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Abstract

We develop a tractable model to study the macroeconomic impacts of limited arbitrage by

linking arbitrage activities with the macroeconomy through collateralization. We show that

the interactions between speculative trading and the business cycle can work as a power-

ful transmission mechanism, where trivial shocks spread, amplify, and trigger simultaneous

arbitrage failures and recessions. Collateralization adds extra value to real-sector invest-

ments, and ultimately helps boost aggregate production. We solve for the model dynamics

analytically and characterize multiple equilibria. Through regime shifts, we account for the

non-linear aspects of financial crises as well as the slow and incomplete post-crisis recoveries.

Keywords: limits of arbitrage, financial crises, mispricing, slow recovery, regime shifts,

multiple equilibria, collateralization, externality

JEL Classification: D52 D58 E44 G01 G12

∗Address: Ally Quan Zhang, Department of Accounting and Finance, Lancaster University Management
School, Lancaster, LA1 4YX, UK. e-mail: q.zhang20@lancaster.ac.uk.
†I thank Johannes Brumm, John Geanakoplos, Vasso Ioannidou, Péter Kondor, Felix Kübler, Hening Liu,
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Zürich for their helpful comments and suggestions.

1



1 Introduction

Recent financial crises have featured simultaneous disruptions and slow recoveries in both fi-

nancial markets and the macroeconomy. In some cases, disturbances from the real sector spread

quickly to financial markets and trigger arbitrage failures. For example, by August 2007, what

began as some bad news about the souring of the subprime mortgage market had evolved into a

full-fledged financial crisis. The plummeting collateral value of illiquid assets forced arbitrageurs

to deleverage and unwind their speculative positions. Consequently, the price spreads between

similar assets soared, and eventually led to arbitrage crashes.1Arbitrage failures of financial

intermediaries also gave rise to recessions in the real economy. Acharya and Steffen (2015) find

that the European banking crisis can be explained by an arbitrage failure in the “carry trade” of

Eurozone banks. Those banks had undertaken long positions in high-yield peripheral sovereign

bonds and short positions in low-yield German bunds. They bet on the convergence of those

yields. However, the yield spreads continued to diverge, inflicting heavy mark-to-market losses

on banks in both legs. In the aftermath of these arbitrage crashes, banks lost on average 70%

of their market value, followed by severe contractions in corporate lending and aggregate out-

put.2 Moreover, not only had recessions lasted longer3, but noticeably slow recoveries were also

evident in many asset markets. Du et al. (2018), for instance, document that deviations from

covered interest parity, which skyrocketed during the global financial crisis and the European

debt crisis, remained large in magnitude in the post-crisis era as well.

Theoretical literature contains two separate approaches to study the relationship between

financial crises and limits of arbitrage: The finance literature focuses on how frictions hinder

arbitrage and induce financial market instability; the macroeconomic literature examines how

frictions amplify shocks and lead to output contraction with limits to arbitrage in production.

The links between arbitrage activities and the macroeconomy, however, are not well understood,

especially their role on the transmission of external shocks into simultaneous disruptions in both

financial and real sectors.

To fill this gap, we develop a unified framework to examine the interaction between limited

arbitrage and the business cycle, and how it affects aggregate production and financial stability.

We investigate the impact of arbitrage activities on the macroeconomy, especially on its vul-

nerability to certain shocks. The model implications help us better understand how arbitrage

failures can lead to contractions in the real economy, and how tiny macroeconomic shocks might

trigger simultaneous arbitrage crashes and recessions. We also provide a complementary per-

spective to explain the slow or incomplete post-crisis recoveries in both the real and financial

1Mitchell and Pulvino (2012) find that the tumbling collateral value of corporate securities and secured bonds
- mortgage-backed securities (MBS), asset-backed securities (ABS), collateralized debt obligations (CDO), etc. -
severely impaired primary brokers’ financing capability to support arbitrageurs. Consequently, arbitrageurs were
unable to maintain similar prices of similar assets.

2Acharya et al. (2014) and Acharya and Steffen (2015) find that lending to private sectors contracted sub-
stantially in Greece, Ireland, Italy, Portugal, and Spain. In Ireland, Spain, and Portugal, the overall lending
volume of newly issued loans fell by 82%, 66%, and 45%, respectively, over the 2008–2013 period. Acharya et al.
(2018) present firm-level evidence showing that the lending contraction of banks affected by the crisis depressed
investments, job creation, and sales growth of the firms that had significant business relationships to these banks.

3Reinhart and Reinhart (2010) and Ball (2014), among others, document highly persistent drops in activity
following severe financial crises, with little evidence of an eventual recovery in output back to trend.
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sectors of the economy.

To this end, we incorporate convergence trades into a conventional neoclassical growth model

via collateralization. Rather than modelling the market collapses through explicit credit cycles,

we focus on the breakdown of arbitrage transactions caused by regime shifts. We assume that

financially constrained arbitrageurs can collateralize their real-sector investment to support

their convergence trades. A shock-triggered regime shift inflicts initial losses in arbitrageurs’

speculative positions, forcing them to reduce their capital investment. This leads to a scarcity

of collateral for speculation, and widens the price gaps between similar assets. Arbitrageurs

thus experience the worst losses when arbitrage opportunities are most profitable. Meanwhile,

financial distress also translates into further cuts in capital investment, inducing rapid output

contractions. Serving as collateral for speculation adds extra shadow value to the real assets. This

in turn increases the marginal return of capital, and ultimately boosts aggregate production.

Nevertheless, through regime shifts, such interaction also gives rise to the transmission channel

in which tiny shocks can spread, amplify, and eventually instigate simultaneous arbitrage failures

and recessions. The economy is thus vulnerable to systemic risks, even with very modest leverage

ratios.

In particular, we consider an infinite horizon economy in which household investors from

two segmented markets have different asset demands. This leads to price discrepancies between

identical assets, and creates arbitrage opportunities for intermediaries with accesses to both

markets. While intermediaries can profit from exploiting price differences, their capability to

do so is hindered by the collateral requirement. Such a constraint arises naturally because

the counterparty cannot compel intermediaries to honor their commitments unless the asset

positions are secured. For simplicity, we further assume that, besides trading as arbitrageurs,

intermediaries also invest in the real economy. Specifically, they invest capital in production,

and pledge it as collateral for their speculative positions. This is consistent with the real-world

practice of using corporate securities or structured products originated from real sectors as

collateral in the financial market. In this way, the collateral constraints limit intermediaries’

trading volume as a function of their capital investment in the production sector.

By deriving a closed-form solution to the model dynamics, we conclude that, in the absence

of regime shifts, there is a mutually beneficial relationship between arbitrage activities and

aggregate production. Arbitrage profits can be used as extra financing for capital investment.

By exploiting the price spreads across markets, intermediaries are essentially obtaining short-

term loans from households with zero or even negative interest rates. This effectively lowers the

marginal cost of capital and encourages producers to expand their scales. In turn, the amplified

capital investment also provides collateral to support more arbitrage trades, allowing for a more

liquid market and relatively lower levels of mispricing.

We show, however, that unexpected regime shifts can cause severe disruptions in both fi-

nancial and real sectors. In particular, under certain parameterizations, there are two distinct

steady states, which correspond to different regimes of the economy: The “good” regime features

higher trading volume and a narrower price gap between segmented markets, while the “bad”

one features less trading and a wider price gap. As more trades support better risk-sharing, there
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is a Pareto improvement if the economy moves from a bad to a good regime. However, crises

can happen when a tiny shock triggers the opposite shift. Consider, for example, the economy is

initially in a good regime. A negative shock might inflict only slight losses on intermediaries at

first, forcing them to reduce arbitrage positions. As intermediaries cannot internalize the price

impact, the collective unwinding widens the price gap further against their initial positions. The

resulting losses amplify even more when markets panic and move toward a bad regime. This is

because the price gap would widen further to match the bad regime level. Meanwhile, interme-

diaries are still carrying the large initial positions inherited from the good regime. The product

of these two large quantities becomes their realized arbitrage losses. Under financial distress,

they have to reduce their capital en masse. This not only disrupts aggregate production, but

also creates a shortage of collateral for restoring liquidity.

At first glance, it seems that crises like this only occur when the economy, fuelled by pes-

simistic market sentiment, shifts from a good to a bad regime. However, similar scenarios may

also arise even when the economy moves to a good regime. In fact, regardless of market senti-

ment, as long as the post-shock regime features a lower liquidity than the original one, inter-

mediaries will suffer amplified losses. Especially, if their pre-shock trading volume happens to

be large, the subsequent financial distress could pose a serious threat to the overall stability,

presenting policy makers with a trade-off between liquidity and fragility.

Moreover, regime shifts can complicate and derail post-crisis recoveries. We show that, in

some cases, while aggregate production slowly realizes a full recovery, large mispricing may

persist, and the total trading volume only rebounds to a much lower level. This is consistent

with the stylized fact that many asset markets after 2008 witnessed a limited recovery in terms of

liquidity and the correction of price anomalies. This phenomenon persisted long after aggregate

output had slowly rebounded to pre-crisis levels.

To the best of our knowledge, this paper is the first theoretical work to study the interaction

between limited arbitrage and the macroeconomy, and evaluate its overall economic impact. We

link convergence trades with aggregate production by capturing the collateralization with real

assets. Through regime shifts, we investigate the transmission channel that is accountable for a

simultaneous arbitrage failure and recession. We provide complementary explanations for slow

and incomplete post-crisis recoveries. Moreover, our model is highly tractable, with closed-form

solutions to the model dynamics and multiple equilibria.

1.1 Related Literature Review

This paper complements a growing theoretical literature on the limits of arbitrage, especially

the strand that stressess arbitrageurs’ financial constraints. We contribute to this literature by

capturing the practice of collateralization with productive capital, and examining the interac-

tion of limited arbitrage with the real economy. The closest articles to our paper are Gromb and

Vayanos (2002, 2018). We pattern our setup of market segmentation on their work. Gromb and

Vayanos (2002, 2018) propose equilibrium models in which financially constrained arbitrageurs

exploit price discrepancies across segmented markets while providing market liquidity. The fi-

nancial constraints limit the liquidity supply as a function of arbitrageurs’ wealth. One of the
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major differences between our model and theirs is that we allow a broader range of assets to

serve as collateral, as opposed to only the riskless asset. This enables us to capture the practice

of securitization, and model the transmission channel that is accountable for the simultaneous

arbitrage crashes and recessions. Also, Gromb and Vayanos (2018) derive self-correcting dy-

namics in which arbitrageurs can fully recover from their initial losses after a negative shock as

the asset returns increase. In contrast, we focus on the analytical characterization of multiple

equilibria, and the corresponding regime shifts that may lead to incomplete recoveries.

Shleifer and Vishny (1997) were the first to study how financial frictions affect arbitrageurs’

capability to eliminate price anomalies. Due to asymmetric information and moral hazard, ar-

bitrageurs bear insolvency risk under margin requirements. Xiong (2001) and Kyle and Xiong

(2001) examine the impact of arbitrage capital on asset prices by analyzing the wealth effects of

arbitrageurs with log utility in a continuous-time model. And Liu and Longstaff (2004) further

study the optimal arbitrage strategy of collateral-constrained arbitrageurs in a partial equilib-

rium. In Basak and Croitoru (2000, 2006), the mispricing arises endogenously when all agents

are portfolio-constrained. Brunnermeier and Pedersen (2009) study the feedback loops of arbi-

trageurs’ funding liquidity and market liquidity, and how they interact through the collateral

constraints. Our model differs primarily in the source of arbitrageurs’ funding, which comes

from arbitrage profits rather than direct borrowing. In Kondor (2009), arbitrageurs face uncer-

tainty over the time point at which the arbitrage opportunity vanishes. Their collective optimal

investment strategies may exacerbate mispricing even when they are not collateral constrained.

Garleanu and Pedersen (2011) consider collateral constraints in an infinite-horizon setting with

multiple assets. They demonstrate that securities with higher margin requirements yield higher

expected returns, and are more responsive to changes in the wealth of collateral-constrained

agents. In He and Krishnamurthy (2012, 2013), arbitrageurs can raise funds from less sophis-

ticated investors to invest in a risky financial security. This external funding must stay below

an exogenous ratio of their own wealth. In Brunnermeier and Sannikov (2014), arbitrageurs are

also more efficient holders of productive capital, and can trade a risky claim to that capital.

Hugonnier and Prieto (2015) discuss the effects of risky arbitrage on asset pricing and risk shar-

ing. Finally, Kondor and Vayanos (2019) study the interactions among arbitrageurs’ wealth,

liquidity supply, and assets risk premia, and show that arbitrageurs’ capital is the single priced

risk factor.

We note that our framework is also related to macroeconomic models that stress the pecu-

niary externality. In our paper, when intermediaries collectively reduce their arbitrage volume,

the price spread widens and moves against their initial positions. The resulting financial dis-

tress curbs investment growth in aggregate production and triggers more aggressive unwinding

in the financial markets. Some recent work underscores similar externalities, as borrowers do

not internalize the impact of their own leverage decisions on systemic risk. Examples include

Lorenzoni (2008), Bianchi (2011), Brunnermeier and Sannikov (2014), Chari and Kehoe (2016),

and Schmitt-Grohé and Uribe (2016).

This paper also extends the literature on the slow recovery from the Great Recession through

regime shifts. Shimer (2012) and Fajgelbaum et al. (2017), among others, study the implications

of multiple equilibria and discuss the post-shock recovery with transitions to new steady states.
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The remainder of this paper is organized as follows. Section 2 introduces the baseline model,

while section 3 characterizes the equilibrium. In section 4, we discuss the steady states, and in

section 5, we outline the existence and statics of multiple equilibria. Section 6 extends the multi-

ple equilibria analysis to various impulse responses and recovery patterns following unexpected

shocks. Section 7 concludes. The Appendix includes all the proofs.

2 Baseline Model

2.1 Representative Households

We consider two segmented markets, A and B, in an infinite horizon economy with one perish-

able good. Each market is populated by an identical continuum of representative households

(hereinafter HH), which constitute a measure of l. In each period, individual HH from market

i receive exogenous natural endowments eit.

eit = b+ uit−1θt, i ∈ {A,B},

where b is a constant, and uit−1θt is the endowment shock. In particular, {θt}∞t=1 is a sequence

of independent identically distributed random variables that follows a symmetric distribution

around zero on a bounded support S =
[
−θ̄, θ̄

]
, where θ̄ > 0. In brief, we denote θt as the shock

unit, and uit−1 as the shock intensity. The latter is always revealed one period earlier, so HH

know their hedging demand in advance.

We assume that the shock intensity in the two markets is constant, and identical in magni-

tude, but opposite in direction:

uA
t = −uB

t = u > 0.

Without further intermediation, the consumption paths in the two markets are perfectly nega-

tively correlated. Thus, HH from different markets have opposite hedging demands.

HH’s expected utility is given by

E0

[ ∞∑
t=0

βt log
(
Cit
)]
, i ∈ {A,B},

where C i
t is HH’s time t consumption in market i, and 0 < β < 1. To ensure positive consump-

tions for HH, we assume that b− uθ̄ > 0.

2.2 Financial Assets

Within each market, there exists an identical financial asset that is long-lived, in zero net supply,

and pays out a dividend equal to θt in t. Because this dividend exactly mimics the shock unit

in each period, the asset can serve as a perfect hedging instrument for HH.

Due to HH’s opposite hedging demands, the asset prices, i.e., P it , will differ across markets

without further intermediation. As HH in market A always experience a positive amount of

shock units, i.e., u = uA
t > 0, they are eager to sell the asset in order to neutralize their
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endowment shocks. To the extent that market A has negative asset demands, while market B

has positive ones, prices in market A tend to be lower than those in market B. We define the

price difference between the two markets as:

φt := PB
t − PA

t .

2.3 Intermediaries

Outside the two markets, there also exists a continuum of competitive, risk-averse, and infinitely

lived intermediaries (hereinafter IM). Their total measure is normalized to be one. Unlike HH,

IM can trade financial assets simultaneously in both markets. Thus, the price gaps create ar-

bitrage opportunities for them. They can obtain immediate profits by entering long positions

in the low-price market, and by going short in the high-price market. In this process, they also

provide market liquidity to HH in both markets. For simplicity, we assume further that IM will

incur prohibitive costs if they fail to take balanced positions across markets. We denote xt as

IM’s position in market A, thus:

xt := xA
t = −xB

t .

Following Gromb and Vayanos (2002, 2018), we use xt as a measure of market liquidity.

Similarly to Brunnermeier and Sannikov (2014), we assume that IM are also more efficient

holders of productive capital. They are uniquely able to convert consumption goods into durable

capital on a one-to-one basis, and vice versa. They run the production sector in the economy

by providing capital input, and by hiring HH from both markets as labor. The output function

follows a Cobb-Douglas form:

Y (Kt, Lt) = aKα
t L

γ
t ,

where a is the total productivity factor, α and γ = 1−α are the output elasticity of capital Kt

and labor Lt, respectively. In addition, capital depreciates at a rate of δ ∈ (0, 1). IM compensate

HH with a competitive wage for their labor. Figure 1 illustrates the basic setup in the economy.

IM’s expected utility is given by:

E0

[ ∞∑
t=0

ρt log
(
CIM
t

)]
,

where CIM
t is IM’s time t consumption, and 0 < ρ < 1.

2.4 Collateral Constraints

IM face collateral requirements when they arbitrage across markets—they must pledge enough

collateral such that they have no incentive to escape from their liability in the next period. This

constraint arises from the limited-liability enforcement: IM won’t get excluded from future trad-

ing even if they renege on their obligations. When IM take arbitrage positions, their portfolios

have negative value in the following period, whereas HH’s positions have positive value. This is

because financial assets here are long-lived; unlike one-period assets, whose value collapses to
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Market A Market B

The Intermediaries
Endowment

Process
Endowment

Process

Production
Process

Financial
Asset θt

Financial
Asset θt

+x −x

wage wage

labor labor

Endowment
Shock +ut−1θt

Endowment
Shock −ut−1θt

Figure 1: The structure of the baseline model.

zero in the future, they remain valid and may bear value in all following periods. Therefore, if

IM refuse to honor their previous trading contracts, HH’s positions will become worthless.

In particular, IM can pledge their capital investment; but only the residue part from

depreciation–1− δ–counts as effective collateral. This is consistent with limited liability litera-

ture (see e.g., Kübler and Schmedders (2003) and Chien and Lustig (2010)): in case of default,

HH can confiscate IM’s depreciated capital, but not their capital rent—their “labor” income.

Also, δ can be interpreted as the capital haircut, reflecting the liquidity discount relative to

cash.

IM’s collateral constraint is thus given by:

(1− δ)Kt − xtφt+1 ≥ 0,

where −xtφt+1 =
∑

i∈{A,B} x
i
tP

i
t+1 is the liquidation value of their previous positions, or HH’s

losses in case of default.

Our financial constraint differs with Gromb and Vayanos (2002, 2018) mainly in two aspects.

First, we expand the collateral set to include capital, which is illiquid to HH and links real

sectors. We can thus capture the collateralization practice in reality and examine its impact on

price discovery and aggregate economy. Second, in Gromb and Vayanos (2002, 2018), agents

have finite investment horizons for any given risky asset pair. This makes dividend payments

a dominant part of IM’s liability. So their margin constraint focuses on zero cross-netting of

dividend payments—IM must cover for the maximal possible dividend payments market-by-

market. In our model, both agents and assets have infinite horizon; individual dividend is small

in magnitude relative to IM’s liability. Our collateral constraint is thus to prevent IM from

making HH’s positions invalid by dishonouring previous contracts. It allows for partial cross-

netting—IM don’t have to collateralize for dividend payments that eventually offset each other.
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2.5 Utility Optimization and Equilibrium

Since HH draw no utility from leisure, the labor input is constant, Lt = L = 2l. Given initial

K−1 and xi−1, IM’s optimization problem can be written as:

max
CIM
t ,xit,Kt

E0

[ ∞∑
t=0

ρt log
(
CIM
t

)]
, i ∈ {A,B},

subject to the budget constraint:

CIM
t +Kt =

∑
i∈{A,B}

xit−1P
i
t︸ ︷︷ ︸

obligations

−
∑

i∈{A,B}

xitP
i
t︸ ︷︷ ︸

arbitrage gain

+F (Kt−1) + (1− δ)Kt−1

= −xt−1φt︸ ︷︷ ︸
obligations

+ xtφt︸︷︷︸
arbitrage gain

+F (Kt−1) + (1− δ)Kt−1, (1)

and the collateral constraint:

(1− δ)Kt − xtφt+1 ≥ 0, (2)

where F (Kt−1) = a(1− γ)Kα
t−1L

γ is IM’s capital rent.

Note that HH cannot invest in physical capital. They earn their labor income from the

production process. Similarly to Gromb and Vayanos (2002, 2018)’s setting, they are subject

only to budget constraints. Moreover, given initial positions yi−1, in each period t, they choose

their consumption Cit and asset position yit to solve the following problem:

max
Cit ,y

i
t

E0

[ ∞∑
t=0

βt log
(
Cit
)]
, i ∈ {A,B},

subject to

Cit =
(
yit−1

(
P it + θt

)
− yitP it

)︸ ︷︷ ︸
income from trading financial assets

+ aγKα
t−1L

γ−1︸ ︷︷ ︸
labor income

+
(
b+ uit−1θt

)︸ ︷︷ ︸
endowment

= P it
(
yit−1 − yit

)
+ aγKα

t−1L
γ−1 + b+

(
uit−1 + yit−1

)
θt. (3)

Ideally, HH prefer to take a position equal to yit = −uit in period t, so that they are fully

protected from endowment shocks in t+ 1.

Our notion of equilibrium is standard. It is a collection of prices, consumption plans, capital

investment, and asset positions, such that 1) each agent maximizes her utility given the prices

and subject to her constraints, and 2) both markets for the risky asset clear.

To keep the model parsimonious, we do not model explicitly the risk-free storage technology.

However, we show that when there is a safe asset accessible to all agents in the economy, all the

following model implications still hold quantitatively.4

4We prove that in an otherwise identical economy, where there is a safe asset with relatively low return and
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2.6 Interpretation

Our assumptions fit settings in which assets with similar payoffs are traded at different prices

in markets with certain degrees of segmentation. These include Siamese twin stocks, covered

interest arbitrage across currencies, corporate bonds, credit default swaps (CDS), and sovereign

bonds.5 Our setting, for example, can model covered interest arbitrage by interpreting the

two assets as a currency forward and its synthetic counterpart. HH in market A represent

hedgers in the forward market who have little expertise or access to synthetic forwards, as

illustrated in Borio et al. (2016). HH in market B resemble investors in the synthetic forward

market who are unable to trade forwards due to restricted mandates. Likewise, the price gaps

between corporate bonds and the corresponding CDS, as documented by Duffie (2010), can also

be partially explained by market segmentation. Individual investors have access to corporate

bonds, but not to CDS. Moreover, sovereign bonds with similar payoff structures can be traded

at significantly different yields. In this context, HH capture investors who are mandated to hold

bonds with certain coupon rates and times to maturity, or with a “home bias” such as insurance

companies, pension funds, and domestic banks.

IM in our model correspond to arbitrageurs and market makers in financial markets who

also invest or intermediate in real economic activities. Examples are hedge funds, investment

banks, dealer-broker banks with proprietary trading desks, and influential regional commercial

banks who engage in the “carry trade” of sovereign debt6.

We use IM’s capital to model those illiquid, real-sector assets or projects intermediated by

IM, especially those IM have significant advantage over other investors in managing. Thus,

it does not represent all the real investments in the economy, but only those relying on IM’s

financial conditions and expertise for intermediation. Investment banks, for example, may be

better at reducing risks by having a more diversified investment pool; they can afford more

R&D efforts in deciphering payoff distributions of otherwise opaque, complicated assets and

in profiting from regulatory limits; they can better securitize, finance, and collateralize illiquid

investments; etc. Given IM’s growing influence in real sectors, their intermediation capacity is

relevant to the aggregate economic growth.

Other investors, including HH in this model, can also invest in productive assets. Yet these

investments are not captured by IM’s capital: their outputs can be reflected by—perhaps a time-

varying version of—HH’s endowment b in our model. Also, assuming HH’s indirect investment

in production through labor is only for symbolic reflection—Lt may as well represent other

production factors: lands, funding via equity or debt, machines, market access, etc. We use this

form to stress that HH and IM’s production inputs are not perfect substitute.

Opaque payoffs and illiquidity of real assets often make it hard for non-specialist investors

to evaluate their fair prices; these assets may not even be tradable among non-institutional

investors. So we model IM as the marginal investors and first-best users of capital; and the

HH have exponential utility (to separate wealth effects on asset prices), all the lemma, corollary and propositions
3-8 still hold, except price gaps need minor adjustments. The proof is available upon request.

5See section II.B.3 in Gromb and Vayanos (2018) for more examples and illustrations.
6See Acharya and Steffen (2015).
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capital price in our setting equals unity—their marginal cost. Admittedly, this simple setting

limits us in studying the capital fire-sales in our crisis analysis. Since our main focus is to reveal

the macroeconomic impacts of IM’s speculative trading on aggregate output, investments and

employment, the pure quantity of their capital investment is sufficient to serve this purpose.7

Specifically, the capital in our settings fits a wide range of investments/financing in the

real sectors, such as bank or firm loans, corporate bonds, certificates of deposit, covered bonds,

and securitized products like MBS, ABS, CDOs, and collateralized loan obligations (CLOs).

As illustrated in Gorton and Metrick (2012) and Mitchell and Pulvino (2012), it is a common

practice for hedge funds or prime brokers to pledge corporate securities or structured products

as collateral in order to obtain financing or fulfill margin requirements. In light of the increasing

use of non-marketable real assets as collateral in the financial markets, this setup captures the

ongoing trend of collateralization in recent years.8

3 Equilibrium Characterization

In this section, we explore the model implications of asset prices, market liquidity supply,

collateral value, and equilibrium dynamics. We begin with IM’s Euler equations:

1 = CIM
t Et

ρ

CIM
t+1

(
F ′ (Kt) + 1− δ

)
+ λ̄t(1− δ), (4)

φt = CIM
t Et

ρφt+1

CIM
t+1

+ λ̄tφt+1, (5)

where λ̄t = λtC
IM
t ≥ 0 is the shadow collateral price, and λt is the Lagrange multiplier for the

collateral constraint (2).

Equations (4) and (5) are IM’s first-order conditions with respect to capital investment Kt

and trading volume xt. With binding collateral constraints, IM’s capital investment bears extra

collateral value λ̄t(1 − δ). We can interpret δ as the haircut rate of corporate securities used

as collateral. Equation (4) indicates that, because of the shadow collateral value, IM’s capital

now has a higher marginal return than what would result from pure production. Likewise, the

marginal benefit of taking an additional position is the immediate arbitrage gain, measured by

φt. This must be counterbalanced by the next period obligation and the collateral cost λ̄tφt+1.

Similarly, because HH are unconstrained, their first-order conditions lead to the following

standard pricing relationship:

P it
Cit

= βEt
[
P it+1 + θt+1

Cit+1

]
, i ∈ {A,B}. (6)

Obviously, one trivial equilibrium is xt = ut, φt = 0, ∀t. That is, IM provide full liquidity

7Zhang (2019) studies the interactions between capital fire-sales and that of arbitrage portfolios by incorpo-
rating endogenous capital price dynamics.

8Tamura and Tabakis (2013) document that the use of credit claims as collateral, i.e., non-marketable bank
loans, has increased significantly since they were included in the Eurosystem’s single list of eligible collateral in
2007.
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and eliminate any price gaps at all times. IM realize no arbitrage profits, and their collateral

constraints always remain slack. However, as we clarify later, for the settings in which alternative

equilibria are possible, such a trivial equilibrium is not as robust as others. This is because,

when competitive IM earn a profit of zero, they may not have an incentive to provide full

liquidity. Especially in the real-world markets where transaction costs are proportional to the

trading volume, such equilibrium is not feasible. In contrast, the equilibrium with binding

collateral constraints leaves IM no other options except sticking to the equilibrium positions.

We thus regard the trivial equilibrium as a degenerate case, and exclude it from our subsequent

discussion.

3.1 Equilibrium Prices

Lemma 1. Define pAt (θt) and pBt (θt) as the equilibrium prices in markets A and B, as functions

of θt. It follows that:

pAt (ε) = −pBt (−ε),

where ε ∈
[
−θ̄, θ̄

]
.

Proposition 1. In equilibrium, the asset prices are given by:

PA
t = − CA

t

CA
t + CB

t

φt = −
(

1

2
+

(u− xt−1/l) θt
2w (Kt−1)

)
φt, (7)

PB
t =

CB
t

CA
t + CB

t

φt =

(
1

2
− (u− xt−1/l) θt

2w (Kt−1)

)
φt, (8)

and the price difference is:

φt =
2w (Kt−1)

Mt + (xt − xt−1) /l
, (9)

where:

w (Kt−1) := aγKα
t−1L

γ−1 + b, Mt :=

Et

 ∞∑
j=1

βj
θt+j

CB
t+j

−1

.

Moreover, φt is independent of the realization of the shock units θt, ∀t.

Although prices in both A and B are decreasing functions of θt, the price difference as a

whole is independent of the specific realization of the shock units, θt. From IM’s perspective,

because they take a net zero position in financial assets, their consumptions and first-order

conditions are not affected by the realization of θt. We find further that the independence of φt

on θt also holds for the cases where HH have CRRA utility, and where θt follows a two-point

distribution.

3.2 Market Liquidity

Next, we discuss the market liquidity in the equilibrium.
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Proposition 2. Given shock intensity u and the distribution of {θt}, there exists a unique

threshold value ρ̄ > 0 for the IM’s discount factor, such that:

1. If ρ > ρ̄, then IM’s positions are xt = ul, and the price spread is φt = 0 for all t.

2. Else, if 0 < ρ ≤ ρ̄:

• When IM’s collateral constraints are binding, their asset positions xt follow:

xt ∈ (0, ul) and φt+1 =
(1− δ)Kt

xt
. (10)

• When IM’s collateral constraints are slack, then:

xt ≤ 0, and
φt+1

φt
= F ′ (Kt) + 1− δ. (11)

Proposition 2 shows that IM’s varying degrees of patience lead to different forms of equilib-

rium. In particular, if IM are sufficiently patient, markets expect they will accumulate enough

collateral to eliminate all price gaps over the long run. Such expectation feeds back into the

current equilibrium, resulting in a zero price spread from the beginning, even when their initial

capital investment levels are low. Consequently, IM are always able to provide full liquidity and

remove any price difference that arises from market segmentation. In this case, the economy

resembles the one in the neoclassical growth model, with frictionless financial markets.

On the other hand, if IM are not as patient, i.e., ρ < ρ̄, then two possible scenarios may

arise. First, when IM’s collateral constraints are binding, they provide market liquidity to HH

by taking arbitrage positions. In other words, they satisfy HH’s asset demands by entering long

positions in the low-price market A, and short positions in the high-price market B. Due to

their binding collateral requirement, IM can only provide HH with partial liquidity. Later, in

the steady-state discussion, we illustrate that, as long as ρ < ρ̄, the economy will eventually

end up in this binding equilibrium, regardless of its initial states.

Second, when IM are not collateral-constrained, they compete with HH for market liquid-

ity, instead of providing liquidity. In other words, they take opposite positions relative to the

convergence trading. This special case is only possible in the first few periods, when IM are

endowed with huge initial wealth. In order to smooth their consumptions, IM tend to save to

transfer their large initial resources into future periods. IM thus treat financial assets as saving

devices parallel to their capital investment, instead of as arbitrage instruments. Because IM’s

positions are opposite those of the convergence trades, they expect positive cash flows, instead

of obligated payments, from the next period liquidation. Thus, IM are not subject to collateral

constraints, and their capital input has no extra collateral value. Both serve as simple savings

instruments. Thus, IM’s asset investment and capital input should have the same marginal

return in equilibrium, as indicated by Equation (11).9

9In an otherwise identical economy with risk-free assets, this no longer hold. We can prove that when IM’s
initial wealth exceeds certain threshold, i.e., W0 > W̄ , IM will close out all the price gap at the beginning and
for all future periods by providing full liquidity, i.e., xt = ul, for all t. Thus, the equilibrium dynamic reduces to
the degenerate case resembling the frictionless neoclassic growth model, given the risk-free asset’s return is lower
than that of the steady-state capital.
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This result differs from that of Gromb and Vayanos (2018), who conclude that price spreads

decrease with arbitrageurs’ wealth until they are fully closed out. Here, due to the motive of

consumption smoothing, however, IM’s excessive wealth tends to induce greater scarcity in the

liquidity supply, serving to further widen the price gaps. Such a disparity arises mainly from the

different settings of IM’s saving instruments’ marginal returns. In Gromb and Vayanos (2018),

arbitrageurs can resort to a risk-free asset with a constant interest rate, while in our model IM

face decreasing marginal returns from their capital investment.

3.3 Model Dynamics

Below, we analytically derive the model dynamics of IM’s consumption, wealth, and capital

investment, when they are collateral-constrained.

Proposition 3. With initial wealth W0 > 0, when IM’s collateral constraints are binding in t,

their consumption and capital investments evolve according to:

CIM
t = (1− αρ)Wt, Kt = αρµtWt, (12)

where the leverage for capital investment is:

µt :=
φt+1

φt+1 − (1− δ)φt
> 1.

IM’s wealth dynamics are given by:

Wt+1 = F (Kt) + (1− δ)Kt − xtφt+1 = F (Kt) = F (αρµtWt) . (13)

When IM’s collateral constraints are binding, their remaining capital (1−δ)Kt exactly offsets

their liquidation payments −xtφt+1. Thus, IM are left with capital rent F (Kt) as wealth, which

will be allocated later to consumption and savings.

Equation (12) reveals the myopic feature of IM arised from log utility. Independent of their

income levels, they allocate fixed portions of their wealth to consumption and savings. In par-

ticular, they save St = αρWt. The savings ratio increases with the capital share and with IM’s

degree of patience to delay consumption. However, compared to their savings, IM’s capital in-

vestment levels are much higher. The multiplying effect comes from their arbitrage income, xtφt.

In fact, IM reinvest all their immediate arbitrage gains in the production sector. Thus,

Kt = αρWt + xtφt = αρWt +
(1− δ)Ktφt

φt+1
= αρµtWt.

The multiplier µt also measures IM’s arbitrage profitability. The more profits IM obtain from

speculations, the more they can leverage up their capital investment.

Proposition 3 demonstrates the mutually beneficial relationship between limited arbitrage

and capital investment in the production sector. From a producer’s perspective, the arbitrage

gain xtφt can be viewed as a one-period loan borrowed from HH. Likewise, the corresponding

obligation xtφt+1 in the next period can be seen as the repayment that will be due. Because IM
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bring the prices closer over time through their trading, i.e., φt+1 ≤ φt, the effective interest rate

of such a loan can be negative. Favourable external financing significantly reduces the marginal

cost of capital investment, thus encouraging producers to augment their production scale. Mean-

while, the expanded production also means higher wage/employment in both markets, raising

the overall welfare of the economy. In this sense, we can conclude that arbitrage activities help

boost the real economy by providing favourable financing to producers. A higher level of capital

investment also generates more collateral for arbitrageurs through securitization. This allows

them to provide more market liquidity, and to better correct asset mispricing.

3.4 Collateral Prices in the Time Series and Cross-Section

Given the model dynamics, we obtain the following implications about the shadow collateral

price.

Proposition 4. Suppose IM’s collateral constraints are binding. The dynamics of shadow col-

lateral price λ̄t would then be given by:

λ̄t =
φt
φt+1

− ρWt

F (αρµtWt)
. (14)

Holding all other characteristics constant:

• For a given economy, λ̄t increases with the gross arbitrage return φt/φt+1, and decreases

with IM’s wealth Wt.

• λ̄t increases with the total productivity factor a and capital output share α. It decreases

with depreciation rate δ.

If we use IM’s wealth Wt as an indicator of their funding condition or of the overall tightness

of the credit standards of the financial intermediary sectors, then Proposition 4 predicts IM’s

shadow collateral cost will increase when funding liquidity is low. Garleanu and Pedersen (2011)

provide empirical support for this notion. They document that the required return on a low-

margin asset (e.g., a CDS) is significantly lower than that on a high-margin security with the

same cash flows (e.g., proxied by the corresponding corporate bond), when the financial sector’s

funding condition is tighter. Likewise, if we interpret the gross arbitrage profitability φt/φt+1

as a measure of relative mispricing, and proxy for the shadow collateral price by the interest

spread between uncollateralized and collateralized loans, then Proposition 4 is also consistent

with Garleanu and Pedersen (2011). They document that the interest rate spread between

LIBOR and the general collateral repo rate widens with the deviation from covered interest

parity (CIP).

Similarly, the cross-sectional part of Proposition 4 indicates that IM’s shadow collateral

cost increases with the return of the asset used as collateral. A natural empirical prediction

is that the interest rate spread between uncollateralized and collateralized loans is wider in

those economies where assets used as collateral have, on average, higher expected risk-adjusted

returns.
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3.5 Deterministic Equilibrium

Given that IM hold net zero financial assets, and are thus immune from endowment shock units,

their optimization problem is a deterministic one. We can prove that there exists at least one

deterministic equilibrium.

Proposition 5. Given IM’s initial wealth W0 > 0, at least one equilibrium exists in which

price differences φt, IM’s capital investment Kt and market liquidity xt are deterministic. In

equilibrium, prices are non-negative in the market with negative shock intensity, i.e., market B,

and non-positive in the market with positive shock intensity, i.e., market A.

4 Steady States

When shock intensity is constant, i.e., ut = u, there exit steady states in which the price

difference, market liquidity, and capital investment remain the same across time. There are also

multiple steady states under certain conditions.

Proposition 6. Given shock intensity u and the distribution of {θt}, there exists a unique

threshold value ρ̄ > 0 for the IM’s discount factor, such that:

1. If ρ > ρ̄, there is a unique steady state with slack collateral constraints for IM. In partic-

ular,

• IM’s capital investment and consumption converge to K∗s = F
′−1
(

1−ρ(1−δ)
ρ

)
and

C∗s = F (K∗s )− δK∗s = δ(1−αρ)+(1−ρ)(1−δ)
αρ K∗s .

• IM provide full liquidity and eliminate any price gaps in the steady state, i.e., x∗s = ul

and φ∗s = 0.

• The shadow collateral price of the capital is zero, i.e., λ̄∗s = 0 and the leverage mul-

tiplier equals to one, i.e., µ∗s = 1.

2. Else, if 0 < ρ ≤ ρ̄, there is a steady state(s) with binding collateral constraints. Moreover,

in these steady state(s),

• IM’s capital investment, consumption, shadow collateral price, and leverage multiplier

converge to:

K∗b = F
′−1

(
δ

ρ

)
> F

′−1

(
1− ρ(1− δ)

ρ

)
,

C∗b =
δ(1− αρ)

αρ
K∗b >

δ(1− αρ) + (1− ρ)(1− δ)
αρ

F
′−1

(
1− ρ(1− δ)

ρ

)
,

λ̄∗b = 1− ρ, µ∗b = 1/δ > 1.

• IM provide only partial liquidity, and thus a positive price difference persists: 0 <

x∗b < ul, φ∗b > 0. In particular, given the steady-state position size x∗b , the price
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spread converges to:

φ∗b =
2βw (K∗b )

1− β
E

[
θ

w
(
K∗b
)
−
(
u− x∗b/l

)
θ

]
> 0. (15)

• IM’s total transaction volume from arbitrage amounts to x∗bφ
∗
b = (1− δ)K∗b .

3. Discontinuity exists in IM’s steady-state capital investment, consumptions, shadow collat-

eral price, and leverage ratio at the threshold value ρ̄. We can always find a ερ > 0, such

that

K∗ρ̄+ερ < K∗ρ̄−ερ , C∗ρ̄+ερ < C∗ρ̄−ερ , λ̄∗ρ̄+ερ < λ̄∗ρ̄−ερ , µ∗ρ̄+ερ < µ∗ρ̄−ερ .

Intuitively, if IM are patient (i.e. ρ > ρ̄), they will tend to save sufficient capital as collateral

in order to eliminate all the potential price differences. As a result, there are no unexploited

arbitrage opportunities in the long-run steady state. Accordingly, there is zero shadow collateral

value attached to the capital investment, and IM gain no leverage for their production. In

this case, IM’s steady-state capital investment, consumption, and wealth resemble those in the

neoclassical growth model.

In contrast, impatient IM would not save enough capital to absorb all arbitrage opportuni-

ties. As they are collateral-constrained, they can only provide partial liquidity. Therefore, one

would observe persistent price differences across segmented markets. Those unexploited arbi-

trage opportunities, however, allow capital to have extra collateral value, i.e., λ̄∗b = 1 − ρ > 0,

which reduces the marginal cost of capital and leads to higher capital investments than in the

neoclassical growth model. Empirical support abounds: Chaney et al. (2012) show that over the

1993-2007 period, a $1 increase in collateral value leads the representative US public corporation

to raise its investment by $0.06; Cahn et al. (2017) report that extension of the Eurosystem’s

universe of eligible collateral leads to an 8-9% increase in bank credit to small and medium en-

terprises in France; Bekkum et al. (2018) show that after ECB allowed lower-rated RMBS to be

eligible collateral, there is an expansion in mortgage credit in terms of both lower interest rates

and greater loan volumes; and Barthélemy et al. (2017) find one standard deviation increase in

the volume of illiquid collateral pledged with the Eurosystem corresponded to a 1.1% increase

in real-sector loans.

An alternative interpretation is that the presence and exploitation of arbitrage opportunities

allow IM to obtain external financing from HH to leverage up their capital, i.e., µ∗b > 1. IM’s

arbitrage gain in the steady state is essentially a nominal zero-interest one-period loan. Because

the price spreads are constant, IM earn the same amount of arbitrage gains each period as

the amount of their liability. In other words, IM receive new loans each period, which exactly

offset their repayment of the previous debt. Thus, their trading is indeed arbitrage in nature,

because they can renew and roll over their short-term loans infinitely in the steady state. In

particular, the scale of this periodical external financing equals a fixed ratio of IM’s capital,

x∗bφ
∗
b = (1− δ)K∗b .
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Due to the extra funding from arbitrage, IM’s welfare improves as their steady-state capital

investment and consumption, i.e., K∗b = F
′−1 (δ/ρ) and C∗b = (1 − αρ)F (K∗b ), are higher than

their counterparts in the frictionless neoclassical growth model. Interestingly, because of the

varying access to external financing, there exists discontinuity in the steady states around the

cutoff value ρ̄. For ρ1 < ρ̄ < ρ2, the corresponding capital investment follows the converse order:

K∗1 > K∗2 as λ̄∗1 > λ̄∗2 = 0.

5 Multiple Equilibria

In this section, we further explore steady states implications for cases with multiple collateral-

constrained equilibria.

Proposition 7. If ρ ∈ (0, ρ̄), there exist two distinct collateral-constrained steady states, denoted

as SS1 := (x∗1, φ
∗
1,K

∗
1 ) and SS2 := (x∗2, φ

∗
2,K

∗
2 ). They share the same level of capital investment,

K∗1 = K∗2 = K∗b = F
′−1 (δ/ρ), but differ as follows:

• One steady state features higher market liquidity and a smaller price gap, while the other

features a lower trading size and a wider price spread, i.e., 0 < x∗1 < x∗2 < ul and

φ∗1 > φ∗2 > 0.

• HH’s welfare is higher with higher market liquidity in SS2 than in SS1. IM are indifferent

between the two.

• K∗b , x∗1, and φ∗2 increase with ρ, while x∗2 and φ∗1 decrease with ρ.

From Proposition 6, we know that IM’s liability (the product of x∗ and φ∗) equals their total

collateral (1−δ)K∗b = (1−δ)F ′−1(δ/ρ)—a constant that is independent of any financial market

characteristics. Also, the price spread φ∗ decreases with the trading volume x∗ in the steady

state, since HH are risk averse. These two factors make it possible to have multiple solutions to

market liquidity x∗ and price gap φ∗: For economies with impatient IM (i.e., ρ ∈ (0, ρ̄]), there

exist exactly two robust collateral-constrained steady states, with x∗1 ≤ x∗2 and φ∗1 ≥ φ∗2. As the

right-hand graph in Figure 2 shows, a special case occurs when ρ = ρ̄, when the two steady

states happen to be identical.

The two steady states indicate distinctive welfare implications for IM and HH. Clearly,

IM are indifferent between the two regimes. This is because their utility and consumption are

determined solely by the constant capital investment level K∗b , which is independent of trading

volume x∗ or price gap φ∗. In contrast, the welfare levels for HH at the two steady states can

differ significantly. As illustrated by the numerical example in the left-hand graph in Figure 2,

given fixed capital level K∗b , HH receive the same labor income in both states. However, there is

less market liquidity in the steady state SS1, which exposes HH to more unhedged endowment

shocks. Thus, holding all model characteristics constant, there is a Pareto improvement when

the economy transitions from SS1 to SS2. In the following, we refer to SS1 as the bad steady

state/regime, and to SS2 as the good one. We also define the regime shift as the economy

switches from one steady state to the other.
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In a nutshell, this proposition suggests that the same amount of collateralizable, real-sector

assets can support different liquidity supply levels in financial markets. In reality, varying market

microstructure (e.g., transaction costs or rebates for providing liquidity) and collateral policies

(such as rehypothecation limits, eligibility scope, circulation velocity, etc.) can give rise to

distinct liquidity outcomes, even with the same quantities of illiquid collateral. In this light, the

bad regime corresponds to those less liquid, heavily regulated markets with rigid collateral re-use

limit, low circulation speed, or limited acceptance of non-marketable assets as eligible collateral;

the good regime captures a more liquid and less regulated trading environment featuring the

opposite. It is likely that the liquidity supply moves from one equilibrium level to another in

response to changes in collateral policies, trading platforms, general market regulations, and

other micro- or macroeconomic factors.
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Figure 2: a = 4, b = 60, u = 10, α = γ = 0.5, δ = 0.4, β = 0.9, θ̄ = 2 and θ follows a two-point
distribution. The horizontal line is (1− δ)K∗b (ρ), where K∗b is the steady state capital. The left
chart is when ρ = 0.5, and the right one is when ρ = ρ̄ = 0.94. The blue lines are the possible
products of equilibrium x and φ given that the steady state capital is K∗b (ρ). The interaction
point(s) are the steady state position size(s) x∗1 and x∗2 (x∗).

Next, we show the comparative statics of multiple equilibria with respect to the shock

intensity.10

Proposition 8. Holding all other characteristics constant, the cut-off value ρ̄ of IM’s discount

factor increases with shock intensity u. For two otherwise identical economies with differing

shock intensities, i.e., u1 < u2, if IM’s discount factor ρ is below either cut-off value, then, in

the steady states:

• The capital investments are identical: K∗b [u1] = K∗b [u2].

• The market liquidity in the bad regime decreases with u, i.e., x∗1 [u1] > x∗1 [u2], while the

price spread increases, i.e., φ∗1 [u1] < φ∗1 [u2].

• The market liquidity in the good regime increases with u, i.e., x∗2 [u1] < x∗2 [u2], while the

price spread decreases, i.e., φ∗2 [u1] > φ∗2 [u2].
10We also show other comparative statics in our Internet Appendix.
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Holding all else equal, an economy with a higher shock intensity allows more patient IM

to leverage up aggregate production through arbitrage. Also, as Figure 3 shows, as long as IM

remain collateral-constrained, the shock intensity level does not affect their steady-state capital

investment. However, the gap between good and bad regimes in terms of market liquidity and

the price spread expands with increasing shock intensity. Thus, the potential economic impact

of a regime shift rises concurrently with shock intensity.
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Figure 3: a = 8, b = 40, α = γ = 0.5, δ = 0.4, β = 0.9, θ̄ = 2 and θ follows a two-point
distribution. The horizontal line is (1− δ)K∗b , where K∗b is the binding steady-state capital. The
xφ∗ lines are the possible product of equilibrium x and φ given K∗b and the corresponding shock
intensity. Each interaction point corresponds to a binding steady-state position size x∗.

6 Crisis and Recovery

This section explores the model implications for shock reactions, financial crises, post-crisis

recoveries, and the policy trade-off. First, we examine the self-recovery case as the benchmark

shock reactions. Then, through regime shifts, we show that the interaction between limited

arbitrage and the business cycle can work as a powerful transmission channel in which a tiny

shock can lead to simultaneous arbitrage crashes and recessions. Furthermore, we illustrate that

such a crisis does not only happen when markets panic, or the economy switches to a bad regime.

Rather, crises can be unavoidable even when the economy shifts to a good post-shock regime.

In particular, we only consider shock responses relative to the steady state of the economy with

multiple equilibria, as in Proposition 7. Finally, we discuss the policy indications about regime

trade-off between welfare and risks.

6.1 Self-Recovery without Regime Shift

To study the benchmark shock reactions, we consider the following thought experiment. Suppose

at t IM encounter an unexpected negative shock in their wealth, and must unwind part of their

arbitrage positions. This kind of disturbance in the real world may correspond to a temporary

productivity shock, an abrupt hit to IM’s balance sheet, or a sudden drop in the price of the
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asset used as collateral in their margin account, etc. Assume further there is no regime shift

after the initial shock. Below we examine the short- and long-run responses of the economy.

Corollary 1.1. Suppose there is a sudden negative shock in IM’s wealth at t, with no concurrent

regime shift in the economy.

• The immediate effect is that capital investment and market liquidity fall below pre-shock

levels, while the price gap widens:

Kt < K∗, xt < x∗, φt > φ∗.

• Following this immediate reaction, capital investments, market liquidity and price spreads

gradually regain their pre-shock steady-state levels:

Kt < Kt+1 < · · · < K∗, xt < xt+1 < · · · < x∗, φt > φt+1 > · · · > φ∗.

Corollary 1.1 indicates that, when there is no regime shift, the shock reactions are consistent

with the self-correcting behavior in Gromb and Vayanos (2018). Following an adverse shock,

the economy experiences a quick and full recovery. Clearly, the resulting wider price gap and

lower capital from the initial shock help drive up the arbitrage profitability and the marginal

return of production. These two favourable factors allow IM to quickly regain their wealth and

eventually stabilize the economy.

However, this kind of “ideal” recovery pattern only occurs in our model as a special case.

After a negative shock, market sentiment about future economic prospects can turn pessimistic.

This may shift the economy toward a bad regime. As a result, the recovery paths would not

necessarily exhibit such self-correcting behavior. Nevertheless, we use this ideal case as the

benchmark for recovery in our later discussion.

6.2 Crisis and Incomplete Recovery: Regime Shift to Bad Equilibrium

As a comparison, we now examine the case in which the economy, starting at a good steady

state, switches to a bad regime following the same initial shock as in section 6.1.

Corollary 1.2. Suppose the economy is at a good regime SSg :
(
K∗, x∗g, φ

∗
g

)
and, following the

same shock in IM’s wealth as in section 6.1, moves toward the bad regime SSb : (K∗, x∗b , φ
∗
b).

If equilibrium exists, relative to the benchmark case:

• The immediate reaction would be that IM’s initial loss would get amplified, both capital

investment and market liquidity would drop more significantly, and the price spread would

widen:

Wt < W bm < W ∗, Kt < Kbm
t < K∗, xt < xbmt < x∗g, φt > φbmt > φ∗g,

where
(
W bm
t , Kbm

t , xbmt , φbmt
)

are the corresponding benchmark levels.
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Figure 4: Impulse response from a good to a bad regime after a sudden loss in IM’s wealth.
Parameter set: a = 8, b = 60, u = 10, α = 0.5, β = 0.8, γ = 0.5, δ = 0.4, θ̄ = 2, ρ = 0.6, L = 2,
initial loss ∆W = 9. θt follows a two-point distribution.

• In the long run, IM’s capital and wealth would recover gradually to pre-shock levels. How-

ever, the price spread and market liquidity would only converge to the bad steady-state

levels:

Kt < Kt+1 < · · · < K∗, xt < xt+1 < · · · < x∗b < x∗g, φt > φt+1 > . . . φ∗b > φ∗g.

Figure 4 illustrates the equilibrium paths when the negative shock triggers a regime shift.

Relative to the benchmark case, the economy reacts more dramatically. With the regime shift,

IM’s financial losses are amplified, because the price gap immediately jumps further to match

the higher level expected in the bad regime. Meanwhile, when the shock occurs, IM are still

carrying the large previous positions inherited from the good regime, i.e., x∗g. The product of

these two large quantities consitutes IM’s realized arbitrage losses.

Under such financial distress, IM have to cut down more of their capital en masse and

therefore lack enough collateral to restore liquidity supply. The price gap thus widens further

with IM’s collective unwinding, exacerbating their arbitrage losses. This is consistent with sce-

narios during Global Financial Crisis (GFC): amid worsening financial conditions and doubt
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over potential defaults of the collateral assets, IM were forced to reduce their holdings of illiquid

corporate securities and other structured instruments, ultimately making a large part of them

“toxic”—no longer acceptable as collateral. This created a market-wide scarcity of eligible col-

lateral and sharply reduced the investment demands of these assets11. As a result, financially

stressed arbitrageurs found it even harder to fulfil their margin requirements, causing asset

mispricing to spike persistently; meanwhile real investments also plummeted.

In particular, if the price gap widens to such a degree that IM’s inflated liability exceeds

their total production income, then equilibrium no longer exists. This matches the extreme case,

where financial distress renders the whole intermediary industry insolvent, followed by a major

recession and a market meltdown. Without external aids to IM, the economy cannot recover by

itself.

In the long run, surviving IM gradually regain their capital investment, and increase their

liquidity supply. However, because of the amplified financial losses, it generally takes longer for

IM to recover. This is consonant with the stylized fact of slow recoveries in the real sectors

after the GFC. Reinhart and Rogoff (2009), Reinhart and Reinhart (2010), and IMF (2009),

among others, have documented the slow recoveries in various measures of economic activity in

many economies since the 2007-2008 crisis, such as aggregate output, investment, capital stocks,

and employment. GDP growth in the U.S. and the Euro area, for example, did not rebound to

pre-crisis levels for several years after the financial crisis.

Moreover, even after IM’s wealth fully recovers, there is only a limited recovery in the finan-

cial markets, which results in persistent and large post-crisis mispricing. HH thus end up trapped

in the bad regime, with less protection against their endowment shocks. This is consistent with

the observation that many asset markets have witnessed slow and limited recoveries long after

aggregate output bounced back to pre-crisis levels in 2007. Prior to the GFC, for instance, only

small deviations from CIP could be found in the data.12 Since the GFC, there is a plethora

of evidence of significant deviations from CIP. Du et al. (2018) document large deviations for

ten currency pairs, even of the same order of magnitude as the interest rate differential, have

persisted in tranquil markets after the crisis. Bai and Collin-Dufresne (2019) also find similar

patterns in the CDS-bond basis for investment-grade (IG) and high-yield (HY) bonds. They

show that the average basis for IG firms, which generally hovered around -17 basis points (bps)

before the crisis, fell to -243 bps during the crisis, and the average basis for HY firms dropped

from 12 bps to -560 bps. The bases for both IG and HY firms remained negative even after

the crisis, i.e., -101 bps and -237 bps, respectively. In addition, Boyarchenko et al. (2018) find

a prolonged widening of spreads in the CDX-CDS (index CDS - the single-name CDS) basis

trades between segments of the CDS market after the GFC.

The regime shift also provides a complementary perspective to account for the post-crisis

liquidity drop in many asset markets. According to a recent BIS report by Aldasoro and Ehlers

(2018), for example, the global CDS market has shrunk significantly since GFC, when compared

to its peak at end 2007. Outstanding notional amounts of CDS contracts fell markedly, from

11Here for simplicity, we do not capture the price drops during the fire-sale of collateral. As can be proved,
incorporating endogenous capital price dynamic will only serve to strengthen our results.

12See Akram et al. (2008) and Levich (2017) for more details.

23



$61.2 trillion at the end of 2007, to $9.4 trillion just ten years later. A similar pattern can be

seen for the gross market value of outstanding positions.

6.3 Crisis and Incomplete Recovery: Regime Shift to Good Equilibrium

As we noted before, the previous discussions may imply that crises and incomplete recoveries

only occur if markets are pessimistic and are headed toward a bad regime. However, next,

we demonstrate that similar crises can occur even when the economy moves to a good regime.

Consider the following thought experiment. Suppose that, at t, shock intensity suddenly plunges

(for example, from u2 to u1 as illustrated in Figure 3). Following this shock, the economy shifts

to a good regime under the new shock intensity. This type of shock may correspond to an

abrupt drop in the asset demands or underlying volatility, a sudden change in the regulatory

environment, or an unexpected increase in the market integration.13

Corollary 1.3. Suppose the economy is in a good regime, SS :
(
K∗, x∗g, φ

∗
g

)
. There is then

a sudden decrease in shock intensity in both markets, u → u1 at t. The economy subsequently

moves toward a good regime under the new shock intensity u1, i.e., SSn,g :
(
K∗, x∗n,g, φ

∗
n,g

)
. If

equilibrium exists,

• The immediate reaction would be that the price spread would jump, and IM would suffer

losses from previous arbitrage positions. Capital investment and market liquidity would

slump.

φt > φ∗n,g > φ∗g, Wt < W ∗, Kt < K∗, xt < x∗n,g < x∗g, φt > φ∗n,g > φ∗g,

• In the long run, IM’s capital and wealth would gradually recover to pre-shock levels. How-

ever, the price spread and market liquidity would converge to the new good steady-state

levels:

Kt < Kt+1 < · · · < K∗, xt < xt+1 < · · · < x∗n,g < x∗g, φt > φt+1 > . . . φ∗n,g > φ∗g.

As shown in Figure 5, even if the economy moves to a good regime, it may still encounter

a simultaneous arbitrage crash and recession in the real sector, similar to the case discussed in

section 6.2. As Proposition 8 shows, the new good steady state features a higher price spread

and lower market liquidity than the pre-shock regime. Thus, even without pessimistic market

sentiment, the price gap widens immediately to accommodate the higher anticipated long-run

level. Because IM must liquidate the relatively large positions that were inherited from the

previous regime, the surge in the price gap tends to inflict unexpected arbitrage losses on them.

Again, they have to reduce their capital stocks and investments, leading to collateral shortage

and output contractions.

13We also discuss and document other shock responses, under different pre-shock regimes and with other types
of shocks, in our Internet Appendix.
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Similarly, in the long run, there is only a limited recovery in the correction or mispricing, as

well as in the market liquidity supply. In this regard, HH remain worse off afterward, although

the sudden shock lowers their initial consumption risk.
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Figure 5: Impulse responses from a previous healthy steady state to a new healthy steady state
after the shock intensity drops from u1 = 12 to u2 = 10. Parameter set: a = 8, b = 60, α = 0.5,
β = 0.8, γ = 0.5, δ = 0.4, θ̄ = 2, ρ = 0.6, L = 2. θt follows a two-point distribution.

Therefore, we show that, independent of market sentiment, as long as the post-shock regime

features a larger price gap or lower market liquidity than the previous regime, IM end up

suffering from amplified losses in their arbitrage positions. Especially if their pre-shock trading

size happens to be significant, the resulting financial distress could pose a serious threat to

market stability and the overall economy. Also, because of the potential regime shift, different

sectors of the economy may have varying post-crisis recovery paths.

6.4 Regime Trade-off

In this section, we compare the welfare of different regimes in response to unexpected regime

shifts.

Proposition 9. Consider two economies initially in the bad regime SS1 and the good regime

SS2 as described in Proposition 7. For any given sudden shock at t and the post-shock regime, the
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economy in the bad pre-shock regime is (weakly) better off than the economy in the good regime

after the shock; and the post-shock liquidity and capital follow: xSS1
t+j ≥ xSS2

t+j , K
SS1
t+j ≥ KSS2

t+j ,

∀j = {0, 1, 2, . . . }.

Proposition 9 implies that although the good regime features more liquidity and higher

welfare for HH, it is also more vulnerable: an unexpected regime shift is more likely to trigger

crises and causes more negative impacts on liquidity supply and the real economy. Thus, when

considering relevant regulation changes, policy makers may face a trade-off between maintain-

ing stability and facilitating market liquidity. A new collateral policy aiming to improve price

discoveries or liquidity supply in financial markets, for example, may work at the cost of raising

systemic risks and fuelling contagion to the real economy.

7 Conclusion

In this paper, we develop a tractable model to study the interplay between limited arbitrage

and the aggregate economy through collateralization. We primarily address two issues: 1) how

such interactions affect asset mispricing, market liquidity, investment, welfare, and aggregate

output, and 2) how they contribute to the creation of financial crises, and shape the post-crisis

economic recoveries.

To address the first question, we derive an analytical solution to the model dynamics, and

find that securitization increases the amount of collateral, which supports a higher supply of

market liquidity. In turn, through collateralization, limited arbitrage leads to extra shadow value

for capital investment, because it serves as collalteral. This effectively raises the marginal return

of production, and boosts overall investment, aggregate output, and welfare. We also provide

empirical predictions on the shadow collateral value that is embedded in the assets.

To address the second issue, we analytically solve the two equilibria in the model, which

correspond to different possible economic regimes. We show that, in the wake of unexpected

shocks, the interaction between speculation and aggregate production gives rise to a powerful

transmission channel, where tiny disturbances can spread, amplify, and ultimately trigger si-

multaneous arbitrage crashes and economic recessions. The possibility of shifting to a different

post-crisis regime may also derail a subsequent recovery, which sheds light on the slow and

incomplete recoveries observed in many asset markets.
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Appendices

A Proof of Lemma 1

Proof. We prove the lemma through backward induction. Suppose at s = t+ T ,

pA
t+T (ε) = −pB

t+T (−ε).

We define cis(θs) as the equilibrium consumption of HH in i at time s as a function of θs, for

i ∈ {A,B}. Since {θs} follows a symmetric distribution around zero, then it must hold that:

pA
t+T (ε)

cA
t+T (ε)

= −
pB
t+T (−ε)
cB
t+T (−ε)

.

Thus,

βTE

[
PA
t+T

CA
t+T

]
= −βTE

[
PB
t+T

CB
t+T

]
.
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as cA
t+T (ε) = cB

t+T (−ε), which follows from households’ budget constraints.

At s = T + t− 1, from the first-order condition of households, we have

PA
t+T−1 = βCA

t+T−1E

[
θt+T + PA

t+T

CA
t+T

]
, PB

t+T−1 = βCB
t+T−1E

[
θt+T + PB

t+T

CB
t+T

]
.

Substituting CA
t+T−1 and CB

t+T−1 with the households’ budget constraints at t+T −1, it follows

that:

pA
t+T−1(ε) = −pB

t+T−1(−ε), cA
t+T−1(ε) = cB

t+T−1(−ε).

Likewise, we can derive:

pA
t (ε) = −pB

t (−ε), cA
t (ε) = cB

t (−ε).

On the other hand, we can rewrite pit(ε) as:

pA
t (ε) = cA

t (ε)

 T∑
j=1

βjE

[
θt+j

CA
t+j

]
+ βTE

[
PA
t+T

CA
t+T

]
= −pB

t (−ε) = −cB
t (−ε)

 T∑
j=1

βjE

[
θt+j

CB
t+j

]
+ βTE

[
PB
t+T

CB
t+T

] .

When T →∞, according to the TVC in markets A and B,

lim
T→∞

−βT
PA
T

CA
T

yA
T = 0, lim

T→∞
βT

PB
T

CB
T

yB
T = 0.

If the steady state prices limT→∞ P
i
t+T 6= 0, then it must hold yit+T 6= 0 in equilibrium. Oth-

erwise, some IM can make an arbitrage profit by increasing liquidity provisions. Therefore, in

this case,

lim
T→∞

βTE

[
PA
t+T

CA
t+T

]
= − lim

T→∞
βTE

[
PB
t+T

CB
t+T

]
= 0. (16)

Else if limT→∞ P
i
t+T = 0, Equation (16) obviously holds as well.

Therefore, we have

pA
t (ε) = cA

t (ε) lim
T→∞

 T∑
j=1

βjE

[
θt+j

cA
t+j

]
+ βTE

[
pA
t+T

cA
t+T

] = cA
t (ε)

 ∞∑
j=1

βjE

[
θt+j

CA
t+j

]
= −cB

t (−ε)

 ∞∑
j=1

βjE

[
θt+j

CB
t+j

] = −pB
t (−ε).
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B Proof of Proposition 1

Proof. From Lemma 1, we know that pA
t (ε) = −pB

t (−ε). Thus,

cA
t (ε) = −pA

t (ε)
(
yA
t − yA

t−1

)
+ w (Kt−1) +

(
u+ yA

t−1

)
ε = pA

t (ε) (xt − xt−1) /l + w (Kt−1) + (u− xt−1/l) ε

where w(K) = aγKαLγ + b is a function of K. Similarly,

cB
t (ε) = −pB

t (ε) (xt − xt−1) /l + w (Kt−1)− (u− xt−1/l) ε.

Hence, it is obvious that

cA
t (ε) = cB

t (−ε), E
[
θt+s + PA

t+s

CA
t+s

]
= −E

[
θt+s + PB

t+s

CB
t+s

]
, ∀s ∈ {1, 2, . . . }.

From households’ first-order conditions, it follows that

φt ≡ PB
t − PA

t = βCB
t E

[
θt+1 + PB

t+1

CB
t+1

]
− βCA

t E

[
θt+1 + PA

t+1

CA
t+1

]
= β

(
CA
t + CB

t

)
E

[
θt+1 + PB

t+1

CB
t+1

]
.

Thus,

PB
t = βCB

t E

[
θt+1 + PB

t+1

CB
t+1

]
=

CB
t

CA
t + CB

t

φt.

Likewise,

PA
t = − CA

t

CA
t + CB

t

φt.

Substituting Cit with HH’s budget constraints in i, i ∈ {A,B}, one can obtain the following

after rearranging:

PB
t =

w (Kt−1)− (u− xt−1/l) θt
2w (Kt−1)

φt, PA
t = −w (Kt−1) + (u− xt−1/l) θt

2w (Kt−1)
φt.

If we continue to decompose φt,

φt = βCB
t E

[
θt+1 + PB

t+1

CB
t+1

]
− βCA

t E

[
θt+1 + PA

t+1

CA
t+1

]

= β
[
−PB

t (xt − xt−1) /l + w (Kt−1)− (u− xt−1/l) θt
]
E

[
θt+1 + PB

t+1

CB
t+1

]

− β
[
PA
t (xt − xt−1) /l + w (Kt−1) + (u− xt−1/l) θt

]
E

[
θt+1 + PA

t+1

CA
t+1

]

= β [−φt (xt − xt−1) /l + 2w (Kt−1)]E

[
θt+1 + PB

t+1

CB
t+1

]
.
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After rearranging and repeatedly substituting with HH’s first-order condition, we can obtain:

φt ≡ PB
t − PA

t =
2w (Kt−1)

Mt + (xt − xt−1) /l
.

where

1/Mt :=
∞∑
j=1

βjEt

[
θt+j

CB
t+j

]
,

which is independent of the realization of θt.

Because IM take a net zero position in the financial markets, when ut is constant, their

optimization problems are deterministic. Accordingly, xt, xt−1, Kt−1 are all independent of the

realization of θt in equilibrium. Hence the price difference φt doesn’t depend on any particular

θt realization.

C Proof of Proposition 2

Proof. First, for ρ > ρ̄, we prove that any xt 6= ul or φt 6= 0 will not hold in equilibrium. Second,

for ρ ≤ ρ̄, we prove that, when the collateral constraint is slack for IM, it must hold that xt ≤ 0

and φt > 0. Third, for ρ ≤ ρ̄, we prove that, when the collateral constraint is binding for IM,

xt ∈ (0, ul). The pricing for the price gap follows naturally from the collateral constraint.

As proven in Proposition 6, when ρ > ρ̄, the steady state price gap and market liquidity

are φ∗ = 0 and x∗ = ul. Suppose IM only reaches the steady state position x∗ = ul in period t

and before t they choose xs 6= ul in equilibrium, ∀s < t. Without any loss of generality, suppose

that, in t − 1, IM choose xt−1 6= ul, and from the pricing formula in equilibrium φt−1 6= 0.

We know that, in period t, φt = 0. Thus, in t − 1, IM are not collateral-constrained. Given

φt−1 6= 0, a certain IM can make an arbitrage profit by taking x′t−1 = xt−1 + ∆x, such that

φt−1∆x > 0, without assuming any increased obligation in t. Therefore, xt−1 6= ul cannot hold

in equilibrium, and xt−1 = ul and φt−1 = 0 must hold. Similarly, this applies to all s < t.

As proven in Proposition 6, when ρ ≤ ρ̄, the steady state price gap and market liquidity are

φ∗ > 0 and 0 < x∗ < ul. Suppose, in this case, when the collateral constraint is slack for IM,

xt > 0 holds in equilibrium. Then, from the budget constraints and the first-order condition of

IM, we have:

cIM
t = F (Kt−1) + (1− δ)Kt−1 − (xt−1 − xt)φt −Kt,

cIM
t+1 = F (Kt) + (1− δ)Kt − (xt − xt+1)φt+1 −Kt+1,

F ′ (Kt) + 1− δ =
φt+1

φt
, (17)

and

−xtφt+1 + (1− δ)Kt > 0.

Next, assume certain IM choose to take x′t = xt − ε and K ′t = Kt − εφt in t, where εφt > 0
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and −x′tφt+1 + (1 − δ)K ′t > 0. From the budget constraint, we can find that, in this way, the

consumption in t stays the same as in the others, i.e., c′t = cIM
t . However, in t + 1 if this IM

choose the same Kt+1 and xt+1, then we will have:

c′t+1 = F
(
K ′t
)

+ (1− δ)K ′t −
(
x′t − xt+1

)
φt+1 −Kt+1

= F (Kt − εφt) + (1− δ) (Kt − εφt)− (xt − ε− xt+1)φt+1 −Kt+1,

c′t+1 − cIM
t+1 = F (Kt − εφt)− F (Kt) + (1− δ) (−εφt) + εφt+1

= F (Kt − εφt)− F (Kt) + F ′ (Kt) εφt > 0.

The last equation follows from Equation (17), and the inequality holds because F (·) is a concave

function of Kt. Thus, these IM can increase utility by deviating from xt. Therefore, if ρ ≤ ρ̄,

xt > 0 will not hold in equilibrium under the slack collateral constraints. The relationship

between price spreads between t and t+ 1 follows from Equation (17).

We also prove that, when the collateral constraints are binding for IM in t, their positions

in equilibrium must satisfy xt ∈ (0, ul). Specifically, we can show this by invalidating the xt ≤ 0

and xt ≥ ul cases.

Moreover, suppose in equilibrium that xt ≤ 0 exists when ρ ≤ ρ̄, and IM’s collateral con-

straints are binding in t, i.e., xtφt+1 = (1 − δ)Kt. Thus, φt+1 < 0. From IM’s first-order

condition with respect to xt, it must also hold that φt < 0. Otherwise, certain IM could make

an arbitrage profit by taking x′t > 0. On HH’s side, this means PB
t+1 < 0 and PB

t < 0, as

PB
t = CB

t φt/
(
CA
t + CB

t

)
.

Since xt < 0, it follows:

E

[
θt+1

CB
t+1

]
= E

[
θt+1

w (Kt) + PB
t+1 (xt − xt+1) /l − (u− xt/l) θt+1

]

= E

 θt+1

(w (Kt)− (u− xt/l) θt+1)
(

1 + φt+1(xt−xt+1)/l
2w(Kt)

)
 > 0.

And the last equation comes from:

PB
t+1 =

w (Kt)− (u− xt/l) θt+1

2w (Kt)
φt+1.

The inequality holds, because, when θt+1 = ε > 0, cB
t+1(ε) < cB

t+1(−ε) when xt ≤ 0.

Assume that, from t+ 1 onwards, IM’s position sequence {xt+s} in equilibrium stays below

ul, i.e., xt+s < ul, until some period t+ T , for s ∈ {1, 2, . . . , T − 1}. Thus,

E
[
θt+s

CB
t+s

]
> 0, ∀s ≤ T.
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If T =∞, then, from the pricing formula,

PB
t

CB
t

= lim
T→∞

βEt

[
θt+1

CB
t+1

]
+ . . .+ βTEt

[
θt+T

CB
t+1

]
+ βTEt

[
PB
t+T

CB
t+T

]
,

we can conclude, that if PB
t < 0,

lim
T→∞

βTEt

[
PB
t+T

CB
t+T

]
< 0

must hold. However, this violates HH’s TVC.

Else, if T < ∞, i.e., xt+T ≥ ul, suppose PB
t+T ≤ 0 holds. In this case, if φt+T+1 ≤ 0, then

at t + T IM’s collateral constraints are not binding, xt+Tφt+T+1 ≤ 0. From previous proof,

however, we know that if they are slack, it must have xt+T < 0. Thus, PB
t+T ≤ 0 cannot hold.

Now, suppose φt+T+1 > 0. Given φt+T < 0 and φt+T+1 > 0, certain competitive IM can earn

arbitrage profits by changing their positions from xt+T ≥ ul to x′t+T < 0.

Therefore, when xt ≤ 0, φt ≤ 0, and φt+1 ≤ 0 cannot possibly hold. If xt ≤ 0, we must

have φt > 0 and φt+1 > 0. However, this contradicts with the binding condition, i.e., xtφt+1 =

(1 − δ)Kt > 0. Thus, xt ≤ 0 cannot hold in equilibrium when the collateral constraints are

binding. In the same fashion, when xt ≥ ul, we can derive φt+1 ≤ 0. This again fails to

satisfy IM’s binding conditions. Consequently, when IM are collateral-constrained in equilibrium,

xt ∈ (0, ul). By definition then, φt+1 = (1− δ)Kt/xt.

D Proof of Proposition 3

Proof. We begin proving the proposition by assuming that some IM only live for T = 2 periods.

We suppose further that all IM’s collateral constraints are binding in t = 1, and their initial

wealth is W1. The two-period living IM’s optimization problems therefore become:

max
CIM

1 ,CIM
2 ,x1,K1

log
(
CIM

1

)
+ ρ log

(
CIM

2

)
,

subject to

(i) CIM
1 +K1 = W1 + x1φ1,

(ii) CIM
2 = F (K1) + (1− δ)K1 − x1φ2,

(iii) (1− δ)K1 ≥ x1φ2.

Because they have binding collateral constraints, (1− δ)K1 = x1φ2.

Applying first-order conditions, we have:

− 1

CIM
1

+
ρ (F ′ (K1) + 1− δ)

CIM
2

+ λ1(1− δ) = 0,
φ1

CIM
1

− φ2

CIM
2

− λ1φ2 = 0,
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where λ1 > 0 is the Lagrange multiplier for the collateral constraint at t = 1.

Solving all the above equations, we obtain:

CIM
1 =

W1

1 + αρ
, K1 =

αρW1

(1 + αρ)S1
, where S1 = 1− (1− δ)φ1

φ2
=

1

µ1
.

Similarly, for some IM that live for periods of T ∈ {3, . . .}, and where the collateral constraints

are binding for t ∈ {1, 2, . . . , T − 1}, we obtain:

CIM
1 =

W1

1 + αρ+ α2ρ2 + . . .+ αT−1ρT−1
, K1 =

(
αρ+ α2ρ2 + . . .+ αT−1ρT−1

)
µ1W1

1 + αρ+ α2ρ2 + . . .+ αT−1ρT−1
.

When T →∞,

CIM
1 = lim

T→∞

W1

1 + αρ+ α2ρ2 + · · ·+ αT−1ρT−1
= (1− αρ)W1, K1 = αρµ1W1.

Likewise, starting with period t, and when

Wt = F (Kt−1) + (1− δ)Kt−1 − xt−1φt = F (Kt−1)

due to binding collateral constraints, obviously, we can extend the above to period t, for all

t = 1, 2, . . ..

CIM
t = (1− αρ)Wt, Kt = αρµtWt, Wt+1 = F (Kt) .

Moreover, we can easily confirm that, with binding collateral constraints, the steady-state level

of IM’s consumption, capital investment, and market liquidity, as shown in Proposition 5, are

also consistent with IM’s TVC.

E Proof of Proposition 4

Proof. Equation (14) follows from the first-order conditions in Equations (4) and (5), given

CIM
t = (1− αρ)Wt and Kt = αρµtWt. Taking partial derivatives of λ̄t, we obtain the following:

∂λ̄t
∂a

=
∂λ̄t

∂F (αρµtWt)

∂F (αρµtWt)

∂a
=

ρWt

aF (αρµtWt)
> 0.

∂λ̄t
∂α

=
∂λ̄t

∂F (αρµtWt)

∂F (αρµtWt)

∂α
=
ρWt(1 + log(αρµtWt))

F (αρµtWt)
> 0.

∂λ̄t
∂δ

=
∂λ̄t

∂F (αρµtWt)

∂F (αρµtWt)

∂µt

∂µt
∂δ

=
−αρµtWtφt

F (αρµtWt)φt+1
< 0.

∂λ̄t
∂Wt

= − ρ(1− α)

F (αρµtWt)
< 0.
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∂λ̄t
∂(φt/φt+1)

=
dλ̄t

d(φt/φt+1)
+

∂λ̄t
∂F (αρµtWt)

∂F (αρµtWt)

∂µt

∂µt
∂(φt/φt+1)

= 1 +
(1− δ)αρµtWt

F (αρµtWt)
> 0.

F Proof of Proposition 5

Proof. From Proposition 2, we know that, for certain given technology and endowment shocks, if

ρ > ρ̄, the economy will resemble one in a neoclassical model with frictionless financial markets,

i.e., xt = ul. Obviously, in this instance, equilibrium exists.

Otherwise, if ρ ≤ ρ̄, when IM’s collateral constraints are binding, we can solve the equilibrium

backwards through Equations (9), (10), (12), (13), and (15). When the collateral constraints are

slack for the initial few periods, we can also solve for the equilibrium through Equations (11),

(4), and (9), as well as both types of agents’ budget constraints. Meanwhile, IM hold opposite

positions in two markets and xit = −yitl ensures the markets clear for financial assets.

With the assumption of constant shock intensity, i.e., ut = u, and with IM having net zero

positions in financial assets, IM are not exposed to any idiosyncratic shocks from θt. Hence, IM’s

optimization problems are deterministic ones. In equilibrium, the quantities
(
φt, xt, y

i
t, Kt

)
are

also deterministic.

As implied by Proposition 2, in equilibrium, IM’s position in the markets with positive shock

intensity will not exceed total asset demands, i.e., xt ≤ ul. Therefore, φt ≥ 0, and from Equation

(7) and (8), PA
t ≤ 0 and PB

t ≥ 0.

G Proof of Proposition 6

Proof. To facilitate later proving, we first derive the steady-state price spreads independent of

whether collateral constraints are slack.

φ∗t := PB∗
t − PA∗

t = β
(
CB∗
t + CA∗

t

)
E

[
PB∗
t+1 + θt+1

CB∗
t+1

]
= 2βw (K∗)

(
φt+1

CA∗
t+1 + CB∗

t+1

+ E

[
θt+1

CB∗
t+1

])

= 2βw (K∗)

(
φ∗t+1

2w (K∗)
+ E

[
θt+1

w (K∗)− (u− x∗/l) θt+1

])
,

where the first equation is by definition, the second is derived directly from the first-order

condition of HH, the third is from Proposition 1 and Lemma 1, the fourth follows from PB∗
t =

φtCB
t

CA
t +CB

t
, and the final equation is straight derived by HH’s steady state budget constraints.

Thus, rearranging the above, and equating φ∗t = φ∗t+1 as the steady state property, we obtain:

φ∗ =
2βw (K∗)

1− β
E
[

θ

w (K∗)− (u− x∗/l) θ

]
.
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It is straightforward that, when x∗ = ul, φ∗ = 0, and, when x∗ < ul, φ∗ > 0.

Part 1 - Proof for the Slack Steady State

Given a steady state with slack collateral constraint, and as IM are competitive, it must satisfy

x∗ = ul and φ∗ = 0. However, suppose that, instead, φ∗ 6= 0 or x∗ 6= ul. If φ∗ 6= 0, because

IM are not collateral-constrained, they will increase or decrease their position to arbitrage the

price difference, until, in equilibrium, φ∗ = 0. Likewise, if x∗ < ul (or x∗ > ul), from the HH’s

pricing, we must have φ∗ > 0 (φ∗ < 0). Again, IM will ensure x∗ = ul and φ∗ = 0.

Meanwhile, as in the slack steady state all arbitrage opportunities are eliminated. Thus, the

IM’s budget constraints over the long run are equivalent to:

CIM
t = F (Kt−1) + (1− δ)Kt−1 −Kt.

Next, combining with the first-order condition and equating Kt = Kt−1 = . . . = K∗, we obtain

K∗ = K∗s = F
′−1
(

1−ρ(1−δ)
ρ

)
, which is the same as that in the neoclassical growth model.

Similarly, the steady state IM’s consumption level is also equals the one in the frictionless

neoclassical model, i.e., C∗s = F (K∗s ) + (1 − δ)K∗s − K∗s = δ(1−αρ)+(1−ρ)(1−δ)
αρ K∗s . Because the

collateral constraints are slack, the Langrange multiplier and the shadow collateral price are

zero. Also, because IM earn zero profit, their capital investment equals their savings. Thus,

µ∗s = 1.

Part 2 - Proof for the Binding Steady States

Given a steady state with binding collateral constraints, we obtain (1 − δ)K∗ = x∗φ∗. From

IM’s first-order conditions, and by equating capital investment, asset positions, and spreads

across periods to (K∗, x∗, φ∗), we derive K∗b = F ′−1(δ/ρ). Because δ/ρ < (1− ρ(1− δ)) /ρ and

F ′−1(K) is a decreasing function of K, we conclude that K∗b > F−1(1−ρ(1−δ)
ρ ). Moreover, from

Proposition 3 and Proposition 4, we obtain µ∗b = 1/δ, λ̄∗b = 1− ρ, and C∗b = (1− αρ)F (K∗b ) =
δ(1−αρ)K∗b

αρ .

Next, we prove that IM’s steady state consumption level C∗b is higher than its counterpart

in the neoclassical model, C∗ = δ(1−αρ)+(1−ρ)(1−δ)
αρ F−1(1−ρ(1−δ)

ρ ). Therefore,

C∗

C∗b
=

δ(1−αρ)+(1−ρ)(1−δ)
αρ F−1(1−ρ(1−δ)

ρ )

δ(1−αρ)
αρ F−1(δ/ρ)

=

(
1 +

(1− δ)(1− ρ)

δ(1− αρ)

)(
1 +

(1− ρ)(1− δ)
δ

) 1
α−1

.

For simplicity, we denote v = (1−ρ)(1−δ)
δ , and the above ratio is a function of v:

C∗

C∗b
= R(v) =

(
1 +

v

(1− αρ)

)
(1 + v)

1
α−1 .
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The ratio R(v) is a decreasing function with respect to v, as when v > 0:

R′(v) =
(1 + v)

1
α−1

1− αρ
− (1 +

v

1− αρ
)

1

1− α
(1 + v)

α
1−α =

(1 + v)
1

α−1

1− αρ

(
1− 1− αρ+ v

1− α
(1 + v)

1+α
1−α

)
< 0.

Thus, when v = (1−ρ)(1−δ)
δ > 0, we have:

C∗

C∗b
< R(0) = 1.

Furthermore, given the existence of ρ̄, it is obvious that there is discountinuity in K∗, C∗, λ̄∗,

and µ∗ around the cutoff parameter, since:

lim
ρ→ρ̄−

K∗(ρ) = K∗b (ρ̄) = F ′−1(
δ

ρ̄
), lim

ρ→ρ̄+
K∗(ρ) = K∗s (ρ̄) = F

′−1(
1− ρ(1− δ)

ρ̄
).

Part 3 - Proof of the Existence of the Cutoff Parameter ρ̄

We define a function k(ρ) := F ′−1(δ/ρ) as the potential long-run capital investment level, given

that the equilibrium can support a steady state with binding collateral constraints, and when

IM’s discount factor is ρ.

Also, we define the following function of IM’s discount factor ρ and steady state position x∗

as the corresponding steady state price spread:

Φ(x∗, ρ) :=
2β

1− β
w(k(ρ))E

[
θ

w(k(ρ))− (u− x∗/l) θ

]
.

Since if there is a binding steady state, it must satisfy the collateral constraint (1 − δ)k(ρ) =

x∗Φ(x∗, ρ). Thus, we construct a product function of the steady state position and spread G(x, ρ)

and an auxiliary function g(x, ρ, θ):

G(x, ρ) := xΦ(x, ρ) = x
2β

1− β
w(k(ρ))E

[
θ

w(k(ρ))− (u− x/l)θ

]
, g(x, ρ, θ) :=

xθ

w(k(ρ))− (u− x/l)θ
.

Since:

∂g(x, ρ, θ)

∂x
=

θw(k(ρ))− uθ2

(w(k(ρ))− (u− x/l)θ)2 , and
∂g2(x, ρ, θ)

∂x2
=

−2θ2 (w(k(ρ))− uθ)
l (w(k(ρ))− (u− x/l)θ)3 < 0,

where x ∈ [0, ul], and g(x, ρ, θ) is a strict local concave function of x over [0, ul], given ρ and θ.

Note here that we apply w(k(ρ))− uθ > eit − uθ̄ > 0.

Similarly, since:

G(x, ρ) =
2β

1− β
w(k(ρ))

∫ θ̄

−θ̄
g(x, ρ, θ)p(θ)dθ, .

where p(θ) is the PDF of θ, G(x, ρ) is also a strict local concave function with respect to x over
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[0, ul] given ρ. Moreover,

∂G(x, ρ)

∂x

∣∣∣∣
x=0

=

∫ θ̄

−θ̄

θw(k(ρ))− uθ2

(w(k(ρ))− (u− x/l)θ)2 p(θ)dθ

∣∣∣∣∣
x=0

=

∫ θ̄

−θ̄

θ

(w(k(ρ))− uθ)
p(θ)dθ > 0,

∂G(x, ρ)

∂x

∣∣∣∣
x=ul

=

∫ θ̄

−θ̄

θw(k(ρ))− uθ2

(w(k(ρ))− (u− x/l)θ)2 p(θ)dθ

∣∣∣∣∣
x=ul

=

∫ θ̄

−θ̄

θw(k(ρ))− uθ2

(w(k(ρ)))2 p(θ)dθ

=

∫ θ̄

−θ̄

−uθ2

(w(k(ρ)))2 p(θ)dθ < 0,

Therefore, given ρ, G(x, ρ) has a unique interior maximal value on some x̄ ∈ (0, ul), where:

∂G(x, ρ)

∂x

∣∣∣∣
x=x̄

= 0.

On the other hand, rearranging G(x, ρ), we obtain:

G(x, ρ) =
2β

1− β

∫ θ̄

−θ̄

w(k(ρ))xθ

w(k(ρ))− (u− x/l)θ
p(θ)dθ =

2β

1− β

∫ θ̄

−θ̄

xθ

1− (u− x/l)θ/w(k(ρ))
p(θ)dθ.

It is straightforward to show ∂G(x, ρ)/∂ρ < 0. Thus, G(x, ρ) is a decreasing function of ρ.

To prove the existence of a cut-off ρ̄, which would determine whether IM’s discount factor

ρ corresponds to a slack or a binding steady state, we next define new auxiliary functions H(ρ)

and Q(ρ) as follows:

H(ρ) := max
x

G(x, ρ), Q(ρ) := H(ρ)− (1− δ)k(ρ).

If the economy supports binding steady states, it must satisfy Q(ρ) ≥ 0. When Q(ρ) < 0, it

means that the collateral is sufficient to eliminate any arbitrage opportunities, and can only

support steady states with slack collateral constraints. This is because, if there exist binding

steady states, then, given ρ, G (x∗, ρ)− (1−δ)k(ρ) = 0 should have real solutions of x∗ ∈ (0, ul).

Since G (x∗, ρ)− (1−δ)k(ρ) < Q(ρ), if Q(ρ) < 0, then there is no solution of x∗, given this value

of ρ that can support any binding steady state. Q(ρ) is a continuous and strictly decreasing

function of ρ, so there exists a unique cutoff value ρ̄, such that Q (ρ̄)) = 0. That is, if ρ is

above this ρ̄, Q(ρ) < 0, and there only exists a slack steady state. In contrast, when ρ ≤ ρ̄,

G (x∗, ρ)− (1− δ)k(ρ) = 0 has real solutions on (0, ul), and there exist binding steady states.

H Proof of Proposition 7

Proof. To prove for the existence of two distinct steady states, for any given ρ′ ∈ (0, ρ̄], we define

an auxiliary function J (x, ρ′) := G (x, ρ′)− (1− δ)k (ρ′) ≤ Q (ρ′), where G(x, ρ), Q(ρ), and k(ρ)

are constructed in the proof of Proposition 6. Thus, Q (ρ′) ≥ 0, for ρ′ ∈ [0, ρ̄]. Obviously, J (x, ρ′)

is a continuous function and only when x = x̄, which is the global maximizer, is J (x, ρ′) equal
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to Q (ρ′).

We adopt the functions G(x, ρ), Q(ρ) and k(ρ) from the proof of Proposition 6, and construct

a new auxiliary function:

J(x, ρ) := G(x, ρ)− (1− δ)k(ρ) = xΦ(x, ρ)− (1− δ)k(ρ) ≤ Q
(
ρ′
)
.

Inheriting features from G(x, ρ) and k(ρ), it is obvious that J(x, ρ) is a strictly concave function

of x, and a decreasing function of ρ. Moreover, when J(x, ρ) = 0 has real solutions in (0, ul),

there exists binding steady states given ρ, and the solutions x∗ correspond to the steady state

market liquidity.

Also, by definition,

Q(ρ) = max
x

J(x, ρ).

From the proof in Proposition 6, we know that Q(ρ) is a decreasing function of ρ, and when

Q(ρ) < 0, no binding steady states are possible. When Q(ρ) = 0, ρ = ρ̄. Meanwhile, when ρ = ρ̄,

if there exists any binding steady state at all, it must satisfy:

J (x, ρ̄) = 0.

Thus, J (x, ρ̄) = Q (ρ̄). Given that J(x, ρ) is a strictly concave function of x, and that J(x, ρ) =

Q(ρ) only holds when x equals to the global maximizer x̄ (ρ̄), we can conclude that x∗ = x̄ (ρ̄)

is the only solution. Therefore, when ρ = ρ̄, there exists a unique binding steady state with

x∗ = x̄ (ρ̄) as its market liquidity.

When 0 < ρ < ρ̄, then

Q(ρ) = max
x

J(x, ρ) > 0.

We denote x(ρ) as the global maximizer of J(x, ρ), given ρ. By definition,

J(0, ρ) < 0, J(ul, ρ) < 0,

given J(x, ρ) is a strictly concave function of x, there must be two distinct solutions x∗1 ∈ (0, x̄(ρ))

and x∗2 ∈ (x̄(ρ), ul) to J(x, ρ) = 0. Thus, when 0 < ρ < ρ̄, there exist two distinct binding steady

states with differing levels of market liquidity, i.e. x∗1 < x∗2.

Since both steady states satisfy the binding collateral constraints x∗jφ
∗
j = (1 − δ)K∗b , j ∈

{1, 2}, where K∗b = k(ρ) is a strictly increasing function of ρ. Thus, the two steady states share

the same capital investment level K∗b = k(ρ). On the other hand, if x∗ is smaller in one state

than the other, the steady-state price spread must be higher than the other. That is, if x∗1 < x∗2,

then φ∗1 > φ∗2.

From HH’s perspective, they have the same labor income and w(k(ρ)) in both steady states

because of the common K∗. So, higher x∗ reduces their consumption volatility. Thus HH’s utility

is therefore strictly higher in SS2 with larger market liquidity x∗2 > x∗1.

Furthermore, J(x, ρ) is a decreasing function of ρ, so J (x, ρ1) < J (x, ρ2), if ρ1 > ρ2. On the
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other hand,

∂J(x, ρ)

∂x

∣∣∣∣
x∈(0,x̄(ρ))

=
∂G(x, ρ)

∂x

∣∣∣∣
x∈(0,x̄(ρ))

> 0,
∂J(x, ρ)

∂x

∣∣∣∣
x∈(x̄(ρ),ul)

=
∂G(x, ρ)

∂x

∣∣∣∣
x∈(x̄(ρ),ul)

< 0.

That is, for x ∈ (0, x̄(ρ)), J(x, ρ) is an increasing function of x. And, for J (x1, ρ1) = J (x′1, ρ2) =

0, where x1, x
′
1 ∈ (0, x̄(ρ)), x1 > x′1 must hold. The market liquidity in SS1 increases with ρ.

Similarly, x∗2 in SS2 decreases with ρ, i.e., x′2 > x2. Because k(ρ) is an increasing function of

ρ, K∗b (ρ1) > K∗b (ρ2). From binding collateral constraints, x2φ2 = (1 − δ)K∗b (ρ1), and x′2φ
′
2 =

(1− δ)K∗b (ρ2), we can conclude that φ2 > φ′2. It is thus simple to verify that

∂Φ(x, ρ)

∂x
< 0,

∂Φ(x, ρ)

∂ρ
< 0,

and we can also derive φ1 < φ′1.

In terms of welfare, IM are indifferent between the two regimes, because their utility and

consumption depend solely on the capital investment K∗b , which is independent of the position

size x∗ or the price difference φ∗. By contrast, for HH, the two steady states carry significantly

different welfare implications. Given a fixed level of K∗b , HH in the two steady states receive the

same amount of labor income. However, there is less market liquidity in the first steady state

SS1, which would expose HH to more unhedged consumption risk from endowment shocks.

Thus, HH would strictly prefer SS2 with more liquid financial markets.

I Proof of Proposition 8

Proof. We modify the definition of functions Φ(x, ρ), G(x, ρ), g(x, ρ, θ), J(x, ρ), H(ρ), and Q(ρ)

in the proof of Propositions 6 and 7 by extending them as functions of the shock intensity u.

We obtain:

Φ(x, ρ, u) := φ∗ (x∗,K∗) =
2β

1− β
w(k(ρ))E

[
θ

w(k(ρ))− (u− x/l)θ

]
,

G(x, ρ, u) := xΦ(x, ρ, u) = x
2β

1− β
w(k(ρ))E

[
θ

w(k(ρ))− (u− x/l)θ

]
,

g(x, ρ, u, θ) :=
xθ

w(k(ρ))− (u− x/l)θ
, J(x, ρ, u) := G(x, ρ, u)− (1− δ)k(ρ),

H(ρ, u) := max
x

G(x, ρ, u), Q(ρ, u) := H(ρ, u)− (1− δ)k(ρ).

In particular,
∂g(x, ρ, u, θ)

∂u
=

xθ2

(w(k(ρ))− (u− x/l)θ)2 ≥ 0.

Similarly, ∂G(x, ρ, u)/∂u > 0, ∂J(x, ρ, u)/∂u > 0, for x ∈ (0, ul]. It follows naturally that

∂H(ρ, u)/∂u > 0, and ∂Q(ρ, u)/∂u > 0. Thus, if u1 < u2, then Q (ρ, u1) < Q (ρ, u2).

The cutoff value ρ̄ for a given u is determined by ρ′, such that Q (ρ′, u) = 0. Because Q(ρ, u)
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is a decreasing function of ρ and an increasing function of u, then to satisfy:

Q (ρ̄1, u1) = 0, Q (ρ̄2, u2) = 0.

we must have ρ̄1 < ρ̄2 if u1 < u2. The cutoff value thus increases with u.

From the property of G(x, ρ, u), it is apparent that J(x, ρ, u) is a strictly concave function

of x. By definition,

∂J(x, ρ, u)

∂x

∣∣∣∣
x=0

> 0;
∂J(x, ρ, u)

∂x

∣∣∣∣
x=ul

< 0;
∂J(x, ρ, u)

∂x

∣∣∣∣
x=x̄

= 0.

where ∂J(x, ρ, u)/∂x is a continuous function of x, so we can conclude that ∂J(x, ρ, u)/∂x > 0

for x ∈ (0, x̄), and ∂J(x, ρ, u)/∂x < 0 for x ∈ (x̄, ul). The steady state x∗ in both x ∈ (0, x̄) and

x ∈ (x̄, ul) is determined by the requirement that they must satisfy J (x∗, ρ, u) = 0.

Previously, we know that ∂J(x, ρ, u)/∂u > 0, so if u1 < u2, for a given x, J (x, ρ, u1) <

J (x, ρ, u2). Because J(x, ρ, u) is an increasing function of x at x∗1 [uj ], j ∈ {1, 2}, then, to satisfy

J (x1 [u1] , ρ, u1) = 0 and J (x1 [u2] , ρ, u2) = 0 simultaneously, we must have x∗1 [u1] > x∗1 [u2].

The similar also applies for SS2, where the opposite holds, x∗2 [u1] < x∗2 [u2].

The steady state capital investment level K∗b = k(ρ) is only determined by ρ, and it remains

independent of u. Thus, in the two economies with the same discount factor ρ of IM, K∗b [u1] =

K∗b [u2] = k(ρ).

J Proof of Corollary 1.1

Proof. Following the initial shock in capital investmentKt−1 or IM’s wealthWt from Proposition

4, the shadow collateral price λ̄ drops given the price level φt and φt/φt+1 remain the same or

increase. From Proposition 3 and the first-order condition Equation (4), we obtain Kt < K∗, and

hence xt < x∗, following the collateral constraints. Next, we show that the collective unwinding

indeed moves the equilibrium price gap level φt and arbitrage profitability φt/φt+1 upward.

From Proposition 1 and Lemma 1, we have:

φt =
2w
[
K∗t−1

](∑∞
j=1 β

jE
[
θt+j
CB
t+j

])−1

+
(
xt − x∗t−1

)
/l

=
2w
[
K∗t−1

]
Mt +

(
xt − x∗t−1

)
/l
.

Compared to the steady-state price gap, we can easily prove from HH’s budget constraints that

Mt < M∗. Because xt − x∗ < 0, the immediate price spread φt > φ∗. Similarly, we show that

the ratio φt/φt+1 also decreases with Kt and xt.

The long-term effects follow naturally from Proposition 6.
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K Proof of Corollary 1.2

Proof. We start by comparing two alternative thought scenarios:

1. The same shock hits the economy at the bad steady state (K∗, x∗b , φ
∗
b), and, afterward,

the economy reverts to the same pre-shock state.

2. The same shock hits the economy at the good steady state
(
K∗, x∗g, φ

∗
g

)
and, afterward,

the economy reverts to the same pre-shock state.

From Corollary 1.1, we know that IM’s liquidation repayments immediately after the shock in

the two scenarios are x∗bφb,t and x∗gφg,t. In addition, φb,t > φg,t, which follows from the pricing

formulas of φt and Proposition 7.

Now consider the scenario in Corollary 1.2 (that is, starting from the good steady state

and shifting to the bad one). Compared with Scenario 2, we can derive φt > φb,t, because the

corollary scenario only differs in the pre-shock position size x∗g. For the same after-shock price

φb,t, IM will incur larger obligated repayments x∗gφb,t > x∗bφb,t. Thus, IM’s wealth losses are

amplified to a greater extent, compared to Scenario 2 case. From the proof of Corollary 1.1, Kt

and xt also drop more dramatically: Kt < Kb,t, xt < xb,t and φt > φb,t.

Similarly, compared with Scenario 1, because φt > φb,t > φg,t, the obligated repayment at t

is larger, x∗gφt > x∗gφb,t. Thus, Kt and xt also drop further: Kt < Kg,t, xt < xb,t < xg,t.

The long-term convergence feature follows from Proposition 6.

L Proof of Corollary 1.3

Proof. According to Proposition 8, the new good steady state features lower market liquidity

and a larger price spread than the pre-shock one. Thus, the immediate short-run price reaction

is that φt surges in order to match the dynamics that converge to the new steady-state level.

This can be seen from the following pricing formula:

φt

CA
t + CB

t

= lim
j→∞

(βE
θt+1

CA
t+1 + CB

t+1

+ β2E
θt+2

CA
t+2 + CB

t+2

+ · · ·+ βjE
θt+j

CA
t+j + CB

t+j

).

Because u1 − xt+j → u1 − x∗n,g < u − x∗g, the RHS of the above is higher than its counterpart

before the shock. Hence, the LHS also increases. This only happens, however, when φt increases

above φ∗g, given that xt remains x∗g or decreases.

Therefore, IM suffer additional losses at t after the shock, because they still carry the pre-

shock large position x∗g. From the proof of Corollaries 1.1 and 1.2, IM also have to cut down xt

and Kt as a result.

The long-run effects follow from Propositions 6 and 8.
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M Proof of Proposition 9

Proof. Before we compare the post-shock welfare, we first prove the following lemma.

Lemma 2. IM’s indirect utility function at t+ 1 follows the form: V (Wt) = α
1−ρα log(Wt) +Dt,

where Dt is a deterministic function of t.

Proof of Lemma 2. We conjecture that IM’s indirect function after t follows the form: V (Wt) =

z logWt+Dt, where z is a constant. Since V (Wt) = log(Ct+1)+ρV (Wt+1), and from Proposition

3, we have Ct+1 = (1− αρ)Wt+1 = (1− αρ)F (Kt) = (1− αρ)F (αρµtWt), V (Wt) follows:

V (Wt) = log((1− αρ)Wt+1) + ρV (Wt+1)

= log((1− αρ)Wt+1) + ρz log(Wt+1) + ρDt+1.

Rearranging, we have:

z log(Wt) +Dt =(1 + ρz) log(Wt+1) + log((1− αρ) + ρDt+1

= (1 + ρz) log(F (αρµtWt)) + log(1− αρ) + ρDt+1

= (1 + ρz) log(aα(αρµtWt)
αLγ) + log(1− αρ) + ρDt+1

= (1 + ρz)α log(Wt) + (1 + ρz) log(aα(αρµt)
αLγ) + log(1− αρ) + ρDt+1.

Equating the coefficients of log(Wt) on both sides: z = (1 + ρz)α. Thus,

z =
α

1− αρ
,

Dt = (1 + ρz) log(aα(αρµt)
αLγ) + log(1− αρ) + ρDt+1.

Hence, after the shock, IM’s utility increases with their post-shock wealth.

From Proposition 3, we know Kt+j and xt+j also increase with Wt+j , ∀j ∈ [0,∞), which

in turn is a nondecreasing function of Wt. As HH’s post-shock utility increases with both Kt+j

(through labor income effects) and xt+j (through risk-sharing), ∀j ∈ [0,∞), their welfare is also

a nondecreasing function of Wt.

Next, without loss of generality, denote x∗B, x∗G, and x∗N as the liquidity supply in the pre-

shock bad regime, the pre-shock good regime and the given post-shock regime, respectively. We

prove the proposition in the following cases:

• Case 1: x∗N < x∗B < x∗G;

• Case 2: x∗B ≤ x∗N < x∗G;

• Case 3: x∗B < x∗G ≤ x∗N .

Case 1: In this case, IM in both pre-shock regimes suffered arbitrage losses. Because Wt =

F (K∗)+(1− δ)K∗−x∗φt, and from Equation (9), ∂φt
∂x∗ > 0, Wt decreases with pre-shock regime

liquidity x∗. Hence, IM’s wealth of the bad pre-shock regime is greater than that of the good

pre-shock regime. Similar logic also applies for xt+j and Kt+j , ∀j ∈ [0,∞). Thus, in this case,
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in the economy with the bad pre-shock regime, the welfare, liquidity supply, and capital are

higher than those in the counterpart economy.

Case 2: In the economy with the bad pre-shock regime, xt and φt immediately converge to x∗N
and φ∗N ; IM get a windfall profits from reducing liability at t, as φ∗N ≤ φ∗B. In the economy with

good initial regime, xt < x∗N and φt > φ∗N ; IM suffer arbitrage losses from increasing liability

at t, since φ∗N ≥ φ∗G. Thus, IM’s wealth of the bad pre-shock regime is greater than that of the

good pre-shock regime before converging to the new steady state. Similar logic also applies for

xt+j and Kt+j ,∀j ∈ [0,∞). Thus, in this case, in the economy with the bad pre-shock regime,

the welfare, liquidity supply, and capital are higher than those in the counterpart economy.

Case 3: xt and φt in two economies both immediately converge to x∗N and φ∗N , and IM get a

windfall profits from reducing liability at t. As x∗G ≥ x∗B, IM’s wealth of the bad pre-shock regime

is greater than that of the good pre-shock regime. xt+j = x∗N and Kt+j = K∗N (∀j ∈ [0,∞))

are identical. Thus, in this case, IM’s welfare is higher in the economy with the bad pre-shock

regime; HH’s post-shock welfare in the two economies are identical. Also, the two economies

have the same post-shock liquidity and capital.
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