated with volatility. More importantly for our purpose, order imbalance

volatility is negatively associated with depth. This relation is statistically significant in most years

of the sample. In addition to the spread result, this result suggests that volatile imbalances are

accompanied by a general decrease in liquidity.

Finally, we examine a standard decomposition of effective spread into price impact and realized

spread. Price impact is generally associated with adverse selection and equals the signed change

in the midquote over some horizon following a trade. Realized spread is generally associated with

liquidity provision and equals the signed difference between the trade price and the midquote some

time after the trade. We follow prior work and compute realized spread and price impact using

the quote midpoint five minutes after a trade. Both measures are in percent and computed by

dollar-weighting over all trades in a day.

Our interpretation of order imbalance volatility as a measure of inventory risk suggests that

it should be mostly associated with realized spread. In Table 7 we report estimates of month-by-

month panel regressions of price impact and realized spread on turnover, realized volatility, and

order imbalance volatility. We focus on large stocks in 2017. The results are similar for other

size quintiles. In line with our interpretation, we find that order imbalance volatility is weakly

associated with price impact and strongly associated with realized spread.

5.2 Evidence from Intraday Returns

To complement the previous results, this section presents evidence from intraday returns. An ex-

amination of intraday patterns is useful since the degree of informed trading and liquidity trading is

likely not constant over the day. This follows naturally from at least two reasons. First, the informa-

tional advantage of trading on overnight information is likely short-lived, which constrains informed

traders to trade shortly around the open. The analysis of Madhavan, Richardson, and Roomans

(1997) supports the idea that information asymmetry declines over the trading day. Second, liq-

uidity traders may cluster their trades to reduce adverse selection. The period before the close

is a natural focal point since many market participants trade at that time for non-informational

reasons such as indexing or hedging. Foster and Viswanathan (1990) and Admati and Pfleiderer

(1988) formally show that these two channels can generate variation in volume, volatility, and

trading costs. Hence, we expect the relation between liquidity, volume, and volatility to vary over
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the day and that an examination of intraday elasticities can help us shed light on the underlying

drivers of liquidity.

We estimate the following panel regression with intraday variables:

log si,t,k = αi,k +
∑
k

1kβτ,k log τi,t,k +
∑
k

1kβ|r|,k log |ri,t,k|+ controls + εi,t,k, (26)

where si,t,k is the percentage effective spread for stock i on day t over intraday interval k, 1k is an

indicator variable that equals one for intraday interval k, and αi,k are interval-stock fixed effects.

Control variables are the midquote at the end of each interval and daily market capitalization. Days

with FOMC announcements are excluded when estimating (26). We split the trading day into five-

minute intervals and focus on stocks in the top market capitalization quintile. These stocks are in

general regularly traded over the day, which is important for our analysis. In addition, we exclude

the first five minutes of trading since volume over this interval is disproportionately affected by the

opening auction.

Figure 8 reports the turnover elasticities and t-statistics for a sample of quarters. In Section 3.3,

we document that turnover is positively associated with spread even when controlling for the

absolute contemporaneous return. Figure 8 shows that this result holds across the trading day over

most of the sample (to save space we only report the results for a sample of quarters). Intraday

turnover elasticities are in general positive and statistically significant. Interestingly, turnover

elasticities tend to be highest towards the end of the trading day: spreads are more sensitive to

volume around the close. Importantly, the intraday pattern in the turnover elasticity of spread is

not mechanically driven by the intraday pattern in volatility and volume since both volatility and

volume are U-shaped over the trading day. Similarly, while spreads tend to be lowest at the very

end of the day in recent years, this is not the case in 2008, when spreads tend to increase at the

end of the day.30 Furthermore, we control for interval-stock fixed effects.

The turnover elasticity is low at the beginning of the day, when information asymmetry is likely

to be high, and high at the end of the day, when inventory risk or market power are likely to be

30One may worry about a mechanical effect due to the minimum tick size. For instance, if spreads on large stocks
are always compressed to the minimum tick size at the end of the day, then (dollar) spreads ‘can only go up.’ This
could generate a mechanical positive relation between volatility, turnover, and spread. We cannot totally rule out
this concern for the last years of the sample (when spreads are at the lowest at the end of the day). We observe,
however, a similar increase in the volume elasticity at the end of the day in years when spreads tend to increase at
the end of the day, which suggests that this mechanical effect does not explain the result.
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high. This result suggests that information asymmetry is not the primary driver of the positive

spread-volume relation. Rather, inventory or competition effect seem more important, in line with

the simple model presented in Section 5.31

So far, in this section we have focused on elasticities. To put the results into perspective, it is

interesting to briefly discuss intraday levels for our main set of variables. Figure 9 reports median

effective spreads, absolute return, turnover, and absolute order imbalance across large stocks over

the day in 2006 and 2016. Spread and volatility tend to be high around the open (which is

consistent with adverse selection theories). In contrast, turnover and absolute order imbalance are

mostly high around the close. Intraday patterns in volume and volatility are well-documented by

prior work. To the best of our knowledge, the intraday pattern in absolute order imbalance has not

been documented before. Absolute order imbalance increases sharply in the last hour of trading.

Combined with the evidence that spreads are more sensitive to volume around the close, this result

suggests that trading around the close may be more risky and costly than implied by spreads. This

is of particular importance since trading volume around the close has grown massively in recent

years. We leave a detailed investigation of this interesting pattern for future research.

5.3 Order Imbalance Volatility and the Cross-Section of Stock Returns

Order imbalance volatility also helps explain spreads in the cross-section. For example across large

stocks the average fit of panel regression estimated each year increases from 37.15% to 47.16%

(reported in the Internet Appendix). This suggests that our analysis of time-series effects extends

to the cross-section.

Relatedly, an interesting question is whether order imbalance volatility is priced in the cross-

section of stock returns. Intuitively, if order imbalance volatility represents a source of risk for

liquidity providers, it should be associated with a risk premium. Importantly, our simple inventory

model suggests that we should control for turnover. Since we are interested in “high-frequency”

liquidity provision, we examine weekly returns over our sample period (2002-2017), which consists

of 797 five-day return observations. Our main variable of interest is an exponentially-weighted

31The results in Figure 8 hold when we control for the absolute value of the contemporaneous order imbalance
in (26) (not reported). Intraday absolute order imbalance is positively and significantly associated with spread.
Moreover, it explains part of the positive turnover elasticity, which remains, however, mostly positive and significant.
The evidence in Section 5 suggests that the volatility of order imbalance computed using higher frequency returns is
a good candidate to explain away the puzzling sign of the turnover elasticity.
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moving average of prior order imbalance volatility with a half-life of one day.

We first consider portfolio sorts. Table 8 reports value-weighted four-factor alpha of portfolios

built from sequential sorts with NYSE breakpoints. Raw value-weighted returns give similar results

and are reported in the Internet Appendix. In Panel (a), stocks are first sorted into quintiles based

on prior-week average turnover and then within each turnover quintile on prior order imbalance

volatility. The results support the idea that order imbalance volatility is priced in the cross-section

of stock returns. Within all turnover quintiles but one, the long-short order imbalance volatility

portfolio earns positive and statistically significant alpha. For example, among stocks with high

turnover, the weekly (five-day) alpha is 0.13% with a t-statistic of 1.98. In Panel (b), the order of

the sequential sort is reversed. Within each order imbalance volatility quintile, stocks with high

turnover tend to earn lower alpha than stocks with low turnover. This is consistent with turnover

reducing liquidity provider’s risk conditional on order imbalance volatility. The alpha are, however,

statistically significant only for the two top quintiles of order imbalance volatility.

Next, we use value-weighted Fama and MacBeth (1973) regressions, which allow us to control

for many variables. Table 9 reports the results. Order imbalance volatility predicts higher weekly

returns (first column). This relation is statistically significant and becomes stronger once we control

for turnover (second column). In addition, order imbalance volatility remains a strong and sta-

tistically significant predictor of weekly returns even when we control for a host of other liquidity

variables (third column). In particular, we control for turnover, market capitalization, past return,

illiquidity (Amihud (2002)), realized volatility, effective spread, and monthly standard deviation of

share order imbalance divided by share volume. This last variable is employed by Chordia et al.

(2018), who show that it predicts future monthly returns. The denominator in their measure is

the daily volume, whereas in ours it is the number of shares outstanding. They link their measure

to adverse selection risk. In contrast, our measure is motivated by inventory risk. We note that

their measure is positively associated with future returns, though it is not statistically significant.

Hence, it appears that the two measures capture different aspects of liquidity.

Overall, the above results suggest that order imbalance volatility predicts future weekly re-

turns in the cross-section even after controlling for well-known factors. We believe this evidence

is of particular interest since many high-frequency liquidity measures do not appear to be priced

(Lou and Shu (2017)).
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6 Conclusion

In this paper, we provide new evidence about the time-series relation between daily liquidity, vol-

ume, and volatility. For large stocks, turnover tends to be positively associated with effective

spread. This relation is not explained by volatility and is mostly driven by the common component

of turnover. This evidence is difficult to explain with adverse selection theories and is more con-

sistent with inventory risk theories. Hence, we argue that inventory risk plays an important role

for daily fluctuations in spreads of large stocks. Adverse selection theories fit well the day-to-day

variation in spread, turnover, and volatility of small stocks.

We develop a simple continuous-time inventory model to understand our finding. In the model,

order imbalance volatility is an important driver of liquidity. Controlling for turnover, an increase

in order imbalance volatility leads the market maker to widen the spread because of increased

inventory risk.

In the data, order imbalance volatility computed from intraday data is strongly associated with

effective spread and substantially improves the explanatory power of spread regressions. Consistent

with the model, once we control for order imbalance volatility, the relation between turnover and

spread becomes strongly negative. The results are similar for small and large stocks.

Order imbalance volatility is positively associated with other illiquidity measures (such as Ami-

hud’s measure and inverse depth). In line with our interpretation based on inventory risk, a

standard effective spread decomposition shows that order imbalance volatility is mostly associated

with realized spread (liquidity provision) rather than price impact (adverse selection). Further-

more, absolute order imbalance tends to spike at the end of the trading day, a time when inventory

considerations likely dominate. Finally, we show that order imbalance volatility is priced in the

cross-section of weekly returns. This predictability holds for value-weighted returns even after

controlling for many other liquidity variables.
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Figure 1. Spreads, volume, and volatility. This figure reports the daily cross-sectional median of
each measure over 2002-2017. The sample consists of NYSE, Amex, and NASDAQ common stocks.
To be included in a given month, a stock is required to have at the beginning of the month a price
greater than $5 and lower than $1,000, a market capitalization greater than $100 million, and at
least 100 days of prior trading.

(a) Spread (b) Turnover

(c) Volatility
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Figure 2. Univariate regressions of spread, volume, and volatility across size quintiles.
We estimate each month for stocks in a given size quintile panel regressions of spread on volume
(Panel (a)), spread on volatility (Panel (b)), and volatility on volume (Panel (c)). Spread is the
daily effective spread, volume is the daily intraday turnover, and volatility is the average absolute
return over the past five trading days (including the current day). The regressions include stock
fixed effects and control for (log) market capitalization, (log) price, and day-of-the-week indicators.
At the beginning of each month, stocks are sorted by their average daily market capitalization over
the past 250 trading days (a minimum of 100 observations is required). The sample consists of
NYSE, Amex, and NASDAQ common stocks. To be included in a given month, a stock is required
to have at the beginning of the month a price greater than $5 and lower than $1,000 and a market
capitalization greater than $100 million. Effective spreads are winsorized at 0.05% and 99.95% each
month. Standard errors are double-clustered by date and stock.

(a) Volume elasticity of spread

(b) Volatility elasticity of spread

(c) Volume elasticity of volatility
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Figure 3. Effective spread regressed on turnover and average absolute return across size quintiles.
Panel regression: log si,t = αi+βτ log τi,t+βσ log σi,t+ controls + εi,t for stock i on day t, where τi,t
is the daily intraday turnover and σi,t is the average absolute return over the past five trading days
(including the current day). Controls are (log) market capitalization, (log) price, and day-of-the-
week indicators. The regression includes stock fixed effects and is estimated on a month-by-month
basis for stocks in a given size quintile. At the beginning of each month, stocks are sorted by their
average daily market capitalization over the past 250 trading days (a minimum of 100 observations
is required). The sample consists of NYSE, Amex, and NASDAQ common stocks. To be included
in a given month, a stock is required to have at the beginning of the month a price greater than
$5 and lower than $1,000 and a market capitalization greater than $100 million. Effective spreads
are winsorized at 0.05% and 99.95% each month. Standard errors are double-clustered by date and
stock.

(a) Volume elasticity of spread

(b) Volatility elasticity of spread
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Figure 4. Vector autoregressions of spread, volume, and volatility. For each stock, a VAR is
estimated of (log) effective spread (ES%), (log) turnover, and (log) realized volatility (RVol), where
the number of lags is chosen based on the Akaike information criterion and all the variables are
normalized. The reduced-form VAR is estimated using ordinary least squares and then a Cholesky
decomposition is performed to orthogonalize the error terms with the following ordering: volume,
volatility, and spread. The figure reports the cross-sectional median and 5th and 95th percentiles
impulse response to a one standard-deviation shock for each variable. The sample consists of stocks
in the top size quintile among NYSE, Amex, and NASDAQ common stocks in 2017 that are traded
over the whole year. The left column plots report the baseline specification. The right column plots
report results with the standard deviation of order imbalance added to the VAR (ordered first).
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Figure 5. Effective spread regressed on common turnover, idiosyncratic turnover, common volatil-
ity, and idiosyncratic volatility across size quintiles.
Panel regression: log si,t = αi+βτ,Cτ

C
i,t+βτ,Iτ

I
i,t+βσ,Cσ

C
i,t+βσ,Iσ

I
i,t+controls+εi,t for stock i on day

t, where the subscripts C and I denote common and idiosyncratic quantities computed as described
in the text. Controls are (log) market capitalization, (log) price, and day-of-the-week indicators.
The regression includes stock fixed effects and is estimated on a month-by-month basis for stocks
in a given size quintile. At the beginning of each month, stocks are sorted by their average daily
market capitalization over the past 250 trading days (a minimum of 100 observations is required).
The sample consists of NYSE, Amex, and NASDAQ common stocks. To be included in a given
month, a stock is required to have at the beginning of the month a price greater than $5 and lower
than $1,000 and a market capitalization greater than $100 million. Effective spreads are winsorized
at 0.05% and 99.95% each month. Standard errors are double-clustered by date and stock.

(a) Common turnover elasticity of spread

(b) Idiosyncratic turnover elasticity of spread
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(c) Common volatility elasticity of spread

(d) Idiosyncratic volatility elasticity of spread
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Figure 6. Bid-Ask spread comparative statics. Panel (a) shows bid and ask prices (s2, s1) as a
function of the trading intensity in the symmetric model λ12 = λ21. Panel (b) shows the bid and
ask prices as a function of risk-aversion α in the symmetric case. Panel (c) shows the bid and ask
prices as a function of the trading intensity λ12 in the asymmetric model where λ21 is set so that
expected volume remains constant. Panel (d) shows the bid-ask spread from panel (c) (i.e., s1−s2)
as well as the order imbalance as a function of λ12 holding expected volume constant.
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(c) Bid-ask prices and order-imbalance

0.5 1.0 1.5 2.0 2.5 3.0

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

λ12

sp
re
ad

Bid and Ask prices holding expected volume constant

s2

s1

(d) Bid-ask spread and order-imbalance

0.5 1.0 1.5 2.0 2.5 3.0

0.00

0.01

0.02

0.03

0.04

0.05

λ12

sp
re
ad

Bid-Ask Spread and Order Imbalance holding Volume constant

0.2OI

s1 - s2

41



Figure 7. Bid-Ask spread as a function of Volume and Order Imbalance. This figure plots the
bid-ask spreads (s1 − s2) as a function of the expected volume V OL and the variance of order
imbalance OI obtained by varying λ12 and λ21 between 0.1 and 2 (and normalizing |θ2 − θ1| = 1.
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Figure 8. Intraday turnover elasticity of spread for large stocks.
Panel regression: log si,t,k = αi,k +

∑
k 1kβτ,k log τi,t,k + +

∑
k 1kβ|r|,k log |ri,t,k| + controls + εi,t,k

for stock i on day t in five-minute interval k, where 1k is an indicator variable that equals one for
intraday five-minute interval k and αi,k are interval-stock fixed effects. The figure plots βτ,k. Control
variables are the (log) midquote at the end of each interval and (log) daily market capitalization.
The regression is estimated using the first quarter of each year for a sample of years for stocks in
the top market capitalization quintile. The first five-minute interval of the trading day is excluded.
At the beginning of each month, stocks are sorted by their average daily market capitalization
over the past 250 trading days (a minimum of 100 observations is required). The sample consists
of NYSE, Amex, and NASDAQ common stocks. Days with FOMC announcements are excluded
from the sample. To be included in a given month, a stock is required to have at the beginning of
the month a price greater than $5 and lower than $1,000 and a market capitalization greater than
$100 million. Effective spreads and absolute returns are winsorized at 0.05% and 99.95%. Standard
errors are double-clustered by date and stock.

(a) 2004 Q1 (b) 2008 Q1

(c) 2012 Q1 (d) 2016 Q1
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Figure 9. Intraday effective spreads, absolute return, turnover, and absolute order imbalance.
This figure reports median values across stocks in the top market capitalization quintile. The
sample consists of NYSE, Amex, and NASDAQ common stocks in 2006 and 2016.

(a) Effective Spread

(b) Absolute Return

(c) Turnover

(d) Absolute Order Imbalance
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Table 1. Descriptive statistics for stocks sorted in size quintiles for a sample of years. The spread
is the percent effective spread (reported in basis points), turnover is the intraday turnover, and
volatility is the average absolute return over the past five trading days including the current day.
The within standard deviation (σ (within)) is computed as the standard deviation of the deviations
from the time-mean of each stock. Spreads are winsorized at 0.05% and 99.95% each year. The
sample consists of NYSE, Amex, and NASDAQ common stocks. To be included in a given month,
a stock is required to have at the beginning of the month a price greater than $5 and lower than
$1,000, a market capitalization greater than $100 million, and at least 100 days of prior trading.

2002 2004 2006 2008 2010 2012 2014 2016

Small caps
spread [bp] mean 94.72 70.18 62.76 96.68 52.73 62.69 69.56 70.32

median 73.87 51.33 41.75 50.35 35.64 40.85 46.39 44.66
σ (within) 63.39 48.62 47.19 103.16 43.54 49.98 60.16 63.32

turnover [%] mean 0.39 0.50 0.48 0.52 0.51 0.42 0.49 0.48
median 0.17 0.19 0.19 0.27 0.29 0.23 0.23 0.25
σ (within) 0.84 1.38 0.98 0.83 0.96 0.89 0.89 1.28

volatility [%] mean 2.25 1.83 1.63 3.06 2.07 1.72 1.67 1.87
median 1.87 1.53 1.35 2.44 1.83 1.50 1.39 1.51
σ (within) 1.38 1.06 0.99 2.13 1.13 1.02 1.03 1.58

obs. 127,080 146,897 152,527 132,182 123,247 119,480 129,742 126,515

Mid caps (third quintile)
spread [bp] mean 38.26 21.57 15.98 21.39 13.51 12.84 16.28 15.09

median 30.55 16.92 12.96 14.86 10.56 10.30 11.87 11.69
σ (within) 24.87 15.19 11.04 33.40 11.07 9.81 19.21 14.52

turnover [%] mean 0.77 0.86 0.96 1.31 1.09 0.94 0.95 1.01
median 0.43 0.50 0.63 0.95 0.68 0.59 0.60 0.62
σ (within) 1.03 1.49 1.20 1.23 1.52 1.23 1.13 1.38

volatility [%] mean 2.48 1.71 1.59 3.07 1.82 1.56 1.53 1.77
median 2.07 1.48 1.38 2.50 1.60 1.34 1.27 1.44
σ (within) 1.37 0.88 0.89 1.88 0.97 0.86 0.99 1.07

obs. 129,496 150,570 157,936 137,397 124,983 121,106 131,846 129,165

Large caps
spread [bp] mean 16.15 8.27 6.67 8.29 5.00 4.65 4.61 4.77

median 12.66 6.59 5.35 6.20 4.05 3.65 3.45 3.63
σ (within) 13.59 5.95 4.84 10.23 4.09 3.04 4.57 4.31

turnover [%] mean 0.73 0.67 0.76 1.42 1.12 0.90 0.79 0.82
median 0.47 0.46 0.53 1.03 0.82 0.67 0.58 0.61
σ (within) 0.71 0.58 0.58 1.22 0.88 0.74 0.62 0.63

volatility [%] mean 2.14 1.17 1.13 2.70 1.35 1.16 1.03 1.23
median 1.73 1.01 0.96 2.03 1.18 1.01 0.88 1.01
σ (within) 1.28 0.57 0.57 1.99 0.66 0.58 0.56 0.72

obs. 130,092 151,157 158,327 137,730 125,443 121,479 132,074 129,411
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Table 2. Correlations among (log) variables for stocks in the bottom and top size quintiles. s is
the percent effective spread, τ is the intraday turnover, σ is the average absolute return over the
past five trading days including the current day, |r| is the absolute daily return, RVol is the realized
volatility computed using five-minute midquote returns, |OI| is the absolute daily order imbalance as
a fraction of shares outstanding, and σ(OI) is the daily volatility of order flow imbalance computed
using five-minute order imbalance within the day. All the variables are in logs. The table reports the
cross-sectional averages of the individual stocks’ time-series correlations. Spreads are winsorized at
0.05% and 99.95% each year. The sample consists of NYSE, Amex, and NASDAQ common stocks.
To be included in a given month, a stock is required to have at the beginning of the month a price
greater than $5 and lower than $1,000, a market capitalization greater than $100 million, and at
least 100 days of prior trading.

Large caps
s τ σ |r| RVol |OI| σ(OI)

s 1.00 0.15 0.34 0.22 0.51 0.15 0.30
τ 0.15 1.00 0.41 0.32 0.48 0.40 0.72
σ 0.34 0.41 1.00 0.50 0.61 0.14 0.22
|r| 0.22 0.32 0.50 1.00 0.41 0.13 0.19
RVol 0.51 0.48 0.61 0.41 1.00 0.14 0.26
|OI| 0.15 0.40 0.14 0.13 0.14 1.00 0.48
σ(OI) 0.30 0.72 0.22 0.19 0.26 0.48 1.00

Small caps
s τ σ |r| RVol |OI| σ(OI)

s 1.00 -0.17 0.22 0.18 0.40 -0.06 -0.00
τ -0.17 1.00 0.24 0.23 0.32 0.59 0.78
σ 0.22 0.24 1.00 0.49 0.47 0.10 0.12
|r| 0.18 0.23 0.49 1.00 0.41 0.13 0.14
RVol 0.40 0.32 0.47 0.41 1.00 0.12 0.17
|OI| -0.06 0.59 0.10 0.13 0.12 1.00 0.60
σ(OI) -0.00 0.78 0.12 0.14 0.17 0.60 1.00
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Table 3. Effective spread regressed on turnover and realized volatility for large stocks in the time
series.
(a) Levels: log si,t = αi + βτ log τi,t + βRVol log RVoli,t + controls + εi,t for stock i on day t, where
τi,t is the daily intraday turnover and RVoli,t is the realized volatility computed using five-minute
intraday midquote returns. (b) Changes: ∆si,t = αi + βτ∆τi,t + βσ∆RVoli,t + controls + εi,t, where
∆xt ≡ log( xt

xt−1
). Controls are (log) market capitalization, (log) price, and day-of-the-week and

month-of-the-year indicators. The regression includes stock fixed effects and is estimated on a
year-by-year basis for stocks in the top size quintile. At the beginning of each month, stocks are
sorted by their average daily market capitalization over the past 250 trading days (a minimum
of 100 observations is required). The sample consists of NYSE, Amex, and NASDAQ common
stocks. To be included in a given month, a stock is required to have at the beginning of the
month a price greater than $5 and lower than $1,000 and a market capitalization greater than
$100 million. Effective spreads are winsorized at 0.05% and 99.95% each year. Standard errors are
double-clustered by date and stock, and t-statistics are reported in parentheses. *, **, and ***
denote significance at the 10%, 5%, and 1% level.

(a) Levels (b) Changes
Year βτ βRVol βτ βRVol

2002 0.03** (2.56) 0.43*** (14.15) 0.07*** (5.64) 0.35*** (10.29)
2003 0.07*** (5.76) 0.43*** (42.35) 0.12*** (7.68) 0.40*** (35.97)
2004 0.07*** (9.83) 0.37*** (37.47) 0.13*** (16.38) 0.36*** (36.52)
2005 0.08*** (10.23) 0.35*** (30.73) 0.16*** (15.67) 0.32*** (28.65)
2006 0.08*** (9.88) 0.31*** (31.07) 0.17*** (16.54) 0.27*** (27.56)
2007 0.11*** (8.35) 0.36*** (18.90) 0.25*** (11.57) 0.28*** (15.78)
2008 0.01 (1.19) 0.45*** (17.51) 0.13*** (8.13) 0.35*** (14.06)
2009 0.04*** (3.08) 0.25*** (12.90) 0.13*** (7.47) 0.20*** (9.79)
2010 0.04*** (3.45) 0.28*** (12.19) 0.14*** (9.11) 0.22*** (9.84)
2011 0.02* (1.91) 0.31*** (19.18) 0.11*** (8.67) 0.24*** (18.80)
2012 0.05*** (3.32) 0.29*** (16.90) 0.16*** (6.04) 0.20*** (11.46)
2013 0.02* (1.89) 0.32*** (17.12) 0.12*** (7.13) 0.25*** (17.11)
2014 -0.05*** (-2.92) 0.36*** (22.64) 0.05** (2.34) 0.29*** (17.82)
2015 -0.10*** (-8.84) 0.43*** (18.66) -0.00 (-0.10) 0.34*** (13.11)
2016 -0.10*** (-7.75) 0.39*** (18.81) -0.02 (-1.10) 0.35*** (21.64)
2017 -0.09*** (-5.34) 0.41*** (24.53) 0.02 (0.77) 0.34*** (19.77)

R̄2(%) 20.38 8.48

47



T
a
b
le

4
.

E
ff

ec
ti

ve
sp

re
ad

re
gr

es
se

d
on

tu
rn

ov
er

,
re

al
iz

ed
vo

la
ti

li
ty

,
an

d
or

d
er

im
b

al
an

ce
vo

la
ti

li
ty

fo
r

la
rg

e
st

o
ck

s
in

th
e

ti
m

e
se

ri
es

.
(a

)
L

ev
el

s:
lo

g
s i
,t

=
α
i

+
β
τ

lo
g
τ i
,t

+
β

R
V

o
l
lo

g
R

V
ol
i,
t

+
β
σ

(O
I)

lo
g
σ

(O
I)
i,
t

+
co

n
tr

ol
s

+
ε i
,t

fo
r

st
o
ck

i
o
n

d
ay

t,
w

h
er

e
τ i
,t

is
th

e
d

a
il

y
in

tr
ad

ay
tu

rn
ov

er
an

d
R

V
ol
i,
t

is
th

e
re

al
iz

ed
vo

la
ti

li
ty

co
m

p
u

te
d

u
si

n
g

fi
ve

-m
in

u
te

in
tr

ad
ay

m
id

q
u

ot
e

re
tu

rn
s

a
n

d
σ

(O
I)
i,
t

is
th

e
vo

la
ti

li
ty

of
or

d
er

im
b

al
an

ce
co

m
p

u
te

d
u
si

n
g

fi
ve

-m
in

u
te

or
d

er
im

b
al

an
ce

s
ov

er
th

e
tr

ad
in

g
d

ay
.

(b
)

C
h
an

ge
s:

∆
s i
,t

=
α
i
+
β
τ
∆
τ i
,t

+
β
σ
∆

R
V

o
l i
,t

+
β
σ

(O
I)

∆
σ

(O
I)
i,
t

+
co

n
tr

ol
s

+
ε i
,t
,

w
h

er
e

∆
x
t
≡

lo
g
(
x
t

x
t−

1
).

C
on

tr
ol

s
ar

e
(l

og
)

m
ar

k
et

ca
p

it
al

iz
at

io
n

,
(l

og
)

p
ri

ce
,

a
n

d
d

ay
-o

f-
th

e-
w

ee
k

a
n

d
m

on
th

-o
f-

th
e-

ye
ar

in
d

ic
at

or
s.

T
h

e
re

gr
es

si
on

in
cl

u
d

es
st

o
ck

fi
x
ed

eff
ec

ts
an

d
is

es
ti

m
at

ed
on

a
ye

ar
-b

y
-y

ea
r

b
a
si

s
fo

r
st

o
ck

s
in

th
e

to
p

si
ze

q
u

in
ti

le
.

A
t

th
e

b
eg

in
n

in
g

of
ea

ch
m

on
th

,
st

o
ck

s
ar

e
so

rt
ed

b
y

th
ei

r
av

er
ag

e
d

ai
ly

m
ar

ke
t

ca
p

it
al

iz
a
ti

o
n

ov
er

th
e

p
a
st

2
5
0

tr
a
d

in
g

d
ay

s
(a

m
in

im
u

m
of

10
0

ob
se

rv
at

io
n

s
is

re
q
u

ir
ed

).
T

h
e

sa
m

p
le

co
n

si
st

s
of

N
Y

S
E

,
A

m
ex

,
an

d
N

A
S
D

A
Q

co
m

m
o
n

st
o
ck

s.
T

o
b

e
in

cl
u

d
ed

in
a

gi
ve

n
m

on
th

,
a

st
o
ck

is
re

q
u

ir
ed

to
h

av
e

at
th

e
b

eg
in

n
in

g
of

th
e

m
on

th
a

p
ri

ce
gr

ea
te

r
th

an
$
5

a
n

d
lo

w
er

th
a
n

$
1
,0

0
0

a
n
d

a
m

ar
ke

t
ca

p
it

al
iz

at
io

n
gr

ea
te

r
th

an
$1

00
m

il
li

on
.

E
ff

ec
ti

v
e

sp
re

ad
s

ar
e

w
in

so
ri

ze
d

at
0.

05
%

an
d

99
.9

5%
ea

ch
ye

a
r.

S
ta

n
d

a
rd

er
ro

rs
a
re

d
ou

b
le

-c
lu

st
er

ed
b
y

d
at

e
an

d
st

o
ck

,
an

d
t-

st
at

is
ti

cs
ar

e
re

p
or

te
d

in
p

ar
en

th
es

es
.

*,
**

,
an

d
**

*
d

en
ot

e
si

g
n

ifi
ca

n
ce

a
t

th
e

1
0
%

,
5
%

,
a
n

d
1%

le
v
el

.

(a
)

L
ev

el
s

(b
)

C
h

a
n

g
es

Y
ea

r
β
τ

β
R

V
o
l

β
σ

(O
I)

β
τ

β
R

V
o
l

β
σ

(O
I)

20
02

-0
.2

6*
**

(-
12

.3
9)

0.
51

**
*

(1
3.

85
)

0.
30

**
*

(1
4.

60
)

-0
.2

1*
**

(-
10

.7
3)

0.
43

**
*

(1
0
.1

1
)

0
.2

9
*
*
*

(1
6
.1

7
)

20
03

-0
.2

5*
**

(-
13

.7
4)

0.
52

**
*

(5
4.

16
)

0.
29

**
*

(1
8.

90
)

-0
.2

1*
**

(-
11

.5
4)

0.
47

**
*

(4
3
.0

8
)

0
.2

8
*
*
*

(2
0
.2

7
)

20
04

-0
.2

5*
**

(-
15

.8
0)

0.
47

**
*

(4
2.

07
)

0.
28

**
*

(1
9.

07
)

-0
.2

0*
**

(-
13

.7
0)

0.
43

**
*

(4
2
.1

5
)

0
.2

7
*
*
*

(2
1
.2

5
)

20
05

-0
.2

7*
**

(-
18

.0
6)

0.
45

**
*

(4
0.

77
)

0.
30

**
*

(2
0.

26
)

-0
.2

1*
**

(-
17

.5
1)

0.
41

**
*

(4
3
.2

0
)

0
.2

9
*
*
*

(2
4
.0

8
)

20
06

-0
.2

7*
**

(-
23

.7
7)

0.
41

**
*

(5
4.

66
)

0.
29

**
*

(2
7.

35
)

-0
.2

0*
**

(-
20

.0
6)

0.
36

**
*

(4
7
.4

9
)

0
.2

8
*
*
*

(3
0
.2

1
)

20
07

-0
.2

8*
**

(-
16

.5
9)

0.
49

**
*

(3
1.

72
)

0.
33

**
*

(1
9.

30
)

-0
.2

0*
**

(-
10

.6
0)

0.
39

**
*

(2
8
.4

0
)

0
.3

2
*
*
*

(2
2
.3

4
)

20
08

-0
.4

0*
**

(-
19

.2
0)

0.
55

**
*

(2
7.

57
)

0.
37

**
*

(1
8.

29
)

-0
.3

3*
**

(-
18

.8
0)

0.
45

**
*

(2
1
.4

5
)

0
.3

5
*
*
*

(2
2
.2

8
)

20
09

-0
.3

2*
**

(-
18

.9
9)

0.
37

**
*

(2
9.

47
)

0.
33

**
*

(1
9.

57
)

-0
.2

9*
**

(-
19

.9
3)

0.
31

**
*

(2
3
.9

4
)

0
.3

3
*
*
*

(2
5
.2

1
)

20
10

-0
.2

9*
**

(-
22

.2
6)

0.
38

**
*

(2
2.

91
)

0.
30

**
*

(2
1.

73
)

-0
.2

5*
**

(-
22

.6
4)

0.
32

**
*

(1
9
.0

1
)

0
.3

0
*
*
*

(2
7
.0

9
)

20
11

-0
.2

7*
**

(-
26

.5
5)

0.
40

**
*

(3
4.

40
)

0.
26

**
*

(2
6.

88
)

-0
.2

1*
**

(-
23

.3
7)

0.
33

**
*

(3
3
.0

0
)

0
.2

4
*
*
*

(2
9
.5

4
)

20
12

-0
.2

8*
**

(-
15

.3
8)

0.
38

**
*

(2
5.

66
)

0.
27

**
*

(1
3.

80
)

-0
.2

2*
**

(-
19

.0
4)

0.
30

**
*

(2
2
.8

7
)

0
.2

7
*
*
*

(1
6
.7

8
)

20
13

-0
.3

0*
**

(-
28

.2
1)

0.
41

**
*

(2
5.

93
)

0.
28

**
*

(2
6.

71
)

-0
.2

5*
**

(-
27

.0
3)

0.
35

**
*

(3
0
.2

8
)

0
.2

7
*
*
*

(3
0
.7

7
)

20
14

-0
.4

2*
**

(-
20

.5
9)

0.
48

**
*

(3
6.

59
)

0.
32

**
*

(1
3.

92
)

-0
.3

8*
**

(-
26

.2
5)

0.
39

**
*

(3
7
.1

2
)

0
.3

3
*
*
*

(1
8
.1

2
)

20
15

-0
.4

3*
**

(-
33

.3
9)

0.
52

**
*

(2
8.

04
)

0.
29

**
*

(2
4.

11
)

-0
.3

8*
**

(-
32

.2
2)

0.
42

**
*

(1
8
.3

8
)

0
.2

9
*
*
*

(2
7
.0

2
)

20
16

-0
.4

4*
**

(-
27

.8
3)

0.
48

**
*

(2
4.

90
)

0.
30

**
*

(2
1.

35
)

-0
.3

9*
**

(-
28

.8
5)

0.
43

**
*

(3
3
.3

4
)

0
.3

0
*
*
*

(2
3
.1

1
)

20
17

-0
.4

1*
**

(-
25

.5
7)

0.
51

**
*

(4
6.

57
)

0.
29

**
*

(1
4.

64
)

-0
.3

6*
**

(-
29

.5
2)

0.
42

**
*

(3
6
.0

4
)

0
.2

9
*
*
*

(1
8
.0

9
)

R̄
2
(%

)
30

.9
1

20
.0

2

48



T
a
b
le

5
.

P
ri

ce
im

p
ac

t
re

gr
es

se
d

on
tu

rn
ov

er
,

re
al

iz
ed

v
ol

at
il
it

y,
an

d
or

d
er

im
b

al
an

ce
vo

la
ti

li
ty

fo
r

la
rg

e
st

o
ck

s
in

th
e

ti
m

e
se

ri
es

.
T

h
e

fo
ll

ow
in

g
re

gr
es

si
on

is
es

ti
m

at
ed

:
lo

g
P

ri
ce

Im
p

ac
t i
,t

=
α
i
+
β
τ

lo
g
τ i
,t

+
β

R
V

o
l
lo

g
R

V
ol
i,
t
+
β
σ

(O
I)

lo
g
σ

(O
I)
i,
t
+

co
n
tr

o
ls

+
ε i
,t

fo
r

st
o
ck

i
on

d
ay

t,
w

h
er

e
τ i
,t

is
th

e
d

ai
ly

in
tr

ad
ay

tu
rn

ov
er

an
d

R
V

ol
i,
t

is
th

e
re

al
iz

ed
vo

la
ti

li
ty

co
m

p
u

te
d

u
si

n
g

fi
v
e-

m
in

u
te

in
tr

a
d

ay
m

id
q
u

o
te

re
tu

rn
s

an
d
σ

(O
I)
i,
t

is
th

e
vo

la
ti

li
ty

of
or

d
er

im
b

al
an

ce
co

m
p

u
te

d
u

si
n

g
fi

ve
-m

in
u

te
or

d
er

im
b

al
an

ce
s

ov
er

th
e

tr
a
d

in
g

d
ay

.
P

a
n

el
(a

):

p
ri

ce
im

p
ac

t
eq

u
al

s
λ
it

ob
ta

in
ed

fr
om

th
e

re
gr

es
si

on
r i
tk

=
δ i
t
+
λ
it

√ |O
I$ it
k
|si

gn
(O

I$ it
k
)
+
e i
t,

w
h

er
e
r i
tk

is
th

e
fi

ve
-m

in
u

te
m

id
q
u

o
te

re
tu

rn

in
in

te
rv

al
k
,

an
d

O
I$ it
k

is
th

e
d

ol
la

r
or

d
er

im
b

al
an

ce
.

P
an

el
(b

):
p

ri
ce

im
p

ac
t

eq
u

al
s

IL
L

IQ
it

=
1

#
tr

a
d

ed
in

te
rv

a
ls

∑ k
ε{
j|

D
V

O
L
it
j
>

0
}
|r

it
k
|

D
V

O
L
it
k
,

w
h

er
e

D
V

O
L

is
th

e
d

ol
la

r
vo

lu
m

e.
C

on
tr

ol
s

ar
e

(l
og

)
m

ar
ke

t
ca

p
it

al
iz

at
io

n
,

(l
og

)
p

ri
ce

,
an

d
d

ay
-o

f-
th

e-
w

ee
k

a
n

d
m

o
n
th

-o
f-

th
e-

ye
a
r

in
d

ic
at

or
s.

T
h

e
re

gr
es

si
on

in
cl

u
d

es
st

o
ck

fi
x
ed

eff
ec

ts
an

d
is

es
ti

m
at

ed
on

a
ye

ar
-b

y
-y

ea
r

b
as

is
fo

r
st

o
ck

s
in

th
e

to
p

si
ze

q
u

in
ti

le
.

A
t

th
e

b
eg

in
n

in
g

of
ea

ch
m

on
th

,
st

o
ck

s
ar

e
so

rt
ed

b
y

th
ei

r
av

er
ag

e
d

ai
ly

m
ar

ke
t

ca
p

it
al

iz
at

io
n

ov
er

th
e

p
as

t
2
5
0

tr
a
d

in
g

d
ay

s
(a

m
in

im
u

m
o
f

10
0

ob
se

rv
at

io
n

s
is

re
q
u

ir
ed

).
T

h
e

sa
m

p
le

co
n

si
st

s
of

N
Y

S
E

,
A

m
ex

,
an

d
N

A
S

D
A

Q
co

m
m

on
st

o
ck

s.
T

o
b

e
in

cl
u

d
ed

in
a

g
iv

en
m

o
n
th

,
a

st
o
ck

is
re

q
u

ir
ed

to
h

av
e

at
th

e
b

eg
in

n
in

g
of

th
e

m
on

th
a

p
ri

ce
gr

ea
te

r
th

an
$5

an
d

lo
w

er
th

an
$1

,0
00

a
n

d
a

m
a
rk

et
ca

p
it

a
li

za
ti

o
n

g
re

a
te

r
th

an
$1

00
m

il
li

on
.

E
ff

ec
ti

ve
sp

re
ad

s
ar

e
w

in
so

ri
ze

d
at

0.
05

%
an

d
99

.9
5%

ea
ch

ye
ar

.
S

ta
n

d
ar

d
er

ro
rs

a
re

d
o
u

b
le

-c
lu

st
er

ed
b
y

d
a
te

a
n

d
st

o
ck

,
an

d
t-

st
at

is
ti

cs
ar

e
re

p
or

te
d

in
p

ar
en

th
es

es
.

*,
**

,
an

d
**

*
d

en
ot

e
si

gn
ifi

ca
n

ce
at

th
e

10
%

,
5%

,
a
n

d
1
%

le
ve

l.

(a
)

P
ri

ce
Im

p
ac

t
=
λ
it

(b
)

P
ri

ce
Im

p
a
ct

=
IL

L
IQ

it

Y
ea

r
β
τ

β
R

V
o
l

β
σ

(O
I)

β
τ

β
R

V
o
l

β
σ

(O
I)

20
02

-0
.2

7*
**

(-
15

.0
4)

1.
15

**
*

(3
6.

50
)

-0
.3

9*
**

(-
38

.5
4)

-1
.1

0*
**

(-
54

.8
9)

0.
90

*
*
*

(4
0
.9

5
)

0
.2

4
*
*
*

(1
8
.7

2
)

20
03

-0
.2

6*
**

(-
17

.4
2)

1.
23

**
*

(8
9.

79
)

-0
.3

9*
**

(-
45

.8
5)

-1
.2

1*
**

(-
56

.3
2)

0.
88

*
*
*

(8
1
.5

1
)

0
.2

9
*
*
*

(2
7
.0

3
)

20
04

-0
.2

8*
**

(-
21

.6
4)

1.
23

**
*

(1
00

.3
8)

-0
.3

9*
**

(-
51

.0
3)

-1
.2

0*
**

(-
10

0.
27

)
0.

88
*
*
*

(6
5
.6

8
)

0
.2

7
*
*
*

(3
7
.1

5
)

20
05

-0
.3

0*
**

(-
26

.3
2)

1.
23

**
*

(8
9.

28
)

-0
.4

2*
**

(-
54

.7
0)

-1
.1

7*
**

(-
10

3.
29

)
0.

90
**

*
(4

4
.6

2
)

0
.2

4
*
*
*

(3
9
.3

8
)

20
06

-0
.2

8*
**

(-
18

.4
2)

1.
15

**
*

(6
9.

91
)

-0
.4

4*
**

(-
36

.3
0)

-1
.1

5*
**

(-
98

.5
4)

0.
92

*
*
*

(8
7
.7

8
)

0
.2

1
*
*
*

(3
5
.0

0
)

20
07

-0
.3

5*
**

(-
17

.3
3)

1.
06

**
*

(4
6.

13
)

-0
.3

7*
**

(-
26

.4
2)

-1
.1

2*
**

(-
10

1.
99

)
0.

98
**

*
(7

2
.9

6
)

0
.1

6
*
*
*

(2
9
.7

5
)

20
08

-0
.3

0*
**

(-
13

.6
8)

1.
14

**
*

(3
8.

51
)

-0
.4

4*
**

(-
31

.7
5)

-1
.1

0*
**

(-
82

.5
5)

0.
96

*
*
*

(5
8
.2

5
)

0
.1

0
*
*
*

(1
8
.5

1
)

20
09

-0
.1

8*
**

(-
11

.0
0)

1.
21

**
*

(4
8.

06
)

-0
.4

4*
**

(-
38

.1
9)

-1
.0

7*
**

(-
14

1.
59

)
0.

92
**

*
(4

1
.6

1
)

0
.1

0
*
*
*

(1
5
.2

1
)

20
10

-0
.1

2*
**

(-
5.

94
)

1.
19

**
*

(3
1.

61
)

-0
.3

8*
**

(-
34

.8
9)

-1
.1

0*
**

(-
72

.7
7)

0.
92

**
*

(2
6
.0

1
)

0
.1

1
*
*
*

(2
1
.1

7
)

20
11

-0
.1

6*
**

(-
7.

21
)

1.
18

**
*

(3
8.

35
)

-0
.3

2*
**

(-
22

.3
7)

-1
.1

2*
**

(-
10

7.
44

)
0.

96
*
*
*

(4
5
.9

6
)

0
.1

1
*
*
*

(2
3
.2

5
)

20
12

-0
.2

0*
**

(-
11

.8
4)

1.
31

**
*

(6
3.

60
)

-0
.3

0*
**

(-
23

.4
6)

-1
.0

9*
**

(-
10

1.
16

)
0.

83
**

*
(7

2
.4

8
)

0
.1

2
*
*
*

(1
9
.4

0
)

20
13

-0
.3

1*
**

(-
15

.5
5)

1.
33

**
*

(4
1.

83
)

-0
.2

6*
**

(-
20

.1
2)

-1
.1

4*
**

(-
67

.3
4)

0.
89

*
*
*

(3
0
.8

1
)

0
.1

4
*
*
*

(2
3
.1

8
)

20
14

-0
.2

4*
**

(-
20

.8
3)

1.
22

**
*

(8
8.

63
)

-0
.4

8*
**

(-
65

.6
6)

-1
.1

4*
**

(-
14

8.
76

)
0.

88
**

*
(8

6
.0

4
)

0
.1

5
*
*
*

(3
6
.9

3
)

20
15

-0
.2

0*
**

(-
16

.3
5)

1.
15

**
*

(5
0.

44
)

-0
.4

8*
**

(-
57

.8
4)

-1
.1

5*
**

(-
12

3.
23

)
0.

89
**

*
(6

6
.4

2
)

0
.1

5
*
*
*

(3
2
.2

2
)

20
16

-0
.2

2*
**

(-
15

.9
0)

1.
17

**
*

(6
4.

77
)

-0
.4

4*
**

(-
50

.0
3)

-1
.1

4*
**

(-
10

8.
79

)
0.

88
**

*
(5

2
.7

7
)

0
.1

4
*
*
*

(3
2
.5

2
)

20
17

-0
.2

4*
**

(-
21

.3
0)

1.
21

**
*

(8
1.

43
)

-0
.4

7*
**

(-
55

.4
1)

-1
.1

1*
**

(-
13

5.
75

)
0.

79
**

*
(6

7
.0

2
)

0
.1

5
*
*
*

(4
3
.5

6
)

R̄
2
(%

)
28

.7
9

77
.0

5

49



Table 6. Depth regressed on turnover, realized volatility, order imbalance volatility, and effective
spread for large stocks in the time series.
The following regression is estimated: log Depthi,t = αi + βτ log τi,t + βRVol log RVoli,t +
βσ(OI) log σ(OI)i,t + βs log si,tcontrols + εi,t for stock i on day t, where Depth is the average of
the time-weighted share depth at the best bid and best ask (as a fraction of shares outstanding),
τi,t is the daily intraday turnover and RVoli,t is the realized volatility computed using five-minute
intraday midquote returns, σ(OI)i,t is the volatility of order imbalance computed using five-minute
order imbalances over the trading day, and si,t is the dollar-weighted percent effective spread.
Controls are (log) market capitalization, (log) price, and day-of-the-week and month-of-the-year
indicators. The regression includes stock fixed effects and is estimated on a year-by-year basis for
stocks in the top size quintile. At the beginning of each month, stocks are sorted by their aver-
age daily market capitalization over the past 250 trading days (a minimum of 100 observations is
required). The sample consists of NYSE, Amex, and NASDAQ common stocks. To be included
in a given month, a stock is required to have at the beginning of the month a price greater than
$5 and lower than $1,000 and a market capitalization greater than $100 million. Effective spreads
are winsorized at 0.05% and 99.95% each year. Standard errors are double-clustered by date and
stock, and t-statistics are reported in parentheses. *, **, and *** denote significance at the 10%,
5%, and 1% level.

Year βτ βRVol βσ(OI) βs

2002 0.35*** (20.58) -0.22*** (-9.94) -0.00 (-0.32) -0.19*** (-15.34)
2003 0.43*** (22.47) -0.31*** (-30.46) -0.04*** (-5.18) -0.09*** (-16.94)
2004 0.47*** (31.15) -0.42*** (-14.13) -0.04*** (-7.23) -0.10*** (-15.55)
2005 0.46*** (30.23) -0.44*** (-15.49) -0.05*** (-10.80) -0.07*** (-13.95)
2006 0.44*** (30.65) -0.51*** (-18.67) -0.06*** (-11.93) -0.07*** (-12.71)
2007 0.41*** (25.41) -0.56*** (-22.82) -0.02*** (-4.58) -0.04*** (-6.93)
2008 0.40*** (18.33) -0.69*** (-17.47) -0.01*** (-2.70) 0.02*** (2.78)
2009 0.38*** (23.72) -0.66*** (-22.94) -0.00 (-0.12) -0.03*** (-3.54)
2010 0.39*** (16.04) -0.66*** (-14.65) -0.01 (-1.07) -0.02** (-2.39)
2011 0.38*** (19.13) -0.65*** (-17.34) -0.02*** (-3.06) 0.03*** (4.03)
2012 0.35*** (29.22) -0.40*** (-22.19) -0.03*** (-6.01) -0.00 (-0.22)
2013 0.40*** (18.79) -0.48*** (-10.24) -0.05*** (-9.43) 0.02** (2.47)
2014 0.31*** (34.06) -0.39*** (-23.40) -0.01 (-1.56) -0.01*** (-2.92)
2015 0.30*** (21.97) -0.34*** (-15.81) -0.02*** (-4.05) 0.01*** (2.77)
2016 0.30*** (15.37) -0.37*** (-11.26) -0.02*** (-4.91) 0.03*** (4.61)
2017 0.28*** (26.71) -0.27*** (-14.35) -0.03*** (-10.16) 0.02*** (4.23)

R̄2(%) 41.70
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Table 8. Order imbalance volatility, turnover, and stock returns. Every week, portfolios
are formed by sequentially sorting stocks using NYSE breakpoints. The table reports portfolios’
four-factor value-weighted alpha. Panel (a): sort on turnover then on order imbalance volatility.
Panel (b): sort on order imbalance volatility then on turnover. Turnover is the average turnover
over previous five trading days. Order imbalance volatility is an exponentially-weighted moving
average of prior order imbalance with a half-life of one day. To be included in a portfolio, a stock
must have a price greater than $5 on the formation date. The sample consists of NYSE, Amex,
and NASDAQ common stocks over 2002-2017 (797 weekly observations). t-statistics are reported
in parentheses and computed using Newey-West standard errors with 3 lags. *, **, and *** denote
significance at the 10%, 5%, and 1% level.

(a) αVW
FF4 (turnover then order imbalance volatility)

low σ(OI) 2 3 4 high σ(OI) H-L

low turn. -0.02 0.02 0.02 0.02 0.08*** 0.10**
(-0.66) (0.55) (0.51) (0.50) (2.78) (2.56)

2 -0.01 0.05* -0.00 0.01 0.06* 0.06
(-0.30) (1.72) (-0.05) (0.39) (1.66) (1.56)

3 0.00 0.03 0.06** 0.09*** 0.11*** 0.11***
(0.09) (0.88) (2.02) (3.23) (3.65) (2.65)

4 -0.09*** 0.00 0.01 -0.04 0.12*** 0.20***
(-2.91) (0.13) (0.24) (-1.15) (4.03) (4.59)

high turn. -0.05 -0.07 0.04 -0.05 0.08* 0.13**
(-0.94) (-1.28) (0.68) (-0.98) (1.68) (1.98)

(b) αVW
FF4 (order imbalance volatility then turnover)

low turn 2 3 4 high turn H-L

low σ(OI) -0.02 0.01 -0.00 0.01 -0.05* -0.03
(-0.45) (0.17) (-0.14) (0.42) (-1.79) (-0.60)

2 0.00 0.00 0.01 0.04 -0.06* -0.06
(0.01) (0.04) (0.43) (1.26) (-1.87) (-1.18)

3 0.05 0.03 0.04* 0.04 0.00 -0.05
(1.56) (0.96) (1.74) (1.22) (0.00) (-0.89)

4 0.05 0.10*** 0.03 -0.02 -0.09 -0.14**
(1.49) (3.22) (1.19) (-0.50) (-1.58) (-2.04)

high σ(OI) 0.10*** 0.08** 0.05 0.09** -0.05 -0.15**
(3.55) (2.41) (1.53) (2.37) (-0.82) (-2.10)
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Table 9. Value-weighted Fama-MacBeth regressions of weekly returns (in percent)
on liquidity characteristics. Order imbalance volatility (σ(OI)t−1) is an exponentially-weighted
moving average of prior order imbalance volatility with a half-life of one day. Turnover (turnt−1)
is the average turnover over the previous five trading days. MEt−1 is the market capitalization at
the end of the previous week. ILLIQt−1 is the illiquidity coefficient at the end of the previous week
computed using the past 250 trading days with a minimum of 100 observations. Realized volatility
(RVolt−1) is an exponentially-weighted moving average of prior daily realized volatilities with a
half-life of one day. Effective spread (ESt−1) is the average percentage effective spread over the
previous five trading days. Monthly standard deviation of share order imbalance divided by share
volume (σ(OI/VOL)month

t−1 ) is computed at the end of the previous week using the past 22 trading
days with a minimum of 11 observations. All explanatory variables (except the lagged return) are
in logs. All explanatory variables are winsorized at the 0.5% and 99.5% levels. The sample consists
of NYSE, Amex, and NASDAQ common stocks 2002-2017 (797 weeks) with a price greater than
$5 at the end of the previous week. N̄ is the average number of stocks at each date. t-statistics are
shown in parentheses and based on Newey-West standard errors with 3 lags. *, **, and *** denote
significance at the 10%, 5%, and 1% level.

dependent variable: rt (weekly return in percent)

coeff. (t-stat) coeff. (t-stat) coeff. (t-stat)

σ(OI)t−1 0.064** (2.35) 0.086*** (3.02) 0.083*** (3.40)
turnt−1 -0.037 (-1.00) -0.026 (-0.67)
MEt−1 -0.012 (-0.31)
rt−1 -1.652*** (-3.91)
ILLIQt−1 -0.009 (-0.25)
RVolt−1 -0.023 (-0.32)
ESt−1 -0.023 (-0.63)
σ(OI/VOL)month

t−1 0.056 (1.42)

N̄ 2,628 2,628 2,591

R̄2 0.020 0.036 0.104
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A Appendix: Model Details

We conjecture that in equilibrium the stock price is a function of only the dividend and Markov
state, that is S(δ,N) and that the value function is of the form J(Wt, Nt) = maxc,n E[

∫∞
t −e

−β(s−t)−αcsds].
The HJB equation (assuming the current state is W,N = i):

0 = max
c,n

−e−αc + JW (rW − c+ n(µ− ληi − rSt)) +
1

2
JWWn

2σ2 − βJ +
∑
j 6=i

λij(J(W + nηij , j)− J(W, i))


where, to simplify notation, we defined the compensator:

ληi =
∑
j 6=i

λijηij

The FOC are (conditional on being in state N = i).

JW = αe−αc (27)

0 = JW (µ− ληi − rS) + JWWnσ
2 +

∑
j 6=i

λijηijJW (W + nηij , j) (28)

We guess that the value function is of the form

J(W,N) = −1

r
e−α(rW−b(N))

for some function b(N) :=
∑M

i=1 bi1{N=i} . The first FOC then implies:

c(W,N = i) = rW − bi (29)

The second FOC implies:

µ− rS = αrnσ2 +
∑
j 6=i

λijηij(1− e−α(rnηij−bj+bi)) (30)

Further, the bi coefficients solve the system of equations (∀i, j):

0 = −r + rα(b+ n(µ− ληi − rS))− 1

2
r2α2n2σ2 + β −

∑
j 6=i

λij(e
−α(rnη−bj+bi) − 1) (31)

From equation (30) we can substitute µ− rS to obtain:

0 = −r + rαb+
1

2
r2α2n2σ2 + β −

∑
j 6=i

λij(e
−α(rnηij−bj+bi)(1 + rαnηij)− 1) (32)

Now in equilibrium we must have
nt = θ(Nt)

Plugging into the equations we get the system of equations which must be satisfied by S(δ,N) and
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the constants bi for i = {1, . . . ,M} in equilibrium:

µ− rS = αrθiσ
2 +

∑
j 6=i

λijηij(1− e−α(rθiηij−bj+bi)) (33)

0 = −r + rαbi +
1

2
r2α2θ2

i σ
2 + β −

∑
j 6=i

λij(e
−α(rθiηij−bj+bi)(1 + rαθiηij)− 1) (34)

Note that µ, σ, η are all obtained from Itô’s formula given an expression for S(δ,N). In fact,
to simplify the search for the equilibrium stock price it is helpful to define the risk-free discounted
value of the dividend:

V (δt, Nt) = Et

[∫ ∞
t

e−r(s−t)dsδsds

]
To solve for V note that it satisfies the equation Et[dV (δ,Nt) + δdt] = rV (δ,Nt)dt. Then define

V (δ,N = i) := V i(δ) and note that we have:

V i
δ κδ(δi − δ) +

1

2
V i
δδσ

2
δ +

∑
j 6=i

λij(V
j(δ)− V i(δ)) = rV i(δ)− δ (35)

The solution is of the form:

V i(δ) =
δ

r + κδ
+ vi

where the constants vi satisfy the system of equations:

κδδi
r + κδ

+
∑
j 6=i

λij(vj − vi) = rvi (36)

The solution obtains in terms of the transition matrix Λ (which has entry λij and where λii =
−
∑

j 6=i λij) and where we define δ to be the column vector of long run means δi and I the M-
dimensional identity matrix:

v =
κδ

r + κδ
(rI − Λ)−1δ

Now, we decompose the stock price as:

S(δ,N) = V (δ,N) + s(N) (37)

where s(N) :=
∑M

i=1 si1{Nt=i} . Then, since Et[dV (δ,N) + δdt] = rV (δ,N)dt and applying Itô we

55



obtain (setting Nt = i):

µ− rS ≡ Et[dSt/dt+ δ − rS] = Et[ds(Nt)/dt− rs(Nt)] =
∑
j 6=i

λij(sj − si)− rsi (38)

σ =
σδ

r + κδ
(39)

ηij = vj − vi + sj − si (40)

Substituting into our system of equilibrium conditions (41) and (42) we find that the constants
si, bi ∀i ∈ {1,M} which characterize the stock price and optimal consumption satisfy the system
of equations ∀i, j ∈ {1,M}:

0 = rsi + αrθiσ
2 +

∑
j 6=i

λij{vj − vi − ηije−α(rθiηij−bj+bi)} (41)

0 = −r + rαbi +
1

2
r2α2θ2

i σ
2 + β +

∑
j 6=i

λij{1− e−α(rθiηij−bj+bi)(1 + rαθiηij)} (42)

σ =
σδ

r + κδ
(43)

ηij = vj − vi + sj − si (44)

v =
κδ

r + κδ
(rI − Λ)−1δ (45)

The solution of this system characterizes the equilibrium.

A.1 Price impact without ‘adverse selection’ in a symmetric model

We consider first the symmetric model where buyers and sellers arrive in a balanced fashion (or the
market maker systematically waits for a buyer after having seen a seller) and there is no adverse
selection. That we consider the simple model with two states M = 2 and

λ12 = λ21 = λ

θ2 = −θ1 = θ

δ1 = δ2 = 0

Note that since the long-run mean is constant and equal to zero across states v = 0. Then we can
prove that there exists a unique symmetric solution characterized by

s1 = −s2

b1 = b2

where s1, b1 solve the system of equations:

0 = rs1 + αrθ1σ
2 + 2λs1e

2αrθ1s1 (46)

0 = −r + rαb1 +
1

2
r2α2θ2

1σ
2 + β + λ{1− e2αrθ1s1(1− 2rαθ1s1)} (47)

σ =
σδ

r + κδ
(48)
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Clearly, b1 is uniquely solved in equation (47) given a solution for s1. And note that (46) can be
solved uniquely for s1 as the intersection between the strictly positive decreasing curve 2λe2s1αrθ1

and the curve −θ1αrσ
2/s1 − r. Further, since we assume θ1 < 0 it is clear that there is a unique

positive solution s1 > 0 which satisfies this equation. Further, since the optimal solution satisfies
0 < −αrθ1σ

2/s1 − r < 2λ we obtain that

−θ1ασ
2 > s1 >

−θ1αrσ
2

2λ+ r
> 0.

A.2 Price impact and order imbalance: Asymmetric model without adverse
selection

To understand the effect of order imbalance we solve the case where λ12 6= λ21, but otherwise keep
the same assumption (of symmetric depth and no adverse selection). That is, we consider the
simple model with two states M = 2 and

θ2 = −θ1 = θ (49)

δ1 = δ2 = 0 (50)

In this model the solution si, bi ∀i ∈ 1, 2 satisfy the system of equations:

0 = rsi + αrθiσ
2 + λij(si − sj)e−αrθi(sj−si)+α(bj−bi) (51)

0 = −r + rαbi +
1

2
r2α2θ2

i σ
2 + β + λij{1− e−αrθi(sj−si)+α(bj−bi)(1 + rαθi(sj − si))} (52)

σ =
σδ

r + κδ
(53)

We solve this system numerically. It is easy to show that there is a unique solution for bi in terms
of s1, s2. Thus solving the system amounts to solving two non-linear equations for s1, s2.
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