
A Unified Model of Distress Risk Puzzles

Abstract

We build a dynamic model to link two empirical patterns: the negative failure
probability-return relation (Campbell, Hilscher, and Szilagyi, 2008) and the posi-
tive distress risk premium-return relation (Friewald, Wagner, and Zechner, 2014).
We show analytically and quantitatively that (i) equity-to-debt ratios and levered
equity betas negatively covary with the market risk premium in highly distressed
firms; (ii) the negative covariance generates low stock returns and negative alphas
among those firms; and (iii) firms with a lower distress risk premium endogenously
choose higher leverage, so they are more likely to become distressed and earn negative
returns. We provide empirical evidence to support our model predictions.



1 Introduction

Distress risk plays an important role in corporate financing choices and asset prices. Even though

distress risk deters debt taking, empirical evidence on the equity distress risk premium in asset

prices is mixed.1 Recently, while Campbell et al. (2008) document a negative relation between

failure probabilities and stock returns, Friewald et al. (2014) find a positive relation between distress

risk premium (from credit default swaps) and stock returns. Moreover, firms with a high failure

probability or a low distress risk premium have high equity beta but low stock returns on average.

In this study, we develop a unified framework to explicitly link seemingly contradicting observations,

i.e., the negative failure probability-return relation and the positive distress risk premium-return

relation.

Endogenous covariance between levered equity beta and the market risk premium helps us to

understand the failure risk premium, in the framework of conditional capital asset pricing model

(CAPM). The intuition for the negative covariance is as follows. First, debt issuance is procyclical in

general. Firms issue more debt in expansions than in recessions (Bhamra, Kuehn, and Strebulaev,

2010a), which implies that the debt ratio is procyclical around debt issuance. Second, when firms

do not issue debt because of transaction costs (Strebulaev, 2007), debt value decreases more than

equity value in response to the increased market risk premium in distressed firms but not in healthy

firms. Intuitively, firms are more likely to become distressed and incur addition costs, when the

economy slides into the bad states where the market risk premium is high. When the market risk

premium and distress costs increase simultaneously in the bad states, the sharing of the decreased

asset value is asymmetry. While equity holders are able to walk away at bankruptcy due to limited

liability, debt holders in distressed firms will take over the residuals of assets and bear most of

the losses in assets. Thus, the debt value decreases much more than the equity value when the

market risk premium and distress cost rise in the bad states. In other words, debt-to-equity ratios

and therefore levered equity betas decrease with the increased market risk premium. The resulting

negative covariance between them decreases stock returns among distressed firms. Combined with

1Dichev (1998), Griffin and Lemmon (2002), Campbell, Hilscher, and Szilagyi (2008) and Avramov, Chordia,
Jostova, and Philipov (2013) find a negative relation between various proxies of default likelihood and stock returns.
Vassalou and Xing (2004) and Chava and Purnanandam (2010) find a positive relation between the default probability
and stock returns. Garlappi and Yan (2011) show there is a hump-shaped relation between default probability and
stock returns.

1



the fact that distressed firms have high leverage and high equity betas, we produce simultaneously

high unconditional CAPM beta and low stock returns among them, as documented by Campbell

et al. (2008).

Endogenous distress status helps understand the positive relation between the distress risk

premium and stock returns, i.e., heterogeneity in the exposure to market risk has a first order effect

on the endogenous debt choice and therefore the firm’s future financial status. That is, firms with

a low exposure to aggregate distress risk (cash flow betas) choose higher leverage ex ante.2 When

hit by a large market-wide shock, those firms are more likely to become distressed relative to their

counterparts. In other words, firms with a low distress risk premium are more likely to be distressed

and hence earn low stock returns in Friewald et al. (2014).3 To our knowledge, we are the first to

model the endogenous distress status in the class of dynamic capital structure/credit risk models,

and demonstrate its profound implications for the distress risk premium puzzle.

To facilitate our understanding of the negative relation between failure probability and stock

returns, we simplify the model and derive closed-form solutions to show that the negative failure

probability-return relation is due to the negative covariance of equity beta and market premium.

Then, we take advantage of the dynamic model and demonstrate it can generate the sizable fail-

ure risk premium quantitatively. Following Campbell et al. (2008), we perform logit regressions

and construct failure probabilities using our simulated data panels. When sorting firms on the

failure probabilities, highly distressed firms exhibit high leverage and default probability, but have

low returns and negative CAPM alphas. We provide empirical evidence to confirm the novel eco-

nomic channel in our model. We first show that, debt-to-equity ratios of distressed firms are more

negatively associated with the market risk premium than those in healthy firms. Then, we follow

Lewellen and Nagel (2006), construct time-varying equity betas, and confirm that levered equity be-

2Following Andrade and Kaplan (1998), we define a firm as “distressed” when its cash flow level falls below its
contractual interest payment. Higher coupon payments imply an earlier time of entering distress. Hence, the distress
threshold is endogenously chosen in our model, because debt levels are endogenously chosen over the business cycle.
Distress is exogenous in prior studies. For example, Elkamhi, Ericsson, and Parsons (2012) are the first who explicitly
study financial distress in a Leland-type model (Leland, 1994). They take the distress threshold as exogenous and
calibrate the threshold to match the firm characteristic before and after the downgrades of credit rating, and find a
small flow distress cost before liquidation substantially helps to explain the low financial leverage puzzle.

3In our model, firms choose optimal financing policies over the business cycle. The endogeneity of debt financing
becomes more severe when the economy fluctuates between good and bad states. Equity holders are concerned about
bad states even when they finance in the good states, because the economy may suddenly switch into the bad states,
in which they will face a higher distress cost. Thus, they choose even lower leverage ex ante (Hackbarth, Miao, and
Morellec, 2006) even if financing in the good states.
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tas are negatively (positively) correlated with expected market risk premium in distressed (healthy)

firms. Finally, the negative covariance between levered equity beta and market risk premium helps

explain about 50% of the distress risk premium in the conditional CAPM.

To understand the positive relation between the implied distress risk premium and returns, we

propose a simple procedure to imply the distress risk premium in spirit of Almeida and Philippon

(2007). Motivated by our analytical solution for the simplified model, we use as proxy of distress

risk premium the log-difference between risk-neutral and actual default probability in our calibrated

economies. In the model, we have two types of firms, i.e., low- and high-beta firms. The high-beta

firms face a greater exposure to the aggregate distress risk premium and therefore have a high firm-

specific distress risk premium. We mimic standard empirical procedures, imply the firm-specific

distress risk premium from our simulated data, and form portfolios on the implied risk premium.

Consistent with findings of Friewald et al. (2014), firms with a lower implied distress risk premium,

on average, tend to have higher leverage ratios, higher expected default probabilities, and higher

realized distressed frequencies, receiving negative stock returns.

Taken together, we connect the two seemingly contradicting observations by explicitly showing

that the two ranking variables, failure probability and implied distress risk premium, are negatively

correlated ex post.4

Our works belongs to the literature of dynamic models of debt refinancing (i.e., Goldstein, Ju,

and Leland (2001) and Strebulaev (2007)). Recent literature has introduced macroeconomic risk on

corporate financing and investment decisions as well as credit risk. Hackbarth et al. (2006) are the

first to introduce macroeconomic dynamics to dynamic capital structure/credit risk models. Along

this line, Chen (2010) seeks to explain the observed credit spreads and leverage ratios, Bhamra,

Kuehn, and Strebulaev (2010b) focus on a levered equity premium and Bhamra et al. (2010a) focus

on the dynamics of leverage in an economy with macroeconomic risk. Chen and Manso (2016) and

Chen and Strebulaev (2018) study the debt overhang problem and the risk-shifting problem over

the business cycle, respectively.

4Friewald et al. (2014) show that the distress risk premium from CDS data and equity risk premium are positively
correlated in the Merton (1974) model. Thus, physical or risk-neutral default probability alone is insufficient to
correctly assess the distress risk premium. However, they do not explain why firms with a low distress risk premium
have a high default probability and low credit rating. We complement their point and explicitly establish an ex post

negative relation between distress risk premium and default probability, because of the endogenous distress status.
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Our work also adds to the literature on how financial or real frictions affect asset prices.5 Gomes

and Schmid (2010) and Kuehn and Schmid (2014) examine the interaction between investment and

financing, and their implications for the levered equity risk and default risk. Ozdagli (2012) and

Choi (2013) demonstrate that the value premium is mainly driven by financial leverage. Recently,

Kuehn and Schmid (2014) study the investment-based corporate bond pricing, Koijen, Lustig, and

Van Nieuwerburgh (2017) show that bond factors from different business cycle horizons are priced

in the cross-section of stock returns, and Chaderina, Weiss, and Zechner (2018) show that firms

with more long-term debt earn greater stock returns.6

Our paper relates to recent risk-based theories to explain the distress puzzles. A partial list

includes George and Hwang (2010), Garlappi and Yan (2011), O’Doherty (2012), and Boualam,

Gomes, and Ward (2017).7 All the aforementioned theories appeal to the decline in the equity

beta among the highly distressed firms. However, distressed stocks have high volatility and high

unconditional equity betas in the data. Thus, our work differs in at least two perspectives. First,

we illustrate the importance of endogenous debt financing, and the negative covariance between

the equity beta and market premium in the closed-form solution and in the calibrated economies,

and verify its quantitative implications in the data. Second, we explicitly show that the default

probability and distress risk premium are negatively connected. That is, firms with a low distress

risk premium choose high leverage ex ante, which likely cause them to become distressed ex post.

The endogenous connection between them allows us to explain the negative failure probability-

return relation and the positive distress risk premium and stock return relation jointly.

5Several papers study the implications of corporate investment on stock returns, such as Berk, Green, and Naik
(1999), Carlson, Fisher, and Giammarino (2004), Zhang (2005), Cooper (2006), Hackbarth and Johnson (2015), and
Ai and Kiku (2013).

6Slightly different, Chen, Collin-Dufresne, and Goldstein (2009), Arnold, Wagner, and Westermann (2013), Chen,
Xu, and Yang (2019) and Chen, Cui, He, and Milbradt (2014) examine credit spreads in the framework of credit risk
over the business cycles.

7George and Hwang (2010) also argue that firms with a low distress cost choose to issue more debt and consequently
become distressed. Therefore, these distressed firms earn low stock returns because of their low asset/cash flow beta.
Johnson, Chebonenko, Cunha, D’Almeida, and Spencer (2011) point out two problems in their argument. First, the
expected equity returns in Proposition 1 of George and Hwang (2010) pertain to the asset beta and return instead of
the equity beta and return. In other words, because distressed equity has a high equity beta, the low asset beta is not
sufficient to explain the default/failure risk premium. Second, because of transaction costs, the firms do not adjust
their debt every period, given their asset betas. Moreover, Garlappi and Yan (2011) argue that equity holders with
more bargain power receive more at bankruptcy, which in turn alleviates their downside risk and results in low equity
returns. O’Doherty (2012) shows that information risk attributes to the negative failure probability-return relation
in the conditional CAPM framework, but without explicitly modeling the time-varying market risk premium. Lastly,
Boualam et al. (2017) argue that measurement errors due to the mean-reverting earnings growth induces the failure
risk premium.
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The rest of the paper proceeds as follows. Section 2 develops the fully fledged model. Section

3 derives closed-form solution and generate three predictions from the simplified model. Then, we

calibrate the model and study the quantitative implications of the model in Section 4. Section 5

provides empirical evidence in support of the calibrated model and its implications. Finally, Section

6 concludes.

2 The Model

We build a dynamic capital structure model that endogenizes a firm’s financing, distress, and

default decisions in an environment with time-varying macroeconomic risk. Our model is built on

the recent development of credit risk models, including Chen (2010), Bhamra et al. (2010a,b).

Considering an economy with business-cycle fluctuations, and without loss of generality, we

assume the economy has two aggregate states, i.e., st = {G,B} for good (G) and bad (B) states,

respectively. The state st follows a continuous-time Markov chain as follows:






1− p̂B p̂B

p̂G 1− p̂G




 (1)

where p̂st ∈ (0, 1) is the rate of leaving the current state of st for another state. The probability of

switching states, st, within a small interval ∆t is approximately p̂st∆t. While the long-run duration

of the economy in the bad state is p̂G/(p̂G + p̂B), the duration of the economy in the good state is

p̂B/(p̂G + p̂B). Recall that we useˆto denote the physical measure throughout the paper.

The model is partial equilibrium with pricing kernel, mt, as follows:

dmt

mt
= −rstdt− θstdŴ

m
t + (eκst − 1)dMt, (2)

where rst is the risk-free rate, θst is the market price of risk of small shocks, κst is the relative

jump size of the stochastic discount factor, Ŵm
t is a standard Brownian motion, and Mt is a

compensated Poisson process with intensity p̂st that follows the Markov chain specified in equation

(1). κst determines the market price of large shocks in the aggregate economy: κB = −κG and

κG > 0.
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2.1 Firm

Firms operate in one of two aggregate states, st. In each state, their firm-specific financial status (w)

can be healthy (H) or distressed (D), i.e., w = H,D. When solvent, the firms produce instantaneous

cash flows Xt governed by the following stochastic process:

dXt

Xt
= µ̂st,wdt+ βσmstdŴ

m
t + σi,Xst dŴ i

t , (3)

where µ̂st,w = µst,w + βλmst is the physical growth rate, µst,w is the risk-neutral growth rate,

λmst = θstσ
m
st is the countercyclical market risk premium (i.e., λmB > λmG ), β is the firm’s cash flow

beta, σi,Xst is the idiosyncratic cash flow volatility, and Ŵ i
t is a standard Brownian motion. The

total volatility of cash flow rates σT,Xt =
√

(βσmst )
2 + (σi,Xst )2.

The difference in the growth rate, µ̂st,H − µ̂st,D, is the distress cost, ηst , in the state st. The

distress cost ηst ≥ 0 is a deadweight loss due to the loss of reputation, customers, suppliers,

and productive workers when the firms become distressed.8 Additionally, because Almeida and

Philippon (2007) document the distress cost is countercyclical (i.e., low in good aggregate states,

but high in bad aggregate states), we assume ηB > ηG.

We consider two types of firms, i.e., low- and high-beta firms. Because the difference in the

market risk premium across the bad and good states, λmB − λmG , is mainly due to the aggregate

“distress”, the high-beta firms have more exposure to the aggregate distress market risk premium,

and therefore a high firm-specific distress risk premium, β(λmB−λmG ). This distress risk premium can

be considered as systematic distress costs related to the market, because it lowers the risk-neutral

(or risk-adjusted) growth rate µst,w.

2.2 Financing and Default Decisions

The timeline is as follows. At time 0 in the initial state s0, a firm finances its investments with a

mix of equity and debt. As in Leland (1994), the debt issued at the initial state s0 is perpetual

with fixed coupon payments c(s0) and a par value of P (s0). The issuance cost is a constant fraction

8For example, according to Titman (1984), firms start to lose reputation, capable workers, and customers and
suppliers when they started entering distress, but well before officially filing for bankruptcy. Specifically, capable
workers have incentives to seek a more stable position when they observe that their firm is sinking. Customers
(Suppliers) are reluctant to buy (sell) products from (to) a troubled firm because they are worried about replacement
of parts or services (payments).
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φ of the amount of issued debt. The coupon payment is fixed until equity holders choose to default

or restructure. The firm is operating between the good and bad state st, but both its default and

restructuring decisions will depend on the initial aggregate state s0 it enters, in addition to the

current state st.

[Insert Figure 1 Here]

Following Goldstein et al. (2001), we assume that when restructuring its debt, a firm can only

adjust debt levels upward. When cash flow increases to a high threshold Xu(st; s0) at the aggregate

state st, the firm first calls the outstanding debt at par P (s0) and then issues more debt to enjoy

more tax benefits. When cash flow Xt declines to a low threshold Xs(st; s0) at either state st,

the firm is entering distress and incurs a distress cost ηst in the form of a depressed growth rate.

Following Andrade and Kaplan (1998), we assume that the firm enters distress when cash flow Xt

falls below its required coupon payment c(s0) issued at the initial state s0, i.e., Xs(st; s0) = c(s0),

regardless of the current state st the firm is in.

When cash flows cannot cover the coupon payments, the firm may be able to issue equity to cover

the shortfalls. As the additional distress cost lowers the firms cash flow growth rate, its cash flow

may continue to deteriorate to the threshold Xd(st; s0), at which equity holders are no longer willing

to inject capital, and decide to go bankrupt. Bankruptcy leads to immediate liquidation. While

debt holders take over the firm and pay the liquidation costs αst , equity holders receive nothing.

2.3 Firm’s Problems

The firm makes optimal financing and default decisions to maximize equity value. Specifically, it

chooses optimal bankruptcy and restructuring timing, as well as the optimal coupon.

When the firm is distressed (w = D) in either aggregate state st, equity holders choose the

optimal bankruptcy timing Xd(st; s0), by making a tradeoff between the costs of keeping the firm

alive and the tax benefits (Leland, 1994). We have the following smooth-pasting conditions in both

7



states for distressed firms:

lim
Xt↓Xd(B;s0)

E
′

(Xt, B,D; s0) = 0, (4)

lim
Xt↓Xd(G;s0)

E
′

(Xt, G,D; s0) = 0. (5)

where E(Xt, st, w; s0) and E
′

(Xt, st, w; s0) are the equity value function and its first derivative in the

aggregate state st and in the financial condition w, conditional on the initial state s0, respectively.

At time 0 when the firm is healthy (i.e., w = H) in an initial aggregate economic state, s0, equity

holders choose the optimal coupon c(s0), debt P(s0) and the optimal threshold of restructuring

Xu(s0) to maximize the firm value (Goldstein et al., 2001), where the vectors c(s0) = {c(B), c(G)},

P(s0) = {P (B), P (G)}, and Xu(s0) = {Xu(B; s0), Xu(G; s0)}, respectively. In choosing its capital

structure, the firm makes a tradeoff between tax benefits and the expected cost of default, as well

as the expected cost of distress, as follows:

max
c(s0),P(s0),Xu(s0)

E(X0, s0, H; s0) + (1− φ)D(X0, s0, H; s0). (6)

subject to equations (4), (5), and P (s0) = D(X0, s0, H; s0).

where D(X0, st, w; s0) denotes the debt value function in the aggregate state st and in the financial

condition w, conditional on the initial state s0. All the valuation functions of equity and debt in

different regions are expressed in Appendix A.

It is worth noting that the distress threshold is endogenous in our model, because the coupon

c(s0) is endogenously chosen. The greater the exposure to the aggregate distress risk premium, i.e.,

β(λmB −λmG ), the less debt issued, and the smaller the coupon c. The smaller coupon implies a lower

distress threshold. In other words, a firm with a high distress cost is less likely to become distressed

if it optimally chooses less debt ex ante. In this two-state model, the firm is more precautionary

in its debt policies. That is, even if the firm enters at the good state, s0 = G, it issues less debt

than in the single-state model, because it anticipates to carry the debt and make the contractual

coupon payment in the future bad state st = B where the distress cost ηB is even higher than that

in the good state.
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Given an initial state s0, we impose the following order of thresholds:

Xd(G; s0) < Xd(B; s0) < Xs(G; s0) = Xs(B; s0) < X0 < Xu(G; s0) < Xu(B; s0). (7)

[Insert Figure 2 Here]

Figure 2 illustrates the order of the optimal thresholds in both states. It is intuitive that the

firm goes bankruptcy earlier in the bad state than they are in the good state. That is, Xd(G; s0) <

Xd(B; s0). With the reasonable parameter values, we assume that the firm refinances debt earlier

in the good state than in the bad state, Xu(G; s0) < Xu(B; s0). As we explain for the distress

thresholds, we assume they are the same in both current states and are endogenously determined

by the initial coupon, i.e., Xs(G; s0) = Xs(B; s0) = c(s0). It is worth noting that if firms finance in

a good state, s0 = G, they tend to borrow more and have a high endogenous distressed threshold,

i.e., Xs(st;G) > Xs(st;B).

2.4 Scaling Property

Goldstein et al. (2001) show that the geometric process in equation, debt retirement at par value,

and proportional debt issuance costs ensure the scaling property. Thus, the dynamic problem

reduces to a static problem. The scaling property states that, given the state of the economy,

the coupon, default, distress and restructuring thresholds as well as the value of debt and equity

at the restructuring points are all homogeneous of degree one in cash flow. Notably, the firm at

two adjacent restructuring points faces an identical problem, except that the cash flow levels are

scaled by a constant; e.g., if cash flow has doubled, it is optimal to double default, distress and

restructuring boundaries.

Chen (2010) and Bhamra et al. (2010b) extend the scaling property of Goldstein et al. (2001)

across different aggregate states. Our structural model preserves the scaling property across two

aggregate states, because it is particularly useful when we calibrate the model. Across two initial

states, due to the homogeneity, the optimal thresholds are proportional to the coupons issued at

the initial states s0 at time 0 as follow:

Xd(st;G)

Xd(st;B)
=
Xs(st;G)

Xs(st;B)
=
Xu(st;G)

Xu(st;B)
=
c(G)

c(B)
. (8)
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If a firm restructures at the new refinancing threshold X̄t in the same good state (st = G), the

new set of optimal policies are Xd(st;G)
X̄t
X0

, Xs(st;G)
X̄t
X0

, and Xu(st;G)
X̄t
X0

. If it does in the bad

state (st = B), the new set of optimal policies are Xd(st;B) X̄t
X0

, Xs(st;B) X̄t
X0

, and Xu(st;B) X̄t
X0

.

Therefore, even though the new thresholds are scalped up by X̄t
X0

, the cross-state ratios between

each pair of thresholds in equation (8) remain the same whenever the firm restructure their debt.

With the convenient scaling property, we do not have to solve for the optimal policies whenever

the firms refinance their debt and increase their equity size repeatedly in simulations. We assume

all the firms start at the good state s0 = G, and solve the optimal coupon c(G), debt P(G) and

the optimal threshold of restructuring Xu(G), as well as their counterparts c(B), debt P(B) and

the optimal threshold of restructuring Xu(B) according to equation (8), only once.

3 Asset Pricing Implications

We start with presenting the general formula for the expected excess stock return in the two-state

economy. Then, we simplify the model and derive closed-form solutions to illustrate our intuition

and develop three predictions.

The following proposition shows that the expected excess stock return differs across the two

states st ∈ (G,B) and the two financial status, w ∈ (H,D).

Proposition 1 In the two-state economy, the firm then operates in the two aggregate states st,

and have two financial status w within each state. Its conditional expected excess return of equity

is

rest,w = Et[r
E
st,w]− rdt = βEst,wλ

m
stdt+ ψst,wp̂st(1− κst)dt, (9)

where βEst,w = γst,wβ and γst,w =
∂Est,w;s0/Est,w;s0

∂Xt/Xt
, which measures the elasticity of equity to the

cash flow Xt, ψst,w = (
E

s+t ,w;s0

Est,w;s0
− 1), which measures the percentage change in equity value in

response to the changes in the aggregate economy from the state st to the other state s+t , and

Est,w;s0 ≡ E(Xt, st, w; s0).

Proof : See Section A.3 in the online appendix.
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Equation (9) shows that the expected excess return, rext,w, is the product of the market risk

premium, λmst , the elasticity of stocks to underlying cash flows, γt,w, and the cash flow beta, β. The

market risk premium λmst = θstσ
m
st , is countercyclical because the market price of risk θB > θG and

the market volatility σmB > σmG (see e.g., Bhamra et al. (2010b) and Chen et al. (2009)).

The second component, ψst,vt(1−κst)p̂stdt, captures macroeconomic uncertainty risk. The price

of the uncertainty risk, p̂st(1 − κst), is countercyclical, because the equity holders prefer an early

resolution of macroeconomic state-switching uncertainty (Epstein and Zin, 1989). According to

Bhamra et al. (2010b), among others, the preference for an early resolution implies κG > 1. That

is, when the economy is in the good state, st = G, investors like this good state and are willing to

charge (pay) a negative (positive) risk premium for staying in the good state. In contrast, when

the economy is in the bad state, investors do not like this bad state, and demand a positive risk

premium for staying this state. In other words, the state-switching premium is negative in good

times (1− κG ≤ 0), but positive in bad times.

3.1 Simplified Model

To gain preliminary insights, we first simplify the baseline model and use closed-form solutions to

illustrate the interaction between levered equity risk and the market risk premium in the conditional

CAPM framework. Our discussion on the equity returns focuses on distressed firms (i.e,. for

w = D).

In the simplified model, the economy has only one state. The firm has no option to refinance

its debt, but has one option to go bankrupt after it becomes distressed. The following proposition

provides semi-closed-form solutions for equity betas. We drop the subscript st as we have only one

state.

Proposition 2 Outside of distress, w = H for Xt > Xs, the equity beta, βEt,H = γt,Hβ, and the

elasticity

γt,H = 1 +
Dt,H

Et,H
︸ ︷︷ ︸

= 1 +
c
r (1− τ)

Et,H
︸ ︷︷ ︸

Book Leverage

− (1− ωH,1)
( cr − (E(Xs, D)−A(Xs, H)))

Et,H
(
Xt

Xs
)ωH,1(1− τ)

︸ ︷︷ ︸

Put Option of Deleveraging (+)

(10)
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In distress, w = D for Xs > Xt > Xd, the equity beta, βEt,D = γt,Dβ, and the elasticity

γt,D = 1 +
c
r (1− τ)

Et,D
︸ ︷︷ ︸

Book Leverage

− ( cr −A(Xd, D))(1− τ)πt

Et,D
︸ ︷︷ ︸

Put Option of Going Bankruptcy (+)

, (11)

where πt is the risk-neutral default probability and defined in equation (B8) in Section B of the

online appendix.

Proof : See Section B of the online appendix.

When the firm is healthy, the elasticity, γt,H , in equation (10) has three components. Compared

with the financial leverage component of the distressed firm, the leverage component of the healthy

firm is greater because it has more debt in place. Everything else equal, the leveraged beta of a

healthy firm is greater than that of a distressed firm. However, if the cash flow Xt of this healthy

firm is declining, it has an American put option of deleveraging. Therefore, this option helps to

reduce the equity risk when the firm is approaching distress.

When the firm is distressed, the elasticity, γt,D, increases with the market debt-to-equity ratio,

Dt,D

Et,D
, as in the textbook. The market value of debt Dt,D is the sum of the book value of debt and

a put option. Specifically, the book value of debt in the second component in equation (11) is the

perpetual value of the coupon payment c
r . The put the option of delaying bankruptcy in the third

component protects equity holders from downside risk and decreases the equity-cash flow elasticity.

Given limited liability, equity holders choose to go bankrupt only when the asset value A(Xd, D)

falls below the risk-free equivalent debt c/r. Hence, cr −A(Xd, D) > 0.

This put option is particularly valuable to equity holders in the bad states either when the

market risk premium is high, or when distressed firm incur additional costs in the form of a depressed

growth rate µ̂B, or both. Indeed, both conditions are very likely to occur simultaneously because

firms are more likely to become distressed in the bad aggregate states. Finally, the increased put

option value lowers the market value of debt and debt-to-equity ratio, resulting a negative relation

between levered betas and the market risk premium in distressed firms.
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3.2 Debt-to-Equity Ratio and Levered Beta

Given debt plays an important role in equity beta, we further discuss the levered equity beta for

the distressed firm. Alternatively, if we combine the numerators of the second and third items in

equation (11), we can express the market value of debt Dt,D as follows:

Dt,D =
( c

r
(1− πt) +A(Xd, D)πt

)

(1− τ), (12)

which is a weighted average of the present value of coupon c and asset value at bankruptcy A(Xd,D).

Their relative weights are a probability of staying in business, 1−πt, and a probability of default, πt,

respectively. This expression is essentially the market value of Merton (1974) without bankruptcy

cost α (i.e., equation (13) on page 454). For a highly distressed firm with a default probability

πt → 1, its debt value is approximating the residual assets taken over by debt holders, i.e., Dt,D →

A(Xd, D)(1− τ).

[Insert Figure 3 Here]

To illustrate the debt-to-equity ratio among distressed firms, Figure 3 plots the equity value Et

(in left panel) and the debt value Dt (in right panel) against the cash flow Xt. According to Merton

(1974), equity (debt) is a convex (concave) function of the underlying assets, which generate the

cash flow Xt. Interestingly, when the firm is in distress, i.e., Xt < c, its equity value is flat, close to

zero and has no room to further decrease if the asset value further declines. In contrast, its debt

value can decreases substantially in response to the same shock.

The intuition is as follows. The increase in market risk premium decreases the asset value

across the cash flow level for Xt ≤ c, particularly the asset value A(Xd) at bankruptcy Xd. At

bankruptcy, the loss due to the increased market risk premium is not shared between two parties.

Because debt holders bear almost all the losses in assets, debt value decreases. In contrast, equity

holders are insensitive to any loss in the asset value because they receive nothing at bankruptcy,

i.e., E(Xd, D) = 0. Taken together, given the level of cash flow Xt, debt-to-equity ratios decline

with the increased market risk premium in distressed firms, but no in healthy firms. In fact, using

the same logic, we can easily reason a positive relation between them among healthy firms.9

9Alternatively, we can understand the negative covariance cov(βE
t,D, λm

st) via the equity-cash flow elasticity, γt,D =
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Moreover, the distress cost η, that depresses the growth rate, further amplifies the adverse effect

from the increased market risk premium on the debt value. As shown in equation (12), the debt

value further declines, because the depressed growth rate increases the default probability πt and

reduces the residual asset value A(Xd). More important, because both the market risk premium

and the distress costs are likely to increase simultaneously in the bad states, i.e., λmB > λmG and

ηB > ηG, the negative relation between debt ratios/levered betas and the market risk premium can

be further strengthened.

3.3 Predictions

We use comparative static analysis to illustrate the impact of endogenous leverage on stock returns

via comparative statics and generate three predictions.

3.3.1 First Prediction

To illustrate the covariance between the market risk premium and the levered beta, we first change

the market risk premium exogenously. We assume that the market price of risk θ increases from

0.40 to 0.44 by 10%, when the economy state switches from the good to the bad state. For a firm

that is operating in this economy, at time 0 when X0 = 1, the firm chooses an optimal level of debt

P and coupon c, given the market volatility and market price of risk. In this heuristic example,

the financial distress is mostly driven by the sudden switch from the good to bad state. That

is, the financial distress threshold Xs is right next to the threshold where the aggregate economy

enters the bad state. Indeed, the heuristic example is consistent with our discussion on the positive

correlation of the market risk premium λmst and distress costs ηst .

We start with the case in which there is no distress cost (i.e., η = 0). We plot equity beta

against the cash flow Xt in Panel A of Figure 4. When the market risk premium is constant, i.e.,

θG = θB = 0.400, the equity betas in the dotted, blue line monotonically increase with the declining

cash flows. In other words, the more distressed the firm, the greater the equity betas.

However, in the second case where the market risk premium is assumed to increase in the bad

state, i.e., θB = θG + 0.04, the equity betas in the solid, red line are parallelly shifted down by

∂ED/ED

∂Xt/Xt
. The increase in the market risk premium λ reduces ED and ∂ED/ED, but its does not affects Xt or

∂Xt/Xt. Thus, in response to the increased market risk premium, debt-to-equity ratio and levered beta decline, i.e.,
cov(βE

t,D, λm
st) = cov(βγt,D, λm

st) ≤ 0, because its equity value is inactive and its debt value declines substantially.
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0.858 for Xt ≤ Xs = 0.359, in response to the increase in the market risk premium. Therefore,

controlling for the cash flow level Xt or profitability, the equity betas negatively correlate with the

market risk premium.

[Insert Figure 4 Here]

In Panel B where we assume the distressed firms incur additional costs, i.e., η = 0.01,10 the

levered betas substantially decrease by 4.324, about five times more than the decrease of 0.858 in

Panel A. This confirms our observation on the depressed debt value in Figure 3 and equation (12),

which in turn lowers the levered beta in equation (11). Therefore, the distress cost significantly

amplifies the adverse effect on equity betas from the increased market risk premium.

The following prediction summarizes the effect from the market risk premium on the levered

equity betas.

Prediction 1 Highly distressed firms have high levered equity betas, which negatively covary with

the market risk premium.

3.3.2 Second Prediction

The following proposition is based on Jagannathan and Wang (1996). They argue that the co-

variance between the market beta and the market risk premium plays an important role in the

conditional CAPM.

Proposition 3 The unconditional expected excess return of a distressed firm is:

Erexst,D = EβEst,DEλ
m
stdt+ cov(βEst,D, λ

m
st)dt

︸ ︷︷ ︸

≤0

. (13)

We have demonstrated in our first prediction that in distressed firms, levered equity betas

and the market risk premium covary negatively, i.e., cov(βEst,D, λ
m
st) < 0. Therefore, the negative

covariance results in a reduction in the unconditional expected excess returns for distressed firms.

Next, we discuss the negative alphas of distressed firms in the conditional CAPM. Lewellen and

10Elkamhi et al. (2012) find the flow distress cost is about 1-2% of the growth rate.
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Nagel (2006) show that, if the conditional CAPM holds, the unconditional alpha αu is

αu ≈ cov(βEt , λ
m
st)dt

︸ ︷︷ ︸

≤0

− E[λmst ]

(E[σmt ])2cov(βEt , (σ
m
t )2)

< 0, (14)

where σmt is the time-varying market volatility.11 Recall that cov(βEst,D, λ
m
t ) < 0 in equation (13).

In our study, this negative covariance generates a negative unconditional alpha αuD among

distressed firms. The following prediction summarizes our discussion on the effect of the covariance

between levered equity beta and market risk premium on stock returns and unconditional CAPM

alphas.

Prediction 2 The negative covariance between equity beta and the market risk premium causes low

unconditional stock returns as well as negative CAPM alphas in highly distressed firms.

3.3.3 Third Prediction

To illustrate the effect from heterogeneous distress risk premium on the endogenous debt financing

and distress status, we set the beta of the low- and high-beta firms to be 1 and 1.5, respectively.

As shown in Panel A of Figure 5, compared with Firm 2, Firm 1 with a low cash flow beta β

chooses a high leverage and coupon. After the debt is in place, both firms become distressed when

their cash flow Xt level falls below the coupon level c, respectively. It is evident that the greater the

debt, the earlier the firm becomes distressed (Xs), and the earlier the bankruptcy and liquidation

(Xd). Hence, the exposure to the market risk, cash flow beta β, determines the optimal level of

debt, which in turn determine the distressed status and stock returns.

Moreover, the leverage increases when the cash flow level declines or the distress becomes more

acute, if the distressed firms have difficulties to adjust their debt. This is consistent with what we

observe in the data: distressed firms have high leverage.

Prediction 3 Firms with a low distress risk premium choose more debt ex ante and are more likely

to become distressed ex post, having high betas but low stock returns and negative CAPM alphas.

In summary, we derive the closed-form solution and use comparative statics to demonstrate that

the countercyclical market risk premium results in procyclical financial leverage among distressed

11Specifically, Lewellen and Nagel (2006) demonstrate that the third item
E[rmt ]

(E[σm
t ]2cov(βE

t ,(rmt −E[rmt ])2)
is trivial.
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firms. The negative covariance between them causes low stock returns, and negative CAPM alphas.

Then, we show that firms with a low distress risk premium choose high debt, which results in a

high likelihood of distress and low stock returns.

4 Calibration

We use calibration to examine the quantitative implications of our dynamic model, with in mind

that comparative statistic analysis we present in the last section does not speak to the dynamics

of cash flows as well as path-dependent finance leverage and default decisions.

4.1 Data

We collect data from different sources. We use quarterly earnings data from National Income and

Product Accounts (NIPA) table provided by the Bureau of Economic Analysis (BEA), and obtain

firm-level stock returns from the Center for Research in Security Prices (CRSP) and accounting

information from quarterly Compustat industrial data.

We obtain accounting information from quarterly Compustat industrial data. Due to the avail-

ability of quarterly ComputStat data, our sample period is from January 1974 to December 2015.

We restrict the sample to firm-quarter observations with non-missing values for operating income

and total assets, with positive total assets. We include common stocks listed on the NYSE, AMEX,

and NASDAQ with CRSP share code 10 or 11, while excluding firms from the financial and utility

sectors.

Debt is the sum of current liabilities (Compustat item DLCQ) and long term debt (item

DLTTQ). Market leverage is the ratio of book value of debt to the sum of debt and equity

(PRCCQ*CSHOQ). We winsorize the outliers at the top and bottom two percentiles. Follow-

ing Strebulaev and Whited (2012), we remove the heterogeneity of financial leverage by demeaning

the time-series mean of the variables, and adding the sample mean of each variable, because we

do not allow heterogeneity of parameter values in our model simulation, except for the cash flow

betas.
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4.2 Optimal Policies and Model Generated Moments

To begin, we set commonly used parameters to predetermined values similar to prior studies. The

parameter values are listed in Table 1, and are largely based on the literature (Bhamra et al.

(2010b), Bhamra et al. (2010a), Chen et al. (2009) and Chen et al. (2014)).

[Insert Table 1 Here]

Starting with the macroeconomic variables, we set the risk free rate rG = rB = 4% in both

aggregate states to abstract away from any term structure effects. The market volatility σmst is 0.1

and 0.12 in the good and bad states, respectively. The countercyclical market price of risk θst is 0.22

and 0.38 in the good and bad states, respectively. The transition intensities of the Markov chain

are chosen to match average duration of NBER-dated expansions and recessions, i.e., p̂G = 0.5 and

p̂B = 0.1, which gives the average durations 10 years for expansions and 2 years for recessions over

the business cycle. We set κG = 1/κB = 2, which implies the risk-neutral probability of switching

from the good state to the bad state is tow times as high as the actual probability.

The only heterogeneity we allow in our setup is the firm’s exposure to market risk. We set the

cash flow beta β of the low- and high-beta firm to be 0.6 and 1.1, respectively. Those two cash flow

betas imply an average beta of 0.85, which is close to the median of cash flow or asset betas in the

data (Chen et al., 2019). Moreover, we set idiosyncratic cash flow volatility to σi,Xst to 0.17, which

we calibrate to match the total volatility of earning growth rates obtained from the NIPA table.

We set debt issuance cost φst to 0.75%. The effective tax rate is 0.175.

Notably, our study differentiates distress costs from liquidation costs. Most prior models require

large liquidation costs to match low observed leverage. That is, the liquidation cost ranges from

0.3 to 0.45 in the capital structure literature.12 To focus on the distress cost, we assume a much

smaller liquidation cost of 10%. We assume the distress cost ηst = 1% and 1.5%, respectively, in the

good and bad states, based on their estimates by Elkamhi et al. (2012), who find a small distress

cost of 1-2% helps to generate low leverage ratios.

Panel B presents the optimal policies for low- and high-beta firms that start in the initial state

12Glover (2014) uses the simulated method of moments (SMM) to estimate the expected cost of default across 2,505
firms without considering the expected cost of distress. He does not separate the distress cost from the liquidation
because he needs to keep the model parsimonious for structural estimation. We explicitly model the endogenous
financial distress.
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s0 = G, given the predetermined parameters.13 First, consistent with our intuition, firms borrow

more debt in the good state than in the bad state, because the coupon in the good state c(G)

is greater than in the bad state c(B). Second, the difference in coupon c(st) across the states

among the low beta firms is 0.398 (0.581 – 0.183), greater than the difference of 0.241 (0.417 –

0.176) among the high beta firms. This implies that those low-beta firms that commit to more

contractual coupon payments are likely to become distressed, if they are not able to reduce their

debt or coupon payments from 0.581 to the optimal level 0.183 immediately when the economy

slides into the bad state because of debt issuance costs.

[Insert Table 2 Here]

Table 2 reports the model-generated moments averaged across 100 simulated economies. We

discipline our model mainly using the moments of financial leverage, because debt is our impor-

tant choice variable. We include the median, mean, and interquarterile of quasi-market lever-

age (QMLt−1) in each quarter, as well as the first order autocorrelation (AC(1)) of the mean of

QMLt−1. The mean and median of leverage are mainly used to quantify the distress costs, be-

cause financial leverage decrease with distress costs. Its interquartile helps us to ensure the spread

of cash flow betas we choose is reasonable. The first order autocorrelation help us to pin down

debt issuance cost. Overall, the model-generated moments match the data reasonably well, with

a median of 0.294, a mean of 0.314, an interquartile of 0.145, and a first order auto-correlation of

0.929.

Second, we follow Chen et al. (2019) and match the moments of earning growth rates from the

NIPA table from 1974 to 2015. The growth rate µ̂st in the good and bad aggregate states in our

simulated data are –0.041 and 0.085, respectively, very close to those in the data. Additionally, the

cash flow volatility is 0.198, slightly below 0.212 in the actual data. Lastly, the market excess stock

return is 5.0%, close to the historical market risk premium of 5.1%.

Overall, all the targeted moments are well matched with actual data moments, because the

differences between data moments and model-generated moments are small in the last column.

Thus, our model delivers a reasonable job in matching the dynamics of the actual data.

13The optimal policies for the initial state s0 = B can be obtained via the cross-state scaling property in equation
(8).
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4.3 Portfolios Sorted on the Failure Probability

Following Campbell et al. (2008), we apply logit regressions to each simulated data panel and

calculate the failure probability each period.14 Then, we sort the firms into deciles based on the

constructed failure probability and rebalance the decile portfolios each year.

We report cross-sectional averages of key portfolio characteristics for our simulated data panels,

including leverage, one-year default probability of Merton, fraction of distressed firms in Table 3.

The one-year default probability of Merton (1974) is calculated using equation (C3) in the appendix,

and the fraction of distressed firms is the ratio of the number of distressed firms to the total number

of firms each period. As in Andrade and Kaplan (1998), we classify a firm as “distressed” if its

cash flow falls below the coupon payment or if it defaults on coupon payments.

[Insert Table 3 Here]

In panel A, we calculate the cross-sectional averages of the above characteristics. First, the

simple average of financial leverage increases monotonically with the failure probability. Second, the

one-year expected default probability of Merton increases from 0.02% to 20.88%. Consequently, the

realized fraction of distressed firms increases with failure probability. Thus, the failure probability

is consistent with the two alternative measures of default, confirming the predictive power of the

failure probability in our simulated data panels.

Then, we use the calibrated economy to examine the cross-sectional stock returns quantitatively.

Panel B reports the value-weighted returns of portfolios sorted on the failure probability. It is

evident that average excess returns monotonically decrease from 7.26% to –2.94% by 10.20% per

year. In addition, the alphas from the unconditional CAPM follow the same pattern but display

a more significant decline. This confirms our second prediction on the negative relation between

failure probability and low stock returns. Moreover, the unconditional betas rise from 1.08 to 1.26,

confirming our first prediction that distressed firms have high leverage and high levered equity risk.

Taken together, our model generated moments and stock returns are largely consistent with the

empirical evidence by Campbell et al. (2008). To the best of our knowledge, this is the first paper

that can generate simultaneously the increasing unconditional equity betas and the decreasing

14The construction of the variables can be found in Section C of the online appendix. Our results are very similar
if we apply the estimates of Campbell et al. (2008) to our simulated data directly.
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average returns.

4.4 Portfolios Sorted on the Implied Distress Risk Premium

To understand the positive relation between the implied distress risk premium and stock returns,

we use as proxy of distress risk premium the log-difference between risk-neutral and actual default

probability in our calibrated economies.15 This measure is consistent with the general framework

proposed by Friewald et al. (2014), in which they use credit risk premium to proxy for the default

risk preimum.16

In Panel A of Table 4, we sort firms based on our proposed proxy for the distressed risk premium.

The key observation is that financial leverage monotonically declines from 0.55 to 0.23 with our

distress risk premium proxy. This confirms our third prediction that firms with a higher distress

risk premium choose lower leverage ex ante, and also confirms that our proxy captures the distress

risk premium well. Second, the expected Merton’s default probability decreases with the implied

distress risk premium. This observation is in line with the results by Friewald et al. (2014). In their

Tables II to VII, firms with a low distress risk premium actually have a low credit rating. Lastly,

the realized fraction of distressed firms decreases, consistent with the declining leverage.

The intuition for the negative relation between failure probability and implied distress risk

premium is as follows. When issuing debt, firms with a low cash flow beta or risk exposure choose

to borrow more ex ante. When the bad states are realized, large negative shock hit those firms with

more extant debt. Therefore, when we sort the firms based on the distress risk premium, those firms

with a low distress risk premium will appear to have a high leverage and a high default probability

in our standard portfolio formation procedure, manifesting the endogenous relation between the

two ranking variables in our standard portfolio sorting procedure in our simulated economies.

[Insert Table 4 Here]

As shown in Panel B, excess stock returns monotonically increase from –1.54% to 6.44% by

15The detail on the construction and justification of this measure can be found in Appendix C.
16They extract credit risk premium from credit default swaps and find that the credit risk premium is U-shaped

with the risk-neutral and objective probabilities. Additionally, Almeida and Philippon (2007) use the ratio between
risk-neutral and physical probability to proxy for the distress premium and find that the expected cost of default is
larger than previously thought.
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8.04%, in line with the pattern in Friewald et al. (2014).17 So do the unconditional alphas. The

low returns in the firms with a low implied asset risk premium can be explained by the endogeneity

in the firms’ financial status, as discussed in our third prediction. That is, firms with a low distress

risk premium issue more debt and have a high default probability. After becoming distressed, they

have low stock returns on average because of the negative covariance between their equity beta and

market risk premium.

In summary, although we are not able to extract default risk premium from the CDS in our

simulated economies, we complement Friewald et al. (2014) by showing that there is an endogenous

connection between distress risk premium and the objective/risk-neutral default probability. we

provide an internally coherent framework that connects two seemingly contradicting puzzles in our

calibrated dynamic model, and demonstrate quantitatively the large stock return spread when we

sort the firms based on the failure probability or the implied distress risk premium.

4.5 Counterfactual Analysis

We have used comparative statics analysis in Section 3.3 to qualitatively show the distress costs

strengthen the negative relation between levered betas and the market risk premium. In this

section, we use counterfactual experiments to assess quantitatively the importance of distress costs

and heterogeneous exposure to aggregate distress risk (or cash flow betas). As mentioned before,

the cash flow beta is a proxy for corporate exposure to aggregate distress risk premium, and

the firm-specific distress risk premium can be regarded as systematic distress costs related to the

market.

In the first counterfactual experiment, we examine the importance of the distress costs, by

setting the distress cost ηst to zero. We simulate the model and re-calculate equity and equity

returns, using the optimal default, debt restructuring, and coupons from the benchmark model.

By using the optimal policies from the original models, we essentially calculate the values of equity

and debt in the form of European options instead of American options, because the default and

restructuring thresholds are exogenously given. Thus, this counterfactual experiment only examines

the pricing effect of distress costs on equity and equity returns. As shown in Panel A1 of Table

17Our results are slightly different from theirs in that we have positive returns for firms with a high distressed risk
premium, because we calibrate the model to large sample of Compustat firms, while their data limited to a much
smaller sample of firms that have CDS prices.
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5, the spread in the stock portfolios sorted on the failure probability decreases to substantially

decreases to 3.97% from 10.20% in the benchmark model in Table 3. Similarly, when we sort the

firms by the implied distress risk premium, the return spread in Panel A2 declines to 3.59% from

8.04% in the benchmark model. Therefore, the distress costs account for more than 60% of the

failure risk premium and 55% of the distress risk premium.

[Insert Table 5 Here]

In the second counterfactual experiment, we examine how heterogeneous exposures to aggregate

distress risk (i.e., cash flow betas) affect endogenous distress status and eventually stock returns.

Recall our explanation for the distress risk premium puzzle (Friewald et al., 2014) is via the endoge-

nous distress status, i.e., firms with a low beta (or low distress risk premium) choose to issue more

debt and are more likely to become distressed, receiving low stock returns. In this experiment,

we set the cash flow betas of both low- and high-beta firms to be the same, i.e., β = 0.85, and

solve for all the optimal coupon, default and restructuring policies.18 Then, we simulate the model

using the new optimal policies, which are the same across the low- and high-beta firms. Because

we have removed the heterogeneity in target debt at the refinancing points, the optimal policies

of debt are the same for both types of firms, and the only heterogeneity left in the simulation is

realized idiosyncratic cash flow shocks. Although the target debt ratios are the same at all the

refinancing points across the two types of firms, the amount of debts and debt-to-equity ratios are

path-dependent because firms restructure their debt at different time, depending on whether their

realized shocks are large enough to cross the restructuring threshold.

As shown in Panel B1, the average excess returns are hump-shaped when we sort the firms

based on the failure probability, and the spread in returns decreases to 5.64% from 10.20% in the

benchmark model by nearly 50%. When we sort the firms on the implied distress risk premium, the

return spread in Panel B2 decreases to 5.15% from 8.04% by 36%. This confirms that heterogeneous

debt levels, determined by the heterogeneous risk exposures, at the restructuring thresholds has a

persistent effect on the off-the-target debt ratios, the endogenous distress status and consequently

stock returns.

18Different from the first counterfactual experiment, we need to re-solve for the optimal policies, because our
purpose is to remove the impact of heterogeneous debt financing policies in this counterfactual experiment.
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In short, our counterfactual experiments show that both distress costs and heterogeneous cash

flow betas have a large explanatory power for the negative failure probability-return relation and

the positive distress risk premium-return relation, although the distress costs are relatively more

important.

5 Empirical Results

In this section, we first provide empirical evidence for highly distressed firms that debt-to-equity

ratio negatively covaries with market risk premium. Then, we confirm the key mechanism of our

model: the negative covariance between levered equity beta and market risk premium in highly

distressed firms. Lastly, we compute the unconditional excess returns and CAPM alpha from the

conditional CAPM.

Our empirical tests in this section focus on testing the first two theoretical predictions, related

to the failure probability, listed in Section 3. We choose not to provide additional empirical tests

on our third prediction on the endogenous distress status and resulting stock returns, because

Friewald et al. (2014) have shown that firms with low distress risk premiums have high debt, low

credit rating/high default probability, and low stock returns and negative CAPM alphas on average.

5.1 Debt-to-Equity Ratio and Market Risk Premium

We start with investigating how debt-to-equity ratios covary with the market risk premium, because

the debt ratio is the key determinant of the levered equity beta.

To stay close to our analytical results in equation (11) and (10), we use this equity-to-debt

ratio, which is calculated as total debt (Compustat item DLCCQ plus DLTQ) divided by equity

value. We require the price greater than one to mitigate the microstructure bias. We obtain the

quarterly market risk premium from Haddad, Loualiche, and Plosser (2017) from 1952 to 2015.19

19We thank Erik Loualiche to share his R codes with us to update their risk premium. They use the predicted
expected excess equity returns to proxy for the aggregate risk premium. That is, they regress excess equity returns
on the dividend-price ratio, D/P , consumption-wealth ratio, cay (Lettau and Ludvigson, 2001), and the three-month
T-bill yield, T -Bill, to predict excess returns. Their regression yields the expected market risk premium as follows:

Et(R
e
M,t) = −0.76 + 2.89D/Pt−1 + 2.54cayt−1 − 0.97T -Billt−1,

where Re
M,t is the annualized return of the value-weighted market portfolio over the next three years in excess of the

current three-month T-bill yield. The dividend-price ratio (D/P )t−1 is constructed using CRSP data on monthly
returns and the variable cayt−1 is an empirical proxy for the log consumption-wealth ratio. Interest rates are constant
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We follow Begenau and Salomao (2018) and examine the impact of the market risk premium on

debt ratios at the portfolio level. As Strebulaev (2007) points out, not all the firms adjust their debt

immediately because idiosyncratic profitability shocks they receive are not necessarily large enough

to cross the optimal thresholds. However, the effect of inactive debt adjustment can be mitigated at

the portfolio level, because some firms within the portfolio might respond substantially. Using the

same procedure as in the standard portfolio formation for stock returns, we form leverage portfolios

based on the failure probability at the end of the previous quarter.

We start with a visual inspection into the relation between the debt ratio and market risk

premium in Figure 6. The gray shade areas are for the NBER recession times. The black line

with stars depicts the expected market risk premium, which is notably countercyclical.20 Panel

A shows that the debt-to-equity ratios of the most distressed firms (in the red line) are much

higher than those in the least distressed firms (in the blue line). Second, the debt ratios of the

most distressed firms negatively correlates the market risk premium significantly. For example,

during the early 1980s recession, the debt-to-equity ratio declines substantially after the market

risk premium increases. Third, the ratios of the least distressed firms are nearly flat and are not

very unresponsive to the changing market risk premium. Therefore, this contrast in the debt ratio

across the most and least distressed firms are consistent with our discussion for Figure 3: debt

holders of distress firms bear almost all the loss in the asset values induced by the increased market

risk premium and prepossessed growth rate.

Then, we proceed to provide statistical confirmation. The first two rows of Table 6 report the

time series average during the NBER recession and expansion times for each failure probability

portfolio. It is evident that the debt-to-equity ratio increases with the failure probability for

both subsamples, and that the average ratios in recessions are greater than that in expansions,

particularly in highly distressed firms.

[Insert Table 6 Here]

To examine the association between debt-to-equity ratio and market risk premium, we run time

maturity rates according to the Federal Reserve’s H.15 release.
20Except for the early 1990s recession, the market risk premium is close to zero before the onset of the recessions,

and then increases substantially during the recession times.
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series regressions as follows:

yj,t = aj + bj,YMRPt + cXj,t + ej,t, (15)

where yj,t is the quarterly times series of the value-weighted averages of debt-to-equity ratios,MRPt

is the quarterly market risk premium, and Xj,t is the vector of control variables that include the

equal-weighted book assets as well as value-weighted profitability and Tobin’s Q. The market risk

premium (MRP) is proxied by predicted market excess returns (Haddad et al., 2017) in Panel A

and actual market excess returns in Panel B.

Controlling for the profitability in the regressions is important for our study. Because the

decrease in the profitability and the increase in the market risk premium occur simultaneously

in bad times, they have the opposite effects on the debt ratios, i.e., the positive effect from the

decreased profitability and the negative effect from the increased market risk premium. First,

forming the failure probability portfolio naturally allows us to control for the cross-sectional effect

from individual profitability shocks, because profitability is one of the main determinants of the

failure probability. Second, when running the time series regression, we include the profitability as

one of the control variables as well.

Panel A of Table 6 shows the association between debt-to-equity ratios with the market pre-

mium. They become increasingly negative from –0.14 (t-statistic = –1.62) to –5.31(t-statistic =

–3.50). In Panel B where we use an alternative measure for the market risk premium, the actual

market excess returns, the increasing negative relation between the equity-to-debt ratio and market

risk premium remains the same.

Interestingly, most of the estimated coefficients of profitability are positive, particularly in the

top three decile portfolios. This observation is largely different from the well known negative

profitability-financial leverage relation at the firm level.21

21In unreported results, we confirm the negative relation at the firm-level using standard panel regressions in the
same data sample, consistent with Strebulaev (2007) who advances the idea that transaction costs cause inactive
debt financing and therefore the negative profitability-leverage relation at the firm level. In contrast, the positive
relation between profitability and debt ratio at the portfolio-level can be understood as follows. First, this effect
from inactive debt adjustment is weaken at the portfolio level because some of the firms within the portfolio might
react to profitability shocks substantially. Second, when we form the failure probability portfolios, we have essentially
controlled for the cross-sectional profitability effect. Thus, the negative relation becomes much weaker and become
positive in the time series regression after we control for the cross-sectional effect. To our knowledge, we are first to
document the positive relation between profitability and debt ratio at the portfolio level.
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In sum, we provide novel, supportive evidence for our prediction that debt-to-equity ratios are

negatively correlate with the market risk premium in highly distressed firms. Our results are robust

when we use different measure of debt and use equal-weighted debt-ratio portfolios, as shown Tables

D1 and D2 in the online appendix.

5.2 Conditional CAPM

We now proceed to assess our second prediction: a negative covariance between levered betas and

market risk premium generates low excess returns and negative CAPM alphas in distressed firms.

We follow Lewellen and Nagel (2006), use the monthly excess stock market return rmt to proxy

for the market risk premium λmst , and use the monthly CAPM beta to proxy for the time-varying

market beta βEt . The monthly CAPM beta is obtained by regressing daily returns on daily excess

market returns within each month. We also use the procedure of Lewellen and Nagel (2006) to

mitigate microstructure noises. Empirically, the unconditional expected stock excess return is:

E[rexi,t ] = E[rEi,t]− r = E[βEt r
m
t ] = E[βEi,t]E[rmt ] + cov(βEi,t, r

m
t ). (16)

and the unconditional CAPM alpha is

αu ≈ cov(βEi,t, r
m
t )dt− E[rmt ]

(E[σmt ])2
cov(βEi,t, (σ

m
t )2). (17)

Table 7 confirms the findings by Campbell et al. (2008) in our sample from 1974 to 2015. Panel

A presents the average excess return in percent, rexi,t , and unconditional CAPM alpha, αu, for the

value-weighted portfolios, sorted on the prior month’s failure probability. The excess return in the

most distressed portfolio is much lower than the healthy portfolio by 9.63% with a t-statistic of

–3.46. This is puzzling because we expect the firms with a high failure risk earn higher excess

returns. The unconditional CAPM alphas substantially decrease from 3.02% to 11.16%, with a

difference of –14.20%. Moreover, the unconditional beta monotonically increases from 0.94 to 1.59,

which makes the lowest returns in the most distress firms even more puzzling.

[Insert Table 7 Here]

To assess our model prediction, we calculate the excess return and the unconditional alpha im-
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plied from the conditional CAPM, using βEi,t from the data and following the procedure of Lewellen

and Nagel (2006). The first row of Panel B presents the value-weighted average of the conditional

market equity betas, βEi,t. The conditional equity betas are increasing with the failure probability,

with a small drop at the top decile portfolio, largely confirming the leverage effect in our first

prediction. The difference in beta is small with a value of 0.30. The next two rows report the

two components of the excess return, E[βEi,t]E[rmt ] and cov(βEi,t, r
m
t ), respectively. Without the

covariance, E[βEi,t]E[rmt ] is simply the unconditional CAPM alpha. The spread in E[βEi,t]E[rmt ] in

the second row is 2.11% per year.

The covariance, cov(βEi,t, r
m
t ), in the third row decreases monotonically from 0.62% to –5.96%,

a total fall of 6.58%. This substantial fall in the covariance dominates the effect from the equity

beta in the model-implied excess returns and unconditional CAPM alpha. Specifically, the model-

implied CAPM alpha decreases from 1.19% to –7.96%, a drop of 9.15%, which is slightly more

than 50% of the 14.2% in the data. It is worth noting that the monotonically decreasing αu is

mainly due to the cov(βEi,t, r
m
t ) because the second item in the αu formula is small, the spreads

in the model-implied excess returns and unconditional alphas account for more than 50% of their

empirical counterparts.

In short, our empirical evidence supports our analytical and quantitative model results that the

negative covariance between market risk premium and equity beta generates low stock returns for

highly distressed firms, which helps to produce the negative relation between the failure probability

and stock returns, even though the highly distressed firms have a high equity beta.

6 Concluding Remarks

Empirical evidence on the equity distress risk premium is mixed. While Campbell, Hilscher, and

Szilagyi (2008) find the negative failure probability-return relation, Friewald, Wagner, and Zech-

ner (2014) document a positive distress risk premium-return relation. While a basic extension of

Merton’s (1974) framework can rationalize the empirical finding on the positive relation between

distress risk premium and stock returns, what remains puzzling in Friewald et al.’s (2014) setting is

why firms with a low distress risk premium have low credit ratings, and are highly likely to default.

In a unified, dynamic model, we establish that optimal debt dynamics and, as a result, endoge-
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nous distress status over the business cycle can explain the two seemingly contradicting puzzles

simultaneously. Specifically, we connect them by explicitly showing that the failure probability and

distress risk premium are negatively correlated because of the endogenous debt financing.

In the simplified model, we derive closed-form solutions that reveal three main results. First,

distressed firms with high failure probabilities are more sensitive to business cycle conditions,

and reduce their debt more aggressively during economic downturns. Second, the countercyclical

distress costs and endogenous debt financing induce distressed firms’ debt-to-equity ratios and

levered equity betas to covary negatively with countercyclical market risk premiums. Importantly,

the negative covariance effect generates low equity returns among distressed firms. Third, firms

that have low exposure to distress risk choose higher debt levels and hence are more likely to become

distressed, receiving low returns and negative CAPM alphas.

When calibrating the model that features the countercyclical market risk premium, we demon-

strate quantitatively that firms with a lower implied distressed premiums select higher leverage and

display higher default probabilities, but earn lower returns. Finally, we provide empirical evidence

in support of our setting, namely, we document empirically that debt-to-equity ratios are negatively

related to the market risk premium, especially for more distressed firms in our setting. We also

demonstrate a negative covariance between levered equity beta and market risk premium among

highly distressed firms.
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Figure 1. Dynamic Paths
This figure plots four possible paths that a firm could take within one refinancing cycle, which can be
repeated infinitely. At time 0 in the initial state s0, the firm enters the market and issue a mix of equity
and debt. It is operating between the good and bad state st, but both its default and restructuring
decisions partially depend on the initial aggregate state s0 it enters and the coupon payment c(s0) it
promises to pay, in addition to the current cash flow level Xt and state st. In observing its dynamic
cash flow Xt and new state st, the firm makes financing and default decisions. Path 1 (green line) shows
that, when its cash flows reach an upper threshold Xu(st; s0), the firm decides to issue more debt to take
advantage of tax benefits. In contrast, if the cash flows Xt decline to a low threshold Xs(st; s0) along
Path 2 (blue line), the firm becomes distressed. This distressed firm might survive and rebound, leading
to a subsequent debt restructuring at the same upper threshold Xu, as shown in Path 3 (red line). In
contrast, additional distress costs might induce a more severe cash flow shortfall through a depressed
growth rate. If the firm continues to deteriorate, equity holders will no longer be willing to inject more
capital, and decide to go bankrupt at Xd(st; s0), as shown in Path 4 (black line). Bankruptcy leads to
immediate liquidation.
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Figure 2. Optimal Thresholds in Two States
This figure plots the optimal default thresholds Xd(st; s0), distress threshold Xs(st; s0) and refinancing
threshold Xu(st; s0) across the two states over four regions of cash flow. Xs(st; s0) is the same in both
states and equals to the initial coupon c(s0).
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Figure 3. Equity and Debt Values
This figure plots the equity value Et (in left panel) and the debt value Dt (in right panel) against the
cash flow Xt. Equity (debt) is a convex (concave) function of the underlying assets, which generate
the cash flow Xt. A firm is considered distress if Xt < c or healthy otherwise. The gray lines plot the
payoff for the case of European option as in (Merton, 1974), and the blue and red lines for the American
option case as in our model. The blue, dotted dash lines are for the equity and debt values before the
increase of the market risk premium λm or the decrease in the growth rate µ̂, and the red, dash lines
are for those after the change in the market risk premium and growth rate.
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Figure 4. Equity Beta in the Simplified Model

This figure plots equity betas against cash flow Xt, with optimal policies as shown in the legend.
We set nominal Interest rate r to 0.04, market price of risk θ to 0.40, systematic volatility σm

to 0.1, debt issue cost φ to 0.75%, liquidation cost α to 0.3, effective tax rate τ to 0.175, cash
flow growth rate µ̂H = µ̂D to 0.04, cash flow beta β to 1, and idiosyncratic volatility σi,X to
0.17. At time 0, X0 = 1, the firm chooses optimal debt P and coupon c. They liquidate their
firms at the threshold of Xd if the corrective action does not save their firms. In Panel A, we
consider a firm is operating across two aggregate states, and exogenously change the market
price of risk from 0.40 to 0.44 by 10% when the economy switches from the good to the bad
state. Debt is fixed after initial issuance. Panel B, the firm incurs distress costs, η = 0.01,
when the cash flow falls below the low distress threshold of Xs, which is the coupon c.
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Figure 5. Financial Leverages in the Simplified Model

This figure plots financial leverage against cash flow Xt, with optimal policies as shown in
the legend. We set nominal Interest rate r to 0.04, market price of risk θ to 0.40, systematic
volatility σm to 0.1, debt issue cost φ to 0.75%, liquidation cost α to 0.3, effective tax rate τ
to 0.175, cash flow growth rate µ̂H = µ̂D to 0.04, and idiosyncratic volatility σi,X to 0.17. The
cash flow beta β are set to 1 and 1.5. At time 0, X0 = 1, the firm chooses different level of
debt P and coupon c, given their different exposure to the market risk (i.e., cash flow beta β).
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Figure 6. Time Series of Debt-to-Equity Ratios in the Data
This figure plots the time series of value-weighted debt-to-equity ratio from 1974 to 2015. The black
line with stars is for the expected market risk premium and the gray shade areas are for the NBER
recessions. The dashed, dotted, and solid with stars lines are for the least, modestly, and most distressed
portfolios, respectively.
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Table 1. Parameter Estimates
This table presents the parameter values and optimal policies solved from the model. Panel A lists the
predetermined parameters from the existing literature. Panel B presents the optimal policies, given the
predetermined parameter values. The optimal policies include coupon c(s0), the refinance threshold
Xu(st), and the default threshold Xd(st) and the distress threshold Xs(st) in the states st = B,G when
the firm enters at the initial state s0 = G. The last row reports the average values.

Panel A. Parameter Values from the Literature

st = B st = G

Probability of leaving current state st, p̂st 0.500 0.100
Aggregate state-switching risk premium, κst 1/2 2
Nominal interest rate, rst 0.040 0.040
Market price of risk, θst 0.380 0.220
Systematic volatility, σmst 0.120 0.100
Debt issue cost (%), φst 0.75 0.75
Liquidation cost, αst 0.100 0.100
Effective tax rate, τst 0.175 0.175

Idiosyncratic volatility, σi,Xst,w 0.170 0.170
Low- and high-cash flow beta, βst 0.6, 1.1 0.6, 1.1
Physical growth rate of healthy firms, µ̂st,H (%) −4.19 8.33
Distress Cost, ηst (%) 1.50 1.00

Panel B. Optimal Policies
c(B) c(G) Xu(B;G) Xu(G;G) Xd(B;G) Xd(G;G) Xs(B;G) Xs(G;G)

Low beta Firms 0.183 0.581 18.895 1.948 0.191 0.154 0.581 0.581
High beta Firms 0.176 0.417 5.474 1.989 0.191 0.155 0.417 0.417
Average 0.180 0.499 12.184 1.969 0.191 0.155 0.499 0.499
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Table 2. Moments of Generated Samples

This table reports the model generated moments from 100 model-generated samples. Each
sample contains the quarterly observations for 4000 firms over 150 years (The first 100 years
observations have been discarded). The statistics are averaged across all the samples. In Panel
A, financial leverage moments include the average of the median, mean, and interquarterile of
quasi-market leverage (QML) in each quarter, as well as the first order autocorrelation (AC(1))
of the mean of QML. Cash flow moments include the growth rate of cash flow µ̂st in the good
and bad aggregate states, and total cash flow volatility. Additionally, we report average market
excess stock returns. ‘Data’ is for the moments from Data and ‘Model’ is for the average of the
moments across all the samples generated from the full model, and ‘M–D’ is for the difference
between Model and Data. We also report the 25th, 50th and 75th percentiles of moments from
the 100 samples.

Panel. Moments
D(ata) M(odel) 5th 25th 50th 75th 95th M–D

Median of QML 0.303 0.294 0.258 0.280 0.294 0.308 0.330 −0.009
Mean of QML 0.313 0.314 0.270 0.295 0.317 0.332 0.359 0.001
Interquartile of QML 0.167 0.145 0.107 0.128 0.144 0.161 0.190 −0.022
AC(1) of the Mean of QML 0.920 0.929 0.856 0.900 0.944 0.957 0.975 0.009
Cash flow growth rate in the bad states µ̂B −0.046 −0.041 −0.074 −0.063 −0.049 −0.032 0.012 0.005
Cash flow growth rate in the good states µ̂G 0.081 0.085 0.060 0.077 0.087 0.095 0.108 0.004
Total volatility of cash flow rate σT,X 0.212 0.198 0.194 0.196 0.197 0.199 0.202 −0.014
Market risk premium 0.051 0.050 0.014 0.037 0.048 0.070 0.084 −0.001
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Table 3. Portfolios Sorted on the Failure Probability
We report the cross-sectional key moments in Panel A and stock returns in Panel B for decile portfolios
sorted on the probability of failure (Campbell et al., 2008), using the simulated data panels. The key
moments include financial leverage (QML), default probability of Merton (1974), and the fraction of
distressed firms within each decile of firms. Following Andrade and Kaplan (1998), a firm is classified as
“distressed” if its interest coverage is less than one. We simulate the model and generate 100 artificial
panels of data at the quarterly frequency for a period of 150 years. The first 100 years of observations
are discarded to reduce the dependence on initial values. In each data panel there are 4000 firms. In
each panel, the failure probability is calculated by running logit regressions as in Campbell et al. (2008).
Then, we sort simulated firms at the end of each year, based on the failure probability, and rebalance
the portfolios each year.

Panel A. Leverage and Default Probabilities
L(ow) 2 3 4 5 6 7 8 9 H(igh) H–L

QML 0.30 0.31 0.34 0.37 0.40 0.45 0.51 0.60 0.80 0.99 0.69
Merton Default Prob (%) 0.02 0.02 0.04 0.08 0.17 0.34 0.77 1.81 4.71 20.88 20.86
Fraction of Distressed Firms (%) 0.15 0.29 0.48 0.61 0.82 1.33 2.59 5.59 14.01 46.22 46.07

Panel B. Cross Section of Stock Returns
L(ow) 2 3 4 5 6 7 8 9 H(igh) H–L

rex (%) 7.26 6.30 5.75 5.68 5.57 5.32 5.02 4.24 2.01 −2.94 −10.20
(t) (2.84) (2.62) (2.50) (2.48) (2.40) (2.28) (2.13) (1.76) (0.86) (−0.68) (−4.62)
α (%) 1.60 0.94 0.61 0.53 0.39 0.12 −0.23 −1.14 −3.51 −9.16 −10.76
(t) (2.92) (2.16) (1.74) (1.63) (1.24) (0.28) (−0.43) (−1.48) (−3.18) (−5.34) (−5.60)
β 1.08 1.01 0.98 0.99 1.00 1.00 1.00 1.03 1.07 1.26 0.18
(t) (51.16) (59.77) (64.41) (66.35) (60.52) (48.56) (37.77) (27.68) (20.21) (9.53) (0.58)
Adj.R2 0.97 0.97 0.98 0.98 0.98 0.96 0.94 0.92 0.84 0.74 0.14
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Table 4. Portfolios Sorted on the Implied Distress Risk Premium
We report the cross-sectional key moments in Panel A and stock returns in Panel B for decile portfolios
sorted on the probability of failure (Campbell et al., 2008), using the simulated data panels. The key
moments include financial leverage (QML), default probability of Merton (1974), and the fraction of
distressed firms within each decile of firms. Following Andrade and Kaplan (1998), a firm is classified as
“distressed” if its interest coverage is less than one. We simulate the model and generate 100 artificial
panels of data at the quarterly frequency for a period of 150 years. The first 100 years of observations
are discarded to reduce the dependence on initial values. In each data panel there are 4000 firms. The
implied default risk premium is calculated as the log difference between the risk-neutral and the physical
default probabilities. Then, we sort simulated firms at the end of each year, based on the implied default
risk premium, and rebalance the portfolios each year.

Panel A. Leverage and Default Probabilities
L(ow) 2 3 4 5 6 7 8 9 H(igh) H–L

QML 0.55 0.42 0.36 0.32 0.30 0.28 0.27 0.26 0.25 0.23 −0.33
Merton Default Prob (%) 21.10 4.97 1.90 0.79 0.36 0.18 0.10 0.06 0.04 0.02 −21.40
Fraction of Distressed Firms (%) 47.12 13.71 4.97 2.10 1.02 0.68 0.61 0.62 0.70 0.51 −47.29

Panel B. Cross Section of Stock Returns
L(ow) 2 3 4 5 6 7 8 9 H(igh) H–L

rex (%) −1.54 2.89 4.74 5.42 5.93 5.95 5.98 6.09 6.22 6.44 8.04
(t) (−0.28) (1.16) (1.98) (2.33) (2.54) (2.56) (2.56) (2.49) (2.45) (2.46) (3.75)
α (%) −7.84 −2.57 −0.58 0.22 0.69 0.71 0.74 0.68 0.67 0.79 8.73
(t) (−4.87) (−2.50) (−0.78) (0.36) (1.73) (1.91) (2.15) (1.70) (1.46) (1.50) (4.68)
β 1.27 1.05 1.01 0.99 1.00 1.00 1.00 1.02 1.05 1.07 −0.20
(t) (9.09) (16.43) (25.63) (35.21) (43.47) (65.98) (74.14) (55.55) (33.85) (32.98) (−0.54)
Adj.R2 0.74 0.84 0.92 0.93 0.97 0.98 0.98 0.98 0.96 0.96 0.10
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Table 5. Counterfactual Analysis
We report two counterfactual analysis for stock returns. We set the distress cost to zero in Panels A1
and A2 and set the cash flow betas to their average in Panels B1 and B2. We report excess returns
sorted on the probability of failure (Campbell et al., 2008) in Panels A1 and B1, and those sorted on
the implied distress risk premium in Panels A2 and B2, using the simulated data panels. We simulate
the model and generate 100 artificial panels of data at the quarterly frequency for a period of 150 years.
The first 100 years of observations are discarded to reduce the dependence on initial values. In each
data panel there are 4000 firms. In each panel, the failure probability is calculated by running logit
regressions as in Campbell et al. (2008), and the implied default risk premium is calculated as the log
difference between the risk-neutral and the physical default probabilities. Then, we sort simulated data
at the end of each year, based on the failure probability and on the implied default risk premium, and
rebalance the portfolios each year.

Panel A1. Sorted on Failure Probability When Distress Costs ηst = 0
L(ow) 2 3 4 5 6 7 8 9 H(igh) H-L

rex(%) 7.07 6.43 6.13 6.02 6.14 6.11 6.10 6.03 5.62 3.10 −3.97
(t) 2.79 2.69 2.64 2.58 2.57 2.49 2.39 2.23 1.90 0.96 −2.31

Panel A2. Sorted on Implied Distressed Risk Premium When Distress Costs ηst = 0
L(ow) 2 3 4 5 6 7 8 9 H(igh) H-L

rex(%) 3.68 5.96 6.24 6.17 6.29 6.22 6.27 6.55 7.06 7.27 3.59
(t) 1.11 1.99 2.30 2.42 2.52 2.54 2.58 2.60 2.69 2.74 1.92

Panel B1. Sorted on Failure Probability Without Heterogeneity in Cash Flow Betas
L(ow) 2 3 4 5 6 7 8 9 H(igh) H-L

rex(%) 6.43 6.70 6.76 6.80 6.94 6.81 6.69 6.40 5.43 0.79 −5.64
(t) 2.76 2.77 2.72 2.67 2.62 2.52 2.39 2.21 1.79 0.40 −2.85

Panel B2. Sorted on Implied Distressed Risk Premium Without Heterogeneity in Cash Flow Betas
L(ow) 2 3 4 5 6 7 8 9 H(igh) H-L

rex(%) 1.30 5.38 6.47 6.82 7.01 6.98 6.85 6.80 6.67 6.45 5.15
(t) 0.42 1.79 2.23 2.44 2.58 2.64 2.68 2.73 2.76 2.75 2.80
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Table 6. Debt-to-Equity Ratios and the Market Premium in the Data
This table reports results from time series regressions of quarterly debt-to-equity ratios on the market
risk premium (MRP), measured by predicted market excess returns (Haddad et al., 2017) in Panel A
and actual market excess returns in Panel B, at the portfolio level. The debt-to-equity ratio is total
debt (DLCQ + DLTTQ) divided by equity, which is the product of the stock price (PRCCQ) and
share outstanding (CSHOQ). We form the portfolio by sorting firms into deciles based on the failure
probability of Campbell et al. (2008) at the end of the previous quarter. We include the standard control
variables in the capital structure literature, such as logarithm of book assets (Compustat item ATQ),
profitability (OIBDPQ/ATQ) and Tobin’s Q ((PRCCQ×CSHOQ + DLCQ + DLTTQ)/ATQ).

Panel A. Predicted Market Excess Returns

L(ow) 2 3 4 5 6 7 8 9 H(igh)

Expansions 0.09 0.15 0.23 0.33 0.45 0.60 0.77 0.93 1.12 1.35
(t) (32.68) (40.47) (41.29) (39.25) (37.92) (35.58) (32.09) (32.93) (26.28) (23.67)
Recessions 0.12 0.20 0.31 0.43 0.58 0.79 0.95 1.18 1.55 2.08
(t) (14.00) (13.74) (16.33) (15.55) (17.17) (14.35) (14.78) (13.02) (13.70) (12.34)
Intercept 0.13 0.24 0.40 0.94 1.31 1.33 1.88 1.63 1.98 3.47
(t) (2.77) (1.90) (6.00) (5.90) (7.52) (8.82) (9.92) (7.11) (6.67) (9.58)
MRPt −0.14 −0.23 −0.22 −0.59 −0.78 −0.50 −0.73 −0.15 −1.50 −5.31
(t) (−1.62) (−1.70) (−1.49) (−1.91) (−1.92) (−1.15) (−1.14) (−0.19) (−1.28) (−3.50)
log(BA)t−1 −0.00 −0.01 −0.03 −0.06 −0.09 −0.10 −0.11 −0.08 −0.00 −0.03
(t) (−0.23) (−1.30) (−2.73) (−3.77) (−4.63) (−3.75) (−3.48) (−2.66) (−0.04) (−0.33)
Profitt−1 0.71 1.69 2.46 −1.20 −2.17 4.39 −0.96 9.09 12.97 9.09
(t) (1.50) (1.27) (3.29) (−0.59) (−0.87) (2.68) (−0.52) (2.96) (4.12) (2.80)
Tobin′sQt−1 −0.03 −0.04 −0.06 −0.11 −0.16 −0.19 −0.35 −0.34 −0.59 −1.09
(t) (−4.65) (−3.74) (−3.36) (−2.76) (−2.80) (−2.90) (−4.24) (−3.21) (−4.92) (−9.21)
Adj.R2 0.43 0.54 0.62 0.50 0.54 0.50 0.50 0.52 0.64 0.68

Panel B. Actual Market Excess Returns

L(ow) 2 3 4 5 6 7 8 9 H(igh)

Intercept 0.09 0.17 0.35 0.81 1.13 1.25 1.80 1.73 1.90 2.83
(t) (1.71) (1.44) (5.20) (7.02) (8.96) (7.86) (9.53) (7.95) (8.10) (9.25)
MRPt −0.02 −0.02 −0.03 −0.04 −0.06 −0.09 −0.18 −0.28 −0.35 −0.27
(t) (−2.15) (−2.21) (−2.66) (−1.96) (−2.19) (−2.82) (−4.81) (−5.18) (−4.76) (−2.12)
log(BA)t−1 0.00 −0.01 −0.02 −0.05 −0.08 −0.09 −0.09 −0.08 0.03 0.03
(t) (0.47) (−0.68) (−2.27) (−2.91) (−3.75) (−3.41) (−3.04) (−2.84) (0.54) (0.37)
Profitt−1 0.90 2.03 2.77 −0.56 −0.91 4.74 −0.77 8.27 10.39 9.69
(t) (1.73) (1.52) (3.69) (−0.30) (−0.40) (2.48) (−0.45) (2.34) (3.39) (2.58)
Tobin′sQt−1 −0.03 −0.04 −0.06 −0.11 −0.15 −0.19 −0.35 −0.37 −0.64 −1.02
(t) (−3.69) (−3.04) (−2.98) (−2.58) (−2.49) (−2.80) (−4.19) (−3.64) (−5.06) (−7.20)
Adj.R2 0.43 0.54 0.62 0.48 0.52 0.51 0.53 0.59 0.67 0.63
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Table 7. The Failure Risk Premium in the Data
This table reports results from unconditional CAPM regressions in Panel A, and annualized excess stock
returns rexi,t and unconditional alphas αu implied by the conditional CAPM in Panel B, for portfolios
sorted on the failure probability. In Panel A, we report annualized excess stock returns rexi,t and uncon-
ditional alphas αu and βu from the unconditional time series regressions for each portfolio. In Panel B,
we report the value-weighted average of the time-varying CAPM beta βE

i,t from the data in the first row.
They are obtained from the regression of daily returns on the daily excess market returns, month by
month, and are adjusted by the procedure of Lewellen and Nagel (2006). Then, we report the two main
components, E[βE

i,t]E[rmt ] and cov(βE
i,t, r

m
t ) in the next two rows. Finally, we follow Lewellen and Nagel

(2006) and calculate the unconditional expected excess return as rexi,t = E[βE
i,t]E[rmt ] + cov(βE

i,t, r
m
t ) and

the unconditional CAPM alpha αu ≈ cov(βE
i,t, r

m
t )− E[rmt ]

(E[σm
t ])2 cov

(
βE
t , (σ

m
t )2

)
.

Panel A. Excess Return and Alphas from Data
L(ow) 2 3 4 5 6 7 8 9 H(igh) H-L

rexi,t 9.53 7.74 7.28 6.80 7.70 7.10 7.61 3.34 0.66 −0.10 −9.63

(t) (3.71) (3.23) (2.83) (2.54) (2.68) (2.23) (2.18) (0.82) (0.15) (−0.02) (−3.46)
αu 3.02 1.33 0.32 −0.31 −0.00 −1.11 −1.21 −6.33 −9.79 −11.16 −14.2
(t) (2.68) (1.58) (0.43) (−0.31) (−0.00) (−0.80) (−0.85) (−2.66) (−3.80) (−3.17) (−4.85)
βu 0.94 0.92 1.00 1.02 1.11 1.18 1.27 1.39 1.50 1.59 0.66
(t) (25.99) (42.93) (38.59) (50.34) (45.19) (29.18) (27.08) (19.01) (22.22) (17.46) (5.73)

Panel B. Model-Implied Excess Returns and Alphas
L(ow) 2 3 4 5 6 7 8 9 H(igh) H-L

βE
i,t 0.99 0.96 0.99 1.04 1.08 1.14 1.22 1.30 1.36 1.29 0.30

E[βE
i,t]E[rmt ] 6.89 6.66 6.88 7.24 7.50 7.90 8.47 9.07 9.49 9.00 2.11

cov(βE
i,t, r

m
t ) 0.62 0.02 0.04 −0.60 0.18 −1.90 −1.09 −3.20 −3.95 −5.96 −6.58

rexi,t 7.50 6.67 6.92 6.64 7.68 6.00 7.37 5.87 5.54 3.04 −4.47

αu 1.19 0.52 0.41 −0.49 0.12 −2.29 −1.72 −4.28 −5.30 −7.96 −9.15
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A Model

We list the boundary conditions, present the value functions of equity and debt for the firm over

the healthy and distress status over the business cycle.

A.1 Boundary conditions

Given the setup of the model, we list the boundary conditions to solve for the model. The closed-

form solutions are presented in the appendix.

A.1.1 Boundary Conditions of Equity Value Functions

When the firm is distressed, w = D, we have the following conditions:

lim
Xt↓Xd(B;s0)

E(Xt, B,D; s0) = 0, (A1)

lim
Xt↓Xd(G;s0)

E(Xt, G,D; s0) = 0, (A2)

lim
Xt↑Xd(B;s0)

E(Xt, G,D; s0) = lim
Xt↓Xd(B;s0)

E(Xt, G,D; s0), (A3)

lim
Xt↑Xd(B;s0)

E
′

(Xt, G,D; s0) = lim
Xt↓Xd(B;s0)

E
′

(Xt, G,D; s0). (A4)

Equations (A1) and (A2) state equity holders receive nothing at bankruptcy at both aggregate state,

st = B,G. Equations (A3) and (A4) are to ensure that the equity value function E(Xt, G,D; s0)

be continuous and smooth at Xd(B; s0).

Before the firm goes bankrupt or restructure its debt, it switches between the healthy and

distress financial status in both aggregate states. We impose the following conditions for equity

value functions :

lim
Xt↑Xs(B;s0)

E(Xt, B,D; s0) = lim
Xt↓Xs(B;s0)

E(Xt, B,H; s0), (A5)

lim
Xt↑Xs(G;s0)

E(Xt, G,D; s0) = lim
Xt↓Xs(G;s0)

E(Xt, G,H; s0). (A6)

lim
Xt↑Xs(B;s0)

E
′

(Xt, B,D; s0) = lim
Xt↓Xs(B;s0)

E
′

(Xt, B,H; s0), (A7)

lim
Xt↑Xs(G;s0)

E
′

(Xt, G,D; s0) = lim
Xt↓Xs(G;s0)

E
′

(Xt, G,H; s0). (A8)

Equations (A5) and (A6) are value matching conditions, which state the equity value are identical

at the distress threshold Xs(st; s0) for the same state, st. Equations (A7) and (A8) are smooth

pasting conditions, respectively.

When the firm is currently in a healthy status, i.e., w = H in both aggregate states, it restruc-
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tures its debt upward. We impose the boundary conditions as follows:

lim
Xt↑Xu(B;s0)

E(Xt, B,H; s0) = lim
Xt↓Xu(B;s0)

Xt

X0
[(1− φ)D(X0, B,H;B) + E(X0, B,H;B)]−D(X0, s0, H; s0),

(A9)

lim
Xt↑Xu(G;s0)

E(Xt, G,H; s0) = lim
Xt↓Xu(G;s0)

Xt

X0
[(1− φ)D(X0, G,H;G) + E(X0, G,H;G)]−D(X0, s0, H; s0),

(A10)

lim
Xt↑Xu(G;s0)

E(Xt, B,H; s0) = lim
Xt↓Xu(G;s0)

E(Xt, B,H; s0), (A11)

lim
Xt↑Xu(G;s0)

E
′

(Xt, B,H; s0) = lim
Xt↓Xu(G;s0)

E
′

(Xt, B,H; s0). (A12)

Equations (A9) and (A10) are value matching conditions at the restructuring threshold, Xu(st; s0),

which states that equity holders retire debt at par D(X0, s0, H; s0), which was issued at the initial

state s0, and issue more debt D(Xt, st, H; st) at the current aggregate state st = B,G. The scaling

property applies only within the same aggregate state, st. That is, if the firm starts at an initial

state s0 = B but refinance at st = G, we scale up the firm value to Xt/X0[(1−φ)D(X0, G,H;G)+

E(X0, G,H;G)] as if it starts at s0 = G. Equations (A11) and (A12) are to ensure that equity

value function E(Xt, B,H; s0) is continuous and smooth at Xu(G; s0).

A.1.2 Boundary Conditions of Debt Value Functions

When the firm is in distress, w = D, we have the following conditions for debt value functions:

lim
Xt↓Xd(B;s0)

D(Xt, B,D; s0) = (1− α)A(Xb, B,D; s0), (A13)

lim
Xt↓Xd(G;s0)

D(Xt, G,D; s0) = (1− α)A(Xb, G,D; s0), (A14)

lim
Xt↑Xd(B;s0)

D(Xt, G,D; s0) = lim
Xt↓Xd(B;s0)

D(Xt, G,D; s0), (A15)

lim
Xt↑Xd(B;s0)

D
′

(Xt, G,D; s0) = lim
Xt↓Xd(B;s0)

D
′

(Xt, G,D; s0). (A16)

Equations (A13) to (A14) states that debt holders receive the asset value after liquidation cost α

in both states st = B,G. Equations (A15) and (A16) are to ensure that the debt value function

D(Xt, G,D; s0) be continuous and smooth at Xd(B; s0).

We impose the following conditions for debt value functions before the firm goes bankrupt or
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restructure its debt:

lim
Xt↑Xs(B;s0)

D(Xt, B,D; s0) = lim
Xt↓Xs(B;s0)

D(Xt, B,H; s0), (A17)

lim
Xt↑Xs(G;s0)

D(Xt, G,D; s0) = lim
Xt↓Xs(G;s0)

D(Xt, G,H; s0). (A18)

lim
Xt↑Xs(B;s0)

D
′

(Xt, B,D; s0) = lim
Xt↓Xs(B;s0)

D
′

(Xt, B,H; s0), (A19)

lim
Xt↑Xs(G;s0)

D
′

(Xt, G,D; s0) = lim
Xt↓Xs(G;s0)

D
′

(Xt, G,H; s0). (A20)

(A21)

The interpretations for equations (A17) to (A20) are similar to those for equations (A5) to (A8).

When the firm restructures its debt upward, we have the following conditions:

lim
Xt↑Xu(B;s0)

D(Xt, B,H; s0) = P (X0; s0), (A22)

lim
Xt↑Xu(G;s0)

D(Xt, G,H; s0) = P (X0; s0), (A23)

lim
Xt↑Xu(G;s0)

D(Xt, B,H; s0) = lim
Xt↓Xu(G;s0)

D(Xt, B,H; s0), (A24)

lim
Xt↑Xu(G;s0)

D
′

(Xt, B,H; s0) = lim
Xt↓Xu(G;s0)

D
′

(Xt, B,H; s0). (A25)

Equations (A22) and (A23) are value matching condition which indicate that debt holder receive

par value at the debt refinancing threshold Xu(st; s0) at both states, respectively. Regardless of

which the current aggregate state st is, debt holders receive the par value P (X0; s0) determined at

the initial state s0 where debt is issued. Equations (A24) and (A25) are to ensure that debt value

function D(Xt, B,H; s0) is continuous and smooth at Xu(G; s0).

A.2 Asset Valuations

The standard no-arbitrage condition implies that the value function Jst,w of any security that

receives a cash flow CFst,w is a function of two state variables, such as the cash flow Xt and the

economy sates st.
22 It can be expressed as follows:

(r + pB)JB,w = CFB,w + µB,wXtJ
′

B,w +
1

2
σ2B,wXtJ

′′

B,w + pBJG,w, (A26)

(r + pG)JG,w = CFG,w + µG,wXtJ
′

G,w +
1

2
σ2G,wXtJ

′′

G,w + pGJB,w. (A27)

22Note that the financial status w is not an another state variable, because it is entirely determined by the cash
flow Xt.
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In the matrix form,

[(

rB + pB −pB
−pG rG + pG

)

−
(

µB,w 0

0 µG,w

)

Xt
∂
∂Xt

− 1
2

(

σ2B,w 0

0 σ2G,w

)

X2
t
∂2

∂X2
t

](

JB,w

JG,w

)

=

[

DB,w

DG,w

]

(A28)

We successively characterize the values of equity and debt for each region. For each initial state,

s0, there are a total of four cash flow regions for both equity and debt, as shown in Figure 2. The

cash flow regions are divided as follows:

R1 :Xd(G; s0) ≤ Xt < Xd(B; s0); (A29)

R2 :Xd(B; s0) ≤ Xt < c(s0); (A30)

R3 :c(s0) ≤ Xt < Xu(G; s0); (A31)

R4 :Xu(G; s0) ≤ Xt < Xu(B; s0). (A32)

For regions of R1 and R2, firms are distressed, w = D in both states st = G,B. For regions of R3 and

R4, firms are healthy, w = H in both states. We assume the distress threshold is the same in both

aggregate states and is dependent on the initial coupon c(s0), i.e., Xs(G; s0) = Xs(B; s0) = c(s0).

A.2.1 Equity Value Functions

R1 = Xd(G; s0) ≤ Xt < Xd(B; s0)

After becoming distressed, w = D, the firm has already gone bankrupt in the bad state, but not

yet in the good state. Because equity holders receive nothing at bankruptcy, E(Xt, B,D; s0) = 0,

in the bad state. They still receive the residuals after interest and taxes before bankruptcy in the

good state. In addition, a sudden switch of the economy from the good state to the bad state will

cause the firm to go bankrupt immediately.

The value function of E(Xt, G,D; s0) satisfies the following ODE:

(rG+pG)E(Xt, G,D; s0) = (1−τ)(Xt−c(s0))+µG,DXtE
′

(Xt, G,D; s0)+
1

2
σ2G,DX

2
t E

′′

(Xt, G,D; s0)

(A33)

Assume that the function form of the equity value is

E(Xt, G,D; s0) = (A(Xt, G,D)− CG(s0))(1− τ) +
2∑

i=1

aEG,D,iX
ψD,i

t , (A34)

where ψD,i is the roots of

1

2
σ2G,DψD(ψD − 1) + µG,DψD − rG − pG = 0. (A35)
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We can easily verify that the particular parts of the above function form are, respectively,

A(Xt, G,D) =
Xt

rG + pG − µG,D
, (A36)

and

CG(s0) =
c(s0)

rG + pG
. (A37)

It is evident that the unleveled asset value A(Xt, G,D) is decreasing with the probability of leaving

the good state for the bad state, pG, in line with our intuition. While A(Xt, G,D) is independent

of initial state s0, CG(s0) is dependent on the initial state where the firm enters market and issue

debt.

R2 = Xd(B; s0) ≤ Xt < c(s0)

In this region, the firm has become distressed, i.e., w = D, but has not gone bankrupt in both states.

Equity holders receive (1−τ)(Xt−c(s0)) in both states so that E(Xt, B,D; s0) and E(Xt, G,D; s0)

satisfy the following system of ODEs:

(rB + pB)E(Xt, B,D; s0) = (1− τ)(Xt − c(s0)) + µB,DXtE
′

(Xt, B,D; s0)

+
1

2
σ2B,DX

2
t E

′′

(Xt, B,D; s0) + pBE(Xt, G,D; s0) (A38)

(rG + pG)E(Xt, G,D; s0) = (1− τ)(Xt − c(s0)) + µG,DXtE
′

(Xt, G,D; s0)

+
1

2
σ2G,DX

2
t E

′′

(Xt, G,D; s0) + pGE(Xt, B,D; s0). (A39)

Assume the functional form of the solution in state st is

E(Xt, st, D; s0) = (A(Xt, st, D)− Cst(s0))(1− τ) +
4∑

i=1

eEst,D,iX
ωD,i

t . (A40)

Plugging (A40) into the ODEs (A38) and (A39), we obtain the solutions to the particular parts

as follows: [

A(Xt, B,D)

A(Xt, G,D)

]

=

[

rB − µB,D + pB −pB
−pG rG − µG,D + pG

]−1 [

Xt

Xt

]

(A41)

and [

CB(s0)

CG(s0)

]

=

[

rB + pB −pB
−pG rG + pG

]−1 [

c(s0)

c(s0)

]

(A42)

For the homogenous part of the solution, we verify that, for each pair of eEB,D,iX
ωD,i

t and

eEG,D,iX
ωD,i

t , we have

[(

rB,D + pB −pB
−pG rG,D + pG

)

−
(

µB,D 0

0 µG,D

)

ωD,i − 1
2

(

σ2B,D 0

0 σ2G,D

)

ωD,i(ωD,i − 1)

](

eEB,D,i
eEG,D,i

)

=

[

0

0

]

(A43)
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Moreover, eEB,D,i = gD,ie
E
G,D,i, where

gD,i =
1

pG
(
1

2
σ2G,DωD,i(ωD,i − 1) + µG,DωD,i − rG − pG), (A44)

and ωD,i is one of two positive roots and two negative roots of the following function

(
1

2
σ2B,DωD(ωD − 1)+µB,DωD − rB − pB)(

1

2
σ2G,DωD(ωD − 1)+µG,DωD − rG− pG) = pBpG. (A45)

R3 = c(s0) ≤ Xt < Xu(G; s0)

The firm is healthy in both states in this region. Hence, equity value functions E(Xt, G,H; s0) and

E(Xt, B,H; s0) satisfy the following system of ODEs

(rG + pG)E(Xt, G,H; s0) = (1− τ)(Xt − c(s0)) + µG,HXtE
′

(Xt, G,H; s0)

+
1

2
σ2G,HX

2
t E

′′

(Xt, G,H; s0) + pGE(Xt, B,H; s0), (A46)

(rG + pB)E(Xt, B,H; s0) = (1− τ)(Xt − c(s0)) + µB,HXtE
′

(Xt, B,H; s0)

+
1

2
σ2B,HX

2
t E

′′

(Xt, B,H; s0) + pBE(Xt, G,H; s0). (A47)

Assume the functional form of the value function is

E(Xt, st, H; s0) = (A(Xt, st, H)− Cst(s0))(1− τ) +
4∑

i=1

eEst,H,iX
ωH,i

t . (A48)

Plugging (A48) into ODEs (A46) and (A47), we obtain its particular solutions A(Xt, st, H) and

Cst(s0) in the matrix form are as follows:

[

A(Xt, B,H)

A(Xt, G,H)

]

=

[

rB − µB,H + pB −pB
−pG rG − µG,H + pG

]−1 [

Xt

Xt

]

, (A49)

and [

CB(s0)

CG(s0)

]

=

[

rB + pB −pB
−pG rG + pG

]−1 [

c(s0)

c(s0)

]

. (A50)

We can verify for each item eEB,H,iX
ωH,i

t and eEG,H,iX
ωH,i

t of the homogenous solution is

[(

rB,H + pB −pB
−pG rG,H + pG

)

−
(

µB,H 0

0 µG,H

)

ωH,i − 1
2

(

σ2B,H 0

0 σ2G,H

)

ωH,i(ωH,i − 1)

](

eEB,H,i
eEG,H,i

)

=

[

0

0.

]

(A51)

Additionally, eEB,H,i = gH,ie
E
G,H,i, where

gH,i =
1

pG
(
1

2
σ2G,HωH,i(ωH,i − 1) + µG,HωH,i − rG − pG), (A52)
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and ωH,i is two positive roots and two negative roots of the following function

(
1

2
σ2B,HωH(ωH −1)+µB,HωH − rB−pB)(

1

2
σ2G,HωH(ωH −1)+µG,HωH − rG−pG) = pBpG. (A53)

R4 = Xu(G; s0) ≤ Xt < Xu(B; s0)

In this region, the firm in the good state has already refinanced their debt upward, but not yet

in the bad state. By retiring the existing debt at par D(X0, s0, H; s0) and issuing new debt

D(Xu, G,H;G) at a fraction cost φ, equity holders increase their own wealth to E(Xt, G,H; s0) =

(1− φ)D(Xt, G,H;G) + E(Xt, G,H;G) −D(X0, s0, H; s0). By scaling property, we have the fol-

lowing equity value at the refinancing threshold Xu(G; s0):

E(Xu, G,H; s0) =
Xu(G; s0)

X0
((1− φ)D(X0, G,H;G) + E(X0, G,H;G))−D(X0, s0, H; s0).

In contrast, equity holders in the bad state have not refinanced their debt yet. However, an

exogenous switch from the bad state to the good state induces equity holders to refinance their

debt immediately. Hence, the equity value function in the bad state, E(Xt, B,H; s0), satisfies the

following ODE

(rB + pB)E(Xt, B,H; s0) = (1− τ)(Xt − c(s0)) + µB,HXtE
′

B,H +
1

2
σ2B,HXtE

′′

B,H

+ pB

(
Xt

X0
((1− φ)D(X0, G,H;G) + E(X0, G,H;G))−D(X0, s0, H; s0)

)

.

(A54)

Its solution is

E(Xt, B,H; s0) = A(Xt, B,H)− CB(s0) +
2∑

i=1

aEB,H,iX
ψH,i

t (A55)

where ψH,i is the negative and positive roots of

1

2
σ2B,HψH(ψH − 1) + µB,HψH − rB − pB = 0. (A56)

We can verify the particular parts of the value function are as follows:

A(Xt, B,H) =
Xt(1− τ) + pB

Xt
X0

((1− φ)D(X0, G,H;G) + E(X0, G,H;G))

rB + pB − µB,H
, (A57)

and

CB(s0) =
c(s0)(1− τ) + pBD(X0, s0, H; s0)

rB + pB
. (A58)

In total, we have 12 unknown coefficients for equity value function for an initial state s0.
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A.2.2 Debt Value Functions

R1 = Xd(G; s0) ≤ Xt < Xd(B; s0)

In this region, the firm has gone bankrupt in the bad state. Debt holders take over the assets and re-

ceive the residual value after the liquidation cost, i.e., D(Xt, B,D; s0) = (1−αB)A(XB,d, B,D)(1−
τ). In the good state, debt holders still receive the fixed coupon c(s0) before bankruptcy. Hence,

its value function D(Xt, G,D; s0) satisfies the following ODE:

(rG + pG)D(Xt, G,D; s0) = c(s0) + µG,DXtD
′

(Xt, G,D; s0)

+
1

2
σ2G,DX

2
tD

′′

(Xt, G,D; s0) + pG(1− αB)A(XB,d, B,D)(1− τ) (A59)

The solution of the debt value function is

D(Xt, G,D; s0) = CG(s0) +
2∑

i=1

aDG,D,iX
ψD,i

t + adpG(1− αB)A(XB,d, B,D)(1− τ), (A60)

where CG(s0) is defined in equation (A37), ψD,i in (A35),

ad =
1

rG + pG − µG,D
, (A61)

and

A(Xt, B,D) =
Xt

rB + pB − µB,D
. (A62)

R2 = Xd(B; s0) ≤ Xt < c(s0)

In this region, the firm is distressed and its debt holders receive a stream of fixed coupon c(s0) in

both states. D(Xt, B,D; s0) and D(Xt, G,D; s0) satisfy the following system of ODEs:

(rB + pB)D(Xt, B,D; s0) = c(s0) + µB,DXtD
′

(Xt, B,D; s0)

+
1

2
σ2B,DX

2
tD

′′

(Xt, B,D; s0) + pBD(Xt, G,D; s0) (A63)

(rG + pG)D(Xt, G,D; s0) = c(s0) + µG,DXtD
′

(Xt, G,D; s0)

+
1

2
σ2G,DX

2
tD

′′

(Xt, G,D; s0) + pGD(Xt, B,D; s0), (A64)

The debt value function in state st is

D(Xt, st, D; s0) = Cst(s0) +
4∑

i=1

eDst,D,iX
ωD,i

t (A65)

where Cst(s0) is shown in (A42) and ωD,i in (A45). Similar to the equity value function in the

same region, eDB,D,i = gD,ie
D
G,D,i, where gD,i is in equation (A44).

R3 = c(s0) ≤ Xt < Xu(G; s0)

The firm is healthly in both states. Debt value functionsD(Xt, G,H; s0) andD(Xt, B,H; s0) satisfy
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the following system of ODEs:

(rG + pG)D(Xt, G,H; s0) = c(s0) + µG,HXtD
′

(Xt, G,H; s0)

+
1

2
σ2G,HX

2
tD

′′

(Xt, G,H; s0) + pGD(Xt, B,H; s0), (A66)

(rG + pB)D(Xt, B,H; s0) = c(s0) + µB,HXtD
′

(Xt, B,H; s0)

+
1

2
σ2B,HX

2
tD

′′

(Xt, B,H; s0) + pBD(Xt, G,H; s0). (A67)

And the solution function in both states is

D(Xt, st, H; s0) = Cst(s0) +
4∑

i=1

eDst,H,iX
ωH,i

t . (A68)

where Cst(s0) is shown in (A50) and ωH,i in (A53). Similar to the equity value function in the

same region, eDB,H,i = gH,ie
D
G,H,i, where gH,i is in equation (A52).

R4 = Xu(G; s0) ≤ Xt < Xu(B; s0)

Because the firm refinances earlier in the good state than in the bad state, debt holders have already

redeemed the par value, D(Xt, G,H; s0) = D(X0, s0, H; s0), in the good state. Because debt holders

have not received the payment at par in the bad state, the debt value function, D(Xt, B,H; s0),

satisfies the following ODE:

(rB+pB)D(Xt, B,H; s0) = c(s0)+µB,HXtD
′

(Xt, B,H; s0)+
1

2
σ2B,HX

2
tD

′′

(Xt, B,H; s0)+pBD(X0, s0, H; s0)

(A69)

Its solution is

D(Xt, B,H; s0) = CB(s0) +
2∑

i=1

aDB,H,iX
ψH,i

t (A70)

where ψH,i is in (A56) and

CB(s0) =
c(s0) + pBD(X0, s0, H; s0)

rB + pB
. (A71)

In total, we have 12 unknown coefficients for debt value function for an initial state s0.
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A.3 Equity Returns

We apply Ito’s Lemma to equation (3) and obtain

dEst,w
Est,w

=
∂Est,w
∂XtEst,w

dXt +
1

2

∂2Est,w
∂X2

t

(dXt)
2

Est,w
+
Es+t ,w

− Est,w

Est,w
(p̂stdt+ dMst,t) (A72)

=
Xt∂Est,w
Est,w∂Xt

(

µ̂stdt+ σmstdŴ
m
t + σi,Xst,wdŴ

i
t

)

+
1

2

X2
t ∂

2Est,w
Est,w∂X

2
t

σ2st,wdt+
Es+t ,w

− Est,w

Est,w
(dMst,t + p̂stdt)

(A73)

=
1

Est,w

(

Xt∂Est,w
∂Xt

µ̂st +
X2
t σ

2
st,w

2

∂2Est,w
∂X2

t

+
Es+t ,w

− Est,w

Est,w
p̂st

)

dt+
Es+t ,w

− Est,w

Est,w
dMst,t

+
Xt

Est,w

∂Est,w
∂Xt

(

σmstdŴ
m
t + σi,Xst,wdŴ

i
t

)

(A74)

For two aggregate states, st ∈ (G,B), and two levels of financial status, w ∈ (H,D), the excess

equity return is given by

rest,w(Xt) = Et[r
E
st,w]− rdt (A75)

= −E

[
dmst,t

mst,t
,
dEst,w
Est,w

]

=

[

(
Xt∂Est,w
Est,w∂Xt

)(σmst θst)− (
Es+t ,w

Est,w
− 1)(κst − 1)p̂st

]

dt. (A76)

Let
Xt∂Est,w,s0
Est,w,s0∂Xt

= γst,w and (
E

s+t ,w,s0

Est,w,s0
− 1) = ψst,w, we have

rest,w = γst,wλ
m
stdt+ ψst,w(1− κst)p̂stdt. (A77)
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B Simplified Model

For the simplified model, we list boundary conditions, present the value functions for equity and

debt, and then finally the closed-form solution of the expected stock return.

B.1 Boundary Conditions

Equity Boundary Conditions

The boundary conditions for equity are as follows:

lim
Xt↑Xd

E(Xt, D) = 0; (B1)

lim
Xt↑Xs

E(Xt, H) = lim
Xt↓Xs

E(Xt, D). (B2)

Equation (B1) states that equity holders of a distressed firm (i.e., w = D) receive nothing at

bankruptcy. Equations (B2) is the value-matching condition at the distress threshold Xs.

Debt Boundary Conditions

The boundary conditions for debt are as follows:

lim
Xt↑Xd

D(Xt, D) = lim
Xt↓Xd

(1− α)A(Xt, D)(1− τ); (B3)

lim
Xt↑Xs

D(Xt, H) = lim
Xt↓Xs

D(Xt, D). (B4)

Equation (B3) shows that debt holders take over the assets and receive the residual value of assets

A(Xd, D)(1 − τ) after the liquidation cost α. Equations (B4) is the value-matching condition at

the distress threshold Xs.

B.2 Asset Valuations

In this simplified model, the firm has two financial status of w. That is, w = H for Xt ≥ Xs and

w = D for Xt < Xs. Similar to equation (A28), standard dynamic programming suggests that

J(Xt, w) ≡ Jt,w in this single-state economy satisfies the ordinary differential equation

µwXJ
′
t,w +

σ2w
2
X2J ′′

t,w − rJt,w + CFt = 0, (B5)

where J(Xt, w), J
′
t,w and J ′′

t,w denote the first and second-order derivatives of Jt,w with respect to

Xt, respectively.

When the firm is healthy, the dividend dt accruing to equity holders is (Xt − c) (1 − τ). The

dividend becomes (Xt − c) (1− τ) when the firm is distressed. Hence, the value function of equity

is

E(Xt, w) = (1− τ)
(

At,w − c

r

)

+ ew,1X
ωw,1

t + ew,2X
ωw,2

t , (B6)
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where At,w is the value of a unlevered, “perpetual” firm23

At,w ≡ A(Xt, w) =
Xt

r − µw
. (B7)

The ωw,1 < 0 and ωw,2 > 1 are the two roots of the characteristic equation

1

2
σ2wωw(ωw − 1) + µwωw − r = 0. (B8)

The two roots are:

ωw,1 =
1

2
− µw
σ2w

−

√
(
µw
σ2w

− 1

2

)2

+ 2
r

σ2w
< 0, (B9)

and

ωw,2 =
1

2
− µw
σ2w

+

√
(
µw
σ2w

− 1

2

)2

+ 2
r

σ2w
> 1. (B10)

The cash flow accruing to debt holders is the coupon c, respectively. Hence, the value function

of debt is

D(Xt, w) =
c

r
+ dw,1X

ωw,1

t + dw,2X
ωw,2

t . (B11)

B.3 Equity Returns

Similar to the full model, we start with the general formula for the equity return and then use the

boundary conditions. Ito’s lemma implies that the equity value E(Xt, w) ≡ Et,w satisfies

dEt,w
Et,w

=
1

Et,w

(
∂Et,w
∂t

+ µ̂wXt
∂Et,w
∂Xt

+
σ2w
2
X2
t

∂2Et,w
∂X2

t

)

dt+ (σmdŴm
t + σi,Xw dŴ i

t )
Xt

Et,w

∂Et,w
∂Xt

.

(B12)

The standard asset pricing argument gives

E

[
dEt,w + dtdt

Et,w

]

− rdt = −E

(
dEt,w
Et,w

,
dmt

mt

)

=
Xt

Et,w

∂Et,w
∂Xt

βw(σ
mθ)dt. (B13)

Denoting (dEt,w + dtdt)/Et,w by rEt,w and (Xt∂Et,w)/(Et,w∂Xt) by γt,w, we have the excess

equity return

ret,w(Xt) = Et[r
E
t,w]− rdt = (γt,wβw)σ

mθdt = βEwλ
mdt. (B14)

The elasticity of the equity to the underlying cash flows γt,w =
Xt∂Et,w

Et,w∂Xt
can be obtained by differ-

23 Assuming the firm is perpetual, we follow Goldstein et al. (2001) and label At,w the unlevered asset value. If
the unlevered firm hits the default threshold Xd at the time td, the unlevered asset value can be calculated as the
difference between the perpetuity value of A(Xt, D) at Xt and the perpetuity value of A(Xd, D) at Xd discounted
by the Arrow-Debreu price πt = ( X

Xd
)ωD,1 as follows:

At,w = E
Q
t

[
∫ td

t

Xse
−r(s−t)ds

]

= E
Q
t [

∫ ∞

t

Xte
−r(s−t)ds]− E

Q
t [

∫ ∞

td

Xde
−r(s−t)ds] = A(Xt, w)−A(Xd, w)πt.

A–12



entiating (B6), and is as follows:

γt,w = 1 +
c(1− τ)

rEt,w
+

(ωw,1 − 1)

Et,w
ew,1X

ωw,1

t +
(ωw,2 − 1)

Et,w
ew,2X

ωw,2

t (B15)

Because we assume the firm does not have the refinancing option in the further simplified model,

the no-bubble condition implies ew,2 = 0. The condition in equation (B1) implies:

eH,1 =

(
E(Xs, D)

(1− τ)
−
(

A(Xs, H)− c

r

))

(1− τ)(
X

Xs
)ωH,1 . (B16)

When the firm is distressed, w = D, the value-matching conditions in equation (B2) determine

eD,1 =

(
c(1− k)

r
−A(Xd, D)

)

(1− τ)πt, (B17)

where pit is the risk-neutral default probability, i.e., πt =
(
Xt
Xs

)ωD,1

. Substituting eH,1, and eD,1

into equations (B6), we obtain the equity value of a distressed firm24

Et,D =








(

A(Xt, D)− c(1− k)

r

)

︸ ︷︷ ︸

Equity-in-Place

+

(
c(1− k)

r
−A(Xd, D)

)

πt
︸ ︷︷ ︸

Put Option of Going Bankruptcy







(1− τ). (B18)

and the equity value of a healthy firm25

Et,H =








(

A(t,H)− c

r

)

︸ ︷︷ ︸

Equity-in-Place

+

(
E(Xs, D)

(1− τ)
−
(

A(Xs, H)− c

r

))

(
X

Xs
)ωH,1

︸ ︷︷ ︸

Put Option of deleveraging







(1− τ). (B19)

24Alternatively, the equity value of a distressed firm is the present value of accumulated after-tax dividends,(Xt −

c)(1 − τ), between time t and τd, where τd is the first passage time of hitting the default threshold Xd. Using the
unlevered asset value in Footnote 23, we have the following expression:

Et,D =

(

E
Q
t

[
∫ td

t

Xse
−r(s−t)ds

]

− E
Q
t

[
∫ td

t

ce−r(s−t)ds

])

(1− τ)

= (A(Xt, D)−A(Xd, D)πt) (1− τ)−
c(1− k)

r
(1− πt)(1− τ).

25Similar to that of a distressed firm, the equity value of a healthy firm is the sum of the present value of accumulated
after-tax dividends between time t and τs, where τs is the first passage time of hitting the distress threshold Xs, and
the present value of the equity value E(Xs, D) after becoming distressed, which is discounted by the Arrow-Debreu
price ( X

Xs
)ωH,1 . Using the unlevered asset value in footnote 23, we have the following expression for the equity value:

Et,H = E
Q
t

[
∫ ts

t

Xse
−r(s−t)ds

]

(1− τ)− E
Q
t

[
∫ ts

t

ce−r(s−t)ds

]

(1− τ) + E(Xs, D)(
X

Xs
)ωH,1

=

(

A(Xt, H)−A(Xs, H)(
X

Xs
)ωH,1

)

(1− τ)−
c

r
(1− (

X

Xs
)ωH,1)(1− τ) + E(Xs, D)(

X

Xs
)ωH,1 .
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Finally, we insert eH,1, and eD,1 into (B15) and obtain the equity-cash flow elasticity as follows:

γt,H =
∂Et,H/Et,H
∂Xt/Xt

, (B20)

= 1 +
c
r (1− τ)

Et,H
︸ ︷︷ ︸

Leverage

+(1− ωH,1)
(A(Xs, H)− c

r −
E(Xs,D)

1−τ )

Et,H
(
Xt

Xs
)ωH,1(1− τ)

︸ ︷︷ ︸

Put Option of Deleveraging (–)

, (B21)

and

γt,D =
∂Et,D/Et,D
∂Xt/Xt

, (B22)

= 1 +
c
r (1− τ)

Et,D
︸ ︷︷ ︸

Leverage

+
( cr −A(Xd, D))πt

Et,D
(1− τ)

︸ ︷︷ ︸

Put Option of Going Bankruptcy (–)

. (B23)
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C Appendix C: Construction of Ranking Variables

We discuss the construction of the two ranking variables used in the paper, and provide theoretical

justification for the implied default risk premium.

C.1 Failure Probability

When examining the actual data, we compute failure probability as in the third column of Table 4

of Campbell et al. (2008):

F-Probability = −9.164− 20.264NIMTAAV G+ 1.416TLMTA− 7.129EXRETAV G

+1.411SIGMA− 0.045RSIZE + 0.075MB − 0.058PRICE − 2.132CASHMTA. (C1)

NIMTAAV G is the moving average of the net income

NIMTAAV Gt−1,t−12 =
1− φ3

1− φ12
(NIMTAt−1,t−3 + . . .+ φ9NIMTAt−10,t−12),

and EXRETAVG is the moving average of the relative excess returns

EXRETAV Gt−1,t−12 =
1− φ

1− φ12
(EXRETt−1 + · · ·+ φ11EXRETt−12),

where NIMTA is net income divided by the sum of market equity and total liabilities; EXRET

is monthly log excess return on each firm’s equity relative to market excess return (EXRET =

log(1+Rit)− log(1+Rmkt,t)); TLMTA is the ratio of total liabilities divided by the sum of market

equity and total liabilities; SIGMA is the volatility of stock returns; RSIZE is the relative size

measured as the log ratio of the firm’s market equity to that of the total market; CASHMTA is the

ratio of cash and short-term investments divided by the sum of market equity and total liabilities;

MB is the market-to-book equity; and PRICE is the log price per share.

When applying logit regressions to our simulated data panels, we do not include CASHMTA

because we do not model cash holdings. Nor do we include Price because we do not have the num-

ber of shares in the model. These two items have no significant effect on our results because their

estimated coefficients and t-statistics from Campbell et al. (2008) are relatively small. However,

we include both of them when we use the actual data.

C.2 Proxy of Distress Risk Premium

When simulating the model, we know the distress risk premium parameters ex ante, but, in the

empirical tests, we do not. Friewald et al. (2014) infer the distress risk premium from CDS ex post.

We follow them and infer the distress risk premium from the simulated data ex post by “pretending”

that we do not know the distress risk premium to assess the empirical procedure.26

26Friewald et al. (2014) demonstrate the distress risk premium is the difference between the inverse function of the
risk-neutral default probability and the physical probability in the framework of Merton (1974) and back out the risk
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Inspired by Almeida and Philippon (2007), we propose to proxy for the distress risk premium

using the logarithmic difference between the risk-neutral and objective default probability as fol-

lows:27

Implied Distress Risk Premium = log(πt/π̂t) = log(πt)− log(π̂t). (C2)

Following the empirical literature, we apply the KMV procedure to the simulated data. De-

noting N(·), the cumulative probability function of a standard normal distribution, the one-year

objective default probability is given by:

π̂t = N(−D̂Dt), (C3)

in which D̂Dt denotes the distance to default as follows:

D̂Dt =
log[Pt/(Et + Pt)] + (µ̂− σ2/2)T

σ
√
T

, (C4)

where µ̂ is the actual asset growth rate, σ is the annual asset volatility, Et is the equity value, Pt

is the book value of debt, and T is the time to maturity. We assume the maturity T = 1 as in the

standard KMV procedure.

C.3 Theoretical Justification for the Implied Default Risk Premium

We motivate our proxy of the distress risk premium, the difference in the logarithm of risk-neutral

and physical probabilities. The following proposition connects the cash flow risk premium with

risk-neutral and physical default probabilities explicitly.28

If the risk-neutral rate µ→ r, the cash flow risk premium λt is:

λt =

(
log(πt)− log(π̂t)

log(Xt)− log(Xd)
+ 1

)
σ2t
2
dt, (C5)

where πt ≡ (Xt
Xd

)ω and π̂t ≡ (Xt
Xd

)ω̂ is the risk-neutral and physical default probability, respectively.

The exponents ω < 0 and ω̂ < 0 are defined in the Appendix B.

Because the risk-free rate is lower than the objective growth rate µ̂ by the risk premium λt,

the risk-neutral probability of default exceeds its actual counterpart for a risk-averse agent, i.e.,

premium from CDS. Compared with the procedure of Friewald et al. (2014), our proxy is easy to implement.
27Note that the proxy we use is based on the simplified model and can be easily implemented using the Merton’s

model. If we allow the distressed firm to rebound, the probability of default is

Lt =
X

ωD,1

t (Xs)
ωD,2 −X

ωD,2

t (Xs)
ωD,1

(Xs)ωD,2(Xd)ωD,1 − (Xs)ωD,1(Xd)ωD,2

and the probability of rebounding

Ht =
X

ωD,2

t (Xd)
ωD,1 −X

ωD,1

t (Xd)
ωD,2

(Xs)ωD,2(Xd)ωD,1 − (Xs)ωD,1(Xd)ωD,2
.

28We drop the subscript of w for ease of notation.
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log(πt) − log(π̂t) ≥ 0. Combined with the condition of Xt ≥ Xd, the model implies a positive risk

premium λt. Hence, we use log(πt)− log(π̂t) to proxy for the distress risk premium.

Although the risk-neutral and physical probabilities of default are positively correlated, the

difference, log(πt)− log(π̂t), can be negatively related to π̂t or πt. In other words, a high physical

or risk-neutral probability of default does not guarantee a high risk premium, λt, as the two

probabilities can be negatively correlated.

By directly applying the property of hitting time distribution of a geometric Brownian motion

according to equation (11) of p.14 on Harrison (1985), we obtain the cumulative physical default

probability π̂ for the firm issuing a bond with the time-to-maturity T :

π̂t = N (h(T )) +

(
Xt

Xd

)−2ξ/σ2
i

N

(

h(T ) +
2ξT

σi
√
T

)

, (C6)

where ξ = µ̂− 0.5σ2 > 0 and h(T ) = log(Xd/Xt)−ξT
σi

√
T

.

For the perpetual bond in our model, T → ∞. Therefore,

π̂t = (
Xt

Xd
)ω̂. (C7)

where ω̂ = −2(µ̂− 0.5σ2)/σ2.

When µ→ r, equation (B9) implies ω → −2r/σ2. Therefore,

πt = (
Xt

Xd
)ω → (

Xt

Xd
)−2r/σ2

. (C8)

By taking logarithm of π̂t and πt, we can easily obtain:

λ = µ̂− µ→ µ̂− r =

(
log(πt)− log(π̂t)

log(Xt)− log(Xd)
+ 1

)
σ2

2
. (C9)
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D Appendix D: Additional Empirical Results

D.1 Different Measures for Debt-to-Equity Ratios

To ensure our results are robust, we use different proxy for debt and different weight in calculating

the average debt ratios.

First, we replace total debt with total liability (Compustat LTQ), which we use to construct

the failure probability by following Campbell et al. (2008), and calculate liability-to-equity ratio.

As shown in Panel A of Table D1, the estimated coefficients are increasingly negative from –0.32

to –8.34. The difference is 8.02, greater than the difference of 5.17 reported in the main table

6. We observe similar patterns in Panel B. Therefore, we obtain stronger results when using this

alternative measure.

[Insert Table D1 Here]

Second, we replace value-weighted debt-to-equity ratios with equal-weighted ratios. Table D2

shows that the results are slightly weaker results, although the negative association between the

debt-to-equity ratios is still increasingly negative with the failure probability in both panels.

[Insert Table D2 Here]

D.2 Debt Financing and the Market Risk Premium

Table D3 reports time series regression results for debt financing behavior across ten decile port-

folios. When we use the scaled change in total debt to proxy for debt financing in Panel A, the

estimated coefficients ofMRPt decrease from 0.05 (t-statistic = 1.38) to –0.23 (t-statistic = –2.50),

indicating that the firms decrease their debt when the market risk premium increases the discount

rate and lowers their continuation value. Alternatively, when using the scaled change in total li-

ability in Panel B, we find that the negative responses are even stronger. That is, the estimated

coefficients of MRPt are all negative and greater than their counterparts in Panel A. More impor-

tantly, they become increasingly negative from –0.00 (t-statistic = –0.02) to –0.36 (t-statistic =

–3.43).

[Insert Table D3 Here]

Taken together, we demonstrate that firms decrease their debt in response to the market risk

premium, using two different measures of debt financing.
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Table D1. Value-Weighted Liability-to-Equity Ratio and the Market Premium in
the Data
This table reports results from time series regressions of quarterly liability-to-equity ratios on the market
risk premium (MRP), measured by predicted market excess returns (Haddad et al., 2017) in Panel A
and actual market risk returns in Panel B, at the portfolio level. The liability-to-equity ratios are
calculated as total liabilities (Compustat item LTQ), divided by equity, respectively. The equity is
the product of the stock price (PRCCQ) and share outstanding (CSHOQ). We form the portfolio by
sorting firms into deciles based on the failure probability of Campbell et al. (2008) at the end of the
previous quarter. Control variables include the equal-weighted logarithm of assets, log(BA) as well as
value-weighted profitability (profit) and Tobin’s Q.

Panel A. Predicted Market Excess Returns

L(ow) 2 3 4 5 6 7 8 9 H(igh)

Expansions 0.26 0.36 0.51 0.71 0.97 1.29 1.64 1.96 2.24 2.73
(t) (32.68) (40.47) (41.29) (39.25) (37.92) (35.58) (32.09) (32.93) (26.28) (23.67)
Recessions 0.33 0.49 0.69 1.02 1.25 1.69 1.99 2.45 3.08 4.05
(t) (14.00) (13.74) (16.33) (15.55) (17.17) (14.35) (14.78) (13.02) (13.70) (12.34)
Intercept 0.44 0.63 1.02 2.52 2.66 2.73 4.74 4.15 4.45 7.68
(t) (3.64) (2.79) (10.04) (3.69) (4.17) (7.68) (5.50) (4.87) (6.84) (11.78)
MRPt −0.32 −0.50 −0.54 −2.08 −2.62 −1.63 −4.28 −2.96 −4.93 −8.34
(t) (−1.94) (−1.85) (−1.86) (−1.90) (−1.82) (−1.27) (−1.66) (−1.20) (−1.85) (−3.12)
log(BA)t−1 −0.01 −0.03 −0.06 −0.11 −0.16 −0.22 −0.22 −0.19 −0.00 −0.26
(t) (−1.01) (−1.63) (−3.07) (−3.00) (−3.55) (−3.40) (−2.73) (−2.21) (−0.01) (−1.87)
Profitt−1 1.96 3.40 3.47 −10.21 −0.09 14.83 −7.34 16.75 24.80 17.17
(t) (1.64) (1.47) (3.25) (−1.12) (−0.01) (3.98) (−0.93) (1.64) (2.75) (3.10)
Tobin′sQt−1 −0.09 −0.11 −0.15 −0.38 −0.44 −0.48 −1.09 −1.07 −1.46 −2.16
(t) (−5.53) (−4.52) (−4.18) (−2.40) (−2.55) (−2.80) (−3.48) (−2.93) (−4.18) (−9.69)
Adj.R2 0.65 0.67 0.70 0.36 0.49 0.50 0.42 0.48 0.60 0.69

Panel B. Actual Market Excess Returns

L(ow) 2 3 4 5 6 7 8 9 H(igh)

Intercept 0.35 0.48 0.88 2.02 1.99 2.44 4.04 3.77 3.94 6.79
(t) (2.82) (2.27) (9.75) (4.69) (5.17) (6.79) (6.86) (5.63) (7.19) (11.67)
MRPt −0.05 −0.07 −0.08 −0.07 −0.07 −0.22 −0.44 −0.58 −0.65 −0.73
(t) (−3.78) (−4.04) (−4.25) (−0.84) (−0.88) (−2.64) (−4.15) (−3.36) (−3.39) (−4.03)
log(BA)t−1 −0.00 −0.01 −0.05 −0.08 −0.12 −0.19 −0.15 −0.14 0.10 −0.19
(t) (−0.19) (−0.87) (−2.52) (−1.89) (−2.51) (−2.81) (−1.65) (−1.60) (0.69) (−1.40)
Profitt−1 2.44 4.23 4.29 −7.25 5.27 16.11 −5.43 17.67 20.21 18.77
(t) (2.00) (1.78) (3.83) (−0.94) (0.69) (3.82) (−0.86) (1.68) (2.48) (3.00)
Tobin′sQt−1 −0.09 −0.11 −0.15 −0.34 −0.37 −0.48 −1.04 −1.06 −1.53 −2.05
(t) (−4.42) (−3.77) (−3.69) (−2.34) (−2.28) (−2.72) (−3.50) (−3.09) (−4.39) (−7.89)
Adj.R2 0.67 0.68 0.72 0.32 0.43 0.51 0.42 0.51 0.61 0.68
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Table D2. Equal-Weighted Debt-to-Equity Ratios and the Market Premium in the
Data
This table reports results from time series regression of quarterly equal-weighted debt-to-equity ratios
on the market risk premium (MRP), measured by predicted market excess returns (Haddad et al., 2017)
in Panel A and actual market risk returns in Panel B, at the portfolio level. The debt-to-equity ratios
are calculated as total debt (DLCQ + DLTTQ) divided by equity, which is the product of the stock price
(PRCCQ) and share outstanding (CSHOQ). The equity is the product of the stock price (PRCCQ) and
share outstanding (CSHOQ). We form the portfolio by sorting firms into deciles based on the failure
probability of Campbell et al. (2008) at the end of the previous quarter. Control variables include the
equal-weighted logarithm of assets, log(BA) as well as value-weighted profitability (profit) and Tobin’s
Q.

Panel A. Predicted Market Excess Returns

L(ow) 2 3 4 5 6 7 8 9 H(igh)

Expansions 0.08 0.13 0.20 0.28 0.37 0.49 0.62 0.76 0.93 1.20
(t) (28.51) (30.02) (31.40) (30.14) (29.37) (28.15) (26.52) (27.26) (23.65) (21.60)
Recessions 0.11 0.18 0.28 0.41 0.51 0.70 0.86 1.09 1.43 1.91
(t) (9.96) (10.78) (12.32) (12.15) (14.45) (13.34) (17.32) (15.68) (15.01) (13.68)
Intercept 0.11 0.24 0.52 0.94 1.33 1.55 2.08 2.45 2.23 2.65
(t) (2.10) (2.47) (4.28) (7.91) (9.63) (9.61) (10.80) (10.23) (7.19) (10.88)
MRPt −0.10 −0.29 −0.46 −0.96 −1.35 −1.51 −1.85 −1.89 −1.90 −3.46
(t) (−1.62) (−2.71) (−2.42) (−3.46) (−3.65) (−2.96) (−2.64) (−2.34) (−1.97) (−3.85)
log(BA)t−1 −0.00 −0.02 −0.03 −0.05 −0.08 −0.08 −0.11 −0.10 0.02 0.09
(t) (−0.84) (−2.05) (−2.82) (−3.39) (−4.33) (−3.49) (−4.53) (−3.18) (0.31) (2.22)
Profitt−1 1.33 2.39 1.85 0.20 −0.83 1.13 −0.29 −1.30 5.22 13.21
(t) (2.76) (2.34) (1.29) (0.15) (−0.52) (0.50) (−0.14) (−0.57) (2.18) (6.13)
Tobin′sQt−1 −0.04 −0.06 −0.10 −0.19 −0.28 −0.38 −0.53 −0.75 −0.86 −0.97
(t) (−5.33) (−4.10) (−4.91) (−5.59) (−6.84) (−5.90) (−6.08) (−7.21) (−7.59) (−7.29)
Adj.R2 0.62 0.69 0.69 0.64 0.67 0.65 0.66 0.70 0.79 0.84

Panel B. Actual Market Excess Returns

L(ow) 2 3 4 5 6 7 8 9 H(igh)

Intercept 0.08 0.14 0.39 0.68 0.94 1.21 1.72 2.14 1.94 2.19
(t) (1.62) (1.38) (3.61) (6.46) (8.01) (7.85) (9.85) (8.79) (6.42) (7.33)
MRPt −0.01 −0.02 −0.05 −0.07 −0.08 −0.13 −0.19 −0.26 −0.29 −0.33
(t) (−1.71) (−2.01) (−3.32) (−2.48) (−2.95) (−3.23) (−4.94) (−5.87) (−4.15) (−4.52)
log(BA)t−1 −0.00 −0.01 −0.02 −0.03 −0.05 −0.05 −0.08 −0.06 0.05 0.14
(t) (−0.26) (−0.97) (−2.10) (−2.04) (−2.64) (−2.20) (−3.10) (−2.30) (1.14) (2.80)
Profitt−1 1.48 2.87 2.66 1.77 1.91 3.12 1.30 −0.46 5.85 14.05
(t) (3.14) (2.64) (1.99) (1.35) (1.26) (1.39) (0.59) (−0.18) (2.29) (4.71)
Tobin′sQt−1 −0.04 −0.05 −0.09 −0.17 −0.23 −0.35 −0.49 −0.72 −0.83 −0.90
(t) (−4.60) (−2.90) (−3.51) (−4.03) (−4.10) (−4.45) (−4.78) (−5.64) (−6.85) (−5.27)
Adj.R2 0.62 0.68 0.68 0.60 0.62 0.64 0.66 0.72 0.81 0.84
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Table D3. Debt Financing and the Market Premium in the Data
This table reports the results of time series regression of quarterly debt financing variables on the
market risk premium (MRP), proxied by market risk returns. Debt financing (Panel A) and liability
financing (Panel B) are calculated as the change in total debt (DLCQ + DLTTQ) and the change in
total liabilities (Compustat item LTQ), divided by total assets (ATQ) of the last quarter, respectively.
We form the portfolio by sorting firms into deciles based on the failure probability of Campbell et al.
(2008) at the end of the previous quarter. Then, we run the time series regression as follows: yj,t =
aj+bj,YMRPt+cXj,t+ej,t, where yj,t is the value-weighted average of the debt financing variables, and
the quarterly expected market risk premium MRPt is obtained from the website of Erik Loualiche. We
include the standard control variables in the capital structure literature, such as logarithm of book assets
(Compustat item ATQ), profitability (OIBDPQ/ATQ) and Tobin’s Q ((PRCCQ×CSHOQ + DLCQ +
DLTTQ)/ATQ).

Panel A. Debt Financing

L(ow) 2 3 4 5 6 7 8 9 H(igh)

Intercept 0.02 −0.00 −0.01 −0.03 −0.02 −0.05 −0.03 −0.02 0.01 −0.01
(t) (0.78) (−0.08) (−0.67) (−0.81) (−0.75) (−2.42) (−1.60) (−1.01) (0.81) (−0.35)
MRPt −0.00 0.00 0.00 −0.00 0.00 0.01 −0.00 0.01 0.00 0.00
(t) (−0.26) (0.48) (0.28) (−0.21) (0.80) (1.52) (−0.06) (1.23) (0.61) (0.26)
log(BA)t−1 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00 0.00 −0.00 −0.01 −0.00
(t) (−0.80) (−0.62) (−0.41) (−0.49) (−1.40) (−0.52) (0.19) (−1.15) (−2.18) (−0.43)
Profitt−1 0.03 0.52 0.70 1.15 1.28 1.57 1.09 1.39 0.77 −0.11
(t) (0.10) (1.66) (3.78) (2.04) (2.04) (5.06) (2.73) (3.64) (2.43) (−0.46)
Tobin′sQt−1 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.02
(t) (1.70) (1.68) (1.23) (1.16) (2.23) (2.03) (2.40) (3.23) (3.40) (2.24)
Adj.R2 0.01 0.01 0.06 0.10 0.09 0.21 0.08 0.09 0.07 0.06

Panel B. Liability Financing

L(ow) 2 3 4 5 6 7 8 9 H(igh)

Intercept −0.01 0.06 0.08 0.02 0.03 0.05 0.04 0.03 0.07 0.07
(t) (−0.20) (1.53) (2.61) (0.46) (0.93) (1.70) (1.38) (0.95) (2.29) (2.26)
MRPt −0.00 −0.01 0.00 0.01 0.01 0.01 0.01 0.02 0.01 0.02
(t) (−0.20) (−1.06) (0.14) (0.58) (0.73) (1.29) (0.55) (1.83) (0.74) (1.62)
log(BA)t−1 −0.00 −0.01 −0.01 −0.01 −0.01 −0.01 −0.00 −0.01 −0.02 −0.02
(t) (−0.71) (−2.71) (−2.04) (−1.65) (−1.95) (−2.39) (−0.76) (−1.79) (−2.61) (−2.20)
Profitt−1 1.28 1.17 0.82 2.17 2.14 1.73 1.15 2.14 1.34 0.24
(t) (2.94) (3.12) (2.11) (3.28) (2.86) (2.94) (1.98) (4.54) (3.35) (0.74)
Tobin′sQt−1 0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.03 0.04 0.03
(t) (4.19) (4.54) (1.61) (2.29) (1.97) (2.03) (1.51) (3.48) (4.57) (2.76)
Adj.R2 0.30 0.41 0.34 0.38 0.36 0.30 0.25 0.28 0.22 0.19

A–21


