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Abstract

There is a large and growing literature concerned with forecasting time series variables

using factor-augmented regression models. The workhorse of this literature is a two-step

approach in which the factors are first estimated by applying the principal components

method to a large panel of variables, and the forecast regression is estimated conditional

on the first-step factor estimates. Another stream of research that has attracted much at-

tention is concerned with the use of cross-section averages as common factor estimates in

interactive effects panel regression models. The main justification for this second develop-

ment is the simplicity and good performance of the cross-section averages when compared

to estimated principal component factors. In view of this, it is quite surprising that no one

has yet considered the use of cross-section averages for forecasting. Indeed, given the pur-

pose to forecast the conditional mean, the use of the cross-sectional average to estimate the

factors is only natural. The present paper can be seen as a reaction to this. The purpose is to

investigate the asymptotic and small-sample properties of forecasts based on cross-section

average-augmented regressions. In contrast to existing studies, the investigation is carried

out while allowing the number of factors to be unknown.
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1 Introduction

Consider the scalar variable yt, observable for t = 1, ..., T time periods. The data generating

process (DGP) of this variable is the same as in the previous literature on forecasting using

factor-augmented regressions (see, for example, Bai and Ng, 2006; Stock and Watson, 2002a,

2002b), and is given by

yt+h = α′Ft + β′Wt + εt+h = δ′zt + εt+h, (1)

where zt = [F′t , W ′t ]
′, δ = [α′, β′]′, h ≥ 0 is the forecast horizon, Ft is a r× 1 vector of unobserved

common factors, or “diffusion indices”, Wt is a n × 1 vector of known variables, including

deterministic terms and lags of yt, and εt is an error term. While we do not get to observe Ft,

we assume that there is another variable available that is informative regarding Ft. Specifically,

we assume the existence of an “external” m× 1 panel data variable, xi,t, which is observable

not only across time but also across i = 1, ..., N cross-sectional units. Again, similarly to the

previous literature, the DGP of this variable is assumed to have the following common factor

representation:

xi,t = λ′iFt + ei,t, (2)

where λi is a r×m matrix of factor loadings and ei,t is a m× 1 vector of errors that are “largely

idiosyncratic”.1

As is well known, if Ft and δ were known, and E(εt+h|zt, zt−1, ...) = 0, the mean square

optimal forecast of yt is given by

yT+h|T = E(yT+h|zT, zT−1, ...) = δ′zT. (3)

Of course, Ft and δ are not known, and we therefore use ŷT+h|T = δ̂′ ẑT in place of yT+h|T. Here

ẑt = [W ′t , F̂′t ]
′, where F̂t is an estimator of the space spanned by Ft, and δ̂ = [β̂′, α̂′]′ is the least

squares (LS) slope estimator in a regression of yt+h onto ẑt. An important question here is:

How to construct F̂t? The previous literature has focused almost exclusively on the case when

F̂t is obtained using the principal components (PC) method (see Bai and Ng, 2006; Corradi and

Swanson, 2014; Djogbenou et al., 2015, 2017; Stock and Watson, 2002a, 2002b, to mention a

few).2 The idea here is to chose F̂t so as to minimize the variance of the resulting idiosyncratic

1The panel variables in xi,t could be allowed to depend on Wt without affecting the results of the paper.
2Bai and Ng (2009) provide a review of some alternative computationally more demanding approaches, and

give additional references.
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errors, a problem that can be solved by performing an eigenvalue decomposition of the sample

covariance matrix of xi,t. The estimated PC factors can then be seen as weighted cross-section

averages of xi,t with weights set equal to the eigenvectors of the sample covariance matrix of

xi,t.

The results obtained by using the PC method have been very encouraging (see, for exam-

ple, Eickmeier and Ziegler, 2008). One reason for this is the “averaging out effect” that occurs

when pooling from across the cross-sectional dimension of xi,t, and that works by effectively

smoothing any structural instabilities that might exist (see, for example, De Mol et al., 2008;

Banerjee et al., 2008; Stock and Watson, 2009). A drawback is that PC is by construction sen-

sitive to both the level and variation of the variance of ei,t (see, for example, Breitung and

Tenhofen, 2011; Choi, 2012; Boivin and Ng, 2006). Hence, while the averaging makes it robust

to certain features, PC is sensitive to the weights. This begs the question: Why not consider

the equal weighted cross-section average (CA) of xi,t as an estimator of the space spanned by

Ft? The fact that this question has not yet received an answer is particularly surprising given

the good performance of the equal weighted average in combining forecasts from different

models. In fact, the performance of the equal weighted forecast combination has been so good

that it has given rise to what has become known as the “forecast combination puzzle” (see, for

example, Stock and Watson, 2004; Timmermann, 2006). As a partial explanation, Smith and

Wallis (2009) point out that, in analogy to the usual comparison of the LS and weighted LS es-

timators, relatively sophisticated combinations based on estimated weights suffer from an ad-

ditional source of small-sample error that is not there when setting the weights equal, and that

this might well account the difference in performance. Similar results have been documented

in the literature on interactive effects panel data regression models, in which CA estimation of

the common factors tends to lead to better performance than when said estimation is carried

out using PC (see, for example, Chudik et al., 2011; Westerlund and Urbain, 2015).

The current paper is motivated by the discussion in the last paragraph. The purpose is

to study the asymptotic and finite-sample properties of ŷT+h|T when Ft is estimated using the

CAs of xi,t. The use of these CAs in the current context not only simplifies considerably the

implementation of the forecasting exercise, but is in fact quite natural in the sense that it uses

the (sample) mean of xi,t to estimate the (conditional) mean of yT+h. An important issue is, as

it turns out, how many factors there are. The existing theory based on PC estimation assume

that r is known (see, for example, Bai and Ng, 2006; Djogbenou et al., 2015, 2017; Gonçalves
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and Perron, 2014; Stock and Watson, 2002a), which is not realistic. One may of course argue, as

is indeed commonly done, that r can be consistently estimated and therefore that the known

r assumption is without loss of generality. As the bulk of the Monte Carlo evidence shows,

however, r is a difficult object to estimate, which is reflected also in the empirical literature (see,

for example, Breitung and Eickmeier, 2011; Breitung and Pigorsch, 2013; Moon and Weidner,

2015; Stock and Watson, 2005, 2009). Typically, one ends up with too many factors, and as a

result many researches have chosen to work with a fixed number (see, for example, Cheng and

Hansen, 2015; De Mol et al., 2008; Moon and Weidner, 2015; Stock and Watson, 2002a, 2002b,

2009). It is therefore important to consider the case when the number of estimated factors is

larger than r, which closely related to the “oversampling problem” discussed by Boivin and

Ng (2006). One novelty of the present paper is therefore to relax the otherwise so common

known r assumption.

Clearly, ŷT+h|T depends not only on δ̂ but also on F̂t through ẑt. Thus, to study the behavior

of ŷT+h|T, we must examine the asymptotic properties of both δ̂ and F̂t. The number of factors

is, as already pointed out, treated as unknown and estimated using the m ≥ r CAs of xi,t.3

Karabiyik et al. (2017) considered the pooled LS estimator of a factor-augmented panel data

regression with r factors that are estimated using m ≥ r CAs. According to their results, while

consistent, inference is impaired by the presence of a bias in the asymptotic distribution of the

estimator. The exact form of the bias depends on whether m = r or m > r; however, this is

as far as the dependence on the unknown parameter r goes. Moreover, the bias is decreasing

(increasing) in N (T), which means that if T/N → 0 there is no dependence on m and r at all.

The results reported in the present paper are quite different, which is partly expected given

that the problem considered here is much more challenging than the one in Karabiyik et al.

(2017). In particular, unlike in this other paper, here it is not enough to just control for the

factors, but their predictive ability is in fact key in this paper. Moreover, while in Karabiyik

et al. (2017) the model of interest is a panel data regression, here it is a predictive time series

regression. We therefore want to do more with less (data); hence, the challenge.

According to the results, while β̂ is consistent and asymptotically normal, unless m = r, α̂ is

generally inconsistent (for the space spanned by α). Interestingly, in spite of this inconsistency,

ŷT+h|T is still consistent for yT+h|T and asymptotically normal. Hence, the inconsistency of

3When r < m, the LS estimator will be inconsistent, since then there are unattended factors in (1) that may be
correlated with Wt. We therefore restrict our attention to the case m ≥ r.
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α̂ does not interfere with the consistency of ŷT+h|T. It does, however, affect inference, as the

asymptotic variance of ŷT+h|T is inestimable when m > r. This means that confidence intervals

for yT+h|T will not have correct asymptotic coverage. However, the coverage error goes in the

“right” direction in the sense that the asymptotic coverage is at least as large as the nominal

coverage. Hence, while the asymptotic coverage is not correct, we can still control the type I

error rate. These results illustrate quite clearly the importance of not requiring r to be known.

The balance of the paper is organized as follows. In Section 2, we present and discuss the

assumptions, which are used in Section 3 to derive our asymptotic results. Section 4 presents

the results of a small-scale Monte Carlo study. Section 5 is concerned with an empirical appli-

cation aimed at forecasting eight US macroeconomic variables. Section 6 concludes. All proofs

are given in the supplemental material.

2 Assumptions

The conditions under which we will be working are summarized in Assumptions A–D. Here

and throughout this paper tr A, rk A, A+ and ‖A‖ =
√

tr(A′A) denote the trace, the rank, the

generalized Moore–Penrose inverse, and the Frobenius (Euclidean) norm, respectively, of the

matrix A. For any two matrices A and B, diag(A, B) denotes the block-diagonal matrix that

takes A (B) as the upper left (lower right) block. For any matrix Ai, we use A = N−1 ∑N
i=1 Ai

to denote its CA. Moreover,→d and→p signify convergence in distribution and convergence

in probability, respectively.

Assumption A. λi is a non-random matrix such that ‖λi‖ < ∞, λ → λ as N → ∞ and rk λ =

rk λ = r ≤ m.

Assumption B.

1. E(ei,t) = 0m×1 and E(‖ei,t‖8) < ∞ for all i and t.

2. (NT)−1 ∑N
i=1 ∑N

j=1 ∑T
t=1 ∑T

s=1 ‖Σe,ijts‖ < ∞, T−1 ∑T
t=1 ∑T

s=1 ‖Σe,ijts‖ < ∞ and ‖Σe,ijts‖ < ∞

for all i, j, t and s, where Σe,ijts = E(ei,te′j,s) with Σe,ijtt = Σe,ij for all t.

3. E(‖N−1T−1/2 ∑N
i=1 ∑N

j=1 ∑T
t=1(ei,te′i,t−Σe,ij)‖2) < ∞ and E(‖N−1/2 ∑N

i=1(ei,te′i,s−Σe,iits)‖2)

< ∞ for all t and s.
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4. N−1/2 ∑N
i=1 ei,t →d N(0m×1, Σe) as N → ∞, where Σe = limN→∞ N−1 ∑N

i=1 ∑N
j=1 Σe,ij is

positive definite.

Assumption C. zt and ei,t are mutually independent groups. Dependence within each group

is allowed.

Assumption D.

1. E(εt+h|zt, zt−1, ...) = 0 for h > 0.

2. εt is independent of ei,s for all i, t and s.

3. E(ε2
t ) = σ2

ε,t ∈ (0, ∞), T−1 ∑T−h
t=1 σ2

ε,t+h → σ2
ε ∈ (0, ∞) as T → ∞, T−1 ∑T

t=1 ztz′t is positive

definite almost surely (a.s.), T−1 ∑T
t=1 ztz′t →p Σz as T → ∞, where Σz is positive definite,

and E(‖zt‖4) < ∞.

4. T−1/2 ∑T−h
t=1 εt+hzt →d N(0(r+n)×1, Σzε) as T → ∞, where the (r + n) × (r + n) matrix

Σzε = limT→∞ T−1 ∑T−h
t=1 E(ε2

t+hztz′t) is positive definite.

Assumptions A–D are almost the same as in Bai and Ng (2006), which is the main theo-

retical point of reference in the PC strand of the literature. One difference is Assumption A,

which supposes that λ has rank r ≤ m. This should be compared to Assumption B of Bai and

Ng (2006), which requires that limN→∞ N−1 ∑N
i=1 λiλ

′
i is positive definite. Hence, while in PC

each factor has to have a nontrivial contribution to the variance of xi,t, in the CA approach

considered here it is the contribution to the mean that matters. Another difference when com-

pared to the PC strand of the literature is that here the number of factors that can be permitted

is bounded from above by m. Hence, unlike in PC, in CA m is typically larger than one. As

we explain in detail in Section 5, however, in applications this extra data requirement is typ-

ically not an issue in the sense that the series contained in the panel data set can be divided

into categories of variables, and where each category is interpreted quite naturally as a panel

data variable. Hence, in this case, m is simply the number of categories. Assumption B allows

ei,t to be weakly dependent across both time and cross-section units; however, it cannot be

strongly dependent, as in the unit root case. Heteroskedasticity across the cross-section is per-

mitted but not across time. This last restriction is only for ease of exposure, and can be easily

relaxed, as we explain in Section 3. Assumption C allows for serially correlated factors and
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cross-sectionally correlated factor loadings. Assumption D does not rule out the case when yt

is included in zt. It also allows Ft and Wt to be correlated both with each other and over time.

It does, however, require that Ft and Wt are stationary.

3 Asymptotic results

We want to use ŷT+h|T = δ̂′ ẑT to infer yT+h|T = δ′zT. As already mentioned, the previous

research has focused on the case in which r is known. One of the contributions of the current

paper is to relax this assumption. As we will now show, not requiring m = r has important

consequences. We begin by noting how

F̂t = xt = λ
′
Ft + et. (4)

The fact that the r×m matrix λ is not necessarily square and invertible is important, because

it means that the object to be estimated is not necessarily given by Ft. Intuitively, the estimated

object must have the same dimension as F̂t. Therefore, if m > r, F̂t cannot be estimating Ft. In

order to account for this, it is useful to partition λ as λ = [λr, λ−r], where λr is an r× r matrix

of full rank, and λ−r is r × (m− r). This partitioning is without loss of generality because λ

has rank r under Assumption A. Let us correspondingly partition et = [e′r,t, e′−r,t]
′, where er,t

and e−r,t are r× 1 and (m− r)× 1, respectively. If m = r, then we define λ = λr and et = er,t.

Let us also define the m×m matrix Λ, which is such if m > r, then

Λ =

[
λ
−1
r −λ

−1
r λ−r

0(m−r)×r Im−r

]
= [Λr, Λ−r], (5)

where Λr = [λ
−1′
r , 0′(m−r)×r]

′ is m× r and Λ−r = [−λ
′
−rλ

−1′
r , Im−r]′ is m× (m− r). If m = r, we

define Λ = Λr = λ
−1
r = λ

−1
. It is useful to think of Λ as a type of “inverse” of λ, which is such

that λΛ = Ir if m = r and λΛ = [Ir, 0r×(m−r)] if m > r.

In order to appreciate the significance of Λ, it is illustrative to first consider the case when

m = r. The fact that in this case Λ = λ
−1

means that (4) can be rewritten as

Λ
′ F̂t = λ

−1′
F̂t = Ft + λ

−1′
et. (6)

By Assumption B, ‖et‖ = Op(N−1/2) uniformly in t, which implies that ‖λ−1′
F̂t − Ft‖ =

Op(N−1/2). Hence, while F̂t is not consistent for Ft, λ
−1′

F̂t is, which is enough for our pur-

poses, because the rotation by λ is subsumed in the estimation of α. In order to appreciate this
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last point, note how α̂′ F̂t = α′Ft + (λα̂− α)′Ft + α̂′λ
′
(λ
−1′

F̂t− Ft). In Theorem 1 below we show

that ‖λα̂− α‖ = op(1). Hence, since ‖λ−1′
F̂t − Ft‖ = op(1), we have that

α̂′ F̂t = α′Ft + op(1). (7)

In other words, while we cannot estimate α and Ft separately, we can still consistently estimate

their product, which is the quantity that matters for yT+h|T. The main challenge when m = r is

to show that the estimation error in (7) is negligible also in the asymptotic distribution theory

of ŷT+h|T.

Let us now consider the case when m > r. Analogous to (6),

Λ
′ F̂t = Λ

′
λ
′
Ft + Λ

′et =

[
Ft

0(m−r)×1

]
+

[
Λ
′
ret

Λ
′
−ret

]
. (8)

Again, since ‖et‖ = Op(N−1/2), we have that Λ
′ F̂t is no longer consistent for Ft but for

F0
t = Λ

′
λ
′
Ft, which under m > r is equal to F0

t = [F′t , 0′(m−r)×1]
′. This makes sense, be-

cause now F̂t is over-parameterized, and therefore the redundant factor estimates should be

estimated to zero. The problem with this result is that F0
t is not just any parameter but is in

fact an estimated regressor, which means that the associated second order moment matrix is

asymptotically singular because of the zeros. This situation is similar to the one that occurs

when fitting regressions involving regressors that are of different orders of integration (see,

for example, Chang and Phillips, 1995), and the solution is the same. Specifically, in order to

account for the limiting singularity, we introduce the m×m normalization matrix DN , which

is DN = Im if m = r and DN = diag(Ir,
√

NIm−r) if m > r. Since DN F0
t = F0

t , normaliza-

tion by DN does not affect the object of interest. Let us further introduce F̂0
t = DNΛ

′ F̂t and

e0
t = DNΛ

′et, which are such that F̂0
t = λ

−1′
F̂t and e0

t = λ
−1′

et if m = r. If, on the other hand,

m > r, then e0
t = [e0′

r,t, e0′
−r,t]

′ = [e′tΛr,
√

NetΛ−r]′. Note how the last m− r rows of e0
t are scaled

by
√

N. This is important because it prevents the last m− r rows of F̂0
t from converging to zero,

as is obvious from

F̂0
t = F0

t + e0
t =

[
Ft

e0
−r,t

]
+ op(1). (9)

The normalization by DN therefore resolves the asymptotic singularity issue, but at a cost of in-

ducing a dependence on e0
−r,t, which is non-negligible. This dependence is the main challenge

we face when studying the limiting behaviour of ŷT+h|T when m > r. The fact that e0
−r,t is non-

negligible suggests that over-specification of the number of factors will affect the asymptotic

distribution theory.
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The way we have defined it, in the asymptotic analysis F̂0
t is the relevant estimator to

consider regardless of whether m = r or m > r. We therefore want to replace F̂t with F̂0
t ,

and in so doing it is useful to introduce QN = diag(ΛDN , In), ẑ0
t = Q′N ẑt = [F̂0′

t , W ′t ]
′ and

δ0 = [α′(DNΛ
′
λ
′
)+, β′]′. Since λΛ = [Ir, 0r×(m−r)], we have λΛDN = [Ir, 0r×(m−r)], which has

full row rank r. This implies (λΛDN)
+ = [Ir, 0r×(m−r)]

′, and so δ0 = [α′, 01×(m−r), β′]′. Making

use of this notation, (9) and the fact that (DNΛ
′
λ
′
)+DNΛ

′
λ
′
= Ir,

yT+h|T = α′FT + β′WT

= α′(DNΛ
′
λ
′
)+DNΛ

′
λ
′
FT + β′WT

= α′(DNΛ
′
λ
′
)+ F̂0

T + β′WT − α′(DNΛ
′
λ
′
)+(F̂0

T − F0
T)

= δ0′ ẑ0
T − α′(DNΛ

′
λ
′
)+(F̂0

T − F0
T)

= δ0′ ẑ0
T − α′e0

r,T. (10)

Hence, since ŷT+h|T = δ̂′ ẑT = δ̂′Q−1′
N ẑ0

T, we can show that

ŷT+h|T − yT+h|T = T−1/2
√

T(δ̂−QNδ0)′Q−1′
N ẑ0

T + N−1/2α′
√

Ne0
r,T. (11)

The asymptotic distribution of ŷT+h|T − yT+h|T therefore has two sources; Q−1
N

√
T(δ̂− QNδ0)

and
√

Ne0
r,T, where the latter (former) is due to the estimation of Ft (δ). Lemma 1 is concerned

with the first term. It is stated in terms of the (n + m)× 1 vectors B and z0
t , which are such that

B = [0′r×1, b′, 0n×1]
′ and z0

t = [F′t , e0′
−r,t, W ′t ]

′ if m > r, and B = 0(m+n)×1 and z0
t = zt if m = r.

Here, b = (Λ′−rΣeΛ−r)−1Λ′−rΣeΛrα, where Λr and Λ−r are from Λ = [Λr, Λ−r] = limN→∞ Λ.

Lemma 1. Suppose that Assumptions A–D hold. Then, as N, T → ∞ with
√

T/N → 0,

√
TQ−1

N (δ̂−QNδ0) +
√

TN−1/2B = Σ−1
z0

1√
T

T−h

∑
t=1

z0
t εt+h + op(1),

where

Σz0 = plim
N,T→∞

1
T

T−h

∑
t=1

z0
t z0′

t .

For ẑ0
T, we again make use of (9), giving

ẑ0
t − z0

t =

[
e0

r,t
0(n+m−r)×1

]
= Op(N−1/2). (12)
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By using this and Lemma 1, (11) becomes

δNT(ŷT+h|T − yT+h|T)

= δNTT−1/2[
√

T(δ̂−QNδ0)′Q−1′
N +

√
TN−1/2B′]ẑ0

T + δNT N−1/2(α′
√

Ne0
r,T − B′ ẑ0

T)

= δNTT−1/2 1√
T

T−h

∑
t=1

εt+hz0′
t Σ−1

z0 z0
T + δNT N−1/2(α′

√
Ne0

r,T − B′z0
T) + op(1), (13)

where δNT = min{
√

N,
√

T} accounts for the difference in normalization of the two terms on

the right-hand side of (11). Consider the first of these terms. Assumptions B and D ensure that

1√
T

T−h

∑
t=1

z0
t εt+h →d N(0(m+n)×1, Σz0ε) (14)

as T → ∞, where

Σz0ε = lim
N,T→∞

1
T

T−h

∑
t=1

E(ε2
t+hz0

t z0′
t ).

Hence, conditional on z0
T, the first term on the right-hand side of (13) is asymptotically normal;

1√
T

T−h

∑
t=1

εt+hz0′
t Σ−1

z0 z0
T →d MN(0, φ0), (15)

where MN(·, ·) denotes a mixed normal distribution and

φ = lim
T→∞

z0′
T Σ−1

z0 Σz0εΣ
−1
z0 z0

T.

The conditioning on z0
T here is important, because while it is straightforward to show that

T−1/2 ∑T−h
t=1 εt+hz0′

t Σ−1
z0 z0

T is asymptotically normal even unconditionally, the unconditional vari-

ance is given by E(φ) = tr [Σ−1
z0 Σz0εΣ

−1
z0 limT→∞ E(z0

Tz0′
T )], where limT→∞ E(z0

Tz0′
T ) is inestimable

under our assumptions.

Remark 1. Lemma 1 and (15) imply that

√
TQ−1

N (δ̂−QNδ0) +
√

TN−1/2B→d MN(0, φ) (16)

as T → ∞. This result is worthy of some discussion. Suppose first that m > r. Let α̂ = [α̂′r, α̂′−r]
′,

where α̂r and α̂−r are r× 1 and (m− r)× 1, respectively. In this notation,

Q−1
N

√
T(δ̂−QNδ0) +

√
TN−1/2B =

√
T

 λα̂− α

N−1/2(α̂−r + b)
β̂− β

 , (17)
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which according to (16) is asymptotically mixed normal. We can therefore show that λα̂ and

β̂ are
√

T-consistent for α and β, respectively, and asymptotically normal. The most striking

observations are, however, related to α̂−r, the estimated coefficient of the redundant factor esti-

mates. The first thing to note is that under the assumptions of Lemma 1, α̂−r is not necessarily

convergent, and that it is only when
√

TN−1/2 → ∞ that (α̂−r + b) →p 0(m−r)×1.4 But even if

α̂−r is in fact convergent, the rate at which this happens is slower than the usual
√

T rate. In

fact, under the Lemma 1 requirement that
√

T/N → 0, we have (
√

TN−1/2)T−1/4 → 0, which

means that the rate of convergence is slower than T1/4. Hence, since δ̂ is dominated by the com-

ponent that converges slower, the overall convergence rate is given by
√

TN−1/2. The limit of

α̂−r is also interesting. To the extent that δ̂ can be viewed as an estimator of QNδ0, the true

value of α̂−r is given by the zero vector. The fact that b = (Λ′−rΣeΛ−r)−1Λ′−rΣeΛrα 6= 0(m−r)×1

whenever α 6= 0r×1 means that α̂−r is generally inconsistent.5

Let us now consider the case when m = r, in which B = 0(m+n)×1, z0
t = zt and

Q−1
N

√
T(δ̂−QNδ0) =

√
T

[
β̂− β

λα̂− α

]
. (18)

Except for the rotation of α̂, which is not the same as when using PC, when m = r the result

reported in (16) is the same as the one reported in Theorem 1 of Bai and Ng (2006). We also

note that the requirement that
√

T/N → 0 is the same as in this other paper. Hence, up to the

rotation of α̂, asymptotic distribution of Q−1
N

√
T(δ̂−QNδ0) when m = r is the same as for PC.

For the second term on the right-hand side of (13), we make use of the fact that

Im − ΣeΛ−r(Λ
′
−rΣeΛ−r)

−1Λ
′
−r = [Im − ΣeΛ−r(Λ

′
−rΣeΛ−r)

−1Λ
′
−r]Σ

1/2
e Σ−1/2

e

= Σ1/2
e [Im − Σ1/2′

e Λ−r(Λ
′
−rΣeΛ−r)

−1Λ
′
−rΣ1/2

e ]Σ−1/2
e

= Σ1/2
e MΣ1/2′

e Λ−r
Σ−1/2

e , (19)

where MΣ1/2′
e Λ−r

= Im − Σ1/2′
e Λ−r(Λ

′
−rΣeΛ−r)−1Λ

′
−rΣ1/2

e and Σe = Σ1/2
e Σ1/2′

e with Σ1/2
e being

the lower triangular Choleski factor. As stated, MΣ1/2′
e Λ−r

is only defined for m > r. If m = r,

4By using the results provided in the proof of Theorem 1, we can further show that
√

T(λα̂ − α) and√
TN−1/2(α̂−r + b) are asymptotically independent.

5Interestingly enough, in spite of the problems of non-convergence and slow rate of convergence for α̂−r, the
linear combination λα̂ = λr α̂r + λ−r α̂−r is

√
T-consistent for α. Of course, since λ is unknown, in practice this rate

of convergence is not attainable. This finding is similar in spirit to the results reported by Chang and Phillips (1995),
where the rate of convergence depends on whether or not the non-stationarity characteristics of the regressors are
known.
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we define MΣ1/2′
e Λ−r

= Im. By using this, the definitions of e0
r,t, e0

−r,t and B, and letting Φ =

Σ−1/2′
e MΣ1/2′

e Λ−r
Σ1/2′

e Λrα,

α′
√

Ne0
r,t − B′z0

t = α′
√

Ne0
r,t − α′Λ

′
rΣeΛ−r(Λ

′
−rΣeΛ−r)

−1e0
−r,t

= α′Λ
′
r[Im − ΣeΛ−r(Λ

′
−rΣeΛ−r)

−1Λ
′
−r]
√

Net

= α′Λ
′
rΣ1/2

e MΣ1/2′
e Λ−r

Σ−1/2
e

√
Net

= Φ′
√

Net.

The presence of MΣ1/2′
e Λ−r

in Φ means that Φ′
√

Net is asymptotically uncorrelated with e0′
−r,t, as

is clear from

lim
N→∞

E(Φ′
√

Nete0′
−r,t) = lim

N→∞
α′Λ

′
rΣ1/2

e MΣ1/2′
e Λ−r

Σ−1/2
e NE(ete′t)Λ−r

= α′Λ
′
rΣ1/2

e MΣ1/2′
e Λ−r

Σ−1/2′
e Λ−r = 01×(m−r). (20)

Hence, since Φ′
√

Net and e0
−r,t are also (jointly) asymptotically normal by Assumption B, they

must be asymptotically independent. Because zt is independent of ei,t by the same assumption,

it follows that z0
t must be asymptotically independent of

√
Net. The asymptotic distribution of

Φ′
√

Net as N → ∞ is given by

Φ′
√

Net →d N(0m×1, Φ′ΣeΦ), (21)

where Φ = limN→∞ Φ = Σ−1/2′
e MΣ1/2′

e Λ−r
Σ1/2′

e Λrα. The fact that z0
t and

√
Net are asymptoti-

cally independent is important because it means that the unconditional asymptotic normality

in (15) holds also conditionally on z0
t . The normal in (15) is also independent of the one in

(21) because while the former is determined by εt+h, the latter is determined by ei,t, which are

independent by Assumption D. Hence, by adding the results,

δNT(ŷT+h|T − yT+h|T) = δNTT−1/2 1√
T

T−h

∑
t=1

εt+hz0′
t Σ−1

z0 z0
T + δNT N−1/2Φ′

√
Net + op(1)

→d MN
(

0, lim
N,T→∞

(δ2
NTT−1φ + δ2

NT N−1Φ′ΣeΦ)

)
(22)

as N, T → ∞. Theorem 1 is a direct consequence of this last result.

Theorem 1. Under the conditions of Lemma 1,

t(yT+h|T) =
ŷT+h|T − yT+h|T√

T−1φ + N−1Φ′ΣeΦ
→d N(0, 1).
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The fact that according to Theorem 1 the asymptotic distribution of t(yT+h|T) is correctly

centered at zero is noteworthy. Indeed, given how Q−1
N

√
T(δ̂ − QNδ0) enters (11) through

T−1/2
√

T(δ̂− QNδ0)′Q−1′
N ẑ0

T, one would expect
√

TN−1/2B to manifest itself as an asymptotic

bias whenever m > r. However, this is not the case. The reason is that B is zero except

for m − r rows in the middle. Hence, since e0
−r,T sits in the corresponding rows of z0

T, the

product B′z0
t is mean zero, even though B and z0

T are not. The asymptotic variance of t(yT+h|T)

comprises two terms; T−1φ, which emanates from the estimation of δ, and N−1Φ′ΣeΦ, which

emanates from the estimation of Ft. Because the two variance terms vanish at different rates,

the rate of consistency of ŷT+h|T is given by δNT, which is unexpected given the relatively slow

convergence rate of α̂−r discussed in Remark 1.

Theorem 1 holds regardless of whether m > r or m = r. The only difference is that if

m = r, then z0
t = zt, which means that φ and Φ reduce to φ = limT→∞ z′TΣ−1

z ΣzεΣ−1
z zT and

Φ = λ−1α, respectively. The fact that the variance changes depending on whether m = r or

m > r means that the known r assumption is not innocuous. This is true for CA but a similar

result is expected to hold also for PC. The theoretical predictions reported in the PC strand

of the literature based on knowing r should therefore be interpreted with caution, since, as

pointed out in Section 1, in practice the number of factors is likely to be overestimated.

Remark 2. Theorem 1 does not impose any restrictions on N/T. However, the theorem sim-

plifies if either N/T → 0 or T/N → 0. On the one hand, if N/T → 0, then δNT =
√

N and so

t(yT+h|T) reduces to

t(yT+h|T) =

√
N(ŷT+h|T − yT+h|T)√

NT−1φ + Φ′ΣeΦ
=

√
N(ŷT+h|T − yT+h|T)√

Φ′ΣeΦ
+ op(1)→d N(0, 1) (23)

as N, T → ∞ with
√

T/N → 0 and N/T → 0. If, on the other hand, T/N → 0, then δNT =
√

T

and so

t(yT+h|T) =

√
T(ŷT+h|T − yT+h|T)√

φ
+ op(1)→d N(0, 1) (24)

as N, T → ∞.

Remark 3. It is interesting to compare the above results with those reported by Bai and

Ng (2006) for PC in the known r case. Let us therefore assume that r = m = 1. In this

case, φ is asymptotically equivalent to the corresponding PC term given in Theorem 3 of

13



Bai and Ng (2006). As for Φ′ΣeΦ = Σeα
2λ−2, the corresponding term in PC is given by

Σeα
2(limN→∞ N−1 ∑N

i=1 λ2
i )
−1.6 Hence, since λ

2 ≤ N−1 ∑N
i=1 λ2

i by the Cauchy–Schwarz in-

equality, we have that Σeα
2λ−2 ≥ Σeα

2(limN→∞ N−1 ∑N
i=1 λ2

i )
−1. The PC forecast is therefore

more efficient than the CA forecast, which is partly expected because under homoskedastic-

ity PC is asymptotically equivalent to maximum likelihood (see Bai, 2003, for a discussion).

This is true in the special case considered here, and provided that T/N does not go to zero,

so that N−1Φ′ΣeΦ is in fact non-negligible. In general, nothing can be said about the relative

efficiency of CA and PC. In Section 4, we therefore use Monte Carlo simulations to shed light

on this issue.

Because the terms that appear in the variance of t(yT+h|T) are unknown, as it stands, the

asymptotic normal distribution theory reported in Theorem 1 is not very useful to us. We

therefore look for consistent estimators of these terms. Analogous to Bai and Ng (2006), a

natural candidate for an estimator of φ is given by φ̂ = ẑ′TΣ̂+
z Σ̂zεΣ̂+

z ẑT, where

Σ̂zε =
1
T

T−h

∑
t=1

ε̂2
t+h ẑt ẑ′t, (25)

Σ̂z =
1
T

T−h

∑
t=1

ẑt ẑ′t, (26)

with ε̂t+h = yT+h − δ̂′ ẑt. The estimator of Φ′ΣeΦ is given by Φ̂′Σ̂eΦ̂, where Φ̂ = α̂ and the

exact form of Σ̂e depends on whether or not ei,t is weakly correlated across the cross-section.

Let êi,t = xi,t − λ̂′i F̂t, where λ̂i is the LS slope estimator in a time series regression of xi,t onto F̂t.

If ei,t is cross-section uncorrelated, we use

Σ̂e =
1

NT

N

∑
i=1

T

∑
t=1

êi,t ê′i,t, (27)

whereas if ei,t is weakly cross-section correlated, we use

Σ̂e =
1

nT

n

∑
i=1

n

∑
j=1

T

∑
t=1

êi,t ê′j,t, (28)

where n is a cross-section truncation parameter satisfying n/δ2
NT → 0.7 Regardless of which

6This follows from replacing λ by the corresponding PC rotation matrix H and then using Theorem 1 of Bai
(2003).

7The truncation in Σ̂e under weak cross-section correlation does not require any additional assumptions other
than Assumptions A–D. The reason is that the cross-section correlations can be consistently estimated using the
time series variation as T → ∞.
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estimator that is being used, the feasible version of t(yT+h|T) is given by

t̂(yT+h|T) =
ŷT+h|T − yT+h|T√

T−1φ̂ + N−1Φ̂′Σ̂eΦ̂
. (29)

Remark 4. Assumption B rules out heteroskedasticity over time in ei,t. An easy way to allow

for general heteroskedasticity in both i and t when ei,t is cross-correlation free is to replace

(NT)−1 ∑N
i=1 ∑T

t=1 êi,t ê′i,t with N−1 ∑N
i=1 êi,T ê′i,T.

The next theorem is stated in terms of an m× 1 vector ∆, which is such that ∆ = 0m×1 if

m = r and

∆ =

[
−λ−1

r λ−rb√
τσε(Λ′−rΣeΛ−r)−1/2Zm−r

]
if m > r, where Zm−r ∼ N(0(m−r)×1, Im−r) and τ is such that N/T → τ.

Theorem 2. Suppose that Assumptions A–D hold. Then, as N, T → ∞ with
√

T/N → 0 and

N/T → τ < ∞,

φ̂→p φ,

Φ̂′Σ̂eΦ̂→d (Φ + ∆)′Σe(Φ + ∆).

Theorem 2 shows that while φ̂ is generally consistent for φ, Φ̂′Σ̂eΦ̂ is not. In fact, under

m > r the limit of Φ̂′Σ̂eΦ̂ is not even constant but random. The randomness of ∆ disappears

if τ = 0. However, because of the presence of λ−1
r λ−rb in ∆, Φ̂′Σ̂eΦ̂ is still not consistent for

Φ′ΣeΦ. The main exception is if m = r, in which case ∆ = 0m×1, and so

t̂(yT+h|T) =
ŷT+h|T − yT+h|T√

T−1φ + N−1Φ′ΣeΦ
+ op(1)→d N(0, 1) (30)

as N, T → ∞ with
√

T/N → 0. Hence, under these conditions, a 100(1 − γ)% confidence

interval for yT+h|T can be easily constructed as

CIγ(yT+h|T) = [ ŷT+h|T − zγ/2 ·
√

T−1φ̂ + N−1Φ̂′Σ̂eΦ̂,

ŷT+h|T + zγ/2 ·
√

T−1φ̂ + N−1Φ̂′Σ̂eΦ̂ ], (31)

where zγ = Ψ−1(1− γ) is the (1− γ)-th quantile of the standard normal cumulative distribu-

tion function, here denoted Ψ(x). The asymptotic coverage of this confidence interval can be

easily deduced from (30) and is given by

lim
N, T→∞

P[yT+h|T ∈ CIγ(yT+h|T)] = lim
N, T→∞

P(|t̂(yT+h|T)| ≤ zγ/2) = 1− γ. (32)
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This confidence interval is for the conditional mean of yT+h. If we want a confidence interval

for yT+h itself, then we have to assume that εt ∼ N(0, σ2
ε ). Under this restriction, a 100(1− γ)%

confidence interval for yT+h is given by

CIγ(yT+h) = [ ŷT+h|T − zγ/2 ·
√

σ̂2
ε + T−1φ̂ + N−1Φ̂′Σ̂eΦ̂,

ŷT+h|T + zγ/2 ·
√

σ̂2
ε + T−1φ̂ + N−1Φ̂′Σ̂eΦ̂ ], (33)

where σ̂2
ε = T−1 ∑T−h

t=1 ε̂2
t+h, whose asymptotic coverage is again given by 1− γ.

The problem with the above results is of course that they only apply when m = r, which is

unlikely to be the case in practice. Interestingly, if we accept that test statistics and confidence

intervals are conservative, asymptotically valid inference is possible also when m > r. This is

formalized in Theorem 3, which holds for all m ≥ r.

Theorem 3. Suppose that Assumptions A–D hold. Then, as N, T → ∞ with T/N → 0,

lim
N, T→∞

P(|t̂(yT+h|T)| > zγ/2) ≤ γ.

Theorem 3 implies that

lim
N, T→∞

P[yT+h|T ∈ CIγ(yT+h|T)] ≥ 1− γ. (34)

This holds for all m ≥ r. If, however, m = r, then the asymptotic coverage is exactly 1− γ

and the T/N → 0 requirement is no longer needed, as is evident from (30). The fact that the

T/N → 0 condition is only needed when m > r reinforces the importance of not treating r as

known in the asymptotic analysis. Hence, while Theorem 3 only requires that m ≥ r, the results

do depend on whether m = r or m > r. In the next section, we use Monte Carlo simulations to

investigate the effect of the conservativeness when m > r in small samples. According to the

results, the effect of using the conservative critical values is almost nonexistent. Finally, note

that while stated in terms of CIγ(yT+h|T), the result in (34) applies also to CIγ(yT+h).

4 Monte Carlo simulations

In this section, we evaluate the small-sample properties of the CA-based forecasts. The results

are compared to those obtained when using both the true factors and the PC-based method of

Bai and Ng (2006). The DGP used for this purpose is similar to the DGP used in the Monte

Carlo study of Bai and Ng (2006), and can be seen a restricted version of (1) and (2) that sets
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h = 4, W1 = · · · = WT = 1, α = 1m×1 = [1, ..., 1]′, β = 1 and εt ∼ N(0, 1). Serial correlation in

Ft is permitted through

Ft = ρFt−1 +
√

1− ρ2ut, (35)

where ρ = 0.5 and ut ∼ N(0, 1). Bai and Ng (2006) assume that m = r = 1. According to

our asymptotic results, however, it matters whether m = r or m > r, and in this section we

therefore set m ∈ {1, 2}. The DGP of ei,t is similar to the one considered by Bai and Ng (2006),

and is given by

et = Ω(u)1/2vt, (36)

where vt = [v1,t, ..., vN,t]
′ is N × m with vi,t ∼ N(0m×1, σ2

v,i Im) being m× 1. Hence, Ω(u)1/2 is

the lower triangular Cholesky factor of the N × N Toeplitz matrix Ω(u), whose i-th diagonal

element is ui if i ≤ 10 and is zero otherwise. Hence, in this DGP, the cross-section correlation

and cross-section heteroskedasticity of ei,t is controlled by u and σ2
v,i, respectively. We consider

a total of eight DGPs that differ only in how we parameterize r, m, u and σ2
v,i and λi. This is

described in Table 1.

As already explained in Section 3, the appropriate choice of Σ̂e depends on whether ei,t is

cross-section correlated, which is similar to PC. The results reported in this section are based on

using the cross-section correlation robust variance estimator only when ei,t is in fact weak cross-

section correlated, and in so doing we follow Bai and Ng (2006), and set n = bmin{
√

N,
√

T}c.

Also, the PC results are based on taking the true number of factors, r, as known. We also

simulate the forecast based on taking Ft as known.8 We report the empirical coverage rate and

mean squared forecast error (MSE) for both ŷT+h and ŷT+h|T when γ = 0.05. The results are

based on 5,000 replications of samples of size (N, T) ∈ {30, 50, 100, 200}.

Results reported in Tables 2–9 can be summarized as follows:

• The coverage rates for ŷT+h are very close to the nominal 95% rate. This is true regard-

less of whether one uses CA or PC. For ŷT+h|T, however, there is a marked difference in

performance with the coverage of CA generally being much closer to the nominal rate,

especially among the smaller values of N and T. Hence, in terms of coverage, it seems

as that the simplicity of CA comes without cost. In fact, if anything, it seems as that

8When Ft is known, we simply ignore the terms induced by the estimation of Ft from the variance, as in Bai and
Ng (2006).
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the computationally most costly PC approach is also the one with poorest performance,

which, as pointed out in Section 1, is largely in agreement with the findings of the previ-

ous forecast combination and panel literatures.

• The coverage rates reported for the case when m = r = 1 are very similar to those

reported for m = 2 > r = 1, suggesting the use of conservative critical values in the

latter case has little or no effect on the coverage of CA. The fact that CA continues to

perform relatively well also when m > r is particularly noteworthy given that PC treats

r as known, which means that, unlike CA, PC do not overestimate the number of factors.

• As expected, the MSE of ŷT+h is generally smallest when the forecast is based on the true

factors, although the difference when compared to CA and PC is typically very small.

Similarly, while the MSE results for CA and PC are not equal, the differences are small.

In particular, while PC tend to perform best when r = m = 1 (as expected given the

discussion following Corollary 1), in the more realistic case when m > r, it is the other

way around. The variance of ŷT+h when εt ∼ N(0, 1) is the variance of ŷT+h|T plus one

(see Section 3). Consistent with this we see that the MSE of ŷT+h|T is roughly that of

ŷT+h less one. Except for this difference, however, the results reported for ŷT+h|T are

qualitatively the same as those reported for ŷT+h.

All-in-all, we find that the relatively simple and user-friendly CA-based forecasting ap-

proach tends to perform at least as good as the main competitor based on PC.

5 Empirical illustration

In this section, we revisit the Stock and Watson (2005) data set, which has been heavily used

in the PC literature.9 An incomplete list of users of this data set include Bai and Ng (2008),

Breitung and Pigorsch (2013), Breitung and Eickmeier (2011), and Hallin and Liŝka (2007). The

data set has also been revised and extended in several directions (see, for example, Stock and

Watson, 2009). The data comprise of 132 monthly macroeconomic series for the US and stretch

the period 1960:1 to 2003:12. Many of the series are non-stationary, which, as pointed out in

Section 2, is not permitted under our assumptions. The data are therefore transformed by

taking logs, first or second differences when necessary, as in Stock and Watson (2005). The

9The data are available at http://www.princeton.edu/∼mwatson/wp.html.
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variables to be forecasted are the same as in Stock and Watson (2002b). The first four are

measures of real economic activity that are used to construct the Index of Coincident Economic

Indicators maintained by the Conference Board. They are total industrial production (IPS10),

real personal income less transfers (A0M051), real manufacturing and trade sales (A0M057),

and the number of employees on non-farm payrolls (PAYEMS). The remaining four series are

price indices. They are consumer price index (PUNEW), personal consumption expenditure

implicit price deflator (GMDC), consumer price index less food and energy (CPILFESL), and

consumer price index for finished goods (PWFSA).10

In most studies of the Stock and Watson (2005) data set the number of common factors is

a key issue. Different approaches have been used; however, most studies estimate between

six and 10 factors, which, as Stock and Watson (2005) note in their Section 4.3 called “Why So

Many Factors?”, seems excessive given the estimates reported in the bulk of the empirical fac-

tor model literature. Stock and Watson (2005) themselves apply PC and two of the information

criteria of Bai and Ng (2002) with which they estimate seven factors, although they mention

that the criteria are almost flat for between six and 10 factors. In other words, there is substan-

tial uncertainty over the appropriate number of factors to use, which means that it is important

to use forecasting approaches that are robust in this regard. The CA-based approach consid-

ered here only requires that the number of CAs is not smaller than the number of factors, and

is in this sense more suitable than existing PC-based forecasting approaches, which all rely on

correct specification of the number of factors.

The robustness with respect to the number of factors is one reason for preferring CA, as

opposed to PC. Another reason is that it enables easy interpretation of the estimated factors.

One of the issues with estimated PC factors is that they are difficult to interpret, because each

factor estimate is influenced to some degree by all the series in the panel data set, and the or-

thogonalization in PC means that no one of them will correspond exactly to a precise economic

concept. A common approach is to try to label the factors according to their relationship with

the underlying series (see, for example, Ludvigson and Ng, 2009). Stock and Watson (2005)

look at the marginal contribution of each factor estimate to each of the series in the data set,

which are organized into 14 categories (as in Stock and Watson, 2002b), namely, (1) real out-

put and income, (2) employment and hours, (3) real retail, manufacturing and trade sales, (4)

10Please see Table A.1 of Stock and Watson (2005) for a complete definition of all the 132 series by the mnemonics
given here in parentheses.
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consumption, (5) housing starts and sales, (6) real inventories, (7) orders, (8) stock prices, (9)

exchange rates, (10) interest rates and spreads, (11) money and credit quantity aggregates, (12)

price indexes, (13) average hourly earnings, and (14) miscellaneous. According to the results,

while the first and most important factor loads mainly on series in the real output and income,

and employment and hours categories, the second loads mainly on interest rates, consumption

and stock prices. The second factor also loads on inflation, as does the third factor. The fourth

factor loads on interest rates, the fifth factor loads mainly on employment and hours, and the

sixth and seventh factors load mainly on exchange rates.

Of course, while suggestive, any labeling of the PC factors is naturally imperfect. An ad-

vantage of working with CAs is that they lend themselves to easy interpretation. In the cur-

rent application, it is natural to average within categories and to interpret the resulting factor

estimates accordingly. This will ensure not only that the estimated factors are economically

meaningful, but also that there are enough CAs to capture the underlying factors. An issue

arises, as the number of series within each category is not the same, that is, N is not the same

across categories. This has two implications. One implication is that while the definition of F̂t

is trivially extendable to the case with different number of cross-section units for each average,

the definition of Σ̂e in the cross-section uncorrelated case is not. In this section, we therefore

use the definition in cross-section correlated case, which is not only easily extendable (by just

summing across the estimated idiosyncratic errors within each category), but also very gen-

eral. The other implication is that because the number of series within each category varies

greatly, from 27 (employment and hours) to just one (consumption and miscellaneous), we

cannot always rely on consistency of the estimated factors. The way we solve this issue is to

simply treat the averages for the smallest categories as known factors. The predictive content

of each of the 14 factor candidates is evaluated by grid-searching over all possible combina-

tions, and using the Schwarz Bayesian information criterion (BIC) to select the one to use (as

in Stock and Watson, 2002a, 2002b).

Following the bulk of the previous literature (see, for example, Bai and Ng, 2008, and Stock

and Watson, 2002a, 2002b), we use an expanding estimation window using all available data

at the point of the forecast to estimate unknown parameters and factors. Another reason to

prefer CA over PC is the extreme ease with which this type of rolling window out-of-sample

forecasting can be carried out. Note in particular how, unlike with PC, the CAs do not have to

be reestimated for each forecast. The first forecast is based on using the first 100 observations

20



covering the period 1960:1–1968:4 for the estimation. In interest of comparison, the CA-based

forecast is compared to that obtained when using PC. Stock and Watson (2002b) consider three

PC-based forecasting models (called “diffusion index forecasts”) that differ only in the lag

structure of the fitted forecasting model. Interestingly, in most cases more elaborate lag struc-

tures offer little or no improvement over the simplest “DI” specification with only two factors

and a constant. In this section, we consider a slightly more general model with ẑt = [F̂′t , 1, yt]′,

where the dimension of F̂t is again selected by the BIC. As in the previous literature, we con-

sider three forecasting horizons; h = 6, h = 12 and h = 24.

Table 10 reports the results on the MSE of the CA- and PC-based forecasts (times 100),

computed relative to the MSE of a simple univariate autoregressive (AR) model that sets

ẑt = [1, yt]′. Before we come to these results, however, we discuss the selection of the CAs.

An important finding in Stock and Watson (2002a, 2002b) is that while when the selection is

done at the estimated panel factor model for xi,t (as in Stock and Watson, 2005), as already

mentioned, the required number of factors tends to be quite large, when the selection is done

at the estimated time series forecasting model for yt+h the required number of factors is much

smaller, between one and three. Consistent with this finding, the number of CAs for each of

the eight forecasted variables ranges between one and five with an average of 2.25. The CAs

with the highest selection rates are real output and income, employment and hours, and price

indices, which is broadly in agreement with the results of Stock and Watson (2005).

Looking now at Table 10, we see that the factors-based forecasts always outperform the

AR benchmark. Hence, since the only the difference between these two sets of forecasts is the

factors, we can infer that their inclusion leads to improved forecasting accuracy. We also see

that the magnitude of the relative MSEs is roughly in agreement with the results reported by

Stock and Watson (2002a, 2002b). More importantly, when we compare the relative MSE of

the two factor-based forecasts we see that CA is almost uniformly better than PC. The only

exceptions are for GMDC, CPILFESL and PWFSA when h = 6, in which case PC performs

best, although the difference in performance is only marginal. The same cannot be said for

the other variables and horizons. On the contrary, here the difference in performance can be

quite substantial. To take an extreme example, consider PUNEW when h = 24. While the

relative MSE of PC is 88.5, the relative MSE of CA is much smaller, 65.5, which represents

an improvement of 26%. The average gain in performance obtained by using CA rather than

PC is 5% when h = 6, 9% when h = 12 and 14% when h = 24. The average gain therefore
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increases with the forecasting horizon. A possible explanation for this is that CA is relatively

less affected by the uncertainty that comes from increasing h. Hence, consistent with the Monte

Carlo results reported in Section 5, we find that there is little or no cost to using the relatively

simple CA-based forecasting approach. In fact, if anything, it is the other way around.

6 Conclusion

The existing forecasting literature for factor-augmented regressions is based almost exclusively

on PC. The present paper is the first to consider CA as an alternative to PC. The main theo-

retical contribution is to show that the forecasts obtained based on CAs of m ≥ r panel data

variables are consistent and asymptotically normal as N, T → ∞ with
√

T/N → 0. A problem

arises in the empirically relevant case when m > r. In particular, the use of too many CAs

causes an inconsistency in the estimator of the asymptotic variance of the conditional mean,

which means that the coverage of the resulting confidence intervals is incorrect. The coverage

is, however, shown to be upwards biased, which means that the confidence intervals will be

conservative. This last result is important, because the previous PC-based literature assumes

that r is known, which in CA is tantamount to requiring that m = r. The aforementioned

problem caused by over-specification of the number of factors has therefore been completely

overlooked.

The Monte Carlo and empirical results reveal that CA tends to perform at least as well as

PC. CA is also computationally very attractive and enables easy interpretation of the estimated

factors. It should therefore be a valuable addition to the already existing menu of forecasting

tools.
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Table 1: Monte Carlo DGPs.

Label r m u σ2
v,i λi

DGP1 1 1 0 1 U[0, 1]
DGP2 1 1 0.5 1 U[0, 1]
DGP3 1 1 0 U[0.5, 1.5] U[0, 1]
DGP4 1 1 0.5 U[0.5, 1.5] U[0, 1]
DGP5 1 2 0 1 [U[0, 1], U[0, 0.5]]
DGP6 1 2 0.5 1 [U[0, 1], U[0, 0.5]]
DGP7 1 2 0 U[0.5, 1.5] [U[0, 1], U[0, 0.5]]
DGP8 1 2 0.5 U[0.5, 1.5] [U[0, 1], U[0, 0.5]]

Notes: r and m refer to the number of factors in Ft and the number of panel data variables in xi,t, respectively. u
measures the extent of cross-section correlation in the “idiosyncratic” errors driving xi,t, and σ2

v,i is the variance
of those errors. λi is the r×m factor loading matrix.

Table 2: Monte Carlo results for DGP1 with m = r = 1, and cross-section uncorrelated and
homoskedastic errors.

ŷT+h ŷT+h|T
CR MSE CR MSE

N T CA PC F CA PC F CA PC F CA PC F
30 30 0.97 0.97 0.97 0.95 0.91 0.89 0.95 0.90 0.96 0.13 0.15 0.07
50 30 0.96 0.96 0.96 0.97 0.94 0.94 0.95 0.92 0.95 0.11 0.13 0.07
100 30 0.97 0.97 0.96 0.91 0.88 0.90 0.96 0.94 0.96 0.09 0.11 0.07
200 30 0.96 0.96 0.96 0.95 0.92 0.94 0.95 0.94 0.95 0.08 0.11 0.07
30 50 0.96 0.96 0.96 1.00 0.96 0.94 0.94 0.85 0.96 0.11 0.11 0.04
50 50 0.96 0.96 0.96 1.01 0.98 0.97 0.95 0.88 0.95 0.08 0.09 0.04
100 50 0.96 0.96 0.96 0.93 0.92 0.92 0.96 0.92 0.96 0.06 0.08 0.04
200 50 0.97 0.97 0.97 0.94 0.92 0.93 0.95 0.93 0.95 0.05 0.07 0.04
30 100 0.96 0.95 0.95 1.06 1.03 0.98 0.93 0.77 0.95 0.09 0.08 0.02
50 100 0.95 0.95 0.95 1.05 1.03 1.01 0.94 0.82 0.95 0.06 0.06 0.02
100 100 0.96 0.96 0.96 0.96 0.95 0.95 0.95 0.88 0.95 0.04 0.05 0.02
200 100 0.96 0.96 0.96 0.93 0.92 0.92 0.94 0.90 0.95 0.03 0.04 0.02
30 200 0.96 0.95 0.96 1.03 1.00 0.95 0.93 0.65 0.94 0.08 0.07 0.01
50 200 0.96 0.96 0.96 1.01 0.99 0.97 0.95 0.75 0.95 0.05 0.04 0.01
100 200 0.95 0.95 0.95 1.00 0.99 0.98 0.95 0.82 0.96 0.03 0.03 0.01
200 200 0.95 0.95 0.95 1.01 1.01 1.01 0.94 0.88 0.95 0.02 0.02 0.01

Notes: “CA”, “PC” and “F” refer to the results based on CAs, estimated PC factors based on knowing the true
number of factors, r, and the true factors, respectively. “CR” and “MSE” denote the coverage rate and the
empirical mean squared forecast error, respectively. See Table 1 for a detailed description of the DGP.
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Table 3: Monte Carlo results for DGP2 with m = r = 1, and cross-section correlated and
homoskedastic errors.

ŷT+h ŷT+h|T
CR MSE CR MSE

N T CA PC F CA PC F CA PC F CA PC F
30 30 0.97 0.97 0.97 0.98 0.92 0.89 0.92 0.94 0.96 0.16 0.16 0.07
50 30 0.96 0.97 0.96 0.99 0.94 0.94 0.94 0.94 0.95 0.13 0.14 0.07
100 30 0.97 0.97 0.96 0.92 0.88 0.90 0.94 0.96 0.96 0.10 0.11 0.07
200 30 0.96 0.96 0.96 0.95 0.92 0.94 0.95 0.95 0.95 0.08 0.11 0.07
30 50 0.96 0.96 0.96 1.02 0.97 0.94 0.91 0.91 0.96 0.13 0.12 0.04
50 50 0.96 0.96 0.96 1.02 0.99 0.97 0.93 0.93 0.95 0.10 0.10 0.04
100 50 0.96 0.96 0.96 0.94 0.92 0.92 0.94 0.95 0.96 0.07 0.08 0.04
200 50 0.97 0.97 0.97 0.94 0.91 0.93 0.94 0.96 0.95 0.06 0.07 0.04
30 100 0.96 0.96 0.95 1.08 1.04 0.98 0.89 0.88 0.95 0.11 0.09 0.02
50 100 0.95 0.95 0.95 1.07 1.04 1.01 0.91 0.91 0.95 0.08 0.07 0.02
100 100 0.96 0.96 0.96 0.97 0.95 0.95 0.93 0.94 0.95 0.05 0.05 0.02
200 100 0.96 0.96 0.96 0.94 0.92 0.92 0.93 0.95 0.95 0.04 0.04 0.02
30 200 0.96 0.96 0.96 1.05 1.01 0.95 0.89 0.84 0.94 0.10 0.08 0.01
50 200 0.96 0.96 0.96 1.03 1.00 0.97 0.92 0.90 0.95 0.06 0.05 0.01
100 200 0.96 0.95 0.95 1.01 0.99 0.98 0.93 0.93 0.96 0.04 0.03 0.01
200 200 0.95 0.95 0.95 1.02 1.01 1.01 0.93 0.94 0.95 0.03 0.03 0.01

Notes: See the notes to Table 2.

Table 4: Monte Carlo results for DGP3 with m = r = 1, and cross-section uncorrelated and
heteroskedastic errors.

ŷT+h ŷT+h|T
CR MSE CR MSE

N T CA PC F CA PC F CA PC F CA PC F
30 30 0.97 0.97 0.97 1.00 0.95 0.89 0.93 0.85 0.96 0.19 0.20 0.07
50 30 0.97 0.96 0.96 1.01 0.97 0.94 0.95 0.88 0.95 0.15 0.16 0.07
100 30 0.97 0.96 0.96 0.93 0.90 0.90 0.95 0.92 0.96 0.11 0.13 0.07
200 30 0.96 0.96 0.96 0.96 0.93 0.94 0.95 0.93 0.95 0.09 0.12 0.07
30 50 0.96 0.96 0.96 1.05 1.01 0.94 0.92 0.78 0.96 0.17 0.16 0.04
50 50 0.96 0.96 0.96 1.04 1.01 0.97 0.93 0.83 0.95 0.12 0.12 0.04
100 50 0.96 0.96 0.96 0.95 0.93 0.92 0.95 0.89 0.96 0.08 0.09 0.04
200 50 0.97 0.97 0.97 0.94 0.92 0.93 0.94 0.92 0.95 0.06 0.08 0.04
30 100 0.96 0.95 0.95 1.12 1.08 0.98 0.91 0.67 0.95 0.15 0.13 0.02
50 100 0.96 0.95 0.95 1.09 1.06 1.01 0.93 0.74 0.95 0.10 0.09 0.02
100 100 0.96 0.96 0.96 0.98 0.96 0.95 0.94 0.81 0.95 0.06 0.06 0.02
200 100 0.96 0.96 0.96 0.94 0.93 0.92 0.94 0.87 0.95 0.04 0.05 0.02
30 200 0.96 0.95 0.96 1.09 1.05 0.95 0.91 0.55 0.94 0.14 0.12 0.01
50 200 0.96 0.96 0.96 1.04 1.02 0.97 0.93 0.64 0.95 0.08 0.07 0.01
100 200 0.96 0.95 0.95 1.02 1.00 0.98 0.94 0.73 0.96 0.05 0.04 0.01
200 200 0.96 0.95 0.95 1.02 1.01 1.01 0.94 0.81 0.95 0.03 0.03 0.01

Notes: See the notes to Table 2.
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Table 5: Monte Carlo results for DGP4 with m = r = 1, and cross-section correlated and
heteroskedastic errors.

ŷT+h ŷT+h|T
CR MSE CR MSE

N T CA PC F CA PC F CA PC F CA PC F
30 30 0.97 0.97 0.97 1.05 0.96 0.89 0.91 0.91 0.96 0.23 0.21 0.07
50 30 0.97 0.97 0.96 1.04 0.98 0.94 0.92 0.93 0.95 0.18 0.17 0.07
100 30 0.97 0.97 0.96 0.94 0.90 0.90 0.94 0.95 0.96 0.12 0.13 0.07
200 30 0.96 0.96 0.96 0.97 0.93 0.94 0.94 0.95 0.95 0.10 0.12 0.07
30 50 0.96 0.96 0.96 1.10 1.03 0.94 0.89 0.89 0.96 0.21 0.17 0.04
50 50 0.96 0.96 0.96 1.07 1.02 0.97 0.92 0.91 0.95 0.15 0.13 0.04
100 50 0.97 0.96 0.96 0.97 0.93 0.92 0.93 0.94 0.96 0.10 0.10 0.04
200 50 0.96 0.97 0.97 0.95 0.92 0.93 0.94 0.95 0.95 0.07 0.08 0.04
30 100 0.96 0.96 0.95 1.16 1.09 0.98 0.88 0.85 0.95 0.19 0.14 0.02
50 100 0.96 0.95 0.95 1.12 1.07 1.01 0.90 0.89 0.95 0.13 0.10 0.02
100 100 0.96 0.96 0.96 1.00 0.97 0.95 0.92 0.92 0.95 0.08 0.07 0.02
200 100 0.96 0.96 0.96 0.95 0.93 0.92 0.93 0.94 0.95 0.05 0.05 0.02
30 200 0.96 0.96 0.96 1.13 1.07 0.95 0.87 0.81 0.94 0.18 0.13 0.01
50 200 0.96 0.96 0.96 1.08 1.03 0.97 0.91 0.89 0.95 0.11 0.08 0.01
100 200 0.96 0.95 0.95 1.04 1.01 0.98 0.92 0.92 0.96 0.07 0.05 0.01
200 200 0.96 0.95 0.95 1.03 1.02 1.01 0.93 0.93 0.95 0.04 0.03 0.01

Notes: See the notes to Table 2.

Table 6: Monte Carlo results for DGP5 with m = 2 > r = 1, and cross-section uncorrelated and
homoskedastic errors.

ŷT+h ŷT+h|T
CR MSE CR MSE

N T CA PC F CA PC F CA PC F CA PC F
30 30 0.96 0.96 0.96 0.95 0.97 0.96 0.98 0.90 0.95 0.13 0.15 0.07
50 30 0.97 0.97 0.96 0.89 0.90 0.90 0.98 0.92 0.96 0.12 0.13 0.07
100 30 0.97 0.96 0.96 0.92 0.92 0.94 0.98 0.94 0.95 0.11 0.12 0.07
200 30 0.97 0.96 0.96 0.89 0.89 0.91 0.98 0.94 0.95 0.11 0.11 0.07
30 50 0.97 0.96 0.96 0.95 0.96 0.93 0.97 0.86 0.96 0.09 0.11 0.04
50 50 0.97 0.96 0.96 0.91 0.93 0.92 0.98 0.89 0.96 0.08 0.09 0.04
100 50 0.97 0.97 0.97 0.92 0.91 0.93 0.98 0.91 0.95 0.07 0.08 0.04
200 50 0.96 0.96 0.96 0.94 0.93 0.96 0.98 0.93 0.95 0.06 0.07 0.04
30 100 0.95 0.95 0.95 1.02 1.03 0.99 0.96 0.77 0.95 0.06 0.08 0.02
50 100 0.96 0.96 0.96 0.96 0.97 0.95 0.97 0.82 0.95 0.05 0.06 0.02
100 100 0.96 0.96 0.96 0.92 0.94 0.92 0.97 0.88 0.95 0.04 0.05 0.02
200 100 0.96 0.95 0.95 0.99 0.99 1.00 0.98 0.91 0.95 0.04 0.04 0.02
30 200 0.96 0.95 0.96 0.98 1.01 0.96 0.95 0.66 0.95 0.05 0.07 0.01
50 200 0.96 0.95 0.95 0.99 1.00 0.98 0.97 0.73 0.96 0.03 0.04 0.01
100 200 0.95 0.95 0.95 1.01 1.01 1.01 0.97 0.82 0.95 0.03 0.03 0.01
200 200 0.96 0.95 0.95 0.98 0.99 0.98 0.97 0.88 0.95 0.02 0.02 0.01

Notes: See the notes to Table 2.
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Table 7: Monte Carlo results for DGP6 with m = 2 > r = 1, and cross-section correlated and
homoskedastic errors.

ŷT+h ŷT+h|T
CR MSE CR MSE

N T CA PC F CA PC F CA PC F CA PC F
30 30 0.96 0.97 0.96 0.96 0.98 0.96 0.96 0.93 0.95 0.15 0.15 0.07
50 30 0.97 0.97 0.96 0.90 0.90 0.90 0.97 0.95 0.96 0.13 0.14 0.07
100 30 0.96 0.96 0.96 0.92 0.92 0.94 0.98 0.95 0.95 0.12 0.12 0.07
200 30 0.97 0.97 0.96 0.89 0.89 0.91 0.98 0.96 0.95 0.11 0.11 0.07
30 50 0.97 0.96 0.96 0.96 0.97 0.93 0.95 0.92 0.96 0.10 0.11 0.04
50 50 0.97 0.96 0.96 0.92 0.95 0.92 0.96 0.94 0.96 0.09 0.09 0.04
100 50 0.97 0.97 0.97 0.92 0.91 0.93 0.97 0.95 0.95 0.08 0.08 0.04
200 50 0.96 0.96 0.96 0.94 0.94 0.96 0.97 0.95 0.95 0.07 0.07 0.04
30 100 0.95 0.95 0.95 1.03 1.04 0.99 0.93 0.88 0.95 0.08 0.09 0.02
50 100 0.96 0.96 0.96 0.97 0.98 0.95 0.95 0.91 0.95 0.06 0.07 0.02
100 100 0.96 0.96 0.96 0.93 0.94 0.92 0.96 0.93 0.95 0.05 0.05 0.02
200 100 0.96 0.95 0.95 0.99 0.99 1.00 0.97 0.95 0.95 0.04 0.04 0.02
30 200 0.96 0.96 0.96 0.99 1.01 0.96 0.92 0.85 0.95 0.06 0.08 0.01
50 200 0.96 0.95 0.95 1.00 1.01 0.98 0.94 0.90 0.96 0.04 0.05 0.01
100 200 0.96 0.95 0.95 1.01 1.02 1.01 0.96 0.93 0.95 0.03 0.03 0.01
200 200 0.95 0.95 0.95 0.98 0.99 0.98 0.96 0.95 0.95 0.02 0.02 0.01

Notes: See the notes to Table 2.
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Table 8: Monte Carlo results for DGP7 with m = 2 > r = 1, and cross-section uncorrelated and
heteroskedastic errors.

ŷT+h ŷT+h|T
CR MSE CR MSE

N T CA PC F CA PC F CA PC F CA PC F
30 30 0.97 0.96 0.96 0.98 1.02 0.96 0.97 0.85 0.95 0.16 0.19 0.07
50 30 0.97 0.97 0.96 0.91 0.92 0.90 0.98 0.89 0.96 0.14 0.16 0.07
100 30 0.97 0.96 0.96 0.93 0.93 0.94 0.98 0.92 0.95 0.12 0.13 0.07
200 30 0.97 0.96 0.96 0.89 0.89 0.91 0.98 0.93 0.95 0.11 0.12 0.07
30 50 0.97 0.96 0.96 0.98 1.01 0.93 0.96 0.79 0.96 0.12 0.16 0.04
50 50 0.97 0.96 0.96 0.93 0.96 0.92 0.97 0.83 0.96 0.10 0.12 0.04
100 50 0.97 0.97 0.97 0.92 0.93 0.93 0.97 0.88 0.95 0.08 0.10 0.04
200 50 0.96 0.96 0.96 0.94 0.94 0.96 0.98 0.92 0.95 0.07 0.08 0.04
30 100 0.95 0.95 0.95 1.05 1.08 0.99 0.94 0.68 0.95 0.09 0.13 0.02
50 100 0.96 0.96 0.96 0.97 0.99 0.95 0.95 0.74 0.95 0.07 0.09 0.02
100 100 0.96 0.96 0.96 0.93 0.95 0.92 0.96 0.82 0.95 0.05 0.06 0.02
200 100 0.96 0.95 0.95 0.99 1.00 1.00 0.97 0.87 0.95 0.04 0.05 0.02
30 200 0.96 0.96 0.96 1.01 1.05 0.96 0.93 0.55 0.95 0.08 0.11 0.01
50 200 0.96 0.95 0.95 1.01 1.03 0.98 0.95 0.62 0.96 0.05 0.07 0.01
100 200 0.95 0.95 0.95 1.02 1.03 1.01 0.96 0.72 0.95 0.03 0.04 0.01
200 200 0.96 0.95 0.95 0.99 0.99 0.98 0.96 0.81 0.95 0.03 0.03 0.01

Notes: See the notes to Table 2.

Table 9: Monte Carlo results for DGP8 with m = 2 > r = 1, and cross-section correlated and
heteroskedastic errors.

ŷT+h ŷT+h|T
CR MSE CR MSE

N T CA PC F CA PC F CA PC F CA PC F
30 30 0.97 0.97 0.96 1.00 1.03 0.96 0.95 0.91 0.95 0.18 0.21 0.07
50 30 0.97 0.97 0.96 0.92 0.93 0.90 0.97 0.94 0.96 0.15 0.16 0.07
100 30 0.96 0.96 0.96 0.93 0.94 0.94 0.97 0.95 0.95 0.13 0.13 0.07
200 30 0.97 0.97 0.96 0.90 0.89 0.91 0.97 0.95 0.95 0.11 0.12 0.07
30 50 0.97 0.96 0.96 1.01 1.03 0.93 0.94 0.89 0.96 0.15 0.17 0.04
50 50 0.97 0.96 0.96 0.95 0.97 0.92 0.95 0.92 0.96 0.12 0.13 0.04
100 50 0.97 0.97 0.97 0.93 0.93 0.93 0.97 0.93 0.95 0.09 0.10 0.04
200 50 0.96 0.96 0.96 0.94 0.94 0.96 0.97 0.95 0.95 0.07 0.08 0.04
30 100 0.96 0.95 0.95 1.08 1.10 0.99 0.92 0.85 0.95 0.12 0.14 0.02
50 100 0.97 0.96 0.96 0.99 1.01 0.95 0.94 0.89 0.95 0.09 0.10 0.02
100 100 0.96 0.96 0.96 0.94 0.96 0.92 0.95 0.92 0.95 0.06 0.07 0.02
200 100 0.96 0.96 0.95 1.00 1.01 1.00 0.96 0.94 0.95 0.05 0.05 0.02
30 200 0.96 0.96 0.96 1.03 1.07 0.96 0.90 0.82 0.95 0.11 0.13 0.01
50 200 0.96 0.96 0.95 1.02 1.04 0.98 0.93 0.87 0.96 0.07 0.09 0.01
100 200 0.96 0.95 0.95 1.03 1.03 1.01 0.95 0.91 0.95 0.04 0.05 0.01
200 200 0.96 0.95 0.95 0.99 1.00 0.98 0.96 0.93 0.95 0.03 0.03 0.01

Notes: See the notes to Table 2.
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Table 10: Relative MSE × 100.

h = 6 h = 12 h = 24
Variable CA PC CA PC CA PC
IPS10 70.65 79.52 54.69 62.23 41.87 49.39
A0M051 70.04 76.59 60.21 62.09 60.34 66.55
A0M057 74.80 84.70 58.30 63.72 39.86 43.93
PAYEMS 75.99 83.78 52.13 58.35 37.42 39.03
PUNEW 67.35 68.96 66.44 74.83 65.50 88.48
GMDC 66.30 65.93 69.03 71.70 71.35 86.03
CPILFESL 71.98 68.79 73.25 82.87 76.81 99.12
PWFSA 66.94 66.44 62.49 68.73 64.50 69.82

Notes: The results reported in the table are the relative mean squared forecast error (MSE) when compared to the
AR model. “CA” and “PC” refer to the results based on CA and PC, respectively, and h is the forecast horizon.
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