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Abstract

A key decision commonly faced by students is how to optimally choose their portfolio of

college applications. Students are often advised to apply to a combination of “reach,”“match,”

and “safety” schools. Empirically, when reductions in the cost of application permit students to

apply to more schools, they expand the range of selectivity of schools to which they apply both

upwards and downwards. However, this ubiquitous practice of diversification is difficult to recon-

cile with existing theoretical analyses of search decisions, which assume that schools’ admission

decisions are independent conditional on the student’s information. I develop a framework for

simultaneous search problems that relaxes this assumption, and generates these patterns. My

framework shows that popular school allocation mechanisms—arguably designed to level the

playing field and promote integration—may generate segregation endogenously, as they provide

students with better outside options stronger incentives to apply to selective schools.

When applying to schools and colleges, a key decision commonly faced by students is how to op-

timally choose their portfolio of applications. In many cases, large numbers of schools are available,

but due to costs or constraints, students apply only to a few, often without perfect information

about how the school will respond to their application. Determining which subset of schools to

apply to—balancing the desire to attend sought-after schools with the need to hedge—forms a

critical part of a student’s decision problem. To achieve this balance, students are often advised to

apply to a combination of “reach,”“match,” and “safety” schools (Avery, Howell and Page, 2014).

In practice, one sees that when reductions in application costs permit students to apply to more

schools, they expand the range of schools to which they apply both upwards and downwards, i.e.,

including more selective and safer schools (Ajayi, 2011; Pallais, 2015).

Although it is well-understood that applying to a diverse set of colleges is crucial for students’

success and carries significant implications, this practice of diversification is difficult to reconcile

with existing theoretical analyses of search decisions. In a leading analysis, Chade and Smith (2006)
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(a) Independent admission de-
cisions

(b) Perfectly aligned ad-
mission decisions

Figure 1: Optimal portfolios under independent and perfectly
aligned admission decisions

Panel 1b illustrates my result that when admission decisions are perfectly aligned, optimal portfolios of
larger sizes span a wider range of schools and refine the grid. Panel 1a illustrates the findings of Chade and
Smith (2006), which I slightly strengthen in Theorem 4: i) optimal portfolios of size k + 1 nest the optimal
portfolios of size k, and ii) a school that appears in the optimal portfolio of size k + 1 but not in the
optimal portfolio of size k is more aggressive than any school in the optimal portfolio of size k (when each
school has close substitutes).

show that students should not apply to “safety” schools. Furthermore, they show that if application

costs decrease, students should expand the range of schools only in an upward direction, by applying

to the same schools and to additional schools of higher selectivity (as illustrated in Panel 1a of Figure

1). The predictions emphasized by Chade and Smith (2006) rely on the common assumption—used

for both theoretical and empirical studies—that admission decisions are independent conditional on

the information known to the applicant.1 This assumption means that admission decisions at some

schools convey no information about admissions decision at other schools (e.g., finding out that one

is rejected at Harvard is not bad news with respect to the probability of acceptance at MIT). In

Section 1, I show that this lack of consistency between theory and evidence may carry important

implications for inferences that rely on such theoretical models, and can lead to misguided policies.

This paper develops a new analysis of simultaneous search in which the optimal behavior involves

diversifying and expanding the range of schools one applies to when application costs decrease (as

illustrated in Panel 1b of Figure 1). The important departure that I make from existing models is

that schools’ admission decisions are not independent. Instead, I assume that admissions decisions

are perfectly aligned—conditional on the student’s information, admissions are based on a common

index with different schools having different bars for admission, and students face uncertainty about

1Apart from Chade and Smith (2006), examples of other studies that make the common assumption that schools’
admission decisions are independent conditional on the information known to the student include Card and Krueger
(2005), Chade, Lewis and Smith (2014), and Fu (2014).
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their index value. As a result, admission decisions at some schools do convey information about

the probability of acceptance at other schools (e.g., finding out that one is rejected at Harvard is

bad news with respect to the probability of acceptance at MIT).

The assumption that admissions decisions are perfectly aligned is a stark one. However, it

accurately describes many empirically relevant settings. For example, admissions decisions are

perfectly aligned when a future centralized admission exam will determine admissions, which is a

common practice for high-school and college admissions across the world. Similarly, admissions

decisions are perfectly aligned in school districts in the U.S. and around the world where a single

lottery is used to break priority ties in overdemanded schools (i.e, ones with more applicants than

seats. See, e.g., De Haan et al., 2015; Abdulkadiroğlu et al., 2017). More broadly, my model

captures potentially important features of environments with high degree of correlation, even if

admission decisions are not perfectly aligned. Such environments are ubiquitous. For example,

even in the absence of a centralized admissions exam, correlation in admission decisions is present

when college applicants think that colleges seek students with certain characteristics, but applicants

face uncertainty about where they stand relative to others.2

While I focus on students applying to colleges, simultaneous search problems—portfolio choice

problems in which an agent chooses a portfolio of stochastic options but only consumes the best

realized one—occur in many other settings (e.g., consumer search, De Los Santos, Hortaçsu and

Wildenbeest, 2012; labor markets, Galenianos and Kircher, 2009; and industrial organization, Wong,

2014). In labor markets, for example, correlation arises when common factors affect all firms’ hiring

decisions (Lee and Wang, 2018). Similarly, a monopolist may face consumers who are vertically

differentiated in their tastes for quality, where introducing new varieties is costly (Wong, 2014).

My analysis begins with the following observation: Students only attend less desirable schools if

they cannot attend more desirable ones. As a result, application portfolios can be represented by a

Rank-Order List (ROL), sorted according to the student’s preferences, where the probability that

the k-th-ranked option on the ROL is consumed depends only on higher-ranked options (specifically,

the probability that they are consumed).3

Building upon this observation, I show that these portfolio choice problems can be solved by

dynamic programming—a concept similar to backwards induction. The idea is that the optimal

continuation (or suffix) of an ROL can be calculated by conditioning on the event that the agent

will be rejected by all the options that are ranked higher on the ROL (prefix). Moreover, since

the optimal suffix is identical for many prefixes, the optimal ROL can be found “quickly,” in a

running time that is polynomial in the number of options. This can be useful for empirical work: in

the absence of this solution, existing empirical work has had to use approximations of the optimal

2Many studies of application patterns to American colleges use SAT test-score sending as a proxy for application
(e.g., Card and Krueger, 2005). An important institutional detail is that before taking the exam applicants choose up
to four schools that will receive their scores (they have the option to add schools to the list before and after the exam
for a fee). This feature suggests that students, especially first-time test takers, may be facing substantial uncertainty
about their strength as applicants when determining their application portfolio.

3In addition to decentralized markets, many popular centralized mechanisms have this property with respect to
the ROL students are required to submit. Examples include deferred acceptance (Gale and Shapley, 1962), serial
dictatorship (Abdulkadiroğlu and Sönmez, 1998), and top trading cycles (Abdulkadiroğlu and Sönmez, 2003).
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portfolio (e.g., Ajayi and Sidibe, 2015).4

I show that allocation mechanisms that are commonly used in centralized school choice and that

constrain the number of schools each student can apply to may generate segregation endogenously.

This is the case even if all applicants share the same preferences, and in spite of the mechanism

treating all applicants symmetrically (cf. Hastings, Kane and Staiger, 2009; Oosterbeek, Sóvágó and

van der Klaauw, 2019). The reason is that these mechanisms, which include constrained deferred

acceptance (Haeringer and Klijn, 2009; Calsamiglia, Haeringer and Klijn, 2010), give applicants

with better outside options (e.g., access to private schools) incentives to apply more aggressively.

As a result, applicants with stronger outside options are over-represented in the best schools.5 I also

show that students who are less risk averse and students with more optimistic beliefs about their

admission chances apply more aggressively. This suggests that search frictions that are present in

popular allocation mechanisms may introduce disparities across gender lines (Dargnies, Hakimov

and Kübler, forthcoming; Pan, 2019).

The effect of better outside options explains the upward expansion of optimal portfolios. The

optimal portfolio of size k+1 can be thought of as the optimal portfolio of size k where the student’s

outside option is the hope of being accepted to her k + 1-st-ranked school (rather than nothing, in

the case of choosing the optimal size-k portfolio).

The effect of higher beliefs explains the downward expansion of optimal portfolios. Recall that

admission to less desirable schools only matters when a student is rejected by the most desirable

school in her portfolio. Thus, one can think of the optimal portfolio of size k + 1 as consisting of

the most desirable school in the portfolio and the optimal size-k continuation portfolio conditional

on being rejected from this school. When admission decisions are aligned, news of rejection lead to

lower beliefs, so this continuation portfolio is less aggressive than the optimal portfolio of size k.

While the explanation for the upward expansion applies equally to the cases of perfectly aligned

and independent admissions, optimal portfolios do not expand downwards when admission decisions

are independent. The divergence in predictions between the two environments stems from the fact

that when admissions decisions are independent, a rejection by one’s first choice (or any other

school) carries no information about admission chances at other schools. Thus, although more

optimistic students apply more aggressively in this environment too (Chade and Smith, 2006),

being rejected by one’s first choice should not make one more pessimistic.

Organization of the paper. Section 1 provides an example illustrating how agents should reason

about their application portfolios in the presence of correlation in admissions, and the adverse effects

4In the context of centralized school choice, Calsamiglia, Fu and Güell (forthcoming) make this observation and use
it to calculate optimal ROLs in their empirical study of school choice in Barcelona, where a variant of the Immediate
Acceptance (Boston) mechanism is in place. In Shorrer (2019) I show that this approach is more broadly applicable
as the conditions above are satisfied in many empirically relevant portfolio choice problems.

5Delacroix and Shi (2006) derive similar results in a model of on-the-job search, where workers differ in their
current jobs, which they can hold on to. In Shorrer (2019) I show that the resutls on outside options (as well as those
on risk aversion and on beliefs) generalize to many other environments, including immidiate acceptance mechanisms.
Calsamiglia, Mart́ınez-Mora and Miralles (2015) and Akbarpour and van Dijk (2018) find that when immediate
acceptance is in place, students with better outside options are over represented in the best school.
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for an analyst of ignoring such correlation. Section 2 sets up the model. Section 3 presents the

portfolio choice problem from multiple perspectives. Section 4 presents comparative statics with

respect to beliefs which are then used in Section 5 to derive comparative statics with respect to

portfolio size. Sections 6 and 7 present comparative statics with respect to risk aversion and the

quality of outside options, respectively. Section 8 concludes.

1 Motivating Example

The following example illustrates how agents should reason about their portfolio of applications

when admissions decisions are perfectly aligned, and then illustrates the consequences for an analyst

of ignoring the resulting correlation in admission decisions.

Example 1. A school district makes admissions decisions based on a single lottery, where higher

numbers have higher priority. There is a unit mass of students, half of whom reside in the East

Neighborhood, and the others in the West Neighborhood. After applying to schools, students in

both neighborhoods draw lottery numbers uniformly from the interval [0, 1].

In each location, x ∈ {East, West}, there are two schools: A good school, gx, with capacity 1
4 ,

and a bad school, bx, with unlimited capacity. Students prefer closer and better schools. Specifically,

the utility of student s from attending school m is us(m) := β1m is local for s + γ1m is good , where β

and γ are greater than zero, and where the utility from the outside option is normalized to zero.

Students can only apply to two schools. The above facts are all commonly known.

In equilibrium, each student applies to both of the schools in her neighborhood. To see this,

note that under this profile of strategies a student is admitted to a good school if her lottery

score is greater than one half. Thus, if she can be admitted to the good school in the other

neighborhood, she will also be admitted to the good school in her own neighborhood, which she

prefers. Consequentially, students prefer to apply only to the good local school and to use their

second application to guarantee admission to the bad local school, in case they are not admitted

to the good school.

Next, imagine an analyst who believes that schools admission decisions are independent. Except

for this fact, the analyst’s model is correctly specified, and he believes that students have ratio-

nal expectations and that they choose their applications portfolio optimally. Observing students’

applications and admission probabilities the analyst concludes that

1

2
· (β + γ) +

1

2
· 1 · β ≥ 1

2
· (β + γ) +

1

2
· 1

2
· γ,

where the left hand side represents his (correct) perception of students’ expected utility from the

portfolios they choose and the right hand side is his (mistaken) perception of the expected utility

from applying to both of the good schools (see Agarwal and Somaini, 2018). This inequality implies

that parameters in the identified set satisfy the inequality

2β ≥ γ.
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Thus, if students attribute high relative importance to quality (e.g., β = 1, γ = 100) this preference

will not be reflected in the analyst’s estimates. A policy maker that relies on the analyst’s estimates

may make misguided choices, such as focusing on reducing travel distance instead of prioritizing

school quality.

2 Model

I now turn to the decision problem of interest: simultaneous search when admissions decisions are

perfectly aligned and a student gets to attend the best school to which she applied whose admission

cutoff she surpassed. This arises, for example, when applicants are vertically differentiated and

they face uncertainty about their market position. A common case is when schools make admission

decisions based on a centralized entrance exam (or central lottery) where admission to each school

depends on passing a school-specific (agent-specific) score cutoff that is known to the agent,6 and

students are required to make their application decision not knowing their score.

There is a set, X, of stochastic options (also referred to as schools or colleges). Unless otherwise

mentioned, the set is finite and the options are indexed by the integers 1 to N . Agents (also referred

to as students or applicants) are expected-utility maximizers. They can attend at most one school,

and for each school i they know the admission cutoff, ci, and the utility they will derive from

placement in that school, ui.
7 I envision that the number of students is large, and consider the

problem of a single student. I assume, without loss of generality, that lower integers (schools) are

(weakly) more desired by this student. The utility from being unassigned is normalized to zero.

A Rank-Order List (ROL) is an ordered list of schools. For an ROL, r, let rl denote the l-

th-highest-ranked school on r. I assume that optimal application portfolios can be summarized

by an ROL. This is the case when either: 1) a student applies to a subset of X and chooses the

most preferred school that admits her, or 2) a student submits an ROL of alternatives in X to a

centralized mechanism that assigns her to the highest ranked alternative whose admission cutoff she

surpasses. The model, therefore, also captures centralized markets that are cleared using algorithms

such as single-lottery deferred acceptance, random serial dictatorship, and top trading cycles,8 as

well as markets such as British college admissions, where students can only rank a limited number

of admission offers that are contingent on obtaining a minimal score (Broecke, 2012).

The cost associated with a portfolio of size k is C(k), where C(0) = 0 and C(·) is increasing. I

sometimes further assume that C (·) is convex. Special cases include constrained choice (C(x) = 0

if x ≤ k, and C(x) =∞ otherwise) and constant marginal cost (C(x) = cx).

Without loss of generality, I make the following assumptions: 1) The student’s belief about her

admission score is an atomless distribution over all possible scores. Furthermore, I assume that

6In the absence of aggregate uncertainty (i.e., correlation in the distribution of types in the population), when
schools offer the same number of seats and the market is large, it is safe to assume that admission cutoffs are stable
from one year to the next (Azevedo and Leshno, 2016).

7The assumption that agents know their utility from prizes is common, but there are some exceptions (e.g.,
Immorlica et al., 2018; Albrecht, Gautier and Vroman, 2006).

8Schools admissions decisions are perfectly aligned when markets are cleared by top trading cycles, regardless of
the randomization method used to break priority ties (Che and Tercieux, 2017; Leshno and Lo, 2017).
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scores are distributed uniformly between 0 and 1 (otherwise, apply the probability distribution

transform to all scores and admission cutoffs). 2) Every school is preferred to the outside option

whose value is normalized to 0.

Although in the environment I study there exists, generically, a unique optimal portfolio, I

choose to treat the general case and do not rule out the possibility that agents have multiple

optimal portfolios. The reason is that, as Example 1 illustrates, my results hold in equilibrium

in large markets, and there is no reason to think that agents have unique optimal portfolios in

equilibrium (see, e.g., Kircher, 2009). This comes at the cost that statements and proofs are

slightly more cumbersome.

3 The Portfolio Choice Problem

The portfolio choice problem can be summarized by the following equation:

max
r

∑
1≤i≤|r|

max

{
0, min

0≤j<i
{crj} − cri

}
u
(
ri
)
− C (|r|) ,

where cr0 ≡ 1, and min
j<i
{crj} is the i-th Most Informative Disqualification (MID, Abdulkadiroğlu

et al., 2017)—the most forgiving cutoff the applicant failed to pass if the i-th-ranked alternative

becomes relevant—which is a sufficient statistic for updating one’s beliefs about her priority score

in this event.

This portfolio choice problem can also be represented as an instance of the well-studied NP-hard

max-coverage problem (Hochbaum, 1996). Recall that I assume, without loss of generality, that

scores are distributed uniformly on the unit interval. Thus, the probability of admission to School i

is equal to the distance between ci and 1. As a result, the expected utility from applying to School

i only is equal to the area of the rectangle that has vertices at (ci, 0) and (1, ui), as illustrated

in Figure 2. Furthermore, the expected utility from a portfolio of k schools is equal to the area

covered by the union of the k corresponding rectangles, as illustrated in Figure 3.

This formulation of the problem already gives intuition for the incentive to apply to a diverse

set of colleges in terms of selectivity, as recommended by the College Board (Avery, Howell and

Page, 2014): the rectangles corresponding to schools of similar selectivity (similar cutoffs) have a

large overlap, so choosing several of them does not increase the covered area substantially relative

to choosing just one of them (the most desirable one).9 For example, consider a portfolio choice

problem as depicted in Figure 2, where each rectangle covers approximately the same area, but the

one corresponding to School 2 is slightly larger. As a result, the optimal size-1 portfolio consists of

School 2, but the optimal size-2 portfolio consists of Schools 1 and 3, as the large overlap of other

rectangles with the rectangle corresponding to School 2 dwarfs the size advantage of this rectangle

9The economic intuition resembles that of Athey and Ellison (2011) in the context of position auctions with
consumer search. Athey and Ellison (2011) study the cases where the probabilities that websites meet the needs of a
consumer are independent, and where similar sellers are likely to meet the same needs. They find that in the latter
case the optimal auction incentivizes product variety.
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c3 c2 c1 1
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u2
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u1

(a) “safety”
school

c3 c2 c1 1

u3

u2

1

u1

(b) “reach”
school

Figure 2: The utility from different size-1 portfolios
This figure assumes that the distribution of scores is uniform. As a result, the probability of acceptance to
school i is equal to 1 − ci, the probability of passing this school’s admission cutoff. This quantity is equal
to the distance between ci and 1 on the horizontal axis. Thus, the shaded areas represent the expected
utility from a portfolio consisting of a single school (School 3 in Panel 2a and School 1 in Panel 2b): the
probability of admission, 1− ci, times the utility from attending, ui. School 3 is a “safety” school—it has a
high probability of admission, but yields a low utility from attending. School 1 is a “reach” school—it has a
low probability of admission, but yields a high utility from attending.

(see Example 2 in the supplementary Appendix).

This example also shows that the “greedy” approach, used by Chade and Smith (2006) to solve

for the optimal portfolio, cannot be used in the current setting.10 To see this, note that a greedy

algorithm identifies an optimal portfolio of any size only when the optimal portfolios are nested.

Therefore, an alternative approach is needed to identify optimal portfolios.

A first observation is that when looking for an optimal portfolio, there is no loss in ignoring

schools such that i > j and cj ≤ ci for some j. Graphically, these are schools whose rectangles in

the corresponding coverage problem are covered by another rectangle. To keep the notation simple,

I assume that all such schools have been removed from the menu, and there are M ≤ N schools

such that ci > cj ⇐⇒ ui > uj . Still, in what follows I use N , not M , to denote the number of

schools.

Lemma 1. There always exists an optimal ROL that is strictly decreasing in selectivity and in

desirability (i.e., lower-ranked schools have higher indices and strictly lower admission cutoffs).

Proof. An ROL that is inconsistent with one’s preferences (i.e., not monotonic in indices) is weakly

dominated (e.g., Haeringer and Klijn, 2009). The result follows from this fact and the discussion

in the paragraph above.

10The same holds for the generalized environments studied in Chade and Smith (2005) and Olszewski and Vohra
(2016).
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No double

counting!

c3 c2 c1 1

u3

u2

1

u1

(a) “safety”
school

c3 c2 c1 1

u3

u2

1

u1

(b) “reach”
school

Figure 3: The utility from a size-2 portfolio
This figure illustrates the expected utility from applying to both School 1 and School 3. It highlights the
fact that a student can only attend a single school. As a result, when she attends the more selective School
1, she does not derive further utility from being also admitted to School 3, which she likes less. This is
illustrated by the area missing from the “safety school” rectangle (labeled “No double counting!”). This area
corresponds to cases where the student is admitted to both schools, and thus attends the more preferred
“reach” school.

The portfolio choice problem can thus be simplified to

max
r|cri−1>cri

∑
1≤i≤|r|

(cri−1 − cri)u(ri)− C(|r|).

3.1 Unconstrained Choice

I begin by considering the case of unconstrained choice (C ≡ 0). In this case, agents clearly have a

weakly dominant strategy of applying everywhere and attending the best school that accepts them

(i.e., using an ROL of all the alternatives in order of preference). The utility an agent derives from

this strategy is equal to the area of the union of all rectangles.

An applicant is effectively unconstrained if the marginal cost of applying to an additional school

at some optimal portfolio is zero. In what follows, I assume that applicants are effectively con-

strained.

3.2 Constrained Choice

In a constrained choice problem, the applicant may apply only to a limited number of schools. To

gain intuition, I start by considering the special case of constrained choice where the constraint is
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extreme: the agent can choose at most one school to apply to (C(x) = 0 if x ≤ 1, and C(x) = ∞
otherwise). In this case, the optimal strategy is clear: choose the school that maximizes (1− ci)u(i).

Graphically, in Figure 2, this would correspond to the largest rectangle.

The agent faces a trade-off between high ex-post utility and high ex-ante admission probability.

This is illustrated by comparing the different size-1 portfolios depicted in Figure 2. The rectangle

depicted in Panel 2a represents an application to a “safety school,” School 3, with a high admission

probability and low ex-post utility from consumption. The rectangle depicted in Panel 2b represents

an application to the more selective School 1, which yields a higher ex-post utility from consumption,

but entails more risk in terms of the probability of admission.

Next, we consider the optimal ROL of length k (which corresponds to the solution in the case

where C(x) = 0 if x ≤ k, and C(x) = ∞ otherwise). Graphically, the problem corresponds to

the coverage problem of identifying k rectangles as above whose union covers the largest area.

The challenge is that the rectangles overlap, but their intersections—representing cases where the

student is admitted to more than one school—should not be double counted (Figure 3). When

rectangles can be placed arbitrarily in the space, this problem is NP-hard (e.g., Hochbaum, 1996).

To address this challenge, I propose the Probabilistically Sophisticated Algorithm (PSA), which

uses dynamic programming to solve for an optimal ROL in time polynomial in N . I denote by r(k, c)

an optimal size-k ROL when the score is uniformly distributed in [0, c], and let v(k, c) denote the

corresponding expected utility. Furthermore, rF (k, c) and vF (k, c) are similarly defined, where the

score is distributed according to F conditional on it being lower than c. I use the convention that

v (0, ·) = cr(0,·) ≡ 0.

The success of the algorithm hinges on the following lemma.

Lemma 2. For any integer, k, there exists optimal ROLs such that r1(k+1, c) ∈ arg max
i|ci≤c

1
c {(c− ci)ui + civ (k, ci)}

and for all k + 1 ≥ j > 1, rj(k + 1, c) = rj−1(k, cr1(k+1,c)).
11 Furthermore, for any inte-

ger, k, and any distribution of scores, F , there exists optimal ROLs such that r1
F (k + 1, c) ∈

arg max
i|ci≤c

1
F (c) {(F (c)− F (ci))ui + F (ci)vF (k, ci)}, and, for all k+1 ≥ j > 1, rjF (k+1, c) = rj−1

F (k, cr1
F (k+1,c)).

Algorithm 1 Probabilistically Sophisticated Algorithm (PSA)

Step 1 For all possible values of rk−1 calculate r1(1, crk−1) and v(1, crk−1).

Step j<k For all possible values of rk−j calculate r1(j, crk−j ) and v(j, crk−j ), as in Lemma 2.

Step k Calculate r1(k, 1), and set r1 = r1(k, 1), ri = r1(k + 1− i, cri−1).

Remark 1. For ease of exposition, the algorithm does not choose the optimal continuation in cases

where the prefix is not monotonic in selectivity (this would require conditioning on the score being

11The set {i|ci ≤ c}may be empty. In this case, I use the the convention that the arg max is the empty set and the
ROL will have an empty enrty. This does not occur on the run of the algorithm (it will repeat the same option). In
any case, such choices are inconsequential for the agent’s assignment.
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lower than the MID, rather than the preceding cutoff). These cases are (weakly) suboptimal

(Lemma 1), and strictly so under the assumption that the agent is effectively constrained.

Remark 2. For ease of exposition, the algorithm calculates a single optimal ROL. In case that there

are multiple optimal ROLs, there will be ties in certain steps of the algorithm. Standard arguments

show that in such situations any tie-breaking rule will lead to an optimal ROL, and any optimal

ROL will result from some tie-breaking rule.

3.3 Costly Choice

Each step of the PSA requires no more than N2 steps. Thus, it is possible to find an optimal

portfolio of any size in less than N3 steps. When costs differ across portfolio sizes, one can solve

for the optimal portfolio of each size and then choose the best one by accounting for costs.

When the cost is convex, one can avoid some computation by leveraging the fact that the

marginal benefit from increasing the size of the portfolio (k) is decreasing. Although intuitive,

the decreasing marginal benefit property is not at all trivial due to the possibility that optimal

portfolios of varying sizes are not nested.12 I prove this property later (Theorem 2), as the proof

invokes Theorem 1.

3.4 The Dual Choice Problem

In this section, I offer another perspective on the portfolio choice problem which proves useful in

several of the proofs. The main insight of this section is that if one transposes a coverage problem

over the diagonal connecting (1, 0) and (0, 1), one is looking at an equivalent coverage problem. For

portfolio choice problems, the result is another portfolio choice problem, with the only difference

being that higher indices correspond to higher rectangles (Figure 4).

Formally, consider the (primal) problem defined by (ci, ui)
N
i=1, the uniform distribution over the

unit interval, and some cost function. First, if max {ui} is greater than 1, multiply each ui and the

cost function by 1
max{ui} . Note that there is no loss of generality from this normalization, which

assures that the agent derives a utility of 1 from the alternative she likes best.

Next, for all i, let

c̄i = 1− ui

and

ūi = 1− ci.

Since cutoffs lie in the unit interval, ūi ∈ [0, 1] for all 1 ≤ i ≤ N , and, thanks to the normalization

of utilities, c̄i ∈ [0, 1] for all 1 ≤ i ≤ N . The problem defined by (c̄i, ūi)
N
i=1—with the same cost

function and the uniform distribution—is the dual choice problem of the primal problem.

Definition. Given an ROL, r, of length k, let
!
r be the ROL such that

!
ri = rk−i for all i.

12Indeed, Example 3 in the supplementary Appendix provides an instance of the coverage problem by rectangles
where this is not the case. The example does not, however, possess the structure of the problems studied in this
paper, as the rectangles do not share a common bottom-right corner.
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c3 c2 c1 1

u3

u2

1

u1

(a) primal
problem

c̄1 c̄2 c̄3 1

ū1

ū2

1

ū3

(b) dual prob-
lem

Figure 4: A problem and its dual problem
Panel 4a depicts a (primal) choice problem (c3 = .1, c2 = .5, c1 = .7; u3 = .3, u2 = .4, u1 = .6). Panel 4b
depicts its dual choice problem (c̄3 = .7, c̄2 = .6, c̄1 = .4; ū3 = .9, ū2 = .5, ū1 = .3).

In words,
!
r is the ROL r turned upside down.

Proposition 1. ROL r is a solution of a portfolio choice problem iff
!
r is a solution to the dual

problem.

Proof. Note first that in the dual problem, lower index schools are less desirable. Thus, since

it is optimal to rank consistently with preferences, if the optimal portfolio consists of the same

alternatives it is optimal to rank them in reverse order.

To see that the same alternatives should be ranked in both problems, note that the corresponding

coverage problem is isometric (the only difference is that the plane has been transposed).

Remark 3. I previously assumed that applicants are effectively constrained. Without this assump-

tion (or the assumption that alternatives that are more selective and less desirable have been

removed from the menu), the statement would not be precise, since the applicant might be able

to rank undesirable alternatives in irrelevant positions on an optimal ROL. The precise statement

would require that
!
r be sorted according to preferences.

Remark 4. The proposition suggests that solving the dual problem “backwards” is tantamount to

solving the primal problem “forwards.” A forward-looking version of the PSA, which is sometimes

more convenient, is provided in the supplementary Appendix.
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4 Monotonicity in Beliefs

I now consider how the optimal size-k portfolio changes with the decision maker’s beliefs. To this

end, I dispense with the assumption that the distribution of scores is uniform.

Definition. Given two portfolios of size k, r and r′, we say that r at least as aggressive as r′ if

rj ≤ r′j (rj is at least as desirable as r′j) for all 1 ≤ j ≤ k.

Definition. Given two agents, s and b with beliefs fs and fb, s’s beliefs about her score MLRP-

dominate b’s beliefs (or are MLRP more optimistic) if the ratio fs(x)
fb(x) is weakly increasing in x on

the union of the supports of fs and fb (where c
0 ≡ ∞ for c > 0).

Proposition 2. Let s and b be agents with identical preferences, but s is MLRP more optimistic.

Then for all k ≤ N , i) there exists an s-optimal size-k portfolio that is at least as aggressive as any

b-optimal size-k portfolio, and ii) there exists a b-optimal size-k portfolio such that any s-optimal

size-k portfolio is at least as aggressive.

Figure 5 provides intuition in a special case. The figure shows how news that one’s score is below

a certain cutoff (which induces MLRP-lower beliefs) disproportionately decreases the expected

utility from applications to more selective schools.

c3 c2 c1 c c∗ 1

u3

u2

1

u1

(a) “safety”
school

c3 c2 c1 c c∗ 1

u3

u2

1

u1

(b) “reach”
school

Figure 5: The effect of news of rejection
The figure illustrates the effect of negative news on one’s score on the expected utility from size-1 portfolios.

Specifically, it shows that being rejected by a school with cutoff c, which is less selective than c∗, affects the

expected utility from (the more selective) School 1 (Panel 5b) more than it affects the expected utility from

(the less selective) School 3 (Panel 5a).

Proof. I prove part i). The proof of part ii) is completely analogous. The proof is by induction on

k. The case of k = 1 is obvious, because the MLRP shift to beliefs implies that admission chances
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to schools that yield higher ex-post utility are disproportionately higher. For k > 1, let rs and rb

denote optimal portfolios for s and b, respectively.

Assume that the assertion is correct for all l < k ≤ N . By Lemma 2 and the inductive

hypothesis, if r1
s ≤ r1

b for any choice of a b-optimal portfolio, rb, then we are done, since s’s beliefs

conditional on her being rejected from r1
s , which is more selective than r1

b , MLRP-dominate s’s

beliefs conditional on being rejected by r1
b , and these beliefs MLRP-dominate b’s beliefs conditional

on b being rejected from r1
b by assumption.

To complete the proof, I show that there always exists an s-optimal portfolio, rs, such that

r1
s ≤ r1

b for any choice of a b-optimal portfolio. To begin with, let rs be some s-optimal ROL.

Without loss of generality, assume that b’s beliefs are distributed uniformly on the unit interval

and that s’s beliefs are given by the increasing probability distribution function f , and assume that

r1
s > r1

b for a certain b optimal portfolio, rb. Let j be the minimal index such that rjs ≤ rjb (if such

index exists). Then ris ≤ rib for all i ∈ {j, ..., k} by the inductive hypothesis and the argument in

the previous paragraph.

A possible deviation for b is to drop r1
b from her portfolio, and to add the most desirable school

on rs not on rb, while continuing to rank schools according to her true preferences (note that r1
s = r2

b

is not excluded). Denote the resulting portfolio by r̄b. This deviation will cause her to lose x > 0

utils if the realized score is above cr1
b
, and to gain y > 0 utils if the realized score is above the cutoff

of the new addition, crns , but lower than the cutoffs of all higher-ranked schools (i.e., lower than

crmb := min
{
cr̄ib
|r̄ib < rns

}
). Since these higher-ranked schools are all ranked lower than r1

b , their

cutoffs are all lower than cr1
b
. Since rb is chosen by b over r̄b, A1 :=

(
1− cr1

b

)
· x is weakly greater

than B1 :=
(
crmb − crns

)
· y, where

(
1− cr1

b

)
and

(
crmb − crns

)
are the probabilities that the relevant

events are realized under the assumption that beliefs are uniform.

If r̄ib 6= ris for some i < j, the argument can be iterated. This time we get A1 + A2 ≥ B1 +B2,

where A2 is the probability that the second change causes a utility loss times the magnitude of the

loss, and B2 is the probability of a gain times the magnitude of the gain (both are the incremental

gains/losses after the first change having taken place). Clearly, scores contributing to B2 are all

lower than those contributing to A2.

In general, for all m < j, we get
m∑
i=1
Ai ≥

m∑
i=1
Bi and scores that contribute to Bm are all

lower than those that contribute to Am. Of note, the inequalities do not necessarily hold for each

i separately. That is, B2 may be higher than A2, but the difference must be smaller than the

difference between A1 and B1.

Now, consider s’s deviation of changing her ROL to equal rib for all i < j. For simplicity,

assume first that rjs = rjb . The gain/loss score ranges are the same and so are the magnitudes of

gain/loss, but the probabilities that the realized score is in these ranges change. Denote by Af
i and

Bf
i the corresponding quantities for s, and let fi denote the value of f at the lowest score in the

range associated with Ai (and Af
i ). This score is at least as high as the highest score in the range
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associated with Bi (and Bf
i ); thus, since f is increasing, we get Af

i ≥ fiAi and fiBi ≥ Bf
i . Hence,

Af
1 ≥ f1A1 ≥ f1B1 ≥ Bf

1 ,

and so

Af
1 +Af

2 = Bf
1 + (Af

1 −B
f
1 ) +Af

2 ≥ f1B1 + f1(A1 −B1) + f2A2 ≥ f1B1 + f2(A1 −B1) + f2A2 =

=f1B1 + f2(A1 −B1 +A2) ≥ f1B1 + f2B2 ≥ Bf
1 +Bf

2 ,

The inequalities use the fact that fi is decreasing in i (since f is increasing and Ai’s critical scores

are decreasing by construction) and that A1 ≥ B1, and later that A1 +A2 ≥ B1 +B2.

Generally,

Af
1 +Af

2 + ...+Af
m = Bf

1 +Bf
2 + ...+Bf

m−1 +Af
m +

∑
i<m

(Af
i −B

f
i ) ≥

≥ Bf
1 +Bf

2 + ...+Bf
m−1 + fmAm +

∑
i<m

fi(Ai −Bi) =

= Bf
1 +Bf

2 + ...+Bf
m−1 + fmAm + fm

∑
i<m

(Ai −Bi) +
∑
i<m

(fi − fi+1) ·
∑
j≤i

(Ai −Bi) ≥

≥ Bf
1 +Bf

2 + ...+Bf
m−1 + fm

(
Am +

∑
i<m

(Ai −Bi)

)
≥

≥ Bf
1 +Bf

2 + ...+Bf
m−1 + fmBm ≥ Bf

1 +Bf
2 + ...+Bf

m,

but this means that s’s deviation is weakly profitable.13

Finally, if rjs 6= rjb , it must be that rjb > rjs (by the definition of j). This means that Bj−1

is actually smaller from the perspective of s (as her outside option is more desirable). This only

increases s’s incentive to use the above deviation.

Thus, replacing the first j − 1 entries on rs with those of rb yields an s-optimal ROL that is at

least as aggressive than rb. Repeating this process, enumerating over all b-optimal ROLs completes

the proof (since each iteration only makes s’s ROL more aggressive).

4.1 “Falling through the Cracks”

It is clear that better students, who have higher expectations about their desirability to schools, are

sometimes more likely to be assigned to some school. I now show that the opposite is also possible:

in some cases better students are more likely to remain unmatched due to search frictions.

Proposition 3. For all k < N , there exist pairs of agents s and b with identical preferences, but s

is MLRP more optimistic, such that under their respective optimal size-k portfolios s is more likely

than b to be unassigned.

13I have used the fact that fi’s are decreasing, and so the expressions (fi − fi+1) ·
∑
j≤i

(Ai − Bi) are a product of

positive numbers.
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The proof is provided in the supplementary Appendix. It relies on cases where a marginal

improvement to beliefs leads the an agent to choose a more selective safety school.

Next, I consider the case that applying to an additional school is costly but the size of the

portfolio is not constrained. Specifically, I concentrate on the case of constant marginal cost. I

show that the combination of uncertainty and application cost may lead to further failures in the

assortativeness of the match.14

Proposition 4. Let the marginal cost of application be c > 0. Then, there exist pairs of agents s

and b with identical preferences, but s is MLRP more optimistic, such that:

1) s’s optimal portfolio is larger than b’s,

2) s’s optimal portfolio is smaller than b’s,

3) s’s optimal portfolio is identical to b’s.

Remark 5. At points of indifference between a large and a small portfolio, the larger one spans

a wider range of schools in terms of selectivity (by Theorem 1 below). Hence, in cases where

a marginal improvement in beliefs leads to a reduction in the portfolio size, assortativeness is

compromised.

Remark 6. I focus on the simple case of constant marginal cost to reassure the reader that the

result is not driven by the cost function. The proof can easily be generalized to cover other cost

functions.

The proof is provided in the supplementary Appendix. Intuitively, it shows that in the presence

of application costs superstar applicants need not apply to more than one school, and that low-

ability applicants should not apply at all.

5 Relaxation of Constraints

What happens to the optimal portfolio when the constraint on the number of schools is relaxed? 15

To answer this question, the following lemma, which is a corollary of Proposition 2, will be useful.

Lemma 3. For all k, c′ < c =⇒ the most aggressive r(k, c) is at least as aggressive as any r(k, c′).

Theorem 1. Optimal portfolios of larger sizes span a wider range of schools in terms of desirability

(selectivity), and they refine the grid. Formally, for any size-k optimal portfolio, r(k), there exists a

size-k+1 optimal portfolio, r(k+1), such that r1(k+1) ≤ r1(k) ≤ r2(k+1) ≤ r2(k)... ≤ rk+1(k+1).

Example 2 in the supplementary Appendix shows that all the inequalities in the statement of

Theorem 1 can hold strictly.

14Nagypal (2004) derives similar comparative statics in a model with a continuum of schools whose selectivity varies
continuously, where students’ beliefs belong to certain families.

15There are two ways to address this question. Here, I consider the effect of relaxing the constraint for an individual
agent in a large market (i.e., cutoffs are fixed). In a separate project, I consider the equilibrium implications of relaxing
the constraint for all agents, which affects admission cutoffs (see Hafalir et al., 2018, for a special case).
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Proof. I provide a proof for the case that r(k+ 1) is unique. The proof for the other case is similar,

and is deferred to the supplementary Appendix.

When r(k+1) is unique, then for all j ≤ k, rj+1(k+1, c) = rj(k, cr1(k+1,c)). Since cr1(k+1,1) ≤ 1

Lemma 3 implies that rj(k, cr1(k+1,1)) ≥ rj(k, 1) for any r(k, 1). Thus, rj(k, 1) ≤ rj+1(k + 1, 1) for

all j ≤ k. The same argument applied to the dual problem implies that
!
r j(k, 1) ≥

!
r j+1(k + 1, 1)

for all j ≤ k, and thus rk−j(k, 1) ≥ rk−j(k + 1, 1) for all j ≤ k, by Proposition 1.

To gain intuition, note that when a school is ranked highly, the probability that the next-ranked

school will be relevant is scaled down additively (that is, the probability of assignment to the next-

highest school decreases by the same amount, regardless of the identity of this school). This means

that the attractiveness of schools with higher ex-post value (high ui) decreases more when another

school is ranked above them, or when the school above them is replaced with a lower-cutoff school

(as illustrated in Figure 5). Symmetrically, when the constraint on the portfolio size is relaxed the

continuation value is higher, making aggressive gambles more appealing. Intuitively, these forces

give agents incentives to widen the range of selectivity of their applications.

I now prove that the marginal benefit from relaxing the constraint on the size of the portfolio

is decreasing. The proof invokes Theorem 1 and uses a technique similar to that of Wong (2014).

Theorem 2. The marginal benefit from increasing the size of the portfolio is decreasing. Formally,

the function MB(k) : = v(k, 1)− v(k − 1, 1) is decreasing in k.

Proof. Denote by r(k) an optimal portfolio of size k. Then

v(k + 1) := U(r(k + 1)) =
k+1∑
i=1

(
cri−1(k+1) − cri(k+1)

)
u(ri(k + 1)),

where U(·) represent the expected utility from a portfolio, and similarly

v(k − 1) := U(r(k − 1)) =
k−1∑
i=1

(
cri−1(k−1) − cri(k−1)

)
u(ri(k − 1)).

I will identify two (potentially suboptimal) size-k portfolios, p and p′, such that

v(k + 1) + v(k − 1) ≤ u(p) + u(p′).

By the definition of v(k) this will imply that

v(k + 1) + v(k − 1) ≤ 2v(k)

and hence

v(k + 1)− v(k) ≤ v(k)− v(k − 1)

as required.
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To construct the portfolios p and p′ (see Figure 6 for an illustration), list all the 2k entries of

r(k+1) and r(k−1) such that entries are sorted according to weakly-decreasing order of desirability

of the corresponding school and for all i ∈ {1, 2, ...k − 1} the entry ri(k+1) appears before ri(k−1)

on the sorted list. It is possible to choose r(k + 1) and r(k − 1) such that this last requirement is

satisfied by Theorem 1.

Since r(k + 1) has two more entries than r(k − 1), there must exist a minimal m such that

rm(k+ 1) and rm+1(k+ 1) appear consecutively on the sorted list. Let p be the ROL that is equal

to r(k + 1) up to the m-th entry followed by the last k −m entries of r(k − 1), and p′ be the ROL

consisting of the first m − 1 entries of r(k − 1) followed by the last k + 1 −m entries of r(k + 1).

Then

v(k + 1) + v(k − 1)− u(p)− u(p′) =
(
crm(k+1) − crm−1(k−1)

) (
u(rm+1(k + 1))− u(rm(k − 1))

)
≤ 0,

where the inequality follows by the following observations. First, crm(k+1) ≤ crm−1(k−1) because

rm−1(k−1) appears before rm(k+1) on the sorted list (by the minimality ofm), and thus rm−1(k−1)

is weakly more desirable. If the inequality did not hold, rm(k + 1) would have been a dominated

choice (by rm−1(k − 1)), in contradiction to the optimality of r(k + 1). Second, u(rm+1(k + 1)) ≥
u(rm(k − 1)), again by the definition of m. This completes the proof.

6 Monotonicity in Risk Aversion

How does risk aversion affect the optimal portfolio? Adopting the definition of Coles and Shorrer

(2014), I say that agent b is more risk averse than s if there exists a concave nondecreasing function,

φ, such that φ(0) = 0 and for any school, i, the utility that b derives from attending it, ubi , is equal to

φ(usi ). In other words, the two agents share the same ordinal preferences, but the relative marginal

benefit from attending a preferred school is smaller for the more risk averse agent. The assumption

that φ(0) = 0 is just a convenient normalization, as the concavity of φ is unaffected by positive

affine transformations. This normalization holds the value of the outside option fixed.

Proposition 5. Let s and b be agents with identical beliefs and ordinal preferences, but b is more

risk averse than s. Then for all k, i) there exists an s-optimal size-k portfolio that is at least as

aggressive as any b-optimal size-k portfolio, and ii) there exists a b-optimal size-k portfolio such

that any s-optimal size-k portfolio is at least as aggressive.

Proof. What are the implications of b being more risk averse than s for the dual decision problems?

To begin with, note that ūsi = ūbi for all i, as these depend on values of ci exclusively, and these are

equal for both students.

Next, note that if b is more risk averse than s, there must exist a concave transformation, φ,

such that φ(0) = 0 and ubi = φ(usi ). Set the convention that c0 ≡ 1 and uN+1 ≡ 0, and observe that
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cr2(2) cr1(2)

u(r1(2))

u(r2(2))

(a) v(2) + v(0)

cr2(2) cr1(2)

u(r1(2))

u(r2(2))

(b) Two size-1
portfolios

cr3(3) cr2(3) cr1(3)cr1(1)

u(r3(3))

u(r2(3))

u(r1(3))

u(r1(1))

(c) v(3) + v(1)
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u(r1(1))

(d) Two size-2
portfolios

Figure 6: Illustration of the proof of Theorem 2
Panels 6a and 6b show two size-1 portfolios whose covered areas sum to more than the area covered by the
optimal size-2 portfolio (plus zero, the coverage of the optimal size-0 portfolio). Panels 6c and 6d show two
size-2 portfolios whose covered areas sum to more than the sum of areas covered by the optimal portfolios of
size 1 and 3. In each panel, each of the portfolios is represented by a different color (pink or light blue). The
purple areas indicate areas that are double counted when summing the areas covered by the two portfolios
as they are covered by both. The figures highlight that the union of the two portfolios cover the same area,
but in the cases of same size portfolios there is larger overlap—i.e., a larger area is double counted.
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since φ is concave and increasing, it follows that for all N ≥ i > 1,

φ(usi−1)− φ(usi )

usi−1 − usi
≥
φ(usi )− φ(usi+1)

usi − usi+1

.

Adding and reducing 1 everywhere yields

[1− φ(usi )]−
[
1− φ(usi−1)

]
[1− usi ]−

[
1− usi−1

] ≥
[
1− φ(usi+1)

]
− [1− φ(usi )][

1− usi+1

]
− [1− usi ]

,

which can be rewritten as
c̄bi−1 − c̄bi
c̄si−1 − c̄si

≥
c̄bi − c̄bi+1

c̄si − c̄si+1

.

Now, note that given a set of options ordered by their selectivity, the only thing that matters

for the purposes of decision making is the probabilities of the score realizations between each pair

of cutoffs (and not the cardinal value of the cutoff, which is sufficient when the distribution is

assumed to be uniform). Based on this observation, and on the above inequality, there are choice

problems equivalent to (c̄si , ū
s
i )

N
i=1 and

(
c̄bi , ū

b
i

)N
i=1

such that c̄si = c̄bi for all i, ūi’s are unchanged (and

thus equal), and the beliefs of b are MLRP more optimistic.16 Thus, by Proposition 2, in the dual

problem there is a b-optimal portfolio that is at least as aggressive as any s-optimal portfolio, and

an s-optimal portfolio that is weakly less aggressive than any b-optimal portfolio. The Proposition

follows by Proposition 1.

Figure 7 provides graphical illustration for the relationship between risk aversion and beliefs in

a special case.

7 Monotonicity in Outside Options

How do agents’ outside options affect their optimal portfolios? To answer this question, I dispense

with the normalization of the value of the outside option to 0. Instead, I compare the optimal

behavior of individuals who are identical, except that they have different access to outside options.

This may occur, for example, when a centralized school-choice mechanism allocates seats in public

schools, but families differ in their ability to pay for a private school, or when students have different

default assignments in case they are not placed by the mechanism (as is the case in New Orleans;

Gross, DeArmond and Denice, 2015).

Definition 1. A (stochastic) outside option for agent i is a random variable, o, with finite support,

that is independent from schools’ acceptance decisions and whose realization is available for i to

consume regardless of her application portfolio.

16For example, hold c̄si ’s fixed and let the distribution of scores for b be constant

(
c̄bi−c̄bi+1

c̄si−c̄si+1

)
between consecutive

pairs of cutoffs.
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Definition 2. Let o and o′ be two outside options with probability mass functions fo and fo′

respectively. Then o MLRP-dominates o′ if, restricting attention to values of x in the union of

their supports, fo(x)
fo′ (x) is weakly increasing (where c

0 ≡ 0 when c > 0).

Theorem 3. Let s and b be agents who are identical, except that b’s outside option MLRP-

dominates s’s outside option (and both outside options are independent of the score). Then for all

k, i) there exists a b-optimal size-k portfolio that is at least as aggressive as any s-optimal size-k

portfolio, and ii) there exists an s-optimal size-k portfolio such that any b-optimal size-k portfolio

is at least as aggressive.

Proof. Let ox denote the (stochastic) outside option of agent x. Write ûx(z) = E [max {ox, ux(z)}],
where 0 stands for no assignment, and ux(0) = 0. Note that the optimal portfolio for agent x solves

max
r

∑
1≤i≤|r|

max

{
0,min

j<i
{crj} − cri

}
ûx(ri) + max

{
0,min

rj∈r
{crj}

}
E [ox]− C(|r|),

where the “new” term corresponds to the outside option that was normalized to 0 previously (equiv-

alently, deduct from each ûx the expected value to x from consuming her outside option, E [ox],

and use the previous formulation).

Denote the CDF of the random variable ox by Fx, and note that

ûx(z) = ux(z) +

∞∫
ux(z)

[1− Fx(s)]ds,

thus, b is less risk averse than s if ob MLRP-dominates os.
17

Corollary 1. Let s and b be agents who are identical, except that b’s deterministic outside option

is more desirable than s’s. Then for all k, i) there exists a b-optimal size-k portfolio that is at least

as aggressive as any s-optimal size-k portfolio, and ii) there exists an s-optimal size-k portfolio such

that any b-optimal size-k portfolio is at least as aggressive.

Figure 7 is an illustration of Corollary 1.

8 Discussion

There are many important simultaneous search problems that present a nontrivial correlation struc-

ture in the probabilities of success. I showed that an important case can be solved using dynamic

programming. This approach, which is in fact more general, provides a practical tool for both

theoretical and empirical research (Calsamiglia, Fu and Güell, forthcoming; Shorrer, 2019).

17At values of x that are not deterministically lower than s’s outside option (where ûx is flat for both agents), the

slope of the function φ that maps ûs(x) to ûb(x) is Fb(x)
Fs(x)

, which is increasing in ûb(x). I avoided using the inverse
notation in the previous sentence, but I Implicitly used the fact that ûs is strictly increasing in this domain, and
hence invertible.
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ū3

(b) dual
problem

Figure 7: The effect of an improved outside option (Corollary 1)
Panel 7a illustrates the effect of an improvement to an agent’s outside option. It shows that applications to
less selective schools are disproportionately affected (the reduction in the area the corresponding rectangles
cover is disproportionately large). Panel 7b illustrates the dual problem. It corresponds to the same coverage
problem, but the graph is transposed over the line connecting (1, 0) and (0, 1). The effect on the dual problem
is similar to the one illustrated in Figure 5, suggesting an alternative proof for Corollary 1 (by Proposition
1 and Lemma 3).

I have also shown that this decision problem can be represented as a max-coverage problem.

This representation is a special case of Segal (1989; 1993). It sheds light on the relation between the

concavity of the utility function and of beliefs, through a notion of duality, not unrelated to that

of Yaari (1987). This relationship has been documented, in other contexts, in numerous studies of

non-expected utility theory (e.g., Yaari, 1987; Hong, Karni and Safra, 1987).

I have shown that when applicants are vertically differentiated but face uncertainty about their

standing relative to others, an application-cost reduction leading to an increase in the number of

schools one applies to makes the optimal portfolio wider. This stands in contrast to the prediction

of the model where admission decisions are independent, and is consistent with behavior in the

(centralized) Ghanaian high-school admissions and in the (decentralized) U.S. college admissions,

suggesting that agents are facing uncertainty about their strength as applicants.

Centralized clearinghouses determine the school assignment of millions of students around the

world. Pathak and Sönmez (2008) show that strategy-proof assignment mechanisms, ones that give

no incentives for applicants to misrepresent their preferences, “level the playing field” by protecting

strategically unsophisticated applicants. I provide an alternative argument in support of strategy-

proof mechanisms: when popular manipulable mechanisms are in place, strong applicants, ones

with good outside options (such as private schools, or access to a separate admissions process),

will be over represented in the most-desirable schools, even when all applicants are strategically

sophisticated. The same holds for applicants with differing levels of confidence or risk preferences,
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which may lead to disparities across gender lines.

There are many interesting research directions that are beyond the scope of this paper. First,

revisiting studies that make the assumption of independence and replacing this assumption. Sec-

ond, analyzing other simultaneous search environments using the dynamic programming approach.

Finally, studying equilibrium behavior in labor markets where firms’ preferences are correlated.
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Supplementary Material

A Relaxation of Constraints with Independent Admissions

In this appendix, I consider the environment where schools’ admissions decisions are independent

conditional on the information available to the student. I formalize the observation made by Chade

and Smith (2006), which they term the upward diversity of optimal portfolios (see also Kircher,

2009). To make the result transparent, I assume that there are many schools of each type, where a

type is defined by (uc, pc), i.e., the cardinal utility from attending the school c and the probability

of admission. There may also be infinitely many school types (as in the labor market models of

Galenianos and Kircher, 2009 and Kircher, 2009).

Theorem 4. Optimal portfolios are upwardly diverse in the sense that the decision maker derives

higher utility from consuming options that belong to larger portfolios only. Formally, if a school c

is in r(k + 1), an optimal size-k + 1 portfolio, but not in r(k), an optimal size-k portfolio which is

included in r(k + 1), then uc ≥ uc′ for any other school c′ in r(k). Moreover, if a school c is in

r(k + 1) but not in r(k), then pc ≤ pc′ for any other school c′ in r(k).

Proof. First note that in the current setting if uc ≥ uc′ and pc ≥ pc′ with one inequality being strict,

then schools of the same type as c′ will never appear on any optimal ROL as they are dominated by

schools of the same type as c, and I assumed that there are arbitrarily many schools of each type.

Next, note that the beliefs of an applicant about admission probabilities to a school do not change

if the applicant learns she is rejected by other schools (due to independence). Thus, the decision

maker is facing the same problem of finding the optimal portfolio, with the only difference being

that the length of the ROL to be chosen is shorter by one (as there are many copies of c). That is,
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r(k) =
(
r1(k), r(k − 1)

)
. Denoting by v(r) the expected utility from the ROL r, I note that r1(k)

is the solution to the following problem:

r1(k) = argmax
c
pcuc + (1− pc)v(r(k − 1)).

Since v(k − 1) : = v(r(k − 1)) is an increasing function of k, and the same types of schools are

available for any k (since there are plenty), it is clear that higher u (and lower p) schools become

increasingly attractive as k grows large. To see this, note that the problem of choosing an optimal

size-1 portfolio is identical to the problem where agents are vertically differentiated (correlation in

admission chances only matters when portfolios have more than one school). Thus, the choice of

r1(k) is identical to the choice of an optimal size-1 portfolio with an outside option of v(k − 1).

The result therefore follows from Corollary 1 and the fact that v(k − 1) is strictly increasing in k

(hence potential previous ties are broken).

B Additional Proofs

Proposition 3

Proof. Let b be an agent with full-support beliefs whose optimal portfolio does not consist of the top

k choices. Fixing preferences, it is easy to identify such beliefs, by making high scores implausible.

Let rkb be the last-ranked school on b’s ROL. Mix b’s belief (with weight α) with her belief

conditional on her score being above ck (with weight 1 − α). For low enough values of α, the

optimal portfolio has a strictly more selective last choice (the k-th school). Also, for any value of α,

the optimal portfolio is at least as aggressive as b’s (by Proposition 2). Denote by α̂ the supremum

of values of α for which the last choice is strictly more selective than rkb . Comparing the optimal

ROLs for α̂− δ and α̂+ δ for a small δ > 0 gives an example as required, since admission chances

increase only marginally (thanks to improved beliefs) but decrease discontinuously (due to the shift

to a more selective last choice).

Proposition 4

Proof. Assume that b has a uniform belief on [0, 1], and the marginal cost is low enough so that

b’s optimal portfolio consists of more than one school. If s’s belief is uniform on [c1, 1], her optimal

portfolio consists only of the most selective school (since she is certain she will be admitted).

Similarly, let s have a uniform belief on [0, 1], and let c be low enough so that s’s optimal

portfolio consists of more than one school. If b′s belief is uniform on [0, cN−1], her optimal portfolio

consists of either the least selective school or no school at all (since she is certain she will be rejected

by any other school).

The third case follows from continuity of the expected utility in beliefs.
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Theorem 1

Proof. (continued). Consider an optimal portfolio of size k, r(k). If there exists an optimal portfolio

of size k + 1, p(k + 1) such that ri(k) = pi(k + 1) or ri(k) = pi+1(k + 1) , then the proof holds by

induction: For the first case, set rj(k + 1) to equal rj(k) for all j ≤ i and choose the ROL of size

k− i+ 1 that refines the k− i suffix of r(k), which exists by induction. For the second case, apply

the same argument to the dual market.

Otherwise, no optimal portfolio of size k+1 satisfies this condition. Consider the first element of

the most aggressive optimal ROL of size k+1 and it’s least aggressive continuation. By Proposition

2, its last element is weakly less desirable than rk(k), and since we are not in the first case, strictly

so. The same argument applied to the dual problem establishes that the first element on the

size-k + 1 ROL is strictly more desirable than r1(k). I will show that these portfolios satisfy the

inequalities in the statement of the theorem.

Towards contradiction, assume that they do not. Then it must be that there exist i and j ∈
{i, i+ 1} such that crj−1(k+1) > cri−1(k) > cri(k) > crj(k+1) (recall the convention that cr0(k+1) = 1).

But this contradicts the optimality of the two portfolios, because by swapping the suffixes that

start with rj(k+ 1) and ri(k) the sum of the expected utilities from the two portfolios will increase

by

[(
crj−1(k+1) − cri(k)

)
u
(
ri(k)

)
+
(
cri−1(k) − crj(k+1)

)
u
(
rj(k + 1)

)]
−[(

crj−1(k+1) − crj(k+1)

)
u
(
rj(k + 1)

)
+
(
cri−1(k) − cri(k)

)
u
(
ri(k)

)]
=(

crj−1(k+1) − cri−1(k)

)
u
(
ri(k)

)
+
(
cri−1(k) − crj−1(k+1)

)
u
(
rj(k + 1)

)
=(

crj−1(k+1) − cri−1(k)

) (
u
(
ri(k)

)
− u

(
rj(k + 1)

))
> 0

where the inequality holds since the first term is positive since crj−1(k+1)−cri−1(k) and the second is

positive as otherwise ri(k) would be dominated by rj(k+ 1), which is less selective. Thus, the sum

of the expected utilities from the two portfolios that result from the swap is strictly greater than

the sum of the expected utilities from the original portfolios. But this contradicts the optimaility

of the original portfolios, because the swap leaves us with one size-k portfolio and one size-k + 1

portfolio, and if both achieve no more than the original portfolios, the above cannot hold.
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C Forward-Looking PSA

Algorithm 2 Forward-Looking PSA

Step 1 For all possible values of r2, find r1(r2) = arg max
cr1≥cr2

(1 − cr1)(ur1 − ur2). Set v1(r2) :=

max
cr1≥cr2

(1− cr1)(ur1 − ur2).

Step i<k For all possible values of ri+1, find ri(ri+1) = arg max
cri≥cri+1

(1 − cri)(uri − uri+1) + vi−1(ri).

Set v(ri+1) = max
cri≥cri+1

(1− cri)(uri − uri+1) + v(ri).

Step k Set rk = arg max
i

(1− crk)urk + vk−1(rk), and for all j < k, rj = rj(rj+1(...(rk))).

D Failure of the “Greedy” Approach

Chade and Smith (2006) show that the “greedy” marginal improvement algorithm identifies the

optimal portfolio when admission decisions are independent conditional on the information available

to the applicant. The following example shows that this result does not extend to the case of

perfectly aligned admission decisions. A greedy algorithm identifies an optimal portfolio of any size

only when the optimal portfolios are nested. In the example, the optimal portfolios of size 1 and

of size 2 are disjoint. This example also shows that all of the inequalities in Theorem 1 may hold

strictly.

Example 2. Consider an environment with three schools such that c1 = 3
4 , c2 = 1

2 , and c3 = 0,

and u1 = 4, u2 = 2.01, and u3 = 1. The values were selected so that singleton portfolios yield the

same expected utility (i.e., (1− ci) · ui = 1), except that School 2 yields a slightly higher expected

utility. It is thus clear that the best singleton portfolio consists of School 2.

Next we consider the optimal portfolio of size 2. Denote by vij the value from the two-school

portfolio {i, j}. Then

v12 =
1

4
· 4 + (

1

2
− 1

4
) · 2.01 ≈ 6

4
,

v13 =
1

4
· 4 + (1− 1

4
) · 1 =

7

4
,

v23 =
1

2
· 2.01 + (1− 1

2
) · 1 ≈ 6

4
.

Hence, the optimal portfolio of size 2 consists of Schools 1 and 3, and does not include School 2.

A greedy algorithm will only achieve a fraction of approximately 6
7 of the expected utility from the

optimal portfolio.

Ajayi and Sidibe (2015) use a greedy approach to approximate the optimal portfolio in their

empirical study of school choice in Ghana. To get a satisfactory approximation, they enhance
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the simple algorithm in various ways. The following proposition provides an explanation of their

success: the baseline that they chose, the greedy algorithm, cannot perform too poorly. Even before

introducing the modifications of Ajayi and Sidibe (2015), a greedy algorithm is assured to achieve

at least 63% of the expected utility from the optimal portfolio.

Proposition 1. For any constraint k, the greedy algorithm achieves at least a
(
1− 1

e

)
-fraction of

the expected utility from the optimal size-k portfolio.

Proof. Since portfolio choice problems are equivalent to certain coverage problems, the statement

follows from well-known results in approximation theory (e.g. Hochbaum, 1996).

E Nondecreasing Marginal Benefit

Example 3. Consider the following six rectangles:18

A = ((0, 0), (3, 0), (0, 3), (3, 3))

B1 = (−0.4, 0), (−0.4, 1.5), (3, 0), (3, 1.5))

B2 = ((−0.4, 1.5), (−0.4, 3), (3, 1.5), (3, 3))

C1 = ((0, 0), (0, 4), (1, 0), (1, 4))

C2 = ((1, 0), (1, 4), (2, 0), (2, 4))

C3 = ((2, 0), (2, 4), (3, 0), (3, 4))

Direct calculation shows that the maximal coverage by a single rectangle is by A with a covered

area of 9, the maximal coverage by a pair of rectangles is by B1 ∪ B2 with a covered area of 10.2,

and the maximal coverage by three rectangles is by C1 ∪ C2 ∪ C3 with a covered area of 12. Thus,

the marginal benefit from relaxing the constraint from 1 to 2 is 1.2, but the marginal benefit from

relaxing the constraint from 2 to 3 is 1.8 > 1.2.

18I thank Avinatan Hassidim for providing this example.

30


