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Abstract

The paper analyzes geoengineering and strategic interactions in an integrated assess-
ment model (IAM) of climate change. For this purpose, we (i) derive a new class of
solutions to analytic IAMs that allows us to (ii) solve an integrated assessment model
with sulfur-based geoengineering and damages in closed form, and to (iii) model realistic
strategic interactions between regions. Temperatures respond to carbon dioxide (stan-
dard carbon cycle), sulfur injections into the stratosphere (fitted to scientific data), and
a potential counter-engineering agent that can offset some of the sulfur-based cooling.
Damages arise from the increase in temperatures, the chemical agent(s) employed for geo-
engineering, and the modulation of the radiative energy balance through geoengineering.
Our dynamic game involves two active players that are either partially or fully affected
by the other region’s geoengeneering measures and have the ability to contribute, remain
inactive, or offset some of the other region’s cooling measures. We shine new light on the
“free-driver" problem popularized by Weitzman (2015), the climate-clash equilibria sug-
gested by Heyen et al. (2019), a somewhat extreme sensitivity of geoengineering measures
to potential damages, and the colloquial “slippery slope" argument showing how the active
regions and the rest of the world respond to (some region’s) availability of geoengineering
measures. We discuss these findings using analytic solutions for the social cost of carbon
(globally or regionally optimal carbon tax).

1 Introduction

Worldwide greenhouse gas emissions are still on the rise (Tollefson 2018) leading to potentially
severe consequences for the world and its economy. Future warming will substantially reduce
future output and may reduce global economic growth rates (Carleton and Hsiang 2016) apart
from destroying ecosystems and driving species to extinction. In light of these developments,
engineering a cooler climate remains a hot topic. The two most studied solar geoengineering
techniques are stratospheric aerosol injections and marine cloud brightening (Boucher et al.
2017). We focus on the first measure, which has already been studied in natural experiments:
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a series of volcanic eruptions, including Pinatubo in 1991, released large amounts of sulfur into
the atmosphere and cooled the planet by scattering sunlight back to space (Crutzen 2006).

We build a full-fledged integrated assessment model with state of the art climate dynamics
and an economy that transforms non-renewable and renewable resources into energy, final
goods, and emissions. Introducing a new class of analytic solutions, we are able to integrate
the temperature response to stratospheric sulfur as well as damages from geoengineering into
our model, and to calibrate the cooling efficiency of sulfur well to recent scientific work of
Kleinschmitt et al. (2018). We separate climate change damages into damages from rising
temperatures and damages from increasing atmospheric carbon concentrations. Geoengineering
implies a third type of damages: side-effects of the employed chemicals and changes in the
radiative spectrum.

Our first results are closed-form solutions for the optimal sulfur-deployment strategy and
the optimal carbon tax in a fully cooperating world with geoengineering. We explain the
components that reduce earlier formulas for the optimal carbon tax because of our ability to
cool the planet. The resulting reduction in the incentive to abate CO2 is a delicate balance
between the effectiveness of sulfur-based cooling and potential damages from geoengineering.
Yet, the economics of solar geoengineering combines two externality problems with a regional
conflict over targeting the right level of a global public good (or bad). We study the non-
cooperative solutions in a dynamic IAM with two active players and a passive “rest of the
world”. Our study is among the first to analyze the strategic interaction of regions within an
integrated assessment model of climate change.

We derive free-driving equilibria where one region determines the global temperatures, cli-
mate match equilibria where both active regions engage in cooling activities, and equilibria
where one regions cools and the other region tries to offset the geoengineering agent (climate
clash). In our model with heterogeneous regions and the rest of the world these equilibria are
mutually exclusive and we explain the fundamental determinants giving rise to each of these
situations. We obtain closed-form solutions for the regional geoengineering (Markov-) strate-
gies and for the regionally optimal carbon taxes. We show how each region’s geoengineering
effort depends on the characteristics of both players. Also the mitigation incentives expressed
through the SCC depend on the characteristics of both regions. It is straight-forward that
there are scenarios where the availability of geoengineering reduces the SCC and, thereby, the
mitigation efforts. The rest of the world can be both better off or worse off as a result depending
on the precise spill-overs and its susceptibility to climate and geoengineering damages. Yet, it
can also happen that the potential of geoengineering in other regions increases the mitigation
efforts as a result of geoengineering damages. This scenario not only occurs in the climate
clash equilibria, but also in cases where both active regions are cooling the planet. In fact, the
availability of geoengineering can increase the mitigation effort in both active regions and the
rest of the world.

The cooling effect of sulfur does not come at zero cost. Solar geoengineering is not able to
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stabilize global precipitation and temperature simultaneously resulting in heterogeneous pref-
erences regarding the optimal level (Ricke et al. 2010). It also leads to various side effects
such as a reduction in the upper ozone layer (Heckendorn et al. 2009) or acid precipitation
and deposition (Crutzen 2006). However, annual injection rates discussed are rather low com-
pared to already existing anthropogenic and natural inputs of about 136 TgS/yr (Kravitz et al.
2009). Our model introduces differential damages between sulfur-based cooling and counter-
engineering as well as costs for the injection of these chemical agents into the stratosphere. We
show that such a careful cost distinction has important implications for the equilibrium strate-
gies of different regions. Stratospheric agents travel from the tropics to the poles and spread
quickly across longitude. As a consequence, it is impossible to do regional climate manage-
ment using stratospheric engineering without major and partly perfect spillovers to the other
regions. Other less cooling. Our model analyzes carefully how limitations in and opportunities
of avoiding spill-overs affects the game.

Heutel et al. (2016) argue that solar geoengineering should be part of a welfare maximizing
policy for two reasons. It allows to control the mean surface temperature at (potentially)
lower costs than mitigation and reduces the risk of reaching climate tipping points. For their
numerical simulations, the authors assume damages from geoengineering of 3 percent of gross
output for a reduction in radiative forcing to pre-industrial levels. The authors consider this a
conservative guess (biased against solar geoengineering) since damages are still largely unknown.
In a recent study, Proctor et al. (2018) estimate agricultural damages from solar geoengineering
using data from volcanic eruptions. They find two competing effects. The cooling from solar
geoengineering has an increasing effect on crop yields. Scattering light on the one hand decreases
total available sunlight which affects photosynthesis negatively but on the other hand influences
photosynthesis positively since the fraction of diffuse light increases. Their results suggest that
in the mid-twenty-first century the positive effect of cooling on crop yields is completely offset
by a negative insolation effect. Heutel et al. (2018) look at how uncertainty with respect to
the damages of geoengineering alters optimal policy. They find that introducing uncertainty
lowers the level of geoengineering and increases the level of abatement to compensate for the
reduction. Numeric assessment of the uncertainty in regional (including strategic) models is
severely challenged by the curse of dimensionality in dynamic programming. Our analytic model
will be able to integrate uncertainty into the high-dimensions space of a regional integrated
assessment model, even though we currently have to leave it for future work (maybe by the
time of the conference).

Solar geoengineering has been titled "symptomatic approach" since it does not address the
consequences from increasing atmospheric carbon concentrations (Klepper and Rickels 2014).
Therefore, it can never fully substitute for mitigation. Increasing atmospheric carbon concen-
trations lead to damages from ocean acidification but also create benefits due to an increase
in the rate of photosynthesis in plants (fertilization effect) (Moreno-Cruz and Smulders 2017).
Another reason for limited substitutability is explored in Emmerling and Tavoni (2018a). The
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paper analyzes uncertainty governing the effectiveness of solar geoengineering. The authors
find a decreasing concave relationship between today’s mitigation effort and the probability of
success of geoengineering.

Moreno-Cruz (2015) studies how solar geoengineering impacts the free riding effect on miti-
gation. The option of geoengineering is explored in a cost-minimizing set up with two sequential
stages. In the first stage each country chooses its optimal level of mitigation. In the second
stage countries select the optimal level of geoengineering. The paper shows that the impact
of geoengineering depends on the similarity between countries. Assuming similar countries
(i.e. similar with respect to damages from geoengineering and climate change) the option of
geoengineering leads to lower mitigation levels in both countries. When countries differ with
respect to damages, mitigation in both countries can increase.

Recently, another risk of solar geoengineering has gathered attention. The so called “free
driver” incentive (Weitzman 2015). Because geoengineering affects the global temperature, re-
gions have conflicting target levels of the global temperature level. Operational costs for strato-
spheric sulfur injections are presumably low (Smith and Wagner 2018, McClellan et al. 2012) in
the sense that many countries would be capable to deploy geoengineering unilaterally. This has
raised the concern that a country or a club of countries might implement solar geoengineering
at high levels to achieve its optimal climate at the expense of others (Pasztor et al. 2017). Em-
merling and Tavoni (2018b) quantify the free-riding effect in an integrated assessment model
and show that without cooperation geoengineering is used at inefficiently high levels. The op-
tion of counter-geoengineering has been discussed as a possible solution to this problem. Heyen
et al. (2019) find that the free-driver outcome becomes unstable once counter-geoengineering
is available. However, the option of counter-geoengineering might instead lead to a "climate
clash" when no moratorium treaty (countries abstain from climate engineering) and no coop-
erative deployment is realized. Their outcome strongly depends on the degree of asymmetry
in temperature preferences. There are different proposals for counter-geoengineering. One idea
is to countervail the cooling effect from sulfur aerosols by the additional release of greenhouse
gases such as sulphur hexafluoride, chlorofluorocarbons or hydrochlorofluorocarbons. Another
idea is to inject a base into the stratosphere that decreases or even neutralizes the cooling effect
of the aerosols (Parker et al. 2018). We will take the strategic interactions governing climate
engineering from highly stylized and often static models into a full-fletched dynamic integrated
assessment model of climate change.

2 Global Model

This section introduces geoengineering into the analytic climate economy model ACE (Traeger
2018). First, we summarize a slightly simplified version of the ACE model. Then, we introduce
geoengineering and calibrate the forcing effect of sulfur to scientific data. Finally, we discuss
the optimal cooling strategy of the social planner and the difference that geoengineering makes
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for the optimal carbon tax.

2.1 Economy

Production. Gross output is a function of vectors of dimension Ij with j ∈ {A,N,K,E}. The
technology levels At are exogenous. Capital is optimally distributed of the different sectors,
resulting in the capital levels summarized by the vector Kt. Labor distribution is N t and
energy inputs by Et.

Yt = F (At, Kt, N t, Et) (1)

The production function is homogeneous of degree κ in capital such that

F (At, λKt, N t, Et) = λκF (At, Kt, N t, Et) ∀ λ ∈ R+.

We note that aggregate capital is Kt =
∑IK

i=1Ki,t and the share of capital in industry i is

Ki,t =
Ki,t

Kt
. Population size is normalized to unity

IN∑
i=1

Ni,t = 1.

Damages. We denote the atmospheric carbon stock (or concentration) by M1,t. It is con-
venient to measure it relative to the pre-industrial stock level as mt = M1,t

Mpre
. Global atmospheric

temperature T1,t measures the temperature increase over 1900 levels (in degree Celsius). At-
mospheric temperature increase, atmospheric carbon concentration, as well as the level of the
cooling agent St cause (net) damages Dt(T1,t, St,mt) that we measure as a fraction of output.
They are of the form

Dt(T1,t, St,mt) = 1− exp [−DT (T1,t)−DG(St)−Dm(mt)] . (2)

We take the temperature-based damages

DT (T1,t) = ξ0 exp (ξ1 T1,t)− ξ0

from the ACE model’s calibration to DICE. Our global model assumes

DG(St) = d St (3)

making d the semi-elasticity of damages from stratospheric sulfur injections (the percentage
loss of output resulting from an additional ton of sulfur injections). The parameter d includes
linear operational costs. Our regional version of the model in section 3 further refines the
damage parameter into damages from geoengineering, counter-geoengineering, and the costs of
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injecting the chemical agents into the stratosphere. The net costs of atmospheric carbon are

Dm(mt) = a (mt − 1), (4)

where a is the semi-elasticity of production with respect to changes in the carbon dioxide
concentration. Costs include ocean-acidification and benefits the fertilizer effect that increases
plant production and crop yields.

Emissions, resources and capital. The first Id energy inputs E1, ..., EId are fossil fuels
causing CO2 emission and are collected in subvector Ed

t . These energy inputs are measured in
terms of their CO2 content so that total emissions from production are

∑Id

i=1Ei,t. Fossil fuel
resource stocks are collected in vector Rt ∈ RId

+ . The dynamics of the resource stock are

Rt+1 = Rt −Ed
t (5)

with initial stock size R0 ∈ RId

+ . Renewable energies are indexed by Id+1 to IE.
We assume full depreciation of capital over the course of a decade, the model’s time step. We

choose this simplifying assumption noting that Traeger’s (2018) extension for capital persistence
would also go through in our setting. The global economy’s capital stock evolves as

Kt+1 = Yt [1−Dt (T1,t, St,mt)]− Ct (6)

= Yt exp [−ξ0 exp (ξ1 T1,t) + ξ0 − d St − a(mt − 1)]− Ct.

2.2 Climate

Carbon dioxide. We consider two carbon reservoirs, atmosphere (carbon content M1) and
ocean (carbon content M2). The extension to additional carbon reservoirs is straight-forward.
The dynamics of the carbon reservoirs is(

M1,t+1

M2,t+1

)
=

(
φ11 φ21

φ12 φ22

)(
M1t

M2t

)
+

(
Etot
t

0

)
(7)

with transition matrix Φ and total CO2 emissions Etot
t =

∑Id

i=1Ei,t + Eexo
t resulting from

industrial fossil fuel burning and other exogenous processes including lang use change and
forestry.

Greenhouse effect and cooling. Greenhouse gases in the atmosphere as well as geo-
engineering affect out planet’s temperature. The net heating with respect to preindustrial
times is summarized by the resulting radiative forcing Ft (measured in W/m2). It increases
(logarithmically) in the increase of atmospheric CO2 relative to preindustrial levels mt and it
falls as a consequence of geoengineering measures Gt(St) that inject sulfur aerosols St into the
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stratosphere

Ft =
η

log 2
log(mt)−Gt(St)

=
η

log 2
log (mt)−

η

log 2
log

(
exp

(
log 2

η
Gt(St)

))
=

η

log 2
log

(
mt exp

(
− log 2

η
Gt(St)

))
(8)

We ignore non-CO2 greenhouse gases, which can easily be added as in the ACE model. The
next subsection will fit a data-based approximation to equation (8) that will replace the generic
formulation above.

Temperature dynamics. In the medium to long run a new level of radiative forcing
implies the new atmospheric equilibrium temperature T0,t = s

η
Ft. Following ACE, we model the

evoloution of atmospheric temperature T1,t as a generalized mean of last period’s atmospheric
temperature (persistence), the last period’s ocean temperature (currently cooling), and the new
equilibrium temperature corresponding to radiative forcing T0,t. Similarly ocean temperatures
T2,t evolves as a generalized mean of own past and atmospheric temperature

T1,t+1 =
1

ξ1
log ((1− σ01 − σ21) exp (ξ1 T1,t) + σ01 exp (ξ1 T0,t) + σ21 exp (ξ1 T2,t)) (9a)

T2,t+1 =
1

ξ2
log ((1− σ12) exp (ξ2 T2,t) + σ12 exp (ξ2 T1,t)) (9b)

with ξ1 = ξ2 = log 2
s

. Defining σ01 = σforc, we rewrite these equations in terms of transformed
temperatures τit = exp(ξi Ti,t):(

τ1,t+1

τ2,t+1

)
=

(
1− σ01 − σ21 σ21

σ12 1− σ12

)(
τ1,t

τ2,t

)
+

(
σforc exp( log(2)

η
Ft)

0

)
(10)

2.3 Geoengineering

Best on the experience of many volcanic eruptions scientists have learned that the injection of
small sulfur particles (aerosols) into the atmosphere reflects sunlight back into space cooling
our planet. Yet, at high injection rates, sulfur particles lump together which decreases their
cooling efficiency. As a result, scientists expect that the cooling from stratospheric aerosol
injections has an asymptotic limit (Lawrence et al. 2018). The uncertainty governing the forcing
efficiency of sulfur injections is very high (Kleinschmitt et al. 2018). Niemeier and Timmreck
(2015) find an exponential relationship between sulfur injections and radiative forcing. Their
model reaches a negative instantaneous radiative forcing effect of -6 W/m2 with an injection
rate of 45 TgS/yr. Niemeier and Schmidt (2017) find that Niemeier and Timmreck (2015)
overestimate the forcing efficiency of sulfur and conclude that it would require injection rates
of 70 TgS/yr to reach a cooling of -6 W/m2. Kleinschmitt et al. (2018) find that it might be
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impossible to achieve more cooling than a negative instantaneous radiative forcing of -2 W/m2.
In a recent literature review, Lawrence et al. (2018) conclude that the cooling potential from
sulfur injections ranges between -2 and -5 W/m2. The effective radiative forcing effect, which
also includes rapid adjustments such as changes in atmospheric temperature, is larger than the
instantaneous radiative forcing effect (Boucher et al. 2017). The cooling potential does not only
depend on the injection rate but also on the location of the injections. Recent studies suggest
that it might be possible to optimize the geographic distribution of the cooling by varying the
altitude and latitude of injections (Jones et al. 2018, MacMartin et al. 2017, Kravitz et al.
2017). In addition, the literature has proposed alternative aerosols like alumina and diamond
particles (Weisenstein et al. 2015, Dykema et al. 2016), calcite or limestone (Keith et al. 2016).
Given the lack of a natural experiment with such aerosols, our knowledge about the resulting
forcing is even more limited.

We calibrate our model to the recent study by Kleinschmitt et al. (2018).1 For this purpose,

Table 1: Radiative forcing effect (Kleinschmitt et al. 2018)

2 TgS 5 TgS 10 TgS 20 TgS 50 TgS
-1.11 -1.64 -2.91 -4.34 -5.63

we develop a new functional form with several degrees of freedom that will permit an analytic
solution of the dynamic programming problem. We approximate radiative forcing (equation 8)
for the use of stratospheric sulfur injections by

Ft =
η

log(2)
log

(
f0 + f1mt +

(
f2 − f3

(
mt

St

)n)
St︸ ︷︷ ︸

≡ F c
t

)
. (11)

The expression F c
t characterizes the effect of sulfur on radiative forcing in CO2 equivalents. In

the absence of geoengineering, the term mt would capture the CO2 forcing. The round inner
bracket reduces the forcing in response to sulfur injections. The main contribution derives from
the term f3

(
mt

St

)n
. Sulfur forcing is more efficient relative to CO2 the larger the atmospheric

carbon concentration and the lower the sulfur concentration. For high levels of sulfur, particles
lump together reducing their cooling efficiency. The higher the CO2 concentration, the lower
the warming implied by the marginal ton of CO2 and the higher the relative forcing reduction
of sulfur, which we measure in CO2 equivalents. We summarize both of these nonlinearities in
the joint term whose level effect is captured by f3 and whose nonlinearity is captured by n > 0.

We fit the function to Kleinschmitt et al.’s (2018) data on effective radiative forcing from
sulfur injections (Table 1).2 Our fit combines Kleinschmitt et al.’s (2018) forcing data for sulfur

1Note that the publication only cites the direct radiative forcing impact of sulfur. We obtained the total
radiative forcing in Table 1 from the authors in personal correspondence.

2The new functional form can also be calibrated to data from other studies that deal with the radiative
forcing effect from stratospheric sulfur injection (see Appendix A).
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injections with and the well-known forcing from atmospheric carbon dioxide over the interval
mt ∈ [1.5, 3], i.e., up to a tripling of preindustrial carbon dioxide emissions. Our fit minimizes
the squared differences for those 80 data points. We list the resulting parameters in Table 2.

Table 2: Estimated forcing parameters

f0 f1 f2 f3 n
0.228 1.83 0.00403 1.12 0.869

In Appendix A, we show radiative forcing resulting from a given annual flow of sulfur injec-
tions at a given atmospheric carbon dioxide concentration in a 3D graph. Figure 1 illustrates
the goodness of our fit, slicing the 3D graph in the two dimensions and adding the data points
from Kleinschmitt et al. (2018). We assume that total radiative forcing remains positive (above
preindustrial levels). Based on our empirical fit of the radiative forcing equation we take the
following assumption.

Assumption 1. The (fit-)parameters fi, i ∈ {0, ..., 3}, are positive and 0 < n < 1.

Figure 1: Approximation to model data from Kleinschmitt et al. (2018). The forcing effect
from sulfur for different carbon stocks is shown in (a). The forcing effect from the carbon stock
for different injection rates is shown in (b).

Operational costs and damages of geoengineering Several studies have investigated
the operational costs of solar geoengineering. Table 3 shows recent cost estimates on strato-
spheric sulfur injections by newly designed airplanes. Estimates are given for a reduction in
radiative forcing (W/m2) or the quantity of sulfur injected into the stratosphere (Mt). Stars in
Table 3 denote the original values from the study.

Current assessments on operational costs are by far more reliable than assessments on
economic impacts from geoengineering (e.g. from acid rain). Insufficient information does not
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Table 3: Operational costs of stratospheric sulfur injections

Authors Estimate
Klepper and Rickels (2012) US$ 2-18 billion for -1∗ W/m2 ≈ 2 Mt
Moriyama et al. (2017) US$ 10 billion for -2∗ W/m2 ≈ 7 Mt
McClellan et al. (2012) US$ 1-3 billion for 1∗ Mt

US$ 2-8 billion for 5∗ Mt
Smith and Wagner (2018) US$ 1.5 billion for 1∗ Mt

allow to quantify the damages from solar geoengineering. Some authors, for example Moreno-
Cruz and Keith (2013), have analyzed optimal policy as a function of the damage parameter.
Others have made explicit assumptions, but acknowledge that there is only limited or non-
existent empirical bases. We show several of those estimates in Table 4.

Table 4: Damages from solar geoengineering

Authors Best guess
Emmerling and Tavoni (2018b) Consumption loss of 3% compensating

each every 3.5 W/m2 of forcing
Goes et al. (2011) GDP loss between 0 and 5% per forcing

equivalent to a doubling CO2 forcing
Heutel et al. (2016; 2018) GDP loss of 3% for setting forcing

back to the pre-industrial level

2.4 Global Planner Solution

In the present section, a social planner maximizes the infinite stream of consumption flows

max
Ct,Et,St

∞∑
t=0

βt log(Ct) (12)

subject to equations (1), (5), (6), (7), and (10). The parameter β denotes the utility discount
factor (pure time preference). In the regional model, each region follows the analogous ob-
jective for their own region’s welfare (no trade). In Appendix B we solve the inter-temporal
optimization problem and derive the global optimal level of sulfur deployment.

Proposition 1. The optimal level of sulfur deployment is

S∗t =

(
(1− n) γ f3
d+ γ f2

) 1
n

mt (13)

with geoengineering propensity z =
(

(1−n) γ f3
d+γ f2

) 1
n , climate change impact γ = β ξ0 σ̃11 σforc, and

temperature dynamics contribution σ̃11 =
(

1− β(1− σ01 − σ21)− β2 σ21 σ12
1−β(1−σ12)

)−1
.

Proof. See Appendix B.2.
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Figure 2: (a) Optimal level of sulfur and (b) optimal level of radiative forcing as a function of
the damage parameter d (in %).

The optimal level of sulfur deployment increases linearly in the atmospheric carbon content.
We call the proportionality factor the geoengineering propensity. It characterizes the drivers
and moderators of the cooling effort given atmospheric CO2. This cooling propensity increases
in the discount factor (β), the temperature damage coefficient (ξ0), and the sulfur efficiency
(f3). Sulfur deployment decreases in geoengineering damages (d) and the non-linear efficiency
loss of sulfur cooling (n).

Using the fit parameters from Table 2 and the parameter values from the baseline calibration
of the ACE model (see Appendix B.2) we find the optimal sulfur deployment level

S∗t =

(
1.6

4% + 103d

)1.15

mt, (14)

as a function of the damage (semi-)elasticity of sulfur, and the atmospheric carbon concentra-
tion (relative to pre-industrial levels). The calibrated formula shows that the optimal sulfur
deployment is extremely sensitive to damages from geoengineering. Figure 2(a) shows the opti-
mal level of sulfur as a function of the damage parameter d for different carbon stocks. Inserting
S∗t into equation (11) yields the optimal level of radiative forcing as a function of the damage
parameter d and the atmospheric carbon stock, which we show in Figure 2(b). The higher
the damages, the higher the tolerated forcing and, thus, warming levels. Given the efficiency
loss of sulfur-based cooling, the tolerated hearing does not increase as sharply in the damages
level as the sulfur injections are falling. We restrict our model to a “well-calibrated" region
defined by the interval [

¯
d(mt), d̄(mt)]: the boundaries of the interval depend on the carbon

stock mt ∈ [1.5, 3] and they result from (i) our assumption that radiative forcing remains posi-
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tive, and (ii) that we approximate radiative forcing for sulfur levels between 2 and 50 TgS. For
d <

¯
d(mt), it is either the case that St > 50 TgS or Ft < 0. For d > d̄(mt) it must be that

St < 2.
We now study how the social cost of carbon is affected by the availability of solar geoengi-

neering.

Proposition 2. The Social Cost of Carbon in money-measured consumption equivalents is

SCC =
Y net
t

Mpre

[
a+ γ f1 −

n

1− n

(
d+ γ f2

)
z

]
φ̃ (15)

with the carbon dynamics contribution φ̃ =
(

1− β φ11 − β2 φ12 φ21
1−β φ22

)−1
and, as above, the geo-

engineering propensity z =
(

(1−n) γ f3
d+γ f2

) 1
n and the climate change impact γ = β ξ0 σ̃11 σforc.

Proof. See Appendix B.3.

The fraction Y net
t

Mpre
sets the scale and units of the SCC. The square brackets characterizes

net damages, and the term φ̃ amplifies the SCC as a result of the long life-time of atmospheric
CO2 (carbon cycle). Earlier analytic integrated assessment models like ACE only contain the
term γ in the square bracket reflecting the cost resulting from temperature increase in the
absence of climate engineering. Formula (15) adds the term a reflecting the direct net damages
from atmospheric CO2 caused by ocean-acidification net of the land-based fertilization effect.
The final term reduces the SCC as a result of the available geoengineering. This reduction is
proportional to the cooling propensity z, and is amplified by the increase in sulfur-based cooling
efficiency for high levels of CO2 measured by n as well as the geoengineering damages. The
combined expression might be more easily interpreted in the form

n

1− n

(
d+ γ f2

)
z = n

(1− n)
1−n
n (γ f3)

1
n

(d+ γ f2)
1−n
n

noting that n < 1. This transformation shows more clearly that the (negative) adjustment of
the optimal carbon tax increases in sulfur-based cooling efficiency f3 and falls with geoengi-
neering damages d. However, the SCC adjustment falls much slower in the damages than the
geoengineering propensity itself.

Following ACE, we use a time step of 10 years and use the parameter specification sum-
marized in Table 5. Together with our radiative forcing estimates from Table 2 we obtain the

Table 5: Parameter values from ACE (Traeger 2018)

Y net
t Mpre β ξ0 σforc σ̃11 φ̃

135 1013 3.667 600 109 0.98610 0.021 0.54 1.1 4.3

optimal carbon tax in (USD-2018-) money-measured consumption equivalents as a function of
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the damage parameters a and d (see Appendix B.3)

SCC = 613

[
a+ 2%− 6.65

(
1.6

(4% + 103d)0.13

)1.15
]

4.3 (16)

Figure 3 graphs this SCC as a function of the geoengineering damages d for a given damage
parameter a = 0 (no direct damages from an increase in the atmospheric carbon stock) and
a = 0.1%.
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Figure 3: Social cost of carbon as a function of the damage parameter d

3 Non-Cooperative Regional Model

We now split the world into regions that act non-cooperatively. We focus on two active regions
A and B that consider engaging in climate engineering, either sulphur-based cooling or counter-
geoengineering. The rest of the world only affects the decisions of regions A and B through
their contributions to the global carbon stock.
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3.1 Regional Model

This section explains the changes required to split up the world in several economic and climate
regions. It also introduces more detailed damages specifications and the option to engage in
counter-geoengineering.

Regional economies. The regional economies follow equations (1-6), where functional
forms and parameters are idiosyncratic to the regions.

Regional climate. CO2 mixes globally and the CO2 dynamics are still described by
equation (7). However, the total CO2 emissions are now resulting from region A, region B, and
the rest of the world W:

Etot
t =

Id∑
i=1

EA,i,t +
Id∑
i=1

EB,i,t +
Id∑
i=1

EW,i,t + Eexo
t (17)

We characterize two climate zones by temperature levels TA1,t and TB1,t, containing the two
active regions. For simplicity, we assume that the rest of the world is part of region B’s
temperature zone. Analogously to the global case, we let TA0,t = s

η
FA
t and TB0,t = s

η
FB
t and the

two regional atmospheric temperatures and the ocean temperature evolve as

TA1,t+1 =
1

ξ1
log
(
(1− σA) exp

(
ξ1 T

A
1,t

)
+ σforc exp

(
ξ1 T

A
0,t

)
+ σAB exp

(
ξ1 T

B
1,t

)
+ σAO exp (ξ1 T2,t)

)
(18a)

TB1,t+1 =
1

ξ1
log
(
(1− σB) exp

(
ξ1 T

B
1,t

)
+ σforc exp

(
ξ1 T

B
0,t

)
+ σBA exp

(
ξ1 T

A
1,t

)
+ σBO exp (ξ1 T2,t)

)
(18b)

T2,t+1 =
1

ξ2
log
(
(1− σO) exp (ξ2 T2,t) + σOA exp

(
ξ2 T

A
1,t

)
+ σOB exp

(
ξ2 T

B
1,t

))
, (18c)

where σA = σAB +σAO, σB = σBA +σBO , and σO = σOA +σOB . In terms of transformed temperatures
the system of equations simplifies to the matrix equationτ

A
1,t+1

τB1,t+1

τ2,t+1

 =

1− σA σAB σAO
σBA 1− σB σBO
σOA σOB 1− σO


τ

A
1,t

τB1,t

τ2,t

+

σforc exp( log 2
η
FA
t )

σforc exp( log 2
η
FB
t )

0

 (19)

Regional forcing. Radiative forcing in region A is a function of global atmospheric carbon
and the engineering undertaken in the two regions. Let S̃Bt = αB S

B
t and S̃At = αA S

A
t denote

the spill-over of the direct cooling or the counter-engineering from one region to the other. The
parameter αA (αB) determines the share of region A’s (B’s) injection of the cooling or counter-
geoengineering agent that travels to region B (A). The magnitude of the α parameter depends
in particular on the geographic location of the two regions. For example, the α parameters will
be relatively low if one region is located on the northern and the other region on the southern
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hemisphere (e.g. the US and Brazil). It will be close to unity if both regions are located
on the same hemisphere and at similar latitude (e.g. Europe and North America). It will be
asymmetric if one region lies North of the other on the same hemisphere (e.g. Canada would
get perfect spill-over from the US, but the US much less spill-over from Canada). Then we
have the regional forcing levels

FA
t =

η

log(2)
log

[
f0 + f1mt +

(
f2 − f3

(
mt

(SAt + S̃Bt )

)n )
(SAt + S̃Bt )

]
(20)

for region A and for region B

FB
t =

η

log(2)
log

[
f0 + f1mt +

(
f2 − f3

(
mt

(SBt + S̃At )

)n )
(SBt + S̃At )

]
. (21)

We assume that counter-geoengineering (St < 0) can only be used to offset (part of) the cooling
imposed by the other region and, therefore, SAt + S̃Bt > 0 and SBt + S̃At > 0.

Regional damages. Geoengineering creates damages and operational costs which, for
region A, we summarize in dAA for the marginal costs of the region’s own action, and dBA for
the marginal damages imposed on region A by region B. Damages as a fraction of output in
region A are given by

DA
t (τA1,t, St,mt) = 1− exp

[
ξA0
(
1− τA1,t

)
− (dAAS

A
t + dBAS̃

B
t )− aA (mt − 1)

]
. (22)

Region A’s self-imposed marginal costs dAA depend on whether it is cooling or conducting
counter-geoengineering

dAA =


dgAA + εgA for SAt > 0

dcAA − εcA for SAt < 0

0 for SAt = 0

(23)

where dgAA is the damage from sulfur-based cooling and εgA is the cost of injecting the sulfur
into the stratosphere. The parameter dcAA characterizes the damage reduction (noting that
SAt < 0) from employing counter-engineering, and εcA is the cost of counter-geoengineering. For
the damages imposed by region B onto region A we distinguish whether region B engages in
sulfur-based cooling or counter-engineering

dBA =


dgBA for S̃Bt > 0

dcBA for S̃Bt < 0

0 for S̃Bt = 0

(24)

where dcBA is again a partial offsetting of the damages from region A’s climate engineering in
case region B is countering it. This damage reduction from counter-engineering can at most
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offset the original damages: dcAA ≤ dgBA and dcBA ≤ dgAA. While the direct radiative forcing
damage will be offset, the damages caused by the chemical agent sulfur will probably not be
offset, only partially offset, or maybe even enhanced by the counter-geoengineering agent. Thus
dcAA will generally be strictly lower than dgAA in the real world (and it could potentially even be
negative).

Analogously, for region B we define damages as a fraction of output

DB
t (τB1,t, St,mt) = 1− exp

[
ξB0
(
1− τB1,t

)
− (dBBS

B
t + dABS̃

A
t )− aB (mt − 1)

]
, (25)

with

dBB =


dgBB + εgB for SBt > 0

dcBB − εcB for SBt < 0

0 for SBt = 0

(26)

and

dAB =


dgAB for S̃At > 0

dcAB for S̃At < 0

0 for S̃At = 0.

(27)

We make the following restriction on the damage parameters in the active regions.

Assumption 2. Within a region, the damage relieve from counter-geoengineering is smaller
than the damage caused by geoengineering: dcAA < dgAA and dcBB < dgBB.

3.2 Results of the Base Model

To simplify the exposition of the main results we turn off the direct heat transfer between the
regions.

Assumption 3. The heat flow coefficients σAB, σBA , σOA , and σOB are zero.

As a result, the regional climates interact only through the spill-over of the cooling and, po-
tentially, counter-geoengineering agents. The assumption simplifies the functional expressions
in the results without changing the qualitative results (as we show later/in the Appendix).

The section first identifies a set of equilibrium strategies, second characterizes the domain
of the resulting subgame perfect Nash-equilibria and, third, derives a formula for the resulting
non-cooperative SCC levels in the different regions. We spell out and solve the two simultaneous
and interacting dynamic programming problems of regions A and B in Appendix C. We thereby
solve the dynamic Markov game which results in a subgame perfect equilibirum. It is sometimes
referred to as a feedback solution of the game (as opposed to an open loop equilibrium). The
regions foresee how, in the future, the other region responds to its action.
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Proposition 3. The following reaction functions characterize a Nash equilibrium of the dy-
namic game. If (i) SBt = 0 region A chooses SAt = zgAmt and if (ii) SBt 6= 0 region A chooses

SAt =
mt

1− αA αB

(
zgA − αB zB

)
for SAt > 0 (28)

SAt =
mt

1− αA αB

(
zcA − αB zB

)
for SAt < 0 (29)

SAt = 0 otherwise.

with geoengineering propensity and counter-geoengineering aversion

zgA =

(
(1− n) f3 γA

f2 γA + (dgAA + εgA)

) 1
n

, zcA =

(
(1− n) f3 γA

f2 γA + (dcAA − εcA)

) 1
n

and climate change impact γA = βA ξA0 σ̃
−1
A σforc. Swapping country indices characterizes region

B’s strategies.

Proof. See Appendix C.1.1.

The game solves in linear strategies. In the case where one of the regions remains inactive,
the other region’s optimal cooling effort is structurally the same as that of the social planner
in Proposition 2. In difference to the social planner, the active region only accounts for its own
climate impact γA and for its own damages dgAA and costs εgA from geoengineering (damages
and costs were combined into a single term d in the social planner’s problem).

In the case where both regions engage in cooling, their optimal strategies incorporate the
other region’s efforts. Region B responds to the share αA of A’s cooling that spill over to its
territory. Region A responds to region B’s share of cooling αB that spill over to its territory
and, thereby, also responds to B’s response to its own action. Given that each region responds
proportionally to the other region with factors αi, i ∈ {A,B}, the feedback gives rise to the
multiplier 1

αAαB
– somewhat like a Keynesian multiplier in macroeconomics. Yet, despite the

cooling reinforcement, the fact that both regions are cooling also reduces region A’s incentive
to cool, see equation (28) with zB = zgB. Therefore, region A’s base propensity to cool, which
by itself would be zgA, is reduced by the cooling αBzgB that arrives in equilibrium from the other
region. If countries and spill-overs are fully symmetric, region A’s optimal sulfur deployment
will always be lower than when it acts alone.

In the case where the regions’ interests are clashing, one region, say region B, is cooling
while region A is deploying the counter-geoengineering agent (equation 29 with zB = zgB). Now
zcA no longer captures region A’s engineering propensity (zgA), but its reluctance to engage in
counter-geoengineering (SAt < 0). This reluctance increases with the effectiveness of geoengi-
neering because a more effective geoengineering reduces temperatures with less damages; it
also increases in the cost of deploying the counter-geoengineering agent εcA. The reluctance to
undertake counter-geoengineering decreases with the damage reduction dcAA that it can achieve,
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the main incentive to undertake counter-geoengineering. As before, the linear response func-
tions give rise to the multiplier 1

αAαB
. Yet, here, region A’s incentive to undertake counter-

geoengineering (SAt < 0) is driven entirely by region B’s geoengineering spillover αBzB. Only if
this geoengineering spill-over dominates region A’s reluctance to undertake counter-engineering
region A will deploy the counter-engineering agent (SAt < 0).

The cooling undertaken by region A decreases in the other regions cooling (e.g., as region
B’s perceived damages from geoengineering fall or those from temperature increase) and it
increase in the other region’s counter-geoengineering. There is a parameter range between
the two situations where a region engages in cooling and where it is deploying the counter-
geoengineering agent. In this parameter range, the region remains inactive and the other
region sets the global temperature distribution alone. This region results from the cost-benefit-
differential between no longer facing enough benefits to bear the costs of geoengineering and
suffering enough from geoengineering to bear the costs of engaging into counter-geoengineering
to at least partially offset the costs. Note that, if a region’s reluctance to undertake counter-
geoengineering becomes very high, the other region’s effort approaches the geoengineering level
it would undertake if the region is inactive.

We now identify the parameter ranges that give rise to the different equilibria and show
that they are mutually exclusive.

Proposition 4. There are 5 qualitatively different Nash-equilibria. They are mutually exclusive
and classified based on fundamentals as follows:

Climate clash SAt > 0, SBt < 0 : α−1A < h

Free driver/rider SAt > 0, SBt = 0 : h ≤ α−1A ≤ H

Climate match SAt > 0, SBt > 0 : αB < H < α−1A

Free driver/rider SAt = 0, SBt > 0 : H ≤ αB ≤ Ĥ

Climate clash SAt < 0, SBt > 0 : Ĥ < αB

where

h =
zgA
zcB

, H =
zgA
zgB

, and Ĥ =
zcA
zgB
.

We note that h ≤ H ≤ Ĥ and that αB ≤ α−1A .

Proof. See Appendix C.1.2.

Figure 4 shows how the domain of Nash-equilibria is affected by a) an increase in the cost
of geoengineering (i.e either an increase in the damages or the operational costs) and b) an
increase in the cost of counter-geoengineering (i.e. a decrease in the effectiveness or an increase
in operational costs). Dashed lines show the domain before the change occurs.
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An increase in the cost of geoengineering for region A decreases the propensity to do geo-
engineering, i.e. zgA declines. The domain in which region B engages in geoengineering expands
to the right. The domain where region B is taking no action shift to the right. Thus, the domain
where region B engages in counter-geoengineering decreases. The domain in which region A is
taking no action increases by expanding downwards.

An increase in the cost of counter-geoengineering in region A increases the aversion to
do counter-geoengineering, i.e. zcA increases. This expands the domain in which region A
taking no action upwards and thus decreases the domain where region A engages in counter-
geoengineering. Note that due to the assumption that αA, αB ∈ (0, 1) only a subarea in each
graph is possible.

Figure 4: Effect of a change in the cost of geoengineering (G) and counter-geoengineering (CG)
on the domain of Nash-equilibria.

Figure 5 shows a numeric example of Proposition 4. We set up two completely symmetric
regions (shown in green), and then demonstrate how different regional damage parameters can
shift the equilibrium away from a climate match to a free rider/driver or even to a climate clash
equilibrium.

We now derive the regional social cost of carbon, which exhibits a different structure for
each type of equilibrium.

Proposition 5. If SBt = 0, the social cost of carbon in region A is given by

SCCA =
Y net
A,t

Mpre

[
aA + f1 γA −

n

1− n
zgA(f2 γA + (dgAA + εg))

]
φ̃A.
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If both regions are active (SBt 6= 0 and SAt 6= 0) the social cost of carbon is

SCCA =
Y net
A,t

Mpre

[
aA + f1 γA −

n

1− n
zA(f2 γA + dAA)− αB(zB − αA zA)(dAA − dBA)

1− αA αB

]
φ̃A

with zA ∈ {zgA, zcA}, zB ∈ {z
g
B, z

c
B}, dAA ∈ {d

g
AA+εg, dcAA−εc}, and dBA ∈ {d

g
BA, d

c
BA} depending

on whether the corresponding region engages in geoengineering (g) or counter-geoengineering
(c). If region A itself is inactive (SAt = 0) its social cost of carbon is

SCCA =
Y net
A,t

Mpre

[
aA + f1 γA + αB z

g
B d

g
BA − γA

(
f3(αB z

g
B)1−n − αB zgB f2

)]
φ̃A.

Swapping region indices characterizes region B’s social cost of carbon.

Proof. See Appendix C.1.3.

If region B is inactive (SBt = 0), then the region A’s SCC has the same structure as in the
global model. In difference to the social planner, region A only accounts for its own climate
impact γA and for its own damages dgAA and costs εgA. In the other cases where region B is active
(SBt 6= 0), an additional term enters region A’s SCC. It results from the spillovers from region
B to region A. If both regions are active, this spillover effect is given by −αB(zB−αA zA)(dAA−dBA)

1−αA αB
.

In the case where region B is cooling, the term αB(zB−αA zA) is positive. In a climate clash
dAA − dBA < 0 since counter-geoengineering by region A can at most offset the damages from
geoengineering and, therefore, the spillover effect increases the SCC. Similarly, if region A is
cooling but region B engages in counter-geoengineering the spillover effect increases the SCC:
the term αB(zB − αA zA) is negative because region B engages in counter-geoengineering and
dAA−dBA > 0 because region B’s counter-geoengineering agent can at most offset the damages
in region A.

Thus, in a climate clash, the spillover effect always increases the SCC in both regions. The
easy intuition is that the other region will always interfere with what the region would like to
do if it was acting alone.

In the climate match, the sign of the spillover effect depends on the marginal damage of
geoengineering in both regions. If the marginal damage from the spillover cooling is larger
than the marginal damage from the cooling done by region A itself, dgBA > dgAA, the spillover
effect is positive. In the opposite case, where dgBA < dgAA, the spillover effect is negative. In the
most intuitive scenario where the sulfur traveling over from the other region causes the same
damages as the sulfur deployed locally we have dAA − dBA) = εgA > 0 and the spillover term
from the other cooling region indeed reduces the local SCC.

If regions A is inactive itself (SAt = 0), the typical geoengineering term n
1−n zA(f2 γA + dAA)

disappears from the equation: it relies on the active balancing of the local temperature in
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accordance to damage, impact, and cooling parameters. Instead, we find two spillover terms.
The first term αB z

g
B d

g
BA is positive and captures the spillover of damages from region B’s

geoengineering onto region A. The second term −γA
(
f3(αB z

g
B)1−n−αB zgB f2

)
is negative and

accounts for the reduction in climate change impacts due to the spillover of cooling from region
B to region A. If the effect from the cooling spillover is larger (smaller) than the effect from the
damage spillover, the overall effect on region A’s social cost of carbon is negative (positive).

Figure 5: Nash-equilibria for different regional damage parameters of two otherwise symmetric
regions.

3.3 Rest of the world

We have assumed that the rest of the world does not engage in geoengineering measures.
Therefore, it affects regions A and B only through its emissions that change the global stock
of carbon and, therefore, the regions’ geoengineering levels. We now analyze how the rest
of world responds to the prospect that other regions engage in geoengineering and potential
counter-geoengineering activities.

The rest of the world has an aggregate economy similar to that of regions A and B with
idiosyncratic functional forms and parameters, and we denote the sulfur related damages (or
damage reductions) that occur in the rest of the world from region A’s sulfur deployment (or
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counter-geoengineering agent) by dAW ∈ {dgAW , dcAW} and the damage (or damage reduction)
that occurs from region B’s sulfur use (or counter-geoengineering agent) by dBW ∈ {dgBW , dcBW}.
If a region chooses to be inactive the respective damage parameter is equal to zero. The damages
in the rest of the world as a fraction of output are

DW
t (τW1,t , St,mt) = 1− exp

[
ξW0

(
1− τW1,t

)
− (dBWS

B
t + dAW S̃

A
t )− aW (mt − 1)

]
(30)

As we assumed that the rest of the world is part of climate zone B, the share of sulfur that
travels from region A to the rest of the world is given by S̃At and we simply assume that
the sulfur level, also in terms of damaging fallout, is the same as in region B (SBt ). We ask
whether the availability of geoengineering and/or counter-geoengineering increases or reduces
the incentive to abate in the rest of the world.

Proposition 6. If both regions are active (SAt 6= 0 and SBt 6= 0), the social cost of carbon in
the rest of the world is

SCCW =
Y net
W,t

Mpre

[
aW + f1 γW + dAW

αA(zA − αB zB)

1− αA αB
+ dBW

(zB − αA zA)

1− αA αB
− γW (f3 z

1−n
B − f2 zB)

]
φ̃W ,

with zA ∈ {zcA, z
g
A}, zB ∈ {zcB, z

g
B}, dAA ∈ {dcAA, d

g
AA}, and dBB ∈ {dcBB, d

g
BB}. If region A is

active (SAt > 0) and region B is inactive (SBt = 0), the social cost of carbon is given by

SCCW =
Y net
W,t

Mpre

[
aW + f1 γW + αA z

g
A dAW − γW

(
f3 (αA z

g
A)1−n − αA zgA f2

)]
φ̃W .

If region A is inactive (SAt = 0) and region B is active (SBt > 0), the social cost of carbon is
given by

SCCW =
Y net
W,t

Mpre

[
aW + f1 γW + zgB dBW − γW

(
f3 (zgB)1−n − f2 zgB

)]
φ̃W .

The first two contributions from ocean acidification and temperature increase remain the
same as in the earlier expressions for the SCC. If both regions A and B are active, the third
and fourth term represents the damages that spill over from each region: (zA−αB zB)

1−αA αB
is the level

of sulfur deployment by region A per additional ton of CO2 released into the atmosphere (see
Proposition 3), which is multiplied with the damages per ton of sulfur reaching the rest of
the world. Since the rest of the world is located in the same climate zone as region B, the
α parameter only reduces the sulfur carry-over from region A. The last term in the SCC is
negative and accounts for the reduction in climate change impacts due to the cooling spillover.
Whenever region B is actively managing the radiative forcing in the climate zone B, the rest of
the world’s cooling is controlled only by region B and its cooling propensity.

If region B remains inactive, there are no more damages from region B’s geoengineering
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and the cooling spillover is now determined by region A’s geoengineering propensity (and the
effectiveness of cooling f3). If region A remains inactive, there is no more damage carry-
over from region A, and region B geoengineering propensity is once again responsible for the
additional cooling in response to an additional ton of CO2 released in the rest of the world.

In conclusion, the incentive to abate can both increase or decrease in the rest of the world
as a result of regions that engage in geoengineering. If the damages from geoengineering are
low but the temperature impact is high, the rest of the world will reduce its mitigation effort
in response to other regions willingness to engage in geoengineering. That is a formalization
and extension the wide-spread “slippery slope argument". The fact that we consider under-
taking geoengineering in the future makes us emit more. And worse: it is enough that some
region considers undertaking geoengineering and the rest of the world is likely to reduce their
mitigation efforts, increasing the pressure on the geoengineering region to increase their level
of cooling and sulfur injections.

However, we show that the opposite can happen as well. If the rest of the world is relatively
more afraid of the damages from geoengineering and/or less affected by temperature increase,
then the availability of geoengineering in a region suffering more from climate change can
increase the mitigation effort in the rest of the world. Currently, many countries have a large
part of the population that is quite afraid of geoengineering. Indeed, we find that optimal sulfur
deployment is extremely sensitivity to the a damage level that is currently unknown. Thus, it
can be perfectly rational to push for even more mitigation in the face of other region’s potential
use of geoengineering.

4 Conclusions

We have integrated solar geoengineering into a state of the art integrated assessment model. For
this purpose, we found a new solution class to closed-form dynamic models which allows us to
incorporate the current scientific knowledge about the radiative forcing response to stratospheric
sulfur injections. In the global model, the optimal level of sulfur deployment is very sensitive
to the potential damages from geoengineering. The globally optimal carbon tax decreases due
to the availability of geoengineering. The size of this reduction increases in the sulfur-based
cooling efficiency and falls with geoengineering damages.

We solve the dynamic game between heterogenous regions. Our analytic solution explains
the strategic interactions between two active regions that have the ability to engage in geo-
engineering or counter-geoengineering, and a passive rest of the world that merely responds by
changing CO2 emissions. The regional model gives rise to several Markov-perfect Nash equi-
libria: a climate match where both regions cool the world, a free driver outcome where one
region cools and the other region stays inactive, and a climate clash where one region cools and
the other region offsets a part of this cooling. These equilibria are mutually exclusive and we
characterize their occurrence based on the region’s characteristics.
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We characterize the regionally optimal carbon taxes for the different players (regions) and
show how they depend on the strategies and characteristics of the different regions. As is to
be expected, the availability of geoengineering can reduce the incentive to reduce CO2 emis-
sions and, thus, the regionally optimal carbon tax. However, we show that the availability of
geoengineering in some region can also increase the optimal carbon tax and, thus, mitigation
incentive in the rest of the world, as a result of differences in perceived damages.

Our paper is one of the few regional integrated assessment models that can handel strategic
interactions. To the best of our knowledge, it is the only full-fledged analytic model where
regions interact “non-trivially” in that strategies are not dominant. Moreover, the framework
permits the introduction of uncertainty, which is ubiquitous in the economics of climate engi-
neering. We are currently working on completing the numeric calibration to deliver quantitative
results also for the game.
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Appendices

A Radiative forcing approximation

Figure 6: Forcing effect from carbon stock and injection rate

Figure 7: Approximation to model data from Niemeier and Timmreck (2015). The forcing
effect from sulfur for different carbon stocks is shown in (a). The forcing effect from the carbon
stock for different injection rates is shown in (b).
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B Global model

B.1 Proof of sufficiency

The consumption rate can be written as

xt =
Ct

Yt [1−Dt (T1,t, Gt(St),mt)]
. (31)

Homogeneity of the production function implies

Yt = F (At, Kt, N t, Et) = Kκ
t F (At, Kt, N t, Et), (32)

such that

logCt = log xt + κ logKt + logF (At, Kt, N t, Et) + ξ0 (1− τ1,t)− d St − a(mt − 1). (33)

We transform the optimization problem into its dynamic programming form (Bellman equation)

V (kt, τ t,M t,Rt, t) = max
xt,N t,Kt,Et,St

{
log xt + κ kt + logF (At, Kt, N t, Et)

+ ξ0 (1− τ1,t)− d St − a(mt − 1) + β V (kt+1, τ t+1,M t+1,Rt+1, t+ 1)

}
(34)

where kt = logKt with the equation of motion

kt+1 = κ kt + logF (At, Kt, N t, Et) + log(1− xt) + ξ0 (1− τ1,t)− d St − a(mt − 1). (35)

The linear affine guess for the value function

V (kt, τ t,M t,Rt, t) = ϕk kt +ϕTτ τ t +ϕTMM t +ϕTR,tRt + ϕt (36)
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turns the Bellman equation into the form

ϕk kt +ϕTτ τ t +ϕTMM t +ϕTR,tRt + ϕt

= max
xt,N t,Kt,Et,St

{
log xt + κ kt + logF (At, Kt, N t, Et) + ξ0 (1− τ1,t)− d St − a(mt − 1)

+λKt (1−
IK∑
i=1

Ki,t)+λNt (1−
IN∑
i=1

Ni,t)+β ϕk
(
κ kt+logF (At, Kt, N t, Et)+log(1−xt)+ξ0 (1− τ1,t)

− d St− a(mt− 1)
)

+ βϕTτ
(
στ t + F̃ t

)
+ βϕTM (ΦM t + ẽ) + βϕTR,t+1

(
Rt −Ed

t

)
+ β ϕt+1

}
.

(37)

We show that the system (2 layer carbon and 2 layer temperature system) is linear in states
and that the affine value function, (36), solves the system. Inserting the trial solution and the
next periods states (equations (5), (7), (10) and (35)) into the Bellman equation delivers

ϕk kt +ϕTτ τ t +ϕTMM t +ϕTR,tRt + ϕt

= max
xt,N t,Kt,Et,St

{
log xt + κ kt + logF (At, Kt, N t, Et) + ξ0 (1− τ1,t)− d St − a(mt − 1)

+ λKt (1−
IK∑
i=1

Ki,t) + λNt (1−
IN∑
i=1

Ni,t) + β ϕk
(
κ kt + logF (At, Kt, N t, Et) + log(1− xt)

+ξ0 (1− τ1,t)−d St−a(mt−1)
)
+βϕTτ

(
στ t+F̃ t

)
+βϕTM (ΦM t + ẽt)+βϕ

T
R,t+1

(
Rt −Ed

t

)
+β ϕt+1

}
.

(38)

We now look at the first order conditions. Maximizing the right hand side over xt yields

1

xt
− β ϕk

1

1− xt
= 0 =⇒ xt =

1

1 + β ϕk
. (39)

Maximizing the right hand side over Ki,t yields

(1 + β ϕk)

∂F (At,Kt,N t,Et)
∂Ki,t

F (At, Kt, N t, Et)
= λKt (40)

which is equivalent to

Ki,t =
σY,Ki

(At, Kt, N t, Et)
IK∑
i=1

σY,Ki
(At, Kt, N t, Et)

(41)
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with

σY,Ki
(At, Kt, N t, Et) ≡

∂F (At, Kt, N t, Et)

∂Ki,t
Ki,t

F (At, Kt, N t, Et)
. (42)

Similarly, the first order conditions for the labor input is

(1 + β ϕk)

∂F (At,Kt,N t,Et)
∂Ni,t

F (At, Kt, N t, Et)
= λNt (43)

and hence

Ni,t =
σY,Ni

(At, Kt, N t, Et)
IN∑
i=1

σY,Ni
(At, Kt, N t, Et)

(44)

with

σY,Ni
(At, Kt, N t, Et) ≡

∂F (At, Kt, N t, Et)

∂Ni,t

Ni,t

F (At, Kt, N t, Et)
(45)

The first order condition for the optimal input of fossil fuels is given by

(1 + β ϕk)

∂F (At,Kt,N t,Et)
∂Ei,t

F (At, Kt, N t, Et)
= β(ϕR,i,t+1 − ϕM1) (46)

which is equivalent to

Ei,t =
(1 + β ϕk)σY,Ei

(At, Kt, N t, Et)

β(ϕR,i,t+1 − ϕM1)
(47)

with

σY,Ei
(At, Kt, N t, Et) ≡

∂F (At, Kt, N t, Et)

∂Ei,t

Ei,t
F (At, Kt, N t, Et)

. (48)

So far, our results are equivalent to those from the ACE model. Next, we define the part of the
Bellman equation that depends on sulfur as

Bt = (β ϕτ1 σforc f2 − (1 + β ϕk) d)St − β ϕτ1 σforc f3m
n
t S

1−n
t (49)

and find the first order condition for optimal sulfur deployment

(n− 1) β ϕτ1 σforc f3m
n
t S
−n
t + β ϕτ1 σforc f2 − (1 + β ϕk) d = 0. (50)
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Solving the first order condition for St gives the optimal level of sulfur deployment

St =

(
(n− 1)β ϕτ1 σforc f3

(1 + β ϕk) d− β ϕτ1 σforc f2

) 1
n

︸ ︷︷ ︸
≡z

mt. (51)

Solving the system of first order conditions gives usN ∗t (At, ϕk,ϕM ,ϕR,t+1),K∗t (At, ϕk,ϕM ,ϕR,t+1)

and E∗t (At, ϕk,ϕM ,ϕR,t+1) which are independent of the states and S∗t (ϕk, ϕτ1,M1,t) which
depends on the atmospheric carbon stock. In the following we show that given these optimal
controls the maximized Bellman equation is linear in all states.

Inserting the optimal control rules into the maximized Bellman equation gives us

ϕk kt +ϕTτ τ t +ϕTMM t +ϕTR,tRt + ϕt

= log x∗t + κ kt + logF (At, K∗t , N ∗t , E∗t ) + ξ0 (1− τ1,t)− d S∗t − a(mt − 1)

+ β ϕk
(
κ kt + logF (At, K∗t , N ∗t , E∗t ) + log(1− x∗t ) + ξ0 (1− τ1,t)− d S∗t − a(mt − 1)

)
+ βϕTτ

(
στ t + F̃ t

)
+ βϕTM (ΦM t + ẽt) + βϕTR,t+1

(
Rt −Ed

t

∗
)

+ β ϕt+1 (52)

Arranging terms with respect to their states yields

ϕk kt+ϕ
T
τ τ t+ϕM1M1,t+ϕM2M2,t+ϕ

T
R,tRt+ϕt =

[
(1+β ϕk)κ

]
kt+
[
βϕTτ σ−(1+β ϕk)ξ0 e

T
1

]
τ t

+
[(
− (1 + β ϕk)d z + f2 β ϕτ1 σforc z − f3 β ϕτ1 σforc z

1−n − (1 + β ϕk)a+ f1 β ϕτ1 σforc

)
M−1

pre

+β (ϕM1 φ11+ϕM2 φ12)
]
M1,t+

[
β(ϕM1 φ21+ϕM2 φ22)

]
M2,t+

[
βϕTR,t+1

]
Rt+log x∗t+β ϕk log(1−x∗t )

+ (1 +β ϕk) logF (At, K∗t , N ∗t , E∗t ) + (1 +β ϕk)(ξ0 +a) +β ϕτ1 σforc f0 +β ϕM1(
Id∑
i=1

E∗i,t +Eexo
t )

− βϕTR,t+1E
d
t

∗
+ β ϕt+1. (53)

Hence, the system is linear in all states. Deriving both sides of the equation with respect to
capital, kt, yields

ϕk = (1 + β ϕk)κ ⇔ ϕk =
κ

1− β κ
Inserting ϕk into equation (39) yield the optimal consumption rate x∗t = 1− β κ.

Coefficient matching with respect to transformed temperatures delivers

ϕTτ = −ξ0 (1 + β ϕk) e
T
1 [1− β σ]−1

with

[1− β σ]−1 =

(
σ̃11 σ̃12

σ̃21 σ̃22

)
,
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and hence

ϕτ1 = −ξ0 (1 + β ϕk)σ̃11.

The first element of the inverted matrix σ̃11 =
(

1−β(1−σ01−σ21)− β2 σ21 σ12
1−β(1−σ12)

)−1
. Coefficient

matching with respect to the atmospheric carbon stock leads to

ϕM1 =
(
− (1+β ϕk)d z+f2 β ϕτ1 σforc z−f3 β ϕτ1 σforc z

1−n− (1+β ϕk)a+f1 β ϕτ1 σforc

)
M−1

pre

+ β (ϕM1 φ11 + ϕM2 φ12).

Coefficient matching with respect to the carbon stock in the ocean leads to

ϕM2 = β(ϕM1 φ21 + ϕM2 φ22) ⇔ ϕM2 =
β ϕM1 φ21

1− β φ22

.

Coefficient matching with respect to the resource stock yields

ϕTR,t = βϕTR,t+1 ⇔ ϕR,t = β−tϕR,0 (Hotelling’s rule).

The initial resource values ϕTR,0 depend on the set up of the economy, including assumptions
about production and the energy sector. Given the coefficients and the optimal rate of con-
sumption equation (53) turns to the following condition:

ϕt−β ϕt+1 = log x∗t +β ϕk log(1−x∗t )+(1+β ϕk) logF (At, K∗t , N ∗t , E∗t )+(1+β ϕk)(ξ0 +a)

+ β ϕτ1 σforc f0 + β ϕM1(
Id∑
i=1

E∗i,t + Eexo
t )− βϕTR,t+1E

d
t

∗ (54)

This condition will be satisfied by picking the sequence ϕ0, ϕ1, ϕ2, .... The additional condition
limt→∞ β

tV (·) = 0⇒ limt→∞ β
tϕt = 0 pins down this initial value ϕ0.

B.2 Optimal Level of Sulfur

In Appendix B.1 we have shown that the optimal level of sulfur is given by

S∗t =

(
(n− 1)β ϕτ1 σforc f3

(1 + β ϕk) d− β ϕτ1 σforc f2

) 1
n

mt.

The endogenous shadow value of capital ϕk > 0 is positive, while the endogenous shadow value
of (transformed) temperature is negative ϕτ1 < 0 (a bad). Therefore, both numerator and
denominator are positive. The optimal level of sulfur deployment increases in the absolute
value of the shadow price of atmospheric temperature.
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Inserting ϕτ1 = −ξ0 (1 + β ϕk)σ̃11, and defining γ = β ξ0 σ̃11 σforc delivers

S∗t =

(
(1− n)γ f3
d+ γ f2

) 1
n

mt.

Inserting the fit parameters from Table 2, and using the parameter values from the baseline
calibration of the ACE model from Table 5 leads to

S∗t =

(
0.0016

d+ 0.00004

)1.15

mt.

B.3 Social cost of carbon

Using γ = β ξ0 σ̃11 σforc in the shadow price of the atmospheric carbon concentration yields

ϕM1 = (1 + β ϕk)
(
− d z − f2 γ z + f3 γ z

1−n − a− f1 γ
)
M−1

pre + β (ϕM1 φ11 + ϕM2 φ12).

Inserting ϕM2 and solving for ϕM1 delivers

ϕM1 = (1 + β ϕk)
(
− d z − f2 γ z + f3 γ z

1−n − a− f1 γ
)
M−1

pre φ̃,

where we abbreviated φ̃ =
(

1− β φ11 − β2 φ12 φ21
1−β φ22

)−1
. Inserting ϕk leads to

ϕM1 = (
1

1− β κ
)
(
− d z − f2 γ z + f3 γ z

1−n − a− f1 γ
)
M−1

pre φ̃.

The SCC is the negative of the shadow value of atmospheric carbon expressed in money-
measured consumption units.

SCC = −(1− β κ)Y net
t ϕM1

=
Y net
t

Mpre

[
d z + f2 γ z − f3 γ z1−n + a+ f1 γ

]
φ̃

Which is equivalent to

SCC =
Y net
t

Mpre

[
a+ γ f1 −

n

1− n
(d+ γ f2)z

]
φ̃

Using parameter values from the ACE model (see Table 5) yields γ = 0.0108. Thus, the SCC
turns to

SCC = 613

[
a+ 2%− 6.65

(
1.6

(4% + 103d)0.13

)1.15
]

4.3.
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C Regional model

C.1 Active regions

In terms of transformed temperatures in the regional model we haveτ
A
1,t+1

τB1,t+1

τ2,t+1


︸ ︷︷ ︸
≡ τ t+1

=

1− σA σAB σAO
σBA 1− σB σBO
σOA σOB 1− σO


︸ ︷︷ ︸

≡σ

τ
A
1,t

τB1,t

τ2,t


︸ ︷︷ ︸
≡τ t

+

σforc exp( log 2
η
FA
t )

σforc exp( log 2
η
FB
t )

0


︸ ︷︷ ︸

≡ F̃ t(SA
t ,S

B
t )

(55)

where σA = σAB + σAO, σB = σBA + σBO , and σO = σOA + σOB , or equivalently

τ t+1 = στ t + F̃ t(S
A
t , S

B
t ). (56)

The dynamics of the carbon reservoirs are given by

(
M1,t+1

M2,t+1

)
︸ ︷︷ ︸
≡M t+1

=

(
φ11 φ21

φ12 φ22

)
︸ ︷︷ ︸

≡Φ

(
M1,t

M2,t

)
︸ ︷︷ ︸
≡M t

+

 Id∑
i=1

EA,i,t +
Id∑
i=1

EB,i,t +
Id∑
i=1

EW,i,t + Eexo
t

0


︸ ︷︷ ︸

≡ ẽt

(57)

or equivalently

M t+1 = ΦM t + ẽt. (58)

C.1.1 Markov strategies

We show that the Markov strategies Sit(mt) = sitmt for i ∈ {A,B} form a Nash equilibrium of
the dynamic game.

Bellman equation. In the following we show for region A that the system (3 temperatures
and 2 carbon reservoirs) is linear in states and that the affine value function

V (kt, τ t,M t,Rt, t) = ϕAk kt +ϕTτA τ t +ϕTMAM t +ϕTR,tRt + ϕt, (59)

with

ϕTτA =

ϕ
AA
τ1

ϕBAτ1

ϕAτ2

 and ϕTMA =

(
ϕAM1

ϕAM2

)
,

solves the system. The proof for region B follows analogously. We only use region indices when
they are needed. We denote the shadow price of temperature τA1,t in region A by ϕAAτ1 , and the
shadow price of temperature τB1,t in region A by ϕBAτ1 .
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Inserting the trial solution and the next periods states into the Bellman equation delivers

ϕAk kt +ϕTτA τ t +ϕTMAM t +ϕTR,tRt + ϕt

= max
xt,N t,Kt,Et,SA

t

{
log xt+κ kt+logF (At, Kt, N t, Et)+ξ

A
0

(
1− τA1,t

)
−[dAAS

A
t (mt)+dBAS̃

B
t (mt)]

−aA (mt−1)+λKt (1−
IK∑
i=1

Ki,t)+λNt (1−
IN∑
i=1

Ni,t)+β
A ϕAk

(
κ kt+logF (At, Kt, N t, Et)+log(1−xt)

+ ξA0
(
1− τA1,t

)
− [dAAS

A
t + dBAS̃

B
t ]− aA (mt − 1)

)
+ βAϕTτA

(
στ t + F̃ t(S

A
t (mt), S

B
t (mt))

)
+ βAϕTMA (ΦM t + ẽt) + βAϕTR,t+1

(
Rt −Ed

t

)
+ βA ϕt+1

}
. (60)

First order conditions (apart from geoengineering). Maximizing the right hand side over xt
yields

1

xt
− βA ϕAk

1

1− xt
= 0 =⇒ xt =

1

1 + βA ϕAk
. (61)

Maximizing the right hand side over Ki,t yields

(1 + βA ϕAk )

∂F (At,Kt,N t,Et)
∂Ki,t

F (At, Kt, N t, Et)
= λKt (62)

which is equivalent to

Ki,t =
σY,Ki

(At, Kt, N t, Et)
IK∑
i=1

σY,Ki
(At, Kt, N t, Et)

(63)

with

σY,Ki
(At, Kt, N t, Et) ≡

∂F (At, Kt, N t, Et)

∂Ki,t
Ki,t

F (At, Kt, N t, Et)
. (64)

Similarly, the first order conditions for the labor input is

(1 + βA ϕAk )

∂F (At,Kt,N t,Et)
∂Ni,t

F (At, Kt, N t, Et)
= λNt (65)

and hence

Ni,t =
σY,Ni

(At, Kt, N t, Et)
IN∑
i=1

σY,Ni
(At, Kt, N t, Et)

(66)
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with

σY,Ni
(At, Kt, N t, Et) ≡

∂F (At, Kt, N t, Et)

∂Ni,t

Ni,t

F (At, Kt, N t, Et)
(67)

The first order condition for the optimal input of fossil fuels is given by

(1 + βA ϕAk )

∂F (At,Kt,N t,Et)
∂Ei,t

F (At, Kt, N t, Et)
= βA(ϕR,i,t+1 − ϕAM1) (68)

which is equivalent to

Ei,t =
(1 + βA ϕAk )σY,Ei

(At, Kt, N t, Et)

β(ϕR,i,t+1 − ϕAM1)
(69)

with

σY,Ei
(At, Kt, N t, Et) ≡

∂F (At, Kt, N t, Et)

∂Ei,t

Ei,t
F (At, Kt, N t, Et)

. (70)

Optimal response functions. The optimal geoengineering or counter-geoengineering deploy-
ment has to be compatible with the assumed strategies of the regions. Region A takes region B’s
strategy as given while maximizing its welfare over its own sulfur deployment (or, for SAt < 0

counter-geoengineering agent). The part of the Bellman equation depending on sulfur is

BA
nc(mt, S

A
t ) ≡ βA ϕAAτ1 σforc f2 (SAt + S̃Bt (mt)) + βA ϕBAτ1 σforc f2 (SBt (mt) + S̃At ) (71)

−(1 + βA ϕAk )[dAAS
A
t + dBAS̃

B
t ]− βA ϕAAτ1 σforc f3m

n
t (SAt + S̃Bt (mt))

1−n

−βA ϕBAτ1 σforc f3m
n
t (SBt (mt) + S̃At )1−n.

We reorder these terms to

BA
nc(mt, S

A
t ) =

[
βA ϕAAτ1 σforc f2 + βA ϕBAτ1 σforc f2 αA − (1 + βA ϕAk )dAA

]︸ ︷︷ ︸
≡ −δA

SAt

+
[
βA ϕAAτ1 σforc f2 αB + βA ϕBAτ1 σforc f2 − (1 + βA ϕAk )αBdBA

]
SBt

−βA ϕAAτ1 σforc f3m
n
t (SAt + S̃Bt (mt))

1−n − βA ϕBAτ1 σforc f3m
n
t (SBt (mt) + S̃At )1−n.

We note that only the term δA depends on the damage term dAA, which switches magnitude as
the country changes action between counter-geoengineering, no action, and geoengineering at
SAt = 0. All other terms are continuous. Given dAA multiplies SAt , also the term δAS

A
t remains

continuous. The shadow prices of a temperature increase ϕiτ1 < 0, i ∈ {AA,BA} are negative,
therefore, δA > 0.
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Deriving (71) with respect to SAt delivers the equation

∂BA
nc(mt, S

A
t )

∂SAt
= (n− 1) βA ϕAAτ1 σforc f3︸ ︷︷ ︸

≡ aA

mn
t (SAt + S̃Bt (mt))

−n +

(n− 1)βA ϕBAτ1 σforc f3αA︸ ︷︷ ︸
≡ bA

mn
t (SBt (mt) + S̃At )−n − δA.

We note that aA, bA > 0 because n < 1 and the shadow prices of a temperature increase are
negative. Moreover recall that region A takes region B’s strategy SBt (mt) = sBt mt as given and
S̃it(mt) = αiS

i
t(mt). Defining sA ≡ SA

t

mt
we rewrite the derivative as

∂BA
nc(mt, S

A
t )

∂SAt
= aAm

n
t (SAt + αBs

B
t mt)

−n + bAm
n
t (mts

B
t + αAS

A
t )−n − δA

= aA(sA + αBs
B
t )−n + bA(sBt + αAs

A)−n − δA. (72)

The second order derivative is strictly negative so that the function BA
nc(mt, S

A
t ) is strictly

concave at all points of continuity. We still have to check the discontinuity at SAt = 0 (⇔ sA =

0). The left and right limits of the objective function’s slope at sA = 0 are

lim
sa→−0

∂BA
nc(mt, S

A
t )

∂SAt
= (aAα

−n
B + bA)sBt

−n − δcA and

lim
sa→+0

∂BA
nc(mt, S

A
t )

∂SAt
= (aAα

−n
B + bA)sBt

−n − δgA

where the superindex on δcA refers to the case of counter-geoengineering where SAt < 0 and
dcAA ≡ dcAA − εcA and δgA refers to the case of (sulfur-based) geoengineering where SAt > 0 and
dgAA ≡ dgAA + εgA. Because d

c
AA < dgAA

we have δcA < δgA and

lim
sa→−0

∂BA
nc(mt, S

A
t )

∂SAt
> lim

sa→+0

∂BA
nc(mt, S

A
t )

∂SAt
.

Therefore, the function BA
nc(mt, S

A
t ) has a concave kink at SAt = 0. As a result we have the

following cases for country A’s optimal sulfur deployment:

if lim
sa→−0

∂BA
nc(mt, S

A
t )

∂SAt
= (aAα

−n
B + bA)sBt

−n − δcA < 0 then sA, SAt < 0

(the interior optimum lies to the left of the kink)

if lim
sa→−0

∂BA
nc(mt, S

A
t )

∂SAt
> 0 > lim

sa→+0

∂BA
nc(mt, S

A
t )

∂SAt
. then SAt = sA = 0

(BA
nc(mt, S

A
t ) is maximal at the kink)

if lim
sa→+0

∂BA
nc(mt, S

A
t )

∂SAt
= (aAα

−n
B + bA)sBt

−n − δgA > 0 then sA, SAt > 0
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(an interior optimum exists to the right of the kink).
Thus, indeed, region A’s strategy is SAt = sAmt, consistent with our assumption that both

regions follow a climate engineering strategy proportional to the CO2 concentrations mt. We
obtain the same result for region B by exchanging region labels.

We have shown that there exist proportionality constants si, i ∈ {A,B}, characterized by
the optimality conditions above, such that the mutual optimal best responses are indeed linear
functions of the emission stock. Now we solve for the values of sA and sB.

(i) Let SAt 6= 0 and SBt 6= 0. Then we have shown that the optimal responses follow from
the interior solution to the first order condition of equation (72)

(n− 1) βA ϕAAτ1 σforc f3︸ ︷︷ ︸
≡ aA > 0

(sA + αB s
B)−n + (n− 1)βA ϕBAτ1 σforc f3 αA︸ ︷︷ ︸

≡ bA > 0

(sB + αA s
A)−n − δA = 0

(73)

(n− 1) βB ϕBBτ1 σforc f3︸ ︷︷ ︸
≡ aB > 0

(sB + αA s
A)−n + (n− 1)βB ϕABτ1 σforc f3 αB︸ ︷︷ ︸

≡ bB > 0

(sA + αB s
B)−n − δB = 0

(74)

Similarly as for region A, we denoted the shadow price of temperature τB1,t in region B by ϕBBτ1 ,
the shadow price of temperature τA1,t in region B by ϕABτ1 . Rearranging (74) gives

(sA + αB s
B)−n =

δB − aB(sB + αA s
A)−n

bB

Using this result in (73) yields

(sB + αA s
A)−n =

δA bB − aA δB
bA bB − aA aB

. From this we get

sB =

(
δA bB − aA δB
bA bB − aA aB

)− 1
n

− αA sA (75)

and

sA =

(
δB bA − aB δA
bB bA − aB aA

)− 1
n

− αB sB (76)
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and hence

sB =
1

1− αA αB

[( δA bB − aA δB
bA bB − aA aB

)− 1
n︸ ︷︷ ︸

≡zB

−αA
( δB bA − aB δA
bB bA − aB aA

)− 1
n︸ ︷︷ ︸

≡zA

]
(77)

and

sA =
1

1− αA αB

[( δB bA − aB δA
bB bA − aB aA

)− 1
n︸ ︷︷ ︸

≡zA

−αB
( δA bB − aA δB
bA bB − aA aB

)− 1
n︸ ︷︷ ︸

≡zB

]
(78)

We further define

zgA =
( δB bA − aB δgA
bB bA − aB aA

)− 1
n for SAt > 0

zcA =
( δB bA − aB δcA
bB bA − aB aA

)− 1
n for SAt < 0

This gives us

SAt =
mt

1− αA αB

(
zgA − αB zB

)
for SAt > 0 (79)

and

SAt =
mt

1− αA αB

(
zcA − αB zB

)
for SAt < 0 (80)

(ii) In the second case where SAt > 0 and SBt = 0, the first order condition for region A
simplifies to

aA (sA)−n + bA(αA s
A)−n − δgA = 0 (81)

which is equivalent to

sA =

(
δgA

bA α
−n
A + aA

)− 1
n

≡ zgoA (82)

Hence, for SBt = 0 we have SAt = zgoA mt. Obviously, the third and last possible case (iii) is that
SAt = 0 and SBt > 0.

The following reaction functions characterize a Nash equilibrium of the dynamic game: If
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SBt = 0, region A chooses SAt = zgoA mt and if SBt 6= 0 region A chooses

SAt =
mt

1− αA αB

(
zgA − αB zB

)
for SAt > 0

SAt =
mt

1− αA αB

(
zcA − αB zB

)
for SAt < 0

SAt = 0 otherwise.

Swapping country indices characterizes region B’s strategies.

C.1.2 Nash Equilibria

Using the reaction functions for region A and B we derive the Nash equilibria. We have excluded
the case that both countries would engage in counter-engineering by assumption.

i.a) In the case where both regions are cooling (SAt > 0, SBt > 0) we obtain

SA
∗

t =
mt

1− αA αB

(
zgA − αB z

g
B

)
> 0 ⇒ zgA > αB z

g
B (83)

and

SB
∗

t =
mt

1− αA αB

(
zgB − αAz

g
A

)
> 0 ⇒ zgB > αAz

g
A. (84)

Together, the two equations imply

αB <
zgA
zgB︸︷︷︸
≡H

< α−1A (85)

Note that this condition defines a non-empty range of parameter values unless αnA = αnB = 1.
Thus, condition (85) states the range of parameter values αB, αA, dgAA, d

g
BB, ε

g
A, ε

g
B, f2 for which

there exists an equilibrium in which both regions are cooling the world given γAA, γBA, γBB
and γAB.

i.b) In the case where region A is cooling (SAt > 0) and region B is warming (SBt < 0) we
obtain

SA
∗

t =
mt

1− αA αB

(
zgA − αBz

c
B

)
> 0 ⇔ zgA > αBz

c
B (86)

SB
∗

t =
mt

1− αA αB

(
zcB − αAz

g
A

)
< 0 ⇔ zcB < αAz

g
A. (87)

Therefore, the parameter range in which this case defines the Nash equilibrium is characterized
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by

zgA
zcB

> max{αB, α−1A } ⇔ h ≡ zgA
zcB

> α−1A = max{αB, α−1A } (88)

i.c) The case where region A is warming (SAt < 0) and region B is cooling (SBt > 0) follows
by symmetry (switching the region indices)

zgB
zcA

> α−1B = max{αA, α−1B } ⇒ Ĥ ≡ zcA
zgB

< αB. (89)

ii) In the case where region A is cooling (SAt > 0) and region B is not acting (SBt = 0) it
has to be optimal for region B to neither engage in cooling, nor in counter-engineering. Given
region A is taking the same actions as in scenarios i and ii, region B’s reaction function can
neither satisfy equation (84) nor (87). Therefore, it must be that H ≥ α−1A and h ≤ α−1A . In
addition, region A’s reaction function becomes

SA
∗

t = zgoA mt > 0, (90)

which will always be satisfied. The reaction function of region B is obviously SB∗
t = 0.

iii) Finally, the symmetric reasoning for region B cooling (SBt > 0) and region A not acting
(SAt = 0) delivers 1

H
≥ α−1B and 1

Ĥ
≤ α−1B or

1

Ĥ
≤ α−1B ≤

1

H
⇔ Ĥ ≥ αB ≥ H. (91)

Here the reaction functions are

SB
∗

t = zgoB mt > 0 (92)

and locally SA∗
t = 0. These 5 cases are mutually exclusive.

Verifying solution to the Bellman equation. Inserting the optimal control rules
N ∗t (At, ϕ

A
k ,ϕMA,ϕR,t+1),K∗t (At, ϕ

A
k ,ϕMA,ϕR,t+1),E

∗
t (At, ϕ

A
k ,ϕMA,ϕR,t+1), and SAt

∗
(ϕAk , ϕ

B
k ,ϕ

T
τA,M1,t)

into the maximized Bellman equation gives us

ϕAk kt +ϕTτA τ t +ϕTMAM t +ϕTR,tRt + ϕt

= log x∗t + κ kt + logF (At, K∗t , N ∗t , E∗t ) + ξA0
(
1− τA1,t

)
− [dAAS

A∗
t + dBAS̃

B
t ]− aA (mt − 1)

+βA ϕAk
(
κ kt+logF (At, K∗t , N ∗t , E∗t )+log(1−x∗t )+ξA0

(
1− τA1,t

)
−[dAAS

A
t

∗
+dBAS̃

B
t ]−aA (mt−1)

)
+ βAϕTτA

(
στ t + F̃ t(S

A
t

∗
, SBt )

)
+ βAϕTMA (ΦM t + ẽt) + βAϕTR,t+1

(
Rt −Ed

t

∗
)

+ βA ϕt+1

(93)

Arranging terms with respect to their states for all Nash equilibria yields
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(i): SAt 6= 0, SBt 6= 0

ϕAk kt +ϕTτA τ t + ϕAM1M1,t + ϕAM2M2,t +ϕTR,tRt + ϕt =
[
(1 + βA ϕAk )κ

]
kt + βAϕTτA στ t

−(1+βA ϕAk )ξA0 e
T
1 τ t+

[(
f2(β

A ϕAAτ1 σforc zA+βA ϕBAτ1 σforc zB)−(1+βA ϕAk )
(
dAA

1

1− αA αB
(zA−αB zB)

+ dBA
αB

1− αA αB
(zB − αA zA)

)
− f3(βA ϕAAτ1 σforc z

1−n
A + βA ϕBAτ1 σforc z

1−n
B )− aA(1 + βA ϕAk )

+(βA ϕAAτ1 σforc+β
A ϕBAτ1 σforc) f1

)
M−1

pre+β
A (ϕAM1 φ11+ϕ

A
M2 φ12)

]
M1,t+

[
βA(ϕAM1 φ21+ϕ

A
M2 φ22)

]
M2,t

+
[
βAϕTR,t+1

]
Rt+log x∗t+β

A ϕAk log(1−x∗t )+(1+βA ϕAk ) logF (At, K∗t , N ∗t , E∗t )+(1+βA ϕAk )(ξA0 +aA)

+ (βA ϕAAτ1 σforc + βA ϕBAτ1 σforc) f0 + βA ϕAM1(
Id∑
i=1

E∗i,t + Eexo
t )− βAϕTR,t+1E

d
t

∗
+ βA ϕt+1, (94)

(ii): SAt > 0, SBt = 0

ϕAk kt +ϕTτA τ t + ϕAM1M1,t + ϕAM2M2,t +ϕTR,tRt + ϕt =
[
(1 + βA ϕAk )κ

]
kt + βAϕTτA στ t

− (1 + βA ϕAk )ξA0 e
T
1 τ t +

[(
f2 (βA ϕAAτ1 σforc z

go
A + βA ϕBAτ1 σforc αA z

go
A )− (1 + βA ϕAk ) dAA z

go
A

− f3
(
βA ϕAAτ1 σforc (zgoA )1−n + βA ϕBAτ1 σforc (αA z

go
A )1−n

)
− (1 + βA ϕAk ) aA + f1 (βA ϕAAτ1 σforc

+βA ϕBAτ1 σforc )

)
M−1

pre+β
A (ϕAM1 φ11+ϕ

A
M2 φ12)

]
M1,t+

[
βA(ϕAM1 φ21+ϕ

A
M2 φ22)

]
M2,t+

[
βAϕTR,t+1

]
Rt

+ log x∗t + βA ϕAk log(1− x∗t ) + (1 + βA ϕAk ) logF (At, K∗t , N ∗t , E∗t ) + (1 + βA ϕAk )(ξA0 + aA)

+ (βA ϕAAτ1 σforc + βA ϕBAτ1 σforc) f0 + βA ϕAM1(
Id∑
i=1

E∗i,t + Eexo
t )− βAϕTR,t+1E

d
t

∗
+ βA ϕt+1, (95)
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(iii): SAt = 0, SBt > 0

ϕAk kt +ϕTτA τ t + ϕAM1M1,t + ϕAM2M2,t +ϕTR,tRt + ϕt =
[
(1 + βA ϕAk )κ

]
kt + βAϕTτA στ t

− (1 + βA ϕAk )ξA0 e
T
1 τ t +

[(
f2 (βA ϕAAτ1 σforc αB z

go
B + βA ϕBAτ1 σforc z

go
B )− (1 + βA ϕAk ) dBA αB z

go
B

− f3
(
βA ϕAAτ1 σforc (αB z

go
B )1−n + βA ϕBAτ1 σforc (zgoB )1−n

)
− (1 + βA ϕAk ) aA + f1 (βA ϕAAτ1 σforc

+βA ϕBAτ1 σforc )

)
M−1

pre+β
A (ϕAM1 φ11+ϕ

A
M2 φ12)

]
M1,t+

[
βA(ϕAM1 φ21+ϕ

A
M2 φ22)

]
M2,t+

[
βAϕTR,t+1

]
Rt

+ log x∗t + βA ϕAk log(1− x∗t ) + (1 + βA ϕAk ) logF (At, K∗t , N ∗t , E∗t ) + (1 + βA ϕAk )(ξA0 + aA)

+ (βA ϕAAτ1 σforc + βA ϕBAτ1 σforc) f0 + βA ϕAM1(
Id∑
i=1

E∗i,t + Eexo
t )− βAϕTR,t+1E

d
t

∗
+ βA ϕt+1. (96)

Hence, for all Nash equilibria the system is linear in states.
Shadow values of the states. Coefficient matching with respect to capital, kt, yields

ϕAk = (1 + βA ϕAk )κ ⇔ ϕAk =
κ

1− βA κ

Inserting ϕk into equation (61) yields the optimal consumption rate x∗t = 1− βA κ.
Coefficient matching with respect to transformed temperatures delivers

ϕTτA = −ξA0 (1 + βA ϕAk ) eT1 [1− βA σ]−1. (97)

with

[1− βA σ]−1 =

σ̃
A
11 σ̃A12 σ̃A13

σ̃A21 σ̃A22 σ̃A23

σ̃A31 σ̃A32 σ̃A33


and hence

ϕAAτ1 = −ξA0 (1 + βA ϕAk )σ̃A11, (98)

ϕBAτ1 = −ξA0 (1 + βA ϕAk )σ̃A21, (99)

The temperature shadow values for region B follow by switching region indices.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Simplification: If we set the heat flow coefficients σAB, σBA , σOA , σOB equal to zero, then ϕAAτ1 =

−ξA0 (1 + βA ϕAk ) σ̃A11 and ϕBAτ1 = 0 since σ̃A21 = 0. This implies that bA = bB = 0, and therefore
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zgA =
( δgA
aA

)− 1
n

=

(
(n− 1)βA ϕAτ1 σforc f3

(1 + βA ϕk)d
g
AA − βAϕAτ1 σforc f2

) 1
n

zcA =
( δcA
aA

)− 1
n

=

(
(n− 1)βA ϕAτ1 σforc f3

(1 + βA ϕk)dcAA − βAϕAτ1 σforc f2

) 1
n

and

zB =
( δB
aB

)− 1
n

=

(
(n− 1)βB ϕBτ1 σforc f3

(1 + βB ϕk)dBB − βBϕBτ1 σforc f2

) 1
n

with zB ∈ {zcB, z
g
B}. We used the simpler notation ϕAAτ1 = ϕAτ1 = −ξA0 (1 + βA ϕAk ) σ̃A11 and

ϕBBτ1 = ϕBτ1 = −ξB0 (1 +βB ϕBk ) σ̃B11. Note that with this simplification zgoA =
(
δgA
aA

)− 1
n

= zgA since
bA = 0. Switching region indices gives us the analoug result for region B.

We can further see that the cooling undertaken by the cooling region will always go up if
the other region engages in counter-engineering. The increase in cooling is less strong if the
other region’s reluctance to engage in counter-engineering is higher. For this statement to be
true, the following equation must hold:

mt

1− αA αB

(
zgB − αA z

c
A

)
> mt z

g
B

Rearranging yields αB zcB > zcA which is always satisfied for SAt < 0.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

We now define γAA ≡ βA ξA0 σ̃
A
11 σforc, and γBA ≡ βA ξA0 σ̃

A
21 σforc. This gives us δA, δB, aA, aB,

bA, and bB as a function of the γ’s.

−δA = (1 + βA ϕAk )(γAA f2 + αA γBA f2 − dAA)

aA = (1 + βA ϕAk )(n− 1)γAA f3

bA = (1 + βA ϕAk )(n− 1)αA γBA f3

Thus, zA and zB are also functions of the γ’s.

zA(γAA, γBA, γBB, γAB) =
(δB(γBB, γAB) bA(γBA)− aB(γBB) δA(γAA, γBA)

bB(γAB) bA(γBA)− aB(γBB) aA(γAA)

)− 1
n

zB(γBB, γAB, γAA, γBA) =
(δA(γAA, γBA) bB(γAB)− aA(γAA) δB(γBB, γAB)

bA(γBA) bB(γAB)− aA(γAA) aB(γBB)

)− 1
n

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Simplification: Setting σAB, σBA , σOA , σOB equal to zero leads to

zgA =

(
(1− n) f3 γA

f2 γA + (dgAA + εgA)

) 1
n

, zcA =

(
(1− n) f3 γA

f2 γA + (dcAA − εcA)

) 1
n

where γA = βA ξA0 σ̃
−1
A σforc.

Switching region indices leads shows that for region B

zgB =

(
(1− n) f3 γB

f2 γB + (dgBB + εgB)

) 1
n

, zcB =

(
(1− n) f3 γB

f2 γB + (dcBB − εcB)

) 1
n

where γB = βB ξB0 σ̃
−1
B σforc.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Coefficient matching with respect to the atmospheric carbon stock, and using γ’s, yields:

(i): SAt 6= 0 and SBt 6= 0

ϕAM1 = (1+βA ϕAk )

(
−f2 (γAA zA+γBA zB)−

(
dAA

1

1− αA αB
(zA−αB zB)+dBA

αB
1− αA αB

(zB−αA zA)
)

+ f3 (γAA z
1−n
A + γBA z

1−n
B )− aA − f1 (γAA + γBA)

)
M−1

pre + βA (ϕAM1 φ11 + ϕAM2 φ12) (100)

(ii): SAt > 0 and SBt = 0

ϕAM1 = (1+βA ϕAk )

(
−f2 (γAA z

go
A +γBA αA z

go
A )−dAA zgoA +f3

(
γAA (zgoA )1−n+γBA (αA z

go
A )1−n

)
−aA

− f1 (γAA + γBA)

)
M−1

pre + βA (ϕAM1 φ11 + ϕAM2 φ12) (101)

(iii): SAt = 0 and SBt > 0

ϕAM1 = (1+βA ϕAk )

(
−f2 (γAA αB z

go
B +γBA z

go
B )− dBA αB zgoB +f3

(
γAA (αB z

go
B )1−n+γBA (zgoB )1−n

)
−aA

− f1 (γAA + γBA)

)
M−1

pre + βA (ϕAM1 φ11 + ϕAM2 φ12) (102)

Coefficient matching with respect to the carbon stock in the ocean gets us

ϕAM2 = βA(ϕAM1 φ21 + ϕAM2 φ22) ⇔ ϕAM2 =
βA ϕAM1 φ21

1− βA φ22

,

and for the resource stock we have

ϕTR,t = βϕTR,t+1 ⇔ ϕR,t = β−tϕR,0 (Hotelling’s rule).
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The initial resource values ϕTR,0 depend on the set up of the economy, including assumptions
about production and the energy sector. Given the coefficients and the optimal rate of con-
sumption equation (94),(95), and (96) turn to the following condition:

ϕt−βA ϕt+1 = log x∗t+β
A ϕAk log(1−x∗t )+(1+βA ϕAk ) logF (At, K∗t , N ∗t , E∗t )+(1+βA ϕAk )(ξA0 +aA)

+ (βA ϕAAτ1 σforc + βA ϕBAτ1 σforc) f0 + β ϕAM1(
Id∑
i=1

E∗i,t + Eexo
t )− βAϕTR,t+1E

d
t

∗ (103)

This condition will be satisfied by picking the sequence ϕ0, ϕ1, ϕ2, .... The additional condition
limt→∞(βA)tV (·) = 0⇒ limt→∞(βA)tϕt = 0 pins down this initial value ϕ0.

C.1.3 Regional social cost of carbon

Inserting ϕAM2, and ϕAk into (100), (101), and (102) delivers:
(i): SAt 6= 0 and SBt 6= 0

ϕAM1 =
1

1− βA κ

(
−f2 (γAA zA+γBA zB)−

(
dAA

1

1− αA αB
(zA−αB zB)+dBA

αB
1− αA αB

(zB−αA zA)
)

+ f3 (γAA z
1−n
A + γBA z

1−n
B )− aA − f1 (γAA + γBA)

)
M−1

pre

(
1− βA φ11 −

(βA)2 φ12 φ21

1− βA φ22

)−1
︸ ︷︷ ︸

≡φ̃A

(104)

(ii): SAt > 0 and SBt = 0

ϕAM1 =
1

1− βA κ

(
−f2 (γAA z

go
A +γBA αA z

go
A )−dAA zgoA +f3

(
γAA (zgoA )1−n+γBA (αA z

go
A )1−n

)
−aA

− f1 (γAA + γBA)

)
M−1

pre

(
1− βA φ11 −

(βA)2 φ12 φ21

1− βA φ22

)−1
︸ ︷︷ ︸

≡φ̃A

(105)

(iii): SAt = 0 and SBt > 0

ϕAM1 =
1

1− βA κ

(
−f2 (γAA αB z

go
B +γBA z

go
B )− dBA αB zgoB +f3

(
γAA (αB z

go
B )1−n+γBA (zgoB )1−n

)
−aA

− f1 (γAA + γBA)

)
M−1

pre

(
1− βA φ11 −

(βA)2 φ12 φ21

1− βA φ22

)−1
︸ ︷︷ ︸

≡φ̃A

(106)

The regional SCC is the negative of the regional shadow value of atmospheric carbon expressed
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in money-measured consumption units. Thus,
(i): SAt 6= 0 and SBt 6= 0

SCCA = −(1− βA κ)Y net
A,t ϕ

A
M1

=
Y net
A,t

Mpre

(
f2 (γAA zA + γBA zB) +

(
dAA

1

1− αA αB
(zA − αB zB) + dBA

αB
1− αA αB

(zB − αA zA)
)

−f3 (γAA z
1−n
A + γBA z

1−n
B ) + aA + f1 (γAA + γBA)

)
φ̃A,

(ii): SAt > 0 and SBt = 0

SCCA = −(1− βA κ)Y net
A,t ϕ

A
M1

=
Y net
A,t

Mpre

(
f2 (γAA z

go
A + γBA αA z

go
A ) + dAA z

go
A − f3

(
γAA (zgoA )1−n + γBA (αA z

go
A )1−n

)
+ aA

+f1 (γAA + γBA)

)
φ̃A,

(iii): SAt = 0 and SBt > 0

SCCA = −(1− βA κ)Y net
A,t ϕ

A
M1

=
Y net
A,t

Mpre

(
f2 (γAA αB z

go
B + γBA z

go
B ) + dBA αB z

go
B − f3

(
γAA (αB z

go
B )1−n + γBA (zgoB )1−n

)
+ aA

+f1 (γAA + γBA)

)
φ̃A.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Simplification: Setting σAB, σBA , σOA , σOB equal to zero, the regional social cost of carbon
becomes
(i): SAt 6= 0 and SBt 6= 0

SCCA =
Y net
A,t

Mpre

(
aA + f1 γA−

n

1− n
zA(f2 γA + dAA) +

αB
1− αA αB

(zB −αA zA)(dBA− dAA)

)
φ̃A,

with zA ∈ {zcA, z
g
A}, zB ∈ {zcB, z

g
B}, dAA ∈ {dcAA, d

g
AA}, and dBB ∈ {dcBB, d

g
BB}.

(ii): SAt > 0 and SBt = 0

SCCA =
Y net
A,t

Mpre

(
aA + f1 γA −

n

1− n
zgA(f2 γA + dAA)

)
φ̃A,
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(iii): SAt = 0 and SBt > 0

SCCA =
Y net
A,t

Mpre

[
aA + f1 γA + αB z

g
B d

g
BA − γA

(
f3(αB z

g
B)1−n − αB zgB f2

)]
φ̃A,

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

C.2 Rest of the world

In terms of transformed temperatures in the regional model we haveτ
A
1,t+1

τB1,t+1

τ2,t+1


︸ ︷︷ ︸
≡ τ t+1

=

1− σA σAB σAO
σBA 1− σB σBO
σOA σOB 1− σO


︸ ︷︷ ︸

≡σ

τ
A
1,t

τB1,t

τ2,t


︸ ︷︷ ︸
≡τ t

+

σforc exp( log 2
η
FA
t )

σforc exp( log 2
η
FB
t )

0


︸ ︷︷ ︸

≡ F̃ t(SA
t ,S

B
t )

(107)

where σA = σAB + σAO, σB = σBA + σBO , and σO = σOA + σOB , or equivalently

τ t+1 = στ t + F̃ t(S
A
t , S

B
t ). (108)

The dynamics of the carbon reservoirs are given by

(
M1,t+1

M2,t+1

)
︸ ︷︷ ︸
≡M t+1

=

(
φ11 φ21

φ12 φ22

)
︸ ︷︷ ︸

≡Φ

(
M1,t

M2,t

)
︸ ︷︷ ︸
≡M t

+

 Id∑
i=1

EA,i,t +
Id∑
i=1

EB,i,t +
Id∑
i=1

EW,i,t + Eexo
t

0


︸ ︷︷ ︸

≡ ẽt

(109)

or equivalently

M t+1 = ΦM t + ẽt. (110)

In the following we show for the rest of the world that the system (4 temperatures and 2 carbon
reservoirs) is linear in states and that the affine value function

V (kt, τ t,M t,Rt, t) = ϕWk kt +ϕTτW τ t +ϕTMW M t +ϕTR,tRt + ϕt, (111)

where

ϕTτW =

ϕ
AW
τ1

ϕBWτ1

ϕWτ2

 and ϕTMW =

(
ϕWM1

ϕWM2

)
,

49



solves the system. We only use region indices when they are needed. Inserting the trial solution
and the next periods states into the Bellman equation delivers

ϕWk kt +ϕTτW τ t +ϕTMW M t +ϕTR,tRt + ϕt

= max
xt,N t,Kt,Et

{
log xt + κ kt + logF (At, Kt, N t, Et) + ξW0

(
1− τW1,t

)
− (dBWS

B
t + dAW S̃

A
t )

−aW (mt−1)+λKt (1−
IK∑
i=1

Ki,t)+λNt (1−
IN∑
i=1

Ni,t)+β
W ϕWk

(
κ kt+logF (At, Kt, N t, Et)+log(1−xt)

+ ξW0
(
1− τW1,t

)
− (dBWS

B
t + dAW S̃

A
t )− aW (mt − 1)

)
+ βW ϕTτW

(
στ t + F̃ t(S

A
t , S

B
t )
)

+ βW ϕTMW (ΦM t + ẽt) + βW ϕTR,t+1

(
Rt −Ed

t

)
+ βW ϕt+1

}
. (112)

First order conditions. Maximizing the right hand side over xt yields

1

xt
− βW ϕWk

1

1− xt
= 0 =⇒ xt =

1

1 + βW ϕWk
. (113)

Maximizing the right hand side over Ki,t yields

(1 + βW ϕWk )

∂F (At,Kt,N t,Et)
∂Ki,t

F (At, Kt, N t, Et)
= λKt (114)

which is equivalent to

Ki,t =
σY,Ki

(At, Kt, N t, Et)
IK∑
i=1

σY,Ki
(At, Kt, N t, Et)

(115)

with

σY,Ki
(At, Kt, N t, Et) ≡

∂F (At, Kt, N t, Et)

∂Ki,t
Ki,t

F (At, Kt, N t, Et)
. (116)

Similarly, the first order conditions for the labor input is

(1 + βW ϕWk )

∂F (At,Kt,N t,Et)
∂Ni,t

F (At, Kt, N t, Et)
= λNt (117)

and hence

Ni,t =
σY,Ni

(At, Kt, N t, Et)
IN∑
i=1

σY,Ni
(At, Kt, N t, Et)

(118)
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with

σY,Ni
(At, Kt, N t, Et) ≡

∂F (At, Kt, N t, Et)

∂Ni,t

Ni,t

F (At, Kt, N t, Et)
(119)

The first order condition for the optimal input of fossil fuels is given by

(1 + βW ϕWk )

∂F (At,Kt,N t,Et)
∂Ei,t

F (At, Kt, N t, Et)
= βW (ϕR,i,t+1 − ϕWM1) (120)

which is equivalent to

Ei,t =
(1 + βW ϕWk )σY,Ei

(At, Kt, N t, Et)

β(ϕR,i,t+1 − ϕWM1)
(121)

with

σY,Ei
(At, Kt, N t, Et) ≡

∂F (At, Kt, N t, Et)

∂Ei,t

Ei,t
F (At, Kt, N t, Et)

. (122)

Verifying solution to the Bellman equation.
Inserting the optimal control rules N ∗t (At, ϕ

W
k ,ϕMW ,ϕR,t+1), K∗t (At, ϕ

W
k ,ϕMW ,ϕR,t+1),

and E∗t (At, ϕ
W
k ,ϕMW ,ϕR,t+1) into the maximized Bellman equation gives us

ϕWk kt +ϕTτW τ t +ϕTMW M t +ϕTR,tRt + ϕt

= log x∗t + κ kt + logF (At, K∗t , N ∗t , E∗t ) + ξW0
(
1− τW1,t

)
− (dBWS

B
t + dAW S̃

A
t )− aW (mt − 1)

+βW ϕWk
(
κ kt+logF (At, K∗t , N ∗t , E∗t )+log(1−x∗t )+ξW0

(
1− τW1,t

)
−(dBWS

B
t +dAW S̃

A
t )−aW (mt−1)

)
+ βW ϕTτW

(
στ t + F̃ t(S

A
t , S

B
t )
)

+ βW ϕTMW (ΦM t + ẽt) + βW ϕTR,t+1

(
Rt −Ed

t

∗
)

+ βW ϕt+1

(123)

Arranging with respect to states for all Nash equilibria yields
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(i): SAt 6= 0, SBt 6= 0

ϕWk kt +ϕTτW τ t + ϕWM1M1,t + ϕWM2M2,t +ϕTR,tRt + ϕt =
[
(1 + βW ϕWk )κ

]
kt + βW ϕTτW στ t

−(1+βW ϕWk )ξW0 e
T
1 τ t+

[(
f2 β

W (ϕAWτ1 σforc zA+ϕBWτ1 σforc zB)−(1+βW ϕWk )
(
dAW

αA
1− αA αB

(zA−αB zB)

+ dBW
1

1− αA αB
(zB − αA zA)

)
− f3 βW (σforc ϕ

AW
τ1 z1−nA + σforc ϕ

BW
τ1 z1−nB )− aW (1 + βW ϕWk )

+f1 β
W (σforc ϕ

AW
τ1 +σforc ϕ

BW
τ1 )

)
M−1

pre+β
W (ϕWM1 φ11+ϕ

W
M2 φ12)

]
M1,t+

[
βW (ϕWM1 φ21+ϕ

W
M2 φ22)

]
M2,t

+
[
βW ϕTR,t+1

]
Rt+log x∗t+β

W ϕWk log(1−x∗t )+(1+βW ϕWk ) logF (At, K∗t , N ∗t , E∗t )+(1+βW ϕWk )(ξW0 +aW )

+ f0 β
W (ϕAWτ1 σforc + ϕBWτ1 σforc) + βW ϕWM1(

Id∑
i=1

E∗i,t + Eexo
t )− βW ϕTR,t+1E

d
t

∗
+ βW ϕt+1. (124)

with zA ∈ {zcA, z
g
A}, zB ∈ {zcB, z

g
B}, dAA ∈ {dcAA, d

g
AA}, and dBB ∈ {dcBB, d

g
BB} depending on

whether region A and B engage in counter-geoengineering or geoengineering.
(ii): SAt > 0, SBt = 0

ϕWk kt +ϕTτW τ t + ϕWM1M1,t + ϕWM2M2,t +ϕTR,tRt + ϕt =
[
(1 + βW ϕWk )κ

]
kt + βW ϕTτW στ t

− (1 + βW ϕWk )ξW0 e
T
1 τ t +

[(
f2 β

W (σforc ϕ
AW
τ1 zgoA + σforc ϕ

BW
τ1 αA z

go
A )− (1 + βW ϕWk ) dAW αA z

go
A

−f3 βW (σforc ϕ
AW
τ1 (zgoA )1−n+σBforc ϕ

BW
τ1 (αA z

go
A )1−n)−aW (1+βW ϕWk )+f1 β

W (σAforc ϕ
AW
τ1 +σBforc ϕ

BW
τ1 )

)
M−1

pre

+βW (ϕWM1 φ11+ϕ
W
M2 φ12)

]
M1,t+

[
βW (ϕWM1 φ21+ϕ

W
M2 φ22)

]
M2,t+

[
βW ϕTR,t+1

]
Rt+log x∗t+β

W ϕWk log(1−x∗t )

+(1+βW ϕWk ) logF (At, K∗t , N ∗t , E∗t )+(1+βW ϕWk )(ξW0 +aW )+f0 β
W (ϕAWτ1 σforc +ϕBWτ1 σforc)

+ βW ϕWM1(
Id∑
i=1

E∗i,t + Eexo
t )− βW ϕTR,t+1E

d
t

∗
+ βW ϕt+1. (125)
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(iii): SAt = 0, SBt > 0

ϕWk kt +ϕTτW τ t + ϕWM1M1,t + ϕWM2M2,t +ϕTR,tRt + ϕt =
[
(1 + βW ϕWk )κ

]
kt + βW ϕTτW στ t

− (1 + βW ϕWk )ξW0 e
T
1 τ t +

[(
f2 β

W (σforc ϕ
AW
τ1 zgoB + σforc ϕ

BW
τ1 αA z

go
B )− (1 + βW ϕWk ) dBW zgoB

−f3 βW (σforc ϕ
AW
τ1 (αB z

go
B )1−n+σforc ϕ

BW
τ1 (zgoB )1−n)−aW (1+βW ϕWk )+f1 β

W (σforc ϕ
AW
τ1 +σforc ϕ

BW
τ1 )

)
M−1

pre

+βW (ϕWM1 φ11+ϕ
W
M2 φ12)

]
M1,t+

[
βW (ϕWM1 φ21+ϕ

W
M2 φ22)

]
M2,t+

[
βW ϕTR,t+1

]
Rt+log x∗t+β

W ϕWk log(1−x∗t )

+(1+βW ϕWk ) logF (At, K∗t , N ∗t , E∗t )+(1+βW ϕWk )(ξW0 +aW )+f0 β
W (ϕAWτ1 σforc +ϕBWτ1 σforc)

+ βW ϕWM1(
Id∑
i=1

E∗i,t + Eexo
t )− βW ϕTR,t+1E

d
t

∗
+ βW ϕt+1. (126)

Hence, for all Nash equilibria the system is linear in states.
Shadow values of the states. Coefficient matching with respect to capital, kt, yields

ϕWk = (1 + βW ϕWk )κ ⇔ ϕWk =
κ

1− βW κ

Inserting ϕWk into equation (113) yields the optimal consumption rate x∗t = 1− βW κ.
Coefficient matching with respect to transformed temperatures delivers

ϕTτW = −ξW0 (1 + βW ϕWk ) eT1 [1− βW σ]−1. (127)

with

[1− βW σ]−1 =

σ̃
W
11 σ̃W12 σ̃W13

σ̃W21 σ̃W22 σ̃W23

σ̃W31 σ̃W32 σ̃W33


and hence

ϕAWτ1 = −ξW0 (1 + βW ϕWk )σ̃W21 (128)

ϕBWτ1 = −ξW0 (1 + βW ϕWk )σ̃W31 (129)

We define γAW ≡ βW ξW0 σ̃W21 σforc and γBW ≡ βW ξW0 σ̃W31 σforc.
Coefficient matching with respect to the atmospheric carbon stock and using the γ’s yields
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(i): SAt 6= 0, SBt 6= 0

ϕWM1 = (1+βW ϕWk )

(
−f2(γAW zA+γBW zB)−dAW

αA
1− αA αB

(zA−αB zB)−dBW
1

1− αA αB
(zB−αA zA)

+ f3
(
γAW z1−nA + γBW z1−nB

)
− aW − f1(γAW + γBW )

)
M−1

pre + βW (ϕWM1 φ11 + ϕWM2 φ12) (130)

(ii): SAt > 0, SBt = 0

ϕWM1 = (1+βW ϕWk )

(
−f2(γAW zgoA +γBW αA z

go
A )−dAW αA z

go
A +f3

(
γAW (zgoA )1−n + γBW (αA z

go
A )1−n

)
− aW − f1(γAW + γBW )

)
M−1

pre + βW (ϕWM1 φ11 + ϕWM2 φ12) (131)

(iii): SAt = 0, SBt > 0

ϕWM1 = (1+βW ϕWk )

(
−f2(γAW αBz

go
B +γBW zgoB )−dBW zgoB +f3

(
γAW (αB z

go
B )1−n+γBW (zgoB )1−n

)
− aW − f1(γAW + γBW )

)
M−1

pre + βW (ϕWM1 φ11 + ϕWM2 φ12) (132)

From coefficient matching with respect to the carbon stock in the ocean we get

ϕWM2 = βW (ϕWM1 φ21 + ϕWM2 φ22) ⇔ ϕWM2 =
βW ϕWM1 φ21

1− βW φ22

,

and for the resource stock we have

ϕTR,t = βW ϕTR,t+1 ⇔ ϕR,t = (βW )−tϕR,0 (Hotelling’s rule).

The initial resource values ϕTR,0 depend on the set up of the economy, including assumptions
about production and the energy sector. Given the coefficients and the optimal rate of con-
sumption equation (94),(95), and (96) turn to the following condition:

ϕt − βW ϕt+1 = log x∗t + βW ϕWk log(1− x∗t ) + (1 + βW ϕWk ) logF (At, K∗t , N ∗t , E∗t )

+(1+βW ϕWk )(ξW0 +aW )+βW (ϕAWτ1 σforc+ϕ
BW
τ1 σforc) f0+β

W ϕWM1(
Id∑
i=1

E∗i,t+E
exo
t )−βW ϕTR,t+1E

d
t

∗

(133)
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This condition will be satisfied by picking the sequence ϕ0, ϕ1, ϕ2, .... The additional condition
limt→∞(βW )tV (·) = 0⇒ limt→∞(βW )tϕt = 0 pins down this initial value ϕ0.

C.2.1 Social cost of carbon in the rest of the world

Inserting ϕWM2, and ϕWk into (130), (131), and (132) delivers
(i): SAt 6= 0, SBt 6= 0

ϕWM1 =
1

1− βW κ

(
−f2(γAW zA+γBW zB)−dAW

αA
1− αA αB

(zA−αB zB)−dBW
1

1− αA αB
(zB−αA zA)

+ f3
(
γAW z1−nA + γBW z1−nB

)
− aW − f1(γAW + γBW )

)
M−1

pre

(
1− βW φ11 −

(βW )2 φ12 φ21

1− βW φ22

)−1
︸ ︷︷ ︸

≡φ̃W

(134)

(ii): SAt > 0, SBt = 0

ϕWM1 =
1

1− βW κ

(
−f2(γAW zgoA +γBW αA z

go
A )−dAW αA z

go
A +f3

(
γAW (zgoA )1−n + γBW (αA z

go
A )1−n

)
− aW − f1(γAW + γBW )

)
M−1

pre

(
1− βW φ11 −

(βW )2 φ12 φ21

1− βW φ22

)−1
︸ ︷︷ ︸

≡φ̃W

(135)

(iii): SAt = 0, SBt > 0

ϕWM1 =
1

1− βW κ

(
−f2(γAW αBz

go
B +γBW zgoB )−dBW zgoB +f3

(
γAW (αB z

go
B )1−n+γBW (zgoB )1−n

)
− aW − f1(γAW + γBW )

)
M−1

pre

(
1− βW φ11 −

(βW )2 φ12 φ21

1− βW φ22

)−1
︸ ︷︷ ︸

≡φ̃W

(136)

The regional SCC is the negative of the regional shadow value of atmospheric carbon ex-
pressed in money-measured consumption units. Thus,

(i): SAt 6= 0 and SBt 6= 0
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SCCW = −(1− βW κ)Y net
W,t ϕ

W
M1

=
Y net
W,t

Mpre

(
f2(γAW zA + γBW zB) + dAW

αA
1− αA αB

(zA − αB zB) + dBW
1

1− αA αB
(zB − αA zA)

−f3
(
γAW z1−nA + γBW z1−nB

)
+ aW + f1(γAW + γBW )

)
φ̃W ,

(ii): SAt > 0 and SBt = 0

SCCW = −(1− βW κ)Y net
W,t ϕ

W
M1

=
Y net
W,t

Mpre

(
f2(γAW zgoA + γBW αA z

go
A ) + dAW αA z

go
A − f3

(
γAW (zgoA )1−n + γBW (αA z

go
A )1−n

)
+aW + f1(γAW + γBW )

)
φ̃W ,

(iii): SAt = 0 and SBt > 0

SCCW = −(1− βW κ)Y net
W,t ϕ

W
M1

=
Y net
W,t

Mpre

(
f2(γAW αBz

go
B + γBW zgoB ) + dBW zgoB − f3

(
γAW (αB z

go
B )1−n + γBW (zgoB )1−n

)

+aW + f1(γAW + γBW )

)
φ̃W .

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Simplification: We set σAB, σBA , σOA , σOB equal to zero. After defining γW = γBW , the social
cost of carbon in the rest of the world becomes
(i): SAt 6= 0 and SBt 6= 0

SCCW =
Y net
W,t

Mpre

[
aW+f1 γW+dAW

αA(zA − αB zB)

1− αA αB
+dBW

(zB − αA zA)

1− αA αB
−γW (f3 z

1−n
B −f2 zB)

]
φ̃W ,

(137)

with zA ∈ {zcA, z
g
A}, zB ∈ {zcB, z

g
B}, dAA ∈ {dcAA, d

g
AA}, and dBB ∈ {dcBB, d

g
BB}.
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(ii): SAt > 0 and SBt = 0

SCCW =
Y net
W,t

Mpre

[
aW + f1 γW + αA z

g
A dAW − γW

(
f3 (αA z

g
A)1−n − αA zgA f2

)]
φ̃W , (138)

(iii): SAt = 0 and SBt > 0

SCCW =
Y net
W,t

Mpre

[
aW + f1 γW + zgB dBW − γW

(
f3 (zgB)1−n − zgB f2

)]
φ̃W . (139)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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