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Abstract

I develop an extension of the standard New Keynesian model to monetary policy

regime switching to study the impact of uncertainty around the future inflation

target. First, I fully characterize how the responses of inflation and output to infla-

tion target uncertainty depend on the monetary policy rule. If monetary policy is

passive, inflation may increase far beyond the anticipated increase in the inflation

target, while a strong monetary response to expected inflation results in an imme-

diate drop in the inflation rate. Next, I derive the optimal response of the central

bank, which can be achieved by adjusting the current inflation target. A central

bank unwilling to adjust the inflation target can optimally adjust other policy rule

parameters and can often obtain comparatively similar welfare benefits. Finally, I

examine the implications of a perfectly anticipated change in the inflation target

and find it is likely to generate cyclical dynamics for inflation and output under

a constant policy rule. An optimal time varying policy rule or uncertainty in the

period of the inflation target change eliminates cyclical fluctuations and improves

welfare.
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1 Introduction

Since the financial crisis, a growing debate has centered on whether the natural interest

rate has permanently declined. A decline in the natural interest rate limits monetary

policy’s ability to stabilize the economy in a recession, as nominal interest rates are

closer to the zero lower bound. In response to this, both academics and members of the

Federal Open Market Committee have discussed the possibility of raising the inflation

target as a means of restoring pre-crisis flexibility.1 In 2017, Janet Yellen, chair of the

Federal Reserve, addressing these concerns stated,

So it’s that recognition that causes people to think we might be better off

with a higher inflation objective... And it’s important for our decisions to

be informed by a wide range of views and research, which is ongoing inside

and outside the fed... But I would say that this is one of the most important

questions facing monetary policy around the world in the future.

Despite the attention given to this discussion, the consequences of merely having the

discussion are not typically addressed. Yet if the inflation target helps determine inflation,

discussions that raise inflation target expectations should have immediate consequences

regardless of whether the inflation target is eventually changed.2 In this paper, I charac-

terize the response of macro aggregates to inflation target uncertainty, how the response

depends on current policy, and how a central bank should adjust its policy in response

to inflation target uncertainty.

To model inflation target uncertainty, I develop an otherwise standard small scale New

Keynesian model that incorporates multiple policy regimes. Modeling inflation target

uncertainty in a regime shift framework captures the discrete and long term nature of

inflation target switches. Monetary policy is assumed to follow a regime specific policy

rule with the regimes determined by a Markov process. Analytical solutions of the model

allow me to fully characterize how the responses of inflation and the output gap depend

on other policy rule parameters, the probability of a change in the inflation target, and

other model parameters.

To my knowledge, Foerster (2016) is the only other paper that studies the response of

macro aggregates to inflation target uncertainty. He finds that an expectation of a future

increase in the inflation target results in an increase in current inflation and a decrease

in current output. However his analysis relies on numerical estimations for a small set of

policy parameters and does not address how the response depends on the full monetary

policy profile, which determines the qualitative results. Furthermore, by allowing interest

rates to respond to expected inflation, I find that an expectation of a potential increase

1See Williams (2016), Blanchard et al. (2010), and Ball (2014).
2See Mavroeidis et al. (2014) for an overview of the empirical evidence for a Phillips curve relationship

linking expected inflation to current inflation and output.
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in the inflation target may have the counter intuitive effect of reducing current inflation if

output stabilizing policy is not too strong. Alternatively if the current regime is passive,

but the inflation target change is accompanied by a shift to active monetary policy, then

current inflation will increase by more than the potential future increase.

Having characterized the response of macro aggregates under a constant monetary

policy, the natural question is: should the central bank change its policy and how? In

the main specification, I prove that by changing the current inflation target the central

bank may achieve any feasible outcome conditional on the expectations for the future

inflation targets without affecting the volatility of inflation or the output gap. Therefore

the optimal response to inflation target uncertainty is a change in the inflation target,

while other policy parameters remain at their optimal values in the absence of inflation

target uncertainty. Depending on the loss function weights, the optimal response can

alleviate up to 95% of the losses generated from inflation target uncertainty. A central

bank may be unwilling to change the current inflation target due to the concern that it

may destabilize inflation. The concern of destabilizing inflation is incremented since the

optimal inflation target would be set at a value that is different from both the desired

level of inflation and the mean level of inflation it will generate. A central bank that

is unwilling to change the current inflation target may optimally adjust other policy

parameters and obtain most of the benefits of the optimal policy response.

While inflation target uncertainty reduces welfare, it may be preferred to a perfectly

anticipated change in the inflation target. A plausible alternative to a potential future

change in the inflation target is a central bank that knows that in the future the inflation

target will change perhaps because of a legislative mandate with a delayed implementation

period. For standard calibrations of the policy rule, a perfectly anticipated change in the

inflation target generates cyclical movements in inflation and the output gap along the

transition path. These cyclical movements can be eliminated, and losses can be reduced

if the anticipated change in the inflation target is accompanied by a time varying path

for the intercept in the policy rule. However, introducing uncertainty in the period of the

inflation target change can also eliminate the cyclical movements and generate a similar

reduction in losses.

Finally, I find that the effect of uncertainty in the future monetary policy regime on

current outcomes depends primarily on how the expected future policies affect inflation

volatility. Expectations of potential regime shifts that are expected to increase inflation

stability improve current outcomes, and vice versa. Even if the current regime implements

an optimal policy rule, the anticipation of a regime shift to a worse regime but with greater

inflation stability results in improved outcomes prior to the regime shift. This is consistent

with findings by Davig and Leeper (2007) and Foerster (2016) that an expectations of a

regime switch to a passive regime substantially increases inflation volatility but have a

small, ambiguous impact on output volatility that depends on the calibration.
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This paper relates to several strands of the literature. The model builds on the

regime switch framework and its application to monetary policy. A large part of the

literature focuses on developing solution methods and applying them to examine under

what conditions passive policy can be sustained as part of a determinate equilibrium.3 I

expand upon this approach by studying the implications of inflation target uncertainty

under passive policy. A separate branch of the literature focuses on estimating DSGE

regime switching models to identify past policy.4 Particularly relevant is Schorfheide

(2005) who finds that monetary policy in the 1970s shifted to a high inflation target

regime that lasted through the end of the decade and provides evidence that an inflation

target regime switching model is consistent with historical data. My paper complements

their work by exploring the implications of this type of regime shifting model on monetary

policy. A final branch considers the implications of expected regime shifts on current

outcomes and their policy implications.5 However, Foerster (2016) alone applies this

approach to inflation target regime switches. I expand upon his numerical findings by

deriving analytical results and allowing for more general policy rules. Additionally, I am

able to solve for the optimal policy response to inflation target uncertainty.

The impact of uncertainty shocks has also been addressed outside the regime switch

framework. Recent empirical studies by Bloom (2009), Baker et al. (2016), and Creal

and Wu (2014) provide evidence that both uncertainty shocks in general and monetary

policy uncertainty shocks have detrimental effects on macroeconomic aggregates. Theo-

retical models such as Ulrich (2012) estimate the effect of monetary policy uncertainty

on financial volatility. While this literature considers interest rate uncertainty, it does

not distinguish between an increase in variance around the mean from systemic changes

in the way future policy will be conducted, as I do in this paper.

Finally, this paper relates to older work on the dynamics of disinflation. New classical

papers such as Sargent (1982) argued that disinflation is costless, while Keynesians papers

such as Taylor (1983) argued that disinflation is costly unless it is done slowly. Ball

(1994) showed that Keynesian models imply that a quick disinflation causes a boom by

distinguishing between changes in the growth of money versus changes in the level of

money. I expand upon these findings by looking at the effects of an anticipated change

in the inflation target and how it depends on the certainty that it will occur at a specific

time.

The rest of the paper is organized as follows. In section 2, I present the model. In

section 3, I exclude all shocks not related to inflation target uncertainty, characterize

3See Leeper and Zha (2003), Davig and Leeper (2007), ,Farmer et al. (2009),Farmer et al. (2011), and
Foerster et al. (2016) for some of the approaches to solving regime shift models and their implications
for determinacy.

4These include Liu et al. (2011), Bianchi and Melosi (2016), Bianchi (2013), Bianchi (2013), and
Davig and Doh (2014).

5Foerster and Choi (2016) and Foerster (2016).
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the impact of inflation target uncertainty, and derive the optimal response to inflation

target uncertainty. In section 4, I consider welfare and optimal policy in the full stochastic

model with monetary policy regime uncertainty and extend the analysis to inflation target

uncertainty in section 5. In section 6, I derive the transition path for a fully anticipated

change in the inflation target, solve for the optimal time varying policy rule during a fully

anticipated change in the inflation target, and compare the outcomes to the outcomes

with uncertainty in the period of the inflation target change. In section 7, I conclude.

2 Modeling Monetary Policy Regime Uncertainty

To evaluate the impact of uncertainty in the future inflation target, I develop an otherwise

standard small scale, forward looking New Keynesian model that incorporates multiple

policy regimes in the style of Davig and Leeper (2007) and has analytical solutions. The

baseline model is a simple staggered price setting model as in Walsh (2010) and Woodford

(2003) with an extension where firms which do not get to set the optimal price index their

previous period’s price as a robustness check. The model consists of households, firms,

and a central bank.

The representative household purchases goods for consumption, supplies labor, holds

money and bonds, and has preferences over a composite consumption good Ct, real money

balances Mt

Pt
, and time devoted to market employment Nt represented by the utility

function:

u(Ct, Nt,
Mt

Pt
) =

C1−σ
t

1− σ
− N1+ϕ

t

1 + ϕ
+

Mt

Pt

1−v

1− v
(1)

The composite consumption good is defined over a continuum of varieties as

Ct = (

∫ 1

0

C
et−1
et

it di)
et
et−1 (2)

The time varying elasticity of substitution among goods varies over time according to the

stationary stochastic process et around ē to generates cost push shocks. The household

budget constraint is∫ 1

0

PitCitdi+Mt +
1

1 + it
Bt ≤Mt−1 +Bt−1 +WtNt +Dt, (3)

where Pit is the price of variety i, Bt are the bond holdings, Wt is the wage, and Dt

are the dividends from the firms. The households problem is to maximize the expected

present discount value of utility subject to the budget constraint.

A continuum of monopolistically competitive firms produce the differentiated goods

and maximize profits given the technology, price stickiness, and demand. Technology is
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summarized by the diminishing returns to scale production function

Yit = AtN
1−α
it (4)

In the main specification, firms face Calvo (1983) price stickiness. Each period a random

1− ω fraction of the firms are selected to optimally adjust prices, while the remaining ω

fraction retain their previous period’s price. However, this leads to a long run positive

relationship between inflation and output. The standard modifications to the Calvo model

that eliminates this relationship is the assumption that firms which do not get to set their

price optimally index their last period’s price by inflation last period. While this is a

common assumption in the literature which eliminates the long run relationship between

inflation and output and improves inflation dynamics, as shown in Chari et al. (2009)

backward indexation of prices conflicts with the microeconomic evidence on price setting.

A more analytically tractable price indexing assumption is that firms which do not get to

optimize index their previous period’s prices to the inflation target as in Woodford (2003)

and Yun (1996), and I use this as a robustness check. Finally, the demand function for

variety i can be derived from the household problem and is given by

Cit = (
Pit
Pt

)etCt (5)

Solving the household utility maximization and firm profit maximization problem and

linearizing around the zero inflation steady state results in the canonical New Keynesian

Phillips and Euler equations. The log linearized Euler equation is

xt = Etxt+1 − σ−1(it − Etπt+1) + µDt , (6)

where x is the output gap, π is inflation, i is the interest rate, µDt is an aggregate demand

shock (productivity shock), and σ is the coefficient of relative risk aversion. The aggregate

supply relationship is

πt = βEtπt+1 + κxt + (1− β)π̄ + µSt , (7)

where κ = (1−ω)(1−βω)
ω

1−α
1−α+αē

σ(1−α)+ϕ+α
1−α , µSt is an aggregate supply shock (cost push

shock), and π̄ is the value to which firms that do not get to optimally set their price

index their previous prices by (in the main specification π̄ = 0, in the robustness check it

equals the current inflation target). The shock processes are autoregressive of the form

µjt = ρjµ
j
t−1 + εj ∀j, (8)

where the εj are iid exogenous shocks.
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The central bank implements monetary policy by setting interest rates according to a

policy rule which is a linear function of the inflation target, current and future inflation,

and the output gap. Two forms of uncertainty over monetary policy are incorporated

into the interest rate rule. An additive, auto regressive shock captures short term non-

fundamental deviations from the rule. The key addition to the standard New Keynesian

model is uncertainty over the monetary policy regime. That is, uncertainty over how the

interest rate in the future will respond to the variables in the policy rule. I model this as

uncertainty over a finite number of different monetary policy rules. Formally, the interest

rate rule in regime s at time t is:

i(st) = φπ,sπt + φπ′,sEtπt+1 − (φπ,s + φπ′,s − 1)π?s + φx,sxt + µIt , (9)

with the realized regime governed by a time invariant Markov process the with transition

matrix

Π =


p11 p12 . . . p1k

p21 p22 . . . p2k

...
...

. . .
...

pk1 pk2 . . . pkk

 ,
where k is the number of different monetary policy regimes.

The solution methodology relies on two main features of the model: variables that

respond to the realization of the regime do not have any backward looking aspects and

the Markov process for the regimes is independent of the rest of the model. This allows

a reformulation of equations 6, 7, and 9 in terms of regime conditional variables and

expectations. First, re-express Etxt+1 and Etπt+1 as

Etπt+1 = E[πt+1|st = i,Ω−st ] =
k∑
j=1

pijE[πjt+1|Ω−st ] (10)

Etxt+1 = E[xt+1|st = i,Ω−st ] =
k∑
j=1

pijE[xjt+1|Ω−st ] (11)

where Ωt is the full information set and Ω−st is the information set excluding the current
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regime. Then equations 6, 7, and 9 are each replaced with k state contingent equations:

xs,t =
k∑
j=1

psjEtxj,t+1 − σ−1(is,t −
k∑
j=1

psjEtπj,t+1) + µDt (12)

πs,t = β
k∑
j=1

psjEtπj,t+1 + κxs,t + (1− β)π̄s + µSt (13)

is,t = φπ,sπt + φπ′,s

k∑
j=1

psjEtπj,t+1 − (φπ,s + φπ′,s − 1)π?s + φx,sxt + µIt (14)

Thus rewritten, the model can be solved for state contingent variables by standard meth-

ods for forward looking models, and simulating the Markov process Π determines which

of the state contingent variables are realized in each period.6

Rotemberg and Woodford (1996) and Woodford (2002) showed that the period losses

equal to the weighted sum of squared deviations of inflation and an output gap from

their optimal values can approximate expected utility, but this relies on the assumption

that there are subsidies that ensure a steady state output level of zero. Benigno and

Woodford (2005) relax this assumption by making second order approximations of the

structural equations to eliminate the first order terms in the quadratic approximation of

expected utility. This approximation results in period losses equal to the weighted sum

of squares of inflation and a welfare relevant output gap. Additionally, they show that

by redefining the cost push shock, the aggregate supply relationship is unchanged from 7

except that xt is a welfare relevant output gap rather than the deviation from the flexible

price output level. This provides a micro foundation for using the loss function,

Lt0 =
∞∑
t=t0

βt−t0(π2
t + θxx

2
t + θii

2
t ) (15)

in the presence of variables with nonzero first moments. As I take the loss function as

given rather than deriving it from the model fundamentals, I use robustness checks for

the choices of θx and θi rather than relying on a single model specific value.

The main calibration is shown in table 1 and uses quarterly time periods and standard

parameter values. The discount factor (δ) is .99, the coefficient of risk aversion (σ) is

2, the demand elasticity (η) is 6, and ϕ is 1. The share of firms able to set prices each

period, 1−ω, is .34 implying prices are on average adjusted every 9 month, which is on the

upper limit of empirical estimates but is consistent with the regime switching literature

calibrations including Davig and Leeper (2007), Foerster (2016), and Schorfheide (2005).

This calibration implies κ = .1786. For all shocks, persistence is set to .5, and the

6In appendix A, I derive the analytic solution for the two regime model. I use Sims (2002) algorithm
for solving linear rational expectations models for much of the numerical analysis.
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Table 1: Model Calibration
Parameter Value Parameter Value

β .99 ρI , ρS, ρD .5
σ 2 σS 1.5
ϕ 1 σD 2
ē 6 σI 2
α .33 θx .0298
ω .66 θi .25

standard deviations of demand, supply, and interest rate shocks are set to 2, 1.5, and

2 respectively.7 In robustness checks, firms are assumed to index prices to the regime

specific inflation target π̄s = π?s . The main specification for numerical analysis sets

θx = .0298 and θi = .2500, but both are varied for robustness and for analytical results

θi = 0. For the theoretical analysis, all parameters are restricted to be non-negative and

0 < β < 1.

3 Theoretical Analysis

While the preceding model can be solved analytically for the regime specific values, and

in appendix A I show the general form of the solution and a couple of key features derived

from it, the solution is too complex to be useful for deriving most of its properties. To

analytically examine the implications of an expected increase in the inflation target, I

use a simplified model which removes all shocks not related to the expectations of the

inflation target change. For most of the analysis, I also remove price indexing by firms

that do not get to optimally set their price in a given period. With these assumptions,

the model can be rewritten as:

xt = Etxt+1 − σ−1(it − Etπt+1), (16)

πt = βEtπt+1 + κxt, (17)

is,t = φπ,sπt + φπ′,sEtπt+1 − (φπ,s + φπ′,s − 1)π?s + φx,sxt, (18)

where each equation can be rewritten in the state contingent notation of (12) - (14).

All parameters are assumed to be nonnegative, and I allow for the policy parameters

to change at the same time as the inflation target. Conceptually this is a reasonable

assumption since a central bank may wish to adjust the rest of its policy at the same

time as the inflation target. Analytically, this assumption only affects the dynamics prior

to the implementation of the new inflation target by changing the eventual steady state

7The persistence is reduced from standard values to ensure that there exists an optimal policy rule
with finite coefficients.
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values after the inflation target changes, and it extends the range of policy parameters

that results in a unique solutions.

To examine the implications of the inflation target uncertainty in an analytically

tractable setting, I use a two regime model. Prior to period zero the model is in the single

regime, zero inflation target steady state. In period zero, new information is revealed that

causes everyone to rationally expect that the central bank may raise the inflation target

to π? with probability λ in all future periods. Once the inflation target is raised, it remain

at the new level in perpetuity.8 This formulation is not only consistent with a formal

announcement of following a stochastic policy rule as a means of implementing a higher

inflation target, but it is also consistent with (stated) uncertainty over what the future

inflation target will be.9

3.1 Regime Switches Dynamics

In the absence of additional shocks present in the computational model, each period in

a given regime is identical. Therefore, I need only solve for three outcomes; the outcome

prior to the revelation of a potential regime shift (denoted x0 and π0), the outcome in

the current regime prior to the change in the inflation target (denoted x1 and π1), and

the outcome after the regime shifts to a higher inflation regime (denoted x2 and π2).

Prior to the revelation of a potential regime shift, the model is identical to a single

regime model, with expectations that the inflation target will remain zero forever and no

shocks. Therefore,

x0 = π0 = 0. (19)

Since I assume that the second regime is absorbing, once the inflation target changes it is

expected to remain the same forever. Therefore, x2 and π2 are at the steady state values

for a single regime model with an inflation target π?, which are

x2 = π2
1− β
κ

and π2 = π?
1− φπ − φπ′

1− φπ − φπ′ − φx 1−β
κ

. (20)

The output gap in regime two is positive because of the long run relationship between

inflation and output embedded in the Phillips curve. Responding to the positive output

8In the regime switching notation, the model starts in regime one and the Markov process, Π, unex-

pectedly switches from

[
1 0
0 1

]
to

[
1− λ λ

0 1

]
at time zero, with π?1 = 0 and π?2 = π?

9The analysis presented in this section extends to variations without an absorbing regime, but these
variations introduces a new effect where regime one policy parameters have similar effects on regime
two outcomes as the effects of regime two parameters on regime one outcomes that are discussed in
this section. As an expectation of a change in the inflation target is not generally associated with a
significant probability that after the regime change the inflation target may be returned to its old value,
an absorbing regime two is a more natural assumption for this application and allows for closer parallels
to the perfect foresight case. I present the solution with a nonabsorbing regime two and some brief
implications thereof in the appendix.
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gap will raise nominal and real interest rates pushing down inflation and therefore the

output gap.

Since monetary policy in regime two is independent of monetary policy in regime one,

π2 is exogenous from the perspective of a central bank in regime one. To simplify the

notation I solve for the outcomes in regime one as a function of π2 rather than π?, but

they can all be expressed in terms of π? by (20). In regime one, the expected output gap

next period is the probability of remaining in the same regime times the output gap in

the current regime next period plus the probability of a regime shift times the output

gap next period if the regime shift occurs. But since each regime is in a steady state,

Etxt+1 = (1− λ)x1 + λx2. Using this, I can rewrite equations 16 - 18 as

π1 = β((1− λ)π1 + λπ2) + κx1 (21)

x1 = (1− λ)x1 + λx2 − σ−1(i1 − (1− λ)π1 − λπ2) (22)

i1 = φππ1 + φπ′((1− λ)π1 + λπ2) + φxx1 + ī1, (23)

where ī1 = (1−φπ +φπ′)π
?
1 = 0 if the inflation target in regime one is zero. Solving these

equations for the output gap and inflation in regime one,

x1 =
(λκσ−1(1− βφπ − φπ′) + λ(1− β)(1− β(1− λ)))π2 − κσ−1(1− β(1− λ))̄i1

κ(κσ−1(φπ + (1− λ)(φπ′ − 1)) + (λ+ σ−1φx)(1− β(1− λ)))
(24)

π1 =
λ(1− β + βλ+ σ−1κ+ βσ−1φx − σ−1κφπ′)π2 − σ−1κī1
κσ−1(φπ + (1− λ)(φπ′ − 1)) + (λ+ σ−1φx)(1− β(1− λ))

. (25)

Using the preceding two equations, we can characterize the equilibrium and how it de-

pends on monetary policy.

Proposition 1 If monetary policy is active (φπ + φπ′ ≥ 1) then

1. π1 is increasing in π? if 1 + 1−β(1−λ)
κσ−1 + βφx

κ
> φπ′

2. x1 is increasing in π? if 1 + (1−β)(1−β(1−λ))
κσ−1 > βφπ + φπ′

3. ∂2π1
∂π?∂φπ

< 0 if 1 + 1−β(1−λ)
κσ−1 + βφx

κ
> φπ′

4. ∂2π1
∂π?∂φx

< 0 if 1 + (1−β)(1−β(1−λ))
κσ−1 > βφπ + φπ′ +

β(1−β(1−λ)2)
κ

φx

5. ∂2π1
∂π?∂φπ′

< 0

6. If monetary policy parameters aside for the inflation target are the same in both

regimes, then π1 < π2 ≤ π? and x1 < x2.

Lets first consider the case where φπ′ = φx = 0. An expectation of a future regime shift

to a higher inflation target implies higher expected inflation which creates an incentive
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for firms to set higher prices as they may not be able to reset their prices when the regime

shift occurs and the optimal price rises. With active monetary policy, nominal interest

rates will rise by more than expected inflation and, therefore, real interest rates will also

rise. Higher real interest rates create an incentive to save, but if φπ is small this effect

may be weaker than the consumption smoothing motive combined with an anticipation of

higher consumption when the regime shifts. Depending on the magnitude of φπ, marginal

costs will either be slightly positive but lower then in regime two or negative. However,

the reduced marginal costs will never cause inflation to fall below zero because interest

rates only rise in response to positive inflation. Therefore at time zero inflation shifts from

zero to a positive value proportional to but less than the inflation target in regime two.

Inflation remains at this level until the regime shift, at which point inflation increases to

its steady state value at the new inflation target. At time zero, output shifts to a new

level which is below its previous level unless the monetary policy response to inflation

is sufficiently small. When the regime shift occurs, the output gap increases to the new

steady state level.

Nominal interest rates responding to expected inflation with active monetary policy

also generate higher real interest rates and cause a recessionary force that pushes down

inflation. However, as the interest rate is responding to expected inflation, which with

regime shifts can be positive even if current inflation is zero, a large enough coefficient

on expected inflation can generate a recession large enough to force deflation. If in

response to monetary policy inflation in regime one falls when the inflation target in

regime two is raised, further increasing the responsiveness to expected inflation magnifies

the deflation, while increasing the responsiveness to current inflation will reduce the

deflation by lowering interest rates.

The effect of interest rates responding to the output gap on inflation in regime one

depends on the response of output. If output falls because monetary policy causes a

recession and reduces marginal costs, then responding more to the output gap will lower

interest rates and result in higher inflation. If real interest rates barely rise and the output

gap remains positive, a stronger response to the output gap will raise interest rates which

implies a reduction in output, marginal costs, and therefore inflation. However if φx is

already large, further increasing it may result in higher inflation through an equilibrium

effect.

The effect of inflation target uncertainty is very different if monetary policy is passive.

To emphasize the key aspects of the response, I assume interest rates do not respond to

expected inflation or the output gap.10

Proposition 2 If φπ′ = φx = 0 and φπ ≤ 1, then

1. If φπ = 1, then π1 = π2 and x1 = 1−β
κ
π2 = x2

10This assumption is relaxed in appendix A.
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2. If 1− λ(1 + 1−β(1−λ)
σ−1κ

) < φπ < 1, then π1 > π2 and x1 >
1−β
κ
π2 and

lim
φπ→[1−λ(1+

1−β(1−λ)
σ−1κ

)]+
π1 = lim

φπ→[1−λ(1+
1−β(1−λ)
σ−1κ

)]+

x1 =∞

3. If 1− λ(1 + 1−β(1−λ)
σ−1κ

) > φπ, then π1 < 0 and x1 < 0

If interest rates respond one to one with inflation, inflation and output instantly adjust

to the future steady state value. As the monetary policy response becomes weaker than

one for one, inflation and the output gap begin to explode towards infinity. Real interest

rates fall because nominal interest rates do not keep up with the rise in expected inflation.

This pushes up marginal costs, leading firms to set higher prices not only because they

anticipate future higher prices from a higher inflation target but also face higher marginal

costs. This is further amplified because the rise in the inflation target is not anticipate for

multiple periods during which inflation and the output gap are anticipated to go up for

the same reasons. The threshold φπ = 1−λ(1+ 1−β(1−λ)
σ−1κ

) corresponds to the threshold for

determinacy in the stochastic model. If φπ is below this threshold, the stochastic model

does not have a unique solution, while in the simplified model of this section it results in

inflation and the output gap becoming negative.

3.2 Monetary Policy Response

Thus far we have looked at the equilibrium under monetary policy that is set without

consideration for the inflation target uncertainty. However if expectations over the future

inflation target are formed exogenously from current monetary policy decisions such as

from uncertainty over what will be the best estimate of the optimal inflation level in

the future, the dynamics generated by such expectations are likely to be undesirable for

the central bank. Therefore, it is natural to explore how the central bank can adjust

monetary policy to minimize the losses from inflation target uncertainty.

The equilibrium in this model is determined by the intersection of the Philips curve

with the IS curve combined with a policy rule. A change in the inflation target in regime

two shifts both curves. Changing the current inflation target, shifts the IS curve allowing

the central bank to achieve any outcome on the new Phillips curve.

Proposition 3 By changing the inflation target in the current regime, the central bank

can achieve any outcome where

π1 =
π?βλ+ κx1

1− β(1− λ)
(26)

without affecting the volatility of inflation or output in the full stochastic model. Other

policy parameters have no effect on the set of possible outcomes.
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Other policy parameters only matter for the equilibrium in determining how much the

inflation target has to be adjusted to achieve a particular outcome or if the central bank

is unwilling to change the current inflation target, and for the volatility of the variables

in the full stochastic model.

Proposition 4 Reducing the constant in the policy rule for the current regime, ī1, will

raise inflation and output in the current regime if

φπ + (1− λ)φπ′ + φx
1− β(1− λ)

κ
> 1− λ(1 +

1− β(1− λ)

σ−1κ
) (27)

Proposition 4 states that if monetary policy is close enough to being active, then reducing

the constant in the policy rule results in a lower real interest rate, which incentivizes con-

sumption leading to higher output, marginal costs, and inflation. With active monetary

policy, lowering the constant in the policy rule is equivalent to raising the inflation target.

Therefore the central bank can raise the inflation target in the current regime to increase

output at the cost of higher inflation or lower it to reduce inflation at the cost of lower

output.

Figure 1 illustrates the preceding results for the case when φπ > 1 and φπ′ = 0. In

the absence of inflation target uncertainty the Phillips and IS curves intercept at point

A, which corresponds to zero inflation and no output gap. Once uncertainty about a

potential future increase in the inflation target is introduced, the Phillips Curve and the

IS curve both shift up and the regime one equilibrium is point B.11 However, by adjusting

the constant in the policy rule the central bank can choose any point on the new Phillips

Curve. For example, by reducing the constant the central bank reduces nominal and real

rates, incentivizes consumption, and increases output and marginal costs which which

pushes up inflation (point C). If the policy rule responds to expected inflation, the results

are very similar except that if φπ′ is large enough the effect of uncertainty will be to shift

the IS curve down, but this does not change the set of feasible outcomes the central bank

can achieve by adjusting the intercept of the policy rule.

If a central bank is committed to maintaining its current inflation target and conducts

an active monetary policy that does not respond too much to expected inflation, then it

can maintain the initial inflation target by creating a recession. To accomplish this, the

central bank must set the inflation target in the current regime’s policy rule, π?1, below

the actual inflation target the central bank wishes to maintain.

Proposition 5 To achieve a zero inflation rate in regime one, the central bank needs to

11If φπ is small enough the IS curve shifts up enough that point B corresponds to a positive output
gap.
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Figure 1: The Effects of Inflation Target Uncertainty and the Central Bank Policy Re-
sponse with φπ > 1 and φπ′ = 0
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have the output gap in regime one equal to −βλπ2
κ

which can be accomplished by setting

π?1 = λπ2︸︷︷︸
Impact of π? on Etπt+1

1

1− φπ − φπ′︸ ︷︷ ︸
Direct effect

(1− φπ′ +
βφx
κ

+
1− β(1− λ)

σ−1κ
)︸ ︷︷ ︸

Equilibrium effect

. (28)

How much π?1 needs to be lowered depends on how much the other regimes inflation

target raises expected inflation, a direct effect, and an indirect effect.12 The direct effect

is that if φπ or φπ′ are larger, then a change in the inflation target causes a greater

change in the nominal interest rate. The equilibrium effect captures how much inflation

rises from higher expected inflation and falls from a larger intercept in the policy rule. If

the equilibrium effect is positive and policy is active, then by proposition 1 inflation in

regime one is positive and raising the responsiveness of nominal interest rates to expected

inflation reduces the necessary decrease in π?1 necessary to achieve zero inflation. If φπ′ is

set such that the equilibrium effect is zero, then changes in the other regime’s inflation

target does not affect inflation in the current regime. Furthermore since φπ is unrestricted,

a continuum of policy rules and inflation and output volatility mixes are possible while

12If φπ′ is large enough for inflation to fall, then π?1 will need to be increased to increase the output
gap to −βλπ2

κ .
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keeping the regime one expected inflation rate at zero.

If a central bank cares about both inflation and output stability, then the central bank

will not wish to set inflation to zero. Assume that the central bank does not care about

interest rate volatility then the central bank loss function (15) becomes

Et

∞∑
t=0

βt(π2
t + θxx

2
t ). (29)

Proposition 6 If the central bank loss function is given by equation 29 and monetary

policy in regime two is exogenous, then the optimal commitment policy in regime one will

set the inflation target in regime one such that

x1 =
−π2λβ

κ+ κ−1(1− β(1− λ))2θx
and π1 =

π2λβ

1− β(1− λ)

κ−1(1− β(1− λ))2θx
κ+ κ−1(1− β(1− λ))2θx

. (30)

As θx increases from zero to infinity, the optimal allocation shits up the Philips curve

(21) from x1 = −βλπ2
κ

and π1 = 0 to x1 = 0 and π1 = π?λβ
1−β(1−λ)

. As these allocation can

be achieved just by adjusting the inflation target, they have no impact on the volatility

of output and inflation in a stochastic model, and the trade off between inflation and

output in levels can be completely separated from the trade off in variances.

While the separation of the trade offs in levels and volatilities is possible, it requires

that the current inflation target be adjusted to any changes in the expected inflation

target. Constantly adjusting the monetary policy rule to changes in expectations may

be destabilizing. A natural question is what is the optimal policy if the central bank is

unwilling to adjust the inflation target and/or the policy rule coefficients. Additionally,

how effective is the optimal policy? Both of these questions are not analytically tractable

and will be addressed numerically in section 5.

3.3 Indexing

A feature of the preceding analysis is that once the inflation target is increased, the level

of the output gap also increase. In this section I show the implications of eliminating the

long run relationship between inflation and the output gap by assuming that firms which

do not get to optimally set their price in a given period will index their previous period’s

prices to the inflation target. With this assumption the Phillips curve (17) becomes

πt = βEtπt+1 + (1− β)π?s + κxt. (31)

Prior to the announcement, the zero inflation and zero output gap steady state is

unchanged. After the inflation target changes, there will be a new steady state with
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inflation at the inflation target and a zero output gap. Since the output gap in regime

two is zero, the expectation of output and consumption growth disappears. Therefore

if real interest rates are positive prior to the regime shift then the output gap must be

negative. For the same reasons as without price indexing, a rise in the expected inflation

target will cause real interest rates to rise if monetary policy is active. Therefore, at the

time of of the announcement inflation increases and the output gap decreases and then

they both remain constant until the regime shift.

Adding price indexing to the current inflation target has a more substantive effect on

the optimal policy response to an expectation of a shift to a regime with a higher inflation

target, as it adds a new effect of adjusting the inflation target. Without price indexing,

raising the inflation target lowers the nominal and real interest rate and results in a higher

output gap. With price indexing, raising the inflation target also increases the price level

set by firms directly, implying that the Phillips curve also adjusts. Hence the set of

feasible outcomes a central bank can achieve is no longer described by the Phillips curve,

and therefore simply adjusting the current policy rule’s intercept and holding the other

coefficients constant is insufficient to achieve the optimal policy response. However, as I

show numerically in section 5, most of the benefits of optimal policy can still be achieved

by only changing the policy rule’s intercept.

4 Optimal Policy & Welfare with Constant Inflation

Target

In section 5, I quantify the effects of inflation target uncertainty and the monetary policy

response to it in the stochastic model. Before allowing for inflation target uncertainty,

it is useful to understand the implications of regime switches in the stochastic model

for optimal policy. In this section, I first show the optimal policy under a single regime

and then show the implications of introducing regime switches on optimal policy. In

section 5, this will allow us to distinguish how monetary policy is responding to inflation

target uncertainty verses responding to the absorbing regime structure. Monetary policy

regime switch analysis uniformly uses policy response functions as the monetary policy

mechanism. Therefore, I continue to consider constrained optimal policies restricted

to the policy response function (9) rather than the unconstrained optimal policy. This

necessitates including a positive weight on interest rate stability, as without it the optimal

policy rule involves setting arbitrarily large coefficients. As observed policy is inconsistent

with very large coefficients in the policy rule, adding an interest rate stabilizing motive

allows for more reasonable optimal policy rules. The constrained optimal policy response

17



Table 2: Optimal Policy Rule Under a Single Regime
Loss Function Weights Optimal Policy Rule Optimal Outcomes

θx θi φπ φπ′ φx Eπ2 Ex2 Ei2 Losses
0.0298 0.2500 1.5180 1.0090 0.4307 7.0707 13.9107 23.3509 13.3224
0.0000 0.2500 1.5180 1.0090 0.2500 6.7899 16.8648 24.3068 12.8666
0.5000 0.2500 1.5180 1.0090 3.2868 9.4284 2.3165 21.6203 15.9918
1.0000 0.2500 1.5180 1.0090 6.3238 10.2618 0.8725 22.2733 16.7027
2.0000 0.2500 1.5181 1.0091 12.3995 10.8895 0.2777 23.0003 17.1949
0.0298 0.0500 8.3898 4.4449 1.1537 1.7640 37.4617 60.6236 5.9100
0.0298 0.5000 0.6590 0.5795 0.3404 10.8887 12.9213 12.4987 17.5226

function solves

min
φπ,s,φπ′,s,φx,s,π

?
s ,Π

∞∑
t=t0

βt−t0(π2
t + θxx

2
t + θii

2
t ) (32)

or from a timeless perspective

min
φπ,s,φπ′,s,φx,s,π

?
s ,Π

E(π2
t + θxx

2
t + θii

2
t ) (33)

subject to the structural equations 6-9. Since the inflation target will be optimally chosen

to be zero, price indexing to the inflation target does not play a role in this section.

Table 2 shows the optimal policy response functions without monetary policy regime

uncertainty for various weights on output and interest rate stability. The main speci-

fication sets the weights near the model consistent values under a single regime, but I

allow for variations in the weights as the model based values are generally inconsistent

with the emphasis central bankers place on output stability. The optimal policy rule

responds to both inflation and expected inflation as well as the output gap. For the main

specification, the optimal policy rule sets φπ = 1.5180, φπ′ = 1.0090, and φx = .4307.13

The optimal policy rule results in inflation volatility of 7.0707, output gap volatility of

13.9107, interest rate volatility of 23.3509, and expected losses of 13.3224. Changing

the weights on inflation and output stability has significant effects on the rules and the

outcomes they generate, but will not qualitatively affect the optimal response to inflation

target uncertainty.

As shown in Davig and Leeper (2007), Foerster (2016), and other papers, the intro-

duction of regime shifts affects the volatilities of inflation in both regimes. Table 3 shows

how inflation, output, and interest rates in each regime respond to a 10% chance of a

regime shift for seven alternative regimes, while table 4 shows the expected outcomes

across regimes.14 A chance of a regime shift to a regime with greater inflation stability

13While it matters whether interest rates respond to inflation or expected inflation, near the optimum
there exist alternative combinations of φπ and φπ′ along with φx = .4307 that results in computationally
identical losses and volatilities.

14The numerical algorithm provides results in solutions for the regime contingent variables in the form
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increases inflation stability in regime one and overall. Similarly, a chance of a regime

shift to a regime with lower inflation stability reduces inflation stability in regime one

and overall. As there is a tradeoff between inflation and output stability, a transition to a

more inflation stabilizing regime implies implies a transition to a regime with greater out-

put volatility; therefore expected volatility of output also increase. However, the change

of output in regime one is ambiguous. In the main specification, the anticipation of a

transition to a more inflation stabilizing regime reduces output stability in regime one.

However, alternative calibrations of the model may result in output stability also increas-

ing in regime one, but regardless of the direction of the change in output stability, it is

always much smaller than the change in inflation stability.

Additionally, since expectations of a regime shift to a more inflation stabilizing policy

raise inflation and interest rate stability and only minimally reduce output stability,

expectations of a regime shift to a more inflation stabilizing policy also reduce losses in

regime one. This can be seen in table 3 from the EL1 column that shows the expected

per period losses while in regime one. This is a robust result and remains true even if the

weight on output stabilization is double the weight on inflation stability and for a variety

of alternative calibrations of the model. Hence expectations of a regime shift to a worse

regime can reduces losses in the short run if the alternative regime has greater inflation

stability.

With regime shifts there are three relevant variations of the welfare optimization prob-

lem depending on what the central bank controls. One possibility is the central bank sets

the optimal regime switching Markov process rule by optimizing over the policy param-

eters in all regimes and the Markov process itself. This is the exactly the optimization

problem from (33). However, the optimal regime switching Markov process rule without

absorbing regimes is to have no regime shifts and always implement the single regime

optimal policy response function.

of (97) and (98), which allows for an exact estimation for first and second moments for the variables. For
the realized outcome, I take expectations across the two regimes outcomes to get exact solutions without
simulations. For example, Ex2t = P (regime = 1) ∗ E(x21,t) + P (regime = 1) ∗ E(x22,t).
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An alternative perspective is that there is uncertainty over future monetary policy,

but the central bank can only control policy in the current regime. For example, an

expectation that future policy will normalize after the unconventional monetary policy

of the financial crises, but with the Federal Reserve not having control over the specific

form of the anticipated policy. Table 5 shows the optimal response for the same seven

alternative regimes as in tables 3 and 4. If under the alternative regime the central bank

implements the optimal policy response function, then the regime one optimal policy

remains unchanged.15 However, if the expected future policy response functions are not

all the optimal policy response functions, then the variances of inflation and output in

both regimes change and minor alternations to policy in regime one will be preferred.

There are two key features of the optimal policy response. First, if regime two has higher

than optimal output volatility, the optimal policy in regime one may also place a smaller

emphasis on output stabilization. Secondly, the optimal policy reduces losses by less than

a percent of the increase in losses from introducing a sub-optimal regime two into the

model. Given the difficulty of identifying expectations over alternative regimes, the single

regime optimal policy provides a good approximation to the optimal policy regardless of

expectations for future monetary policy.

A final possibility is that the central bank only cares about welfare in the current

regime. If regime one cannot be entered from the other regimes, then the optimal policy

problem for a central bank that only controls policy in regime one reduces to minimizing

losses in regime one.16 Intuitively, policy in one regime affects policy in the other regimes

through its effect on expected inflation and output. If a regime cannot be transitioned

into, then nothing in that regime can affect the other regimes including the policy response

function. Therefore conditional on the policy in the other regimes, minimizing losses over

the policy response function in regime one is equivalent to minimizing expected losses

across regimes from a timeless perspective. Alternatively, this may be the relevant metric

if there are deviations from rational expectations, where the central bank is committed

to remaining in a regime but cannot convince the public of this, or if changes in regimes

are associated with changes in central bankers, and the central bankers only care about

losses while they are in power.

Table 6 shows the regime one policy rules that minimize expected per period losses

while in regime one. Relative to the benefit of implementing the optimal rule on ex-

pected losses, switching to the policy rules that minimize expected per period losses

while in regime one has a more substantive affect on expected per period losses in regime

one. Furthermore, even if the policy rule in regime two is the optimal rule, expected per

period losses in regime one can be reduced by switching to an alternative policy rule for

regime one. This will be important in the next section, as the optimal policy parame-

15There are alternative policy rules for regime one that generate the same losses.
16For two regimes this is shown in the proof of proposition 6.
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ters in regime one will change when a second regime with a different inflation target is

introduced. However, the change in the regime one loss minimizing policy occurs simply

from introducing regime switching and need not be related to an optimal response to

uncertainty over the future inflation target.

5 Optimal Policy with Exogenous Inflation Target

Uncertainty

In the preceding sections, I solved the two regime model without any shocks not related

to the change in the inflation target and explored the policy response possibilities of the

central bank. Separately, I looked at the implications of regime switches and stochastic

shocks on optimal policy. Here, I combine inflation target uncertainty with the stochastic

shocks. I quantify the effects of inflation target uncertainty and the possible central bank

responses to it in the full stochastic model, where I can evaluate the impact of policy

parameters on the expected levels of inflation and output jointly with their effects on the

volatilities from the other shocks.

Expanding on the analytic two regime model, I use a three regime stochastic model

which has uncertainty in both if the inflation target will change and when it will change.

The model initiates in regime one at a zero inflation target. For exogenous reasons, such

as the current policy discussions of the lower real interest rate reducing the central bank’s

ability to respond to future crises given the zero lower bound for interest rates, there is

uncertainty over the future inflation target. Each period there is a p2 chance that the

central bank will raise the inflation target to 2%. Alternatively, the policy debate may be

resolved and the current inflation target may be kept permanently, which is modeled by

a p3 chance to transition to a third regime with a zero inflation target. Both the second

and third regimes are absorbing. Therefore once a regime shift occurs, the model reduces

to the single regime framework.

As a baseline, policy in all three regimes is assumed to take the single regime optimal

policy given the loss function weights, and the transition probabilities p2 and p3 are the

same and equal to .05. Since regime one is purely transitory, the outcomes after the

regime shift are exogenous to policy prior to the regime shift, and expected losses in

regime one are the only part of losses that the central bank can affect. Except for the

optimal policy analysis, price indexing by firms only has minor quantitative effects, and

I continue with no indexing as the main specification. Furthermore, I focus on two cases:

θx = .0298 and θx = 1, since the effects differ substantially based on the policy rule of

the central bank.

First lets consider the θx = .0298 case. By introducing inflation target uncertainty in

this manner, the expected inflation level in regime one jumps to 0.19 while the expected
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Figure 2: Expected Outcomes in Regime 1 for Different Transition Probabilities with
Monetary Policy Focused on Inflation Stability
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output gap falls to -0.43, the variances remain the same, and expected losses increase

by 0.0735. Furthermore, since p1 + p2 = .1, the expected duration of regime one is 2.5

years, implying the monetary policy response to the higher expected inflation results in a

strong, prolonged recessionary force. Figure 2 shows the results for a range of transition

probabilities. For transition probabilities between 0% to 15%, a z% chance of transition

to a 2% higher inflation target, results in roughly 4.5 ∗ z% increase in inflation and an

over 5 ∗ z% decrease in the output gap. Despite sizable movements in the first moments,

expected losses exhibit only a minor increase relative to an expected change to a more

or less inflation stabilizing policy around a constant inflation target. If θx = 1, monetary

policy places a greater emphasis on output stability, and inflation goes up 0.53% from

just a 5% chance of a shift to the higher inflation target, while the output gap falls to

-0.12.

In the previous exercise, the long run probability the model ends up in the 2% inflation

target regime was fixed at 50%. Next I hold the probability of resolving the inflation target

uncertainty and moving to either regime 2 or 3 fixed at 10%, but vary the probability of

transitioning into regime two vs regime three. Figure 4 shows the outcomes in regime one.

As the probability of eventually transitioning to the 2% inflation target regime increases

from 0 to 1, p1 increases from 0 to .1 and p3 decreases from .1 to 0. A .1% increase in
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Figure 3: Expected Outcomes in Regime 1 for Different Transition Probabilities with
Monetary Policy Focused on Output Stability
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the per period probability to transition to regime two, increases the long run probability

of ending up in regime 2 by 1%. For the main specification, it also increases the regime

one inflation rate by .004% and interest rates by .007%, while reducing the regime one

output gap by .009. However, the specific values are highly dependent on the emphasis

the central bank places on inflation versus output stability.

If a central bank is fully committed to maintaining the expected level of inflation at

zero, it can achieve this by lowering its current inflation target. If the central bank is

focusing on inflation stability (θx = .0298) and the transition probabilities to the other

regimes are .05, then achieving Eπ1 = 0 requires setting π?1 = −.23%. Reducing the

current inflation target will further reduce the expected output gap to -.55 for a net

effect of a slight lower losses than with no policy response. Figure 5 shows the results

for a range of transition probabilities. If policy is less focused on inflation stabilization,

then achieving Eπ1 = 0 requires a greater reduction in the current inflation target both

because inflation increases more and reducing the same amount of inflation requires a

larger decrease in the inflation target. For example if the central bank is pursuing a policy

focused on output stability (θx = 1), then achieving zero inflation requires reducing the

current inflation target to -1.93% and for higher probabilities of a transition the required

reduction in π?1 exceeds well over the 2% potential future increase in the inflation target.

25



Figure 4: Expected Outcomes in Regime 1 for Different Long Run Transition Probabilities
with Monetary Policy Focused on Inflation Stability

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Long Run Probability to Transtion to Regime 2 (π? = 2)

Change in Losses
Eπ1

Ex1

Ei1

Even with equal weights on inflation and output stability, implementing a policy that

achieves zero inflation in regime one is welfare improving.

While a central bank can achieve a zero expected level of inflation, the optimal re-

sponse of the bank could be either to increase or decrease the current inflation target.

Additionally, the optimal response involves different policy parameters on the responsive-

ness of interest rates to inflation and the output gap due to the presence of regime shifts.

If the weight on inflation stability, θx, is .0298; then the optimal policy response to the

regime shifts but without inflation target uncertainty sets φπ,1 = 1.1599, φπ′,1 = 0.8206,

φx,1 = 0.4065, and π?1 = 0 and reduces losses in regime one to 13.1796. Under this

policy losses rise to 13.2979 from inflation target uncertainty. The optimal response to

the inflation target uncertainty sets φπ,1 = 1.0096, φπ′,1 = 1.1234, φx,1 = 0.4066, and

π?1 = −0.3282. This policy results in an expected inflation of -0.0280%, an expected

output gap of -0.5630, expected nominal interest rates of 0.1968%, and losses of 13.1995.

Notably while the policy coefficients on inflation and expected inflation change, this does

not effect the variances of any variable, and an equally effective policy is to only change

the inflation target.Figure 6 shows the optimal policy outcome for a range of transition

probabilities. For the main specification, the optimal response eliminates 83% of the

losses from inflation target uncertainty.
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Figure 5: Expected Outcomes in Regime 1 if Central Bank Sets π?1 such that Eπ1 = 0
with Monetary Policy Focused on Inflation Stability
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Price indexing plays a major role in determining the optimal policy response, as

introducing it results in the Phillips curve shifting in response to changes in the inflation

target and implies that changes in the rest of the response function change the set of

feasible allocations the central bank is choosing among. The optimal policy depends on

whether interest rates may respond negatively to expected inflation. If they can, then

for the main specification the optimal response sets φπ,1 = 2.1141, φπ′,1 = −1.1019,

φx,1 = 0.4061, and π?1 = −12.0067. Such a policy eliminates over 98.7% of the losses

from inflation target uncertainty. If coefficients are assumed to be nonnegative, then the

optimal policy response and its benefits are qualitatively similar to those without price

indexing except for the volatilities which slightly adjust.

The preceding results assume that the central bank may adjust the policy rule in order

to exploit the transitory nature of regime one. As previously stated, all the benefits from

optimal policy can be obtained from changes in the regime one inflation target, but the

rest of the policy profile still matters. Is the optimal adjustment in the inflation target

different if all other regime one policy parameters are set at their single regime optimal

values? Figure 7 shows the results. It features similar trends to those in figure 6, but

the inflation target adjusts less and the welfare benefit of the policy relative to the losses

from inflation target uncertainty are smaller.
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Figure 6: Expected Outcomes Under Optimal Policy with Monetary Policy Focused on
Inflation Stability
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To address how effective the optimal policy is, I compare the % of the losses generated

by inflation target uncertainty that can be eliminated by adjusting monetary policy. Table

7 shows the results of this exercise for the optimal policy response and three constrained

optimal policies. The optimal policy eliminates anywhere between 15% and 99% of the

losses and is most powerful when the central bank values inflation and interest rate

stability more. However, a central bank may be unwilling to change its inflation target in

response to changes in expectations over the future inflation target, as such changes may

themselves reduce confidence in the central bank’s commitment to an inflation target.

As discussed in the theoretical analysis, changes in policy responsiveness to inflation,

expected inflation, and the output gap can affect the effects of inflation target uncertainty,

but also change the inflation-output volatility trade off. Despite this, unless the central

bank values output stability substantially more than inflation stability, the constrained

optimal policy that keeps the inflation target unchanged is able to achieve at least half

of the benefits of the optimal policy. Analytically, I showed that in the absence of the

autoregressive shocks any feasible outcome of inflation and output gap levels is achievable

just by adjusting the inflation target. Consistent with this, the optimal outcome can also

be achieved by only adjusting the inflation target.

To measure the effects of optimal policy without exploiting the transitory nature of
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Figure 7: Expected Outcomes at the Optimal π?1 with Monetary Policy Focused on
Inflation Stability
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the current regime, consider the exercise in figure 7. Since adjusting the inflation target is

sufficient to achieve the optimal outcome, the alternative policy experiment of optimally

adjusting the inflation target but keeping all other parameters at their single regime op-

tima provides an alternative measure of the effectiveness of the optimal policy. This effect

is shown in the last column of table 7, and depending on the loss function specification

it achieves somewhere between 50% and 98% of optimal policy’s loss reduction.

The effectiveness of optimal policy in the model extension where there is price indexing

by firms is broadly similar, and table 8 replicates the results from table 7 for this extension.

The key difference is that simply adjusting the inflation target is no longer sufficient to

achieve the optimal outcome. However, if the policy rule coefficients are restricted to be

nonnegative then changing the inflation target is still sufficient to achieve at least 95% of

the benefits from the optimal policy.

Throughout the optimal policy analysis, I’ve assumed the central bank may respond to

either current or expected inflation as happens to be optimal given the shocks. However

the literature often assumes the central bank will only respond to one of the two. In my

model with a single regime, responding to either measure of inflation exclusively does not

substantially affect losses. However, the response to inflation target uncertainty depends

crucially on which measure of inflation the central bank responds to. Figure 8 shows
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Table 7: Welfare Benefits of Optimal and Constrained Optimal Policies
Welfare Weights % of Inflation Target Uncertainty Losses Eliminated

θx θi Optimal Policy
Optimizing over

φπ, φπ′ , φx π?1 π?1 and Base Policy1

0.0298 0.25 83.16% 76.52% 83.16% 72.69%
0.0000 0.25 87.60% 83.35% 87.60% 78.03%
0.5000 0.25 69.37% 48.11% 69.37% 62.43%
1.0000 0.25 61.29% 36.80% 61.29% 55.63%
2.0000 0.25 49.74% 25.15% 49.74% 45.18%
3.0000 0.25 41.93% 19.03% 41.93% 37.91%
4.0000 0.25 36.30% 15.31% 36.30% 32.64%
0.0298 0.05 15.87% 15.87% 15.87% 8.66%
0.0298 0.10 41.24% 41.24% 41.24% 28.56%
0.0298 0.40 95.22% 83.24% 95.22% 89.71%
0.0298 0.60 99.49% 93.25% 99.49% 97.51%

1 Base policy: All other parameters in regime one are at their single regime optima
rather than the regime one optimal policy in the three regime model without π?

uncertainty.

Table 8: Welfare Benefits of Optimal and Constrained Optimal Policies with Price In-
dexing

Welfare Weights % of Inflation Target Uncertainty Losses Eliminated

θx θi Optimal Policy
Optimizing over

φπ, φπ′ , φx π?1 π?1 and Base Policy1

0.0298 0.25 84.90% 76.93% 83.94% 73.40%
0.0000 0.25 88.62% 84.21% 88.19% 78.70%
0.5000 0.25 81.95% 48.67% 76.55% 68.86%
1.0000 0.25 88.20% 38.17% 75.07% 67.51%
2.0000 0.25 94.25% 27.64% 75.17% 66.45%
3.0000 0.25 96.18% 22.04% 76.82% 66.73%
4.0000 0.25 97.12% 18.50% 78.92% 67.57%
0.0298 0.05 16.84% 15.22% 15.95% 8.74%
0.0298 0.10 42.26% 40.36% 41.40% 28.62%
0.0298 0.40 99.58% 83.74% 96.16% 90.59%
0.0298 0.60 99.96% 95.11% 99.34% 99.24%

1 Base policy: All other parameters in regime one are at their single regime optima
rather than the regime one optimal policy in the three regime model without π?

uncertainty.
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Figure 8: Inflation Target Uncertainty Effects with Policy Responding to Current Infla-
tion (dashed) and Expected Inflation (solid)
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the effect of inflation target uncertainty when the central bank uses the optimal policy

that only responds to either current inflation (dashed) or expected inflation (solid) for

different loss function weights on output stability. Optimally responding to expected

inflation results in lower values of expected inflation, output gap, and interest rates in

regime one than responding to current inflation. The net effect of these differences is that

expected losses rise more from inflation target uncertainty if interest rates are responding

to current inflation instead of expected inflation.

6 Anticipated Change in the Inflation Target

In the preceding analysis, I have assumed that the central bank cannot commit to an

inflation target and faces uncertainty over the future level of the inflation target. Here,

I consider the alternative setting where the central bank knows that the inflation target

will change at a specific point in the future. A future anticipated change in the inflation

target may occur if the central bank knows that future government policy will mandate a

different inflation target, anticipates new central bank governors pursuing an alternative

inflation target, or simply wishes to implement an anticipated increase in the inflation

target.
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To model this, I use the single regime version of the model described by equations

16-18 to study an anticipated T periods in the future change in the inflation target from

0 to π?. I first solve the model to show the implications of an anticipated increase in

the inflation target if the central bank does not act on this information, and I find that

it is likely to generate cyclical fluctuations in inflation and output. Next, I allow the

central bank to optimally adjust its policy given the anticipated change in the inflation

target. Under optimal policy inflation monotonically increases to its new target along

the transition path while output monotonically decreases. Finally, I compare the optimal

transition path from an anticipated change in the inflation target to the transition path

in the regime switching model. Since optimal policy can be implemented by changing the

intercept in the policy rule which does not affect the inflation-output volatility trade off,

I can study the effects of an anticipated change in the inflation target in a model without

shocks. Throughout, I set φπ′ and φx to zero for a clearer narrative.

6.1 Perfect Foresight Dynamics

Let us first consider a one period in advance announcement of the inflation target change,

which illuminates much of the analysis of the general case. If at t = 0, the central bank

announces that at t = 1 the inflation target will be permanently raised from zero to π?,

then it is straightforward to show that

xt =


0, if t < 0

1−β−σ−1κ(βφπ−1)
κ(1+κσ−1φπ)

π?, if t = 0

1−β
κ
π?, if t > 0

and πt =


0, if t < 0

1+κσ−1

1+κσ−1φπ
π?, if t = 0

π?, if t > 0

. (34)

Before period zero, the economy is at the zero inflation steady state. Since the inflation

target is always zero and there are no shocks, expected inflation is zero and firms will only

adjust prices in response to marginal costs. Additionally, real interest rates are also zero

at zero inflation. Hence, there is no incentive to deviate from the steady state savings and

consumption allocations. Therefore the output gap and marginal costs are zero and firms

optimally choose to keep prices constant. After period zero, the model is similarly in a

steady state, but inflation is at the new inflation target, and the output gap is positive.

To characterize the outcome at time zero, it is useful to derive a few more results.

Proposition 7 If equation 34 holds and π? > 0, then

1. π0 ∈ (0, π?) if φπ > 1 and π0 ≥ π? otherwise

2. x0 < 0 if φπ >
κσ−1+1−β
βκσ−1 and x0 ≥ 0 otherwise

3. ∂x0
∂φπ

< 0 and ∂π0
∂φπ

< 0
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After the announcement, inflation and output adjust to their new levels which are pro-

portionally to the future inflation target and decreasing in the responsiveness of monetary

policy to inflation. If monetary policy does not respond to inflation, then real interest

rates fall, agents are incentivized to consume, and the output gap increases. Firms ex-

pecting higher prices in the future and facing sticky prices set higher prices. Additionally

the higher output gap implies higher marginal costs which further push prices up and

lead to inflation overshooting its future steady state. When monetary policy becomes re-

sponsive to inflation, real interest rates fall by less and cause a smaller increase in output

and marginal costs. Facing lower marginal costs, firms do not increase prices as much. If

nominal rates respond at least one for one to inflation, then the real interest rates rises,

and marginal costs do not rise enough for inflation to overshoot its future steady state

value. As the responsiveness of nominal interest rates to inflation further increases past
κσ−1+1−β
βκσ−1 , real rates are high enough to incentivize sufficient savings for the output gap

to become negative.17 A negative output gap implies firms have lower marginal costs and

puts downwards pressure on inflation. Further increasing the responsiveness of nominal

interest rates to inflation increases real interest rates and savings, while reducing output,

marginal costs, and inflation.

While the preceding example is simple, the intuition applies to the general T period

in advance announcement. For the general case, the periods prior to the announcement,

after the inflation target has changed, and one period prior to the change in the inflation

target remain identical. To examine the full dynamics, I first characterize the solution.

Since there are no shocks in the model aside for the inflation target, the model can be

solved forward with inflation and output being weighed sums of future expected inflation

targets. Solving for inflation,

πt =
σ−1κ

1 + σ−1κφπ

1

λ1 − λ2

Et(−λ1

∞∑
j=0

λj1īt+j + λ2

∞∑
j=0

λj2īt+j), (35)

with λ =
1+β+σ−1κ±

√
(1+β+σ−1κ)2−4β(1+σ−1κφπ)

2(1+σ−1κφπ)
.

The dynamics of inflation and output depend on whether λ is real or complex.

Proposition 8 If

(1− β)2

σ−1κ
+ σ−1κ ≥ 2(βφπ − 1) + 2β(φπ − 1), (36)

17When 1 < φπ <
κσ−1+1−β
βκσ−1 , real interest rates rise thereby increasing savings, but the output gap

remains positive because this effect is dominated by the consumption smoothing motive combined with
expectations of higher consumption in the future.
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then λ is a real number, and for t ∈ [0, T ]

πT−t = π?
λt+1

2 (1− λ1)− λt+1
1 (1− λ2))

λ2 − λ1

(37)

xT−t = π?
λt+1

2 (1− λ1)(λ2 − β)− λt+1
1 (1− λ2))(λ1 − β)

κ(λ2 − λ1)
. (38)

Otherwise λ is a complex number, and for t ∈ [0, T ]

πT−t =
π?(φπ − 1)σ−1κ

1 + σ−1κφπ
rt
∞∑
j=0

rj
sin(ω(t+ 1 + j))

sin(ω)
, (39)

where r =
√

β
1+σ−1κφπ

, ω = cos−1( 1+β+σ−1κ

2
√
β(1+σ−1κφπ)

), and xT−t = πT−t−βπT−t+1

κ
.

If the monetary policy response to inflation is sufficiently strong for equation 36 to be

violated (φπ ≥ 1.05 in the main calibration), then inflation and the output gap exhibit

cyclical dynamics that are magnified as the period with the expected change in the

inflation target approaches. If the monetary policy response to inflation is sufficiently

weak, then equation 36 holds, and inflation and the output gap exhibit non-cyclical

dynamics that are either monotonic or can be split into two subsets on which they are

monotonic. To analyze the dynamics when λ is real, it useful to look at the recursive

formulation of inflation and output for 0 ≤ t < T

πt−1 =
β + σ−1κ

1 + σ−1κφπ
πt +

κ

1 + σ−1κφπ
xt (40)

xt−1 =
−σ−1(βφπ − 1)

1 + σ−1κφπ
πt +

1

1 + σ−1κφπ
xt, (41)

using which I can prove proposition 9.

Proposition 9 If λ is real and π? > 0, then

1. If φπ < 1, then πT−t > π?, xT−t >
1−β
κ
π?, and both are monotonically decreasing.

2. If φπ = 1, then πT−t = π?, xT−t = 1−β
κ
π?

3. If 1
β
≥ φπ > 1, then 0 < πT−t < π?, 0 < xT−t <

1−β
κ
π?, and both are monotonically

increasing.

4. If φπ >
1
β

, then for small t; πT−t < π?, xT−t <
1−β
κ
π?, and both are monotonically

increasing. For large enough t, either or both πT−t and xT−t may be monotonically

decreasing.

The final case need not exist, but for any numerically reasonable calibration it exists,

inflation is nonnengative and monotonically increasing, and output is declining for large
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t and monotonically increasing for smaller t. Combining proposition 9 with the cyclical

case when λ is complex, there are five possible cases for the dynamics, which are all shown

in Figure 9.

If interest rates are independent of inflation, then in the period prior to the inflation

target change real interest rates fall, agents are incentivized to consume, and the output

gap increases, while firms set higher prices in response to the expected inflation and

marginal costs. Anticipating this in the earlier periods, inflation is expected to be even

higher. Therefore real interest rates are even lower, creating a stronger incentive for

consumption and therefore higher output and marginal costs. Firms anticipate higher

expected inflation and face even higher marginal costs and set even higher prices. Hence

at the time of the announcement, inflation and the output gap jump above their future

steady state values and monotonically decline to approach the future steady state values

as time moves forward. If monetary policy responds to inflation less than one for one,

then the same things happen, but real interest rates fall by less. Therefore there is a

smaller incentive to raise consumption, which reduces the rise in output, marginal costs,

and inflation.

If nominal interest rates respond exactly one for one with inflation, then at the time

of the announcement both inflation and output shift up to their future steady states and

are constant in the following periods. At π? inflation, real interest rates will be constant

in the period prior to the inflation target change and therefore output will be also be

constant. Facing the future steady state output and expected inflation rates, firms will

set prices consistent with the future steady state inflation rate of π?. Anticipating this,

each prior period will be identical for the same reasons.

If the monetary policy response to inflation is slightly greater than one (1 < φπ <
1
β
),

then real interest rates rise slightly. With positive real interest rates agents face an

incentive to consume less thereby reducing output. Lower output implies lower marginal

costs, which lead firms to set lower prices. However, the monetary policy response in

this range is weak, and the incentive to save does not push output below zero, which

implies that marginal costs remain positive and inflation barely falls. So at the time

of the announcement inflation and output both jump up, and then they monotonically

increase to their future steady state values.

If the monetary policy response is further strengthened ( 1
β
< φπ and equation 36

holds), then real interest rates rise by more. This leads to a greater incentive to save

and results in the output gap falling below zero, which pushes marginal costs below

zero and further reduces inflation but not below zero. So at the announcement inflation

shifts up and monotonically increases to the future steady state value, while output is

also monotonically increasing but at the announcement may jump in either direction

depending on how far in the future the inflation target change is.

The final case occurs if the response of interest rates to inflation is sufficiently large
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Figure 9: Potential Inflation and Output Dynamics of a Period Zero Announcement that
the Inflation Target in Period 40 Will be Raised from Zero to One
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for equation 36 to be violated. In standard calibrations this implies that φπ ≥ 1.05 and

is therefore the most relevant case for policy analysis. As φπ is further increased, the

direct effect in the periods prior to the change in the inflation target is the expected

interest rate rises even more. This amplifies the incentive to save, leading to a larger

drop in the output gap. While firms still retain an incentive to set higher prices from the

expected higher inflation, the large negative marginal costs reduces prices further. The

anticipation of a strong monetary policy response that will cause a large recession prior

to the inflation target change, leads firms to anticipate lower future prices, and combined

with lower marginal costs reduces inflation below zero. However if the announcement is

made further away from the actual change, this will all be anticipated as will the very low

nominal interest rates that will accompany inflation below the current inflation target.

The very low nominal rates will lead to negative real interest rates and a growth of

consumption, output, and marginal costs. Further back from the inflation target change,

the monetary response to the low inflation leading to low real interest is anticipated. So

output and marginal costs are high, and firms while anticipating low expected inflation

in a few periods, increases prices in response to high marginal costs both in the current

and future periods and inflation is again positive. Even further back the cycle repeats,

with an anticipation of the monetary policy response to this inflationary period causing

a recession and so on.

The preceding analysis largely extends to price indexing by the firms which do not

get to optimally set their prices each period. Four of the five possibilities previously

characterized are possible. If 1 ≤ φπ <
1
β
, then without price indexation real interest rates

rise and encouraged savings. Higher savings result in lower output and lower marginal

costs. However as the expected output gap in the future steady state is positive, the

small contractionary force is not enough to cause a negative output gap. With price

indexing to the inflation target, the future steady state has a zero output gap and a

small contractionary force causes the output gap to decrease. The other cases remain

qualitatively unchanged.

6.2 Optimal Response to an Anticipated Change in π?

The previous section shows that if the central bank anticipates a change in the inflation

target, then for reasonable calibrations of a time invariant policy rule both inflation and

output exhibit cyclical dynamics along the transition path. By sticking to the same policy

rule, a central bank is therefore destabilizing inflation and output through its response

to current inflation. Weakening the response of interest rates to inflation can result in a

more monotonic transition path but comes at the cost of impacting the inflation-output

volatility trade off. Alternatively by choosing the announcement length the central bank

may also eliminate the cyclical elements. For example, in figure 9 if the anticipated
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change in the inflation target will occur within six periods, then the transition path is

monotonic for φπ = 1.5. However, a central bank may face a situation when the timing

of the change in the inflation target is outside of the current central bankers’ control.

A natural alternative option is for the central bank to optimal respond to the antic-

ipated change in the inflation target. In particular the central bank may commit to a

path for the policy rule intercept along the transition path which minimizes the central

bank’s loss function. Formally, let the time varying policy rule be

it = φππt + (1− φπ)π?t = φππt + īt (42)

Then let the t = 0 announcement that the inflation target for t ≥ T will increase from

0 to π̄ be accompanied by announced path for π?t for 0 ≤ t < T . Since the only thing

that changes is π?t this has no impact on the inflation-output volatility trade off, and if

the central bank sets π?t to the optimal path that minimizes losses from the anticipated

change in the inflation target, this does not generate sufficient freedom to implement

discretionary or time inconsistent policy.

To determine the optimal path of π?t , the central bank solves the loss minimization

problem

min
πt,xt

T∑
t=0

βt(π2
t + θxx

2
t ) s.t. πt = κxt + βπt+1, πT = π̄ (43)

for the optimal transition path. Given the transition path of inflation and the output

gap, the interest rate that implement the transition path is determined by the linearized

Euler equation (16), while the path for π?t and īt are determined by equation 42.

Solving the loss minimization problem results in

πt = A1m
t
1 + A2m

t
2 (44)

xt =
mt

1A1(1− βm1) +mt
2A2(1− βm2)

κ
(45)

where the parameters A1, A2, m1, and m2 are given in the appendix.

Proposition 10 Under the optimal transition path for an anticipate future change in

the inflation target from 0 to π̄, inflation at the time of the announcement jumps in the

direction of π̄ and then monotonically adjusts to π̄.

A key implication of the solution’s functional form is that cyclical fluctuations never

occur under optimal policy. Therefore the optimal policy outcome in the presence of

an anticipated future inflation target change is qualitatively different from the outcome

under a time unvarying policy rule if equation 36 is violated. Furthermore, inflation

monotonically adjusts from the old target to the new target with a jump at the time of

the announcement. To characterize the optimal policy and the implied transition path
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for the other variables, I use numeric simulations of equations 44 and 45 along with the

implied path for it, īt, and π?t .

Figure 10: Optimal Transition Path for a Perfectly Anticipated Increase in π?
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Figure 10 shows the optimal transition path for a 20 period in advance anticipated

increase in the inflation target from 0 to 1. Along the path inflation is monotonically

increasing at an increasing rate, while output is monotonically decreasing along the tran-

sition path before increasing to its new steady state value once the inflation target change

occurs. As with a time invariant policy rule with φπ > 1, interest rates rise to cause a

recession along the transition path, which results in lower marginal costs and lower infla-

tion. The key difference is that the time varying optimal policy rule can increases interest

rates arbitrarily in the period right before the change in the inflation target. This allows

an arbitrarily large drop in output right before the inflation target changes. Therefore

marginal costs are lowest when firms face the largest incentive to raise prices from expec-

tations of higher future inflation. Further away from the inflation target change, firms

have a smaller incentive to increase prices from expectations of future inflation. They

therefore need less incentive to reduce prices from low marginal costs and the optimal

policy is able to generate such a path for marginal costs.

The optimal transition path does not depend on φπ or σ and is qualitatively similar

for any θx, κ, and T , and for any β > .5. A smaller θx results in a larger drop in output,

while inflation remain near zero for longer. A smaller κ results in a more linear transition

path, while a smaller β requires a smaller decrease in the output gap to achieve a similar
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Figure 11: Optimal Policy for a Perfectly Anticipated Increase in π?
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path for inflation.

Figure 11 shows the optimal policy that implements the outcome from figure 10 when

φπ = 1.5. Consistent with the spike in interest rates the period before the inflation target

change, the intercept of the policy rule increases substantially right before the inflation

target change. However, in all prior periods the intercept is slightly negative and is used

to stimulate the economy relative to the constant intercept case. Since φπ > 1, increasing

the intercept in the policy rule is equivalent to decreasing the inflation target in the policy

rule. Hence, π?t is inversely proportional to īt. The specifics of the optimal policy depend

on all the parameters, but remain qualitatively similar across calibrations.

6.3 Perfect Foresight vs Regime Shift Transitions

In the preceding sections, I have characterized the transition path from a perfectly antic-

ipated change in the inflation target both under a constant policy rule and the optimal

time varying policy rule. Similarly, I have characterized transition path for an anticipated

change in the inflation target at unanticipated date as modeled by a regime switching

framework of section 3. In this section, I quantitatively compare the optimal policy tran-

sition paths under under the perfect foresight and the regime switching frameworks, and

ask which transition path is preferred.

Two compare the two different frameworks, I consider an anticipated increase in the

40



inflation target in T periods and the expectation that in each future period there is a
1/T chance the inflation target will be raised to the new value. Under both methods, the

expected duration until the adjustment in the inflation target is T periods, but under

the regime shift mechanism the actual duration could be much longer or shorter. As

in the analytical analysis, the second regime is absorbing to make the two frameworks

comparable, and there are no shocks to the structural equations. In both cases policy

prior to the inflation target change is set to the optimal policy for that framework. The

perfect foresight optimal policy is a time varying interest rate rule as in section 6.2, while

the regime switch optimal policy is as described in proposition 6.

Figure 12 shows the losses, a decomposition of the losses, and the expected values

of the output gap and inflation at the initial inflation target for announcements of a

future inflation target change that are expected to occur between one quarter and 10

years in the future. For illustration purposes θx = 1, but alternative values are not

qualitatively different. As the optimal inflation rate is zero, this captures the idea that

the central bank wishes to maintain its initial target prior to the inflation target change,

and policy is valued on its ability to stabilize inflation around the current inflation target.

Expected values at the new inflation targets are not shown, because after the inflation

target changes the regime shift model and the perfect foresight model are identical.

The average levels of the output gap on the transition path are very similar, while the

average inflation rate is higher under perfect foresight although for small θx the difference

is minimal. However the loss function penalizes squared deviations which are higher under

prefect foresight because the transition path is more variable. This results in average per

period losses prior to the change in the inflation target to be higher for the perfect

foresight transition path. However, the total expected losses need not be higher because

with regime shifts the higher loss periods after the inflation target change are more likely

to occur earlier when losses are discounted less. There is more room for this effect if the

expected change in the inflation target is further in the future. Hence, expected losses

are lower under perfect foresight if the inflation target change is expected to occur far in

the future but higher for more immediate anticipated changes in the inflation target.

This exercise suggests that a central bank that optimally responds to an anticipated

change in the inflation target can achieve roughly similar welfare outcomes regardless

of whether the specific period of the inflation target change is known or not. Perfect

foresight of the inflation target change is preferred if the anticipated change is known far

in advance or if the central bank cares about inflation smoothly adjusting. Furthermore,

there may be additional costs to the uncertainty not captured in the log linearized model

that may make the perfect foresight outcomes strictly preferred.
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Figure 12: Anticipated Increase in the Inflation Target from 0% to 1% Under Optimal
Policy
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7 Conclusion

In models with rational expectations, expectations over future monetary policy play a

significant role on current outcomes. A growing literature explores how expectations

of an alternative policy can result in determinancy even under normally indeterminate

monetary policy. However expectations of alternative monetary policy regimes in the

future can have detrimental affects on current outcomes. Monetary policy in the future

may change with new developments in monetary policy theory, as monetary policy ad-

dresses new challenges, and as the decision makers change. For example, the academic

and policy discussions on the (potentially) long term lower real interest rate climate has

spurred discussions on whether increasing the inflation target will be beneficial. If these

discussions generate uncertainty over the future inflation target, then they will have an

immediate, unintended affect on inflation and the output gap.

In this paper I use an extension of the standard New Keynesian model to monetary

policy regime switching to study the effects of future inflation target uncertainty, how

the effects depends on monetary policy, and the policy responses to it. While more

complicated models will be helpful to assess specific quantitative policy implications, the

model captures the fundamental aspects of a New Keynesian model and has a tractable

analytical analog in which the results can be developed. Furthermore, while some recent

research suggests that the role of expectations is overstated in the standard New Keyne-

sian model; to the extent this is true, this will weaken the quantitative effects of inflation

target uncertainty, but the qualitative results should remain the same.

An expectation that the inflation target may increase in the future raises expected

inflation thereby increasing the optimal price firms set in the presence of sticky prices.

With active monetary policy, the nominal interest rates rise by more than expected

inflation and real interest rates also increase causing increased savings and lower output.

Depending on the price indexing of the firms not getting to optimally set their price,

a higher future inflation target may lead to higher output in the future, and therefore

introduce a consumption smoothing motive that increases current output. The net effect

is either slightly higher output or a decline in output and a corresponding change in

the marginal cost that may reduce the firms incentive to raise prices. The qualitative

and quantitative results depend on the complete monetary policy profile as it determines

whether real interest rates rise, and if interest rates respond to expected inflation then the

policy response can cause a recession severe enough to reduce marginal costs sufficiently

for firms to lower prices.

The central bank can respond to inflation target uncertainty and choose any point

along the aggregate supply relationship by changing the current inflation target or equiv-

alently a constant in a policy rule, without effecting the inflation–output volatility trade-

off. By adjusting the current inflation target a central bank can achieve it’s initial inflation
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target. Since this will also affect the output gap, the optimal level will likely be a different

inflation and output gap combination. However, such a policy in the standard framework

implies setting an inflation target that is different from the intended mean level of infla-

tion, which may destabilize inflation. Alternatively by adjusting the rest of the policy

profile a central bank can minimize the effect of inflation target uncertainty on inflation

such as by responding to expected inflation instead of contemporaneous inflation, but

this will also impact the volatilities.

Inflation target uncertainty may also be resolved by an announced future change in

the inflation target. I show that under standard calibrations of the policy rule, this will

introduce cyclical forces to the transition path of inflation and the output gap. However,

if the central bank adjusts the policy rule to allow for an optimally set, time varying

intercept the cyclical fluctuations can be eliminated. The key feature of the time varying

policy rule is a huge spike in interest rates the period before the inflation target changes,

which insures that monetary policy creates the largest deflationary force in the same

periods as expected inflation creates the strongest inflationary force. Additionally, intro-

ducing uncertainty in the period when the inflation target changes also eliminates the

cyclical dynamics and under the optimal policy rule generates roughly similar losses as

with the optimal time varying perfect foresight transition.

Motivated by proposals to increase the inflation target, this paper focuses on analyzing

the effects of expectations that in the future the inflation target might be endogenously

changed, with numerical examples focusing on a 2% increase in the inflation target.

Consistent with Janet Yelen’s comments there is uncertainty as to what is the specific

model that describes the economy and how it should be calibrated. As new information

and research rolls in, beliefs about the best model and the parameter estimates of the

model evolve and a different inflation target may become optimal. Without knowing what

the true model is, I evaluate the effects of the uncertainty in the future inflation target

in a standard, stylized model. However, within the context of the model, the optimal

policy is to credibly commit to maintain inflation at zero percent forever. To generate

model consistent changes in the unconstrained optimal inflation target requires changes

in the model fundamentals. One possibility, is that shocks hitting the economy change

over time and they generate different probabilities the zero lower bound on interest rates.

Dordal i Carreras et al. (2016) show that if there is a regime switching risk premium shock

that changes the expected duration the zero lower bound will bind the optimal inflation

target. For example, they find that if the probability of being at the zero lower bound is

10% and the expected duration of a zero lower bound episode increase from 9 quarters

to 18 quarters, the optimal inflation target increase from 2 to 4 percent. Thus one model

consistent explanation for why the inflation target will optimally follow a regime switching

process is that there is an underlying regime switching process for the risk premiums

shocks. However, this approach is somewhat unsatisfying since current proposals to
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increase the U.S. inflation target are primarily based on the economic experiences of the

past decade and concerns that the real interest rate has already declined rather than

beliefs that future shocks to the economy will be more persistent.
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A Proofs and Derivations

A.1 Regime Shift Solution

In this section, I derive the regime shift solution and prove proposition 1. Prior to period

zero and after the regime switch, there are no expectations of regime shifts and there are

no shocks; therefore, the economy is in a steady state. Solving for the steady state, the

Phillips curve implies

x =
(1− β)π

κ
, (46)

and the Euler equation implies i = π. Plugging these results into the policy rule and

solving for inflation,

π =
π?(1− φπ − φπ′)

1− φπ − φπ′ − φx(1− β)/κ
. (47)

Equations (46) and (47) describe the regime two outcome, and setting π? = 0 provides

the outcomes prior to period zero. Since monetary policy in regime two is independent of

monetary policy in regime one, π2 is exogenous from the perspective of a central bank in

regime one, and I solve for the outcomes in regime one as a function of π2 rather than π?.

In regime one, the expected output gap next period is the probability of remaining in the

same regime times the output gap in the current regime tomorrow plus the probability

of the regime shift times the output gap next period if the regime shift occurs. But since

each regime is in a steady state Etxt+1 = (1 − λ)x1 + λx2. Using this, I can rewrite

equations (16) - (18) as

π1 = β((1− λ)π1 + λπ2) + κx1 (48)
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x1 = (1− λ)x1 + λx2 − σ−1(i1 − (1− λ)π1 − λπ2) (49)

i1 = φππ1 + φπ′((1− λ)π1 + λπ2) + φxx1 + ī1, (50)

where ī1 = (1− φπ + φπ′)π
?
1. Solving for π1 in equation (48),

π1 =
βπ2λ+ κx1

1− β(1− λ)
(51)

and combining (49) with (50)

π1 = − λ+ σ−1φx
σ−1(φπ + (1− λ)(φπ′ − 1))

x1+

λ(1− β + σ−1κ(1− φπ′))π2 − σ−1κ(1− φπ − φπ′)π?1
κσ−1(φπ + (1− λ)(φπ′ − 1))

. (52)

Solving these equations for π1 and x1 results in equations (24) and (25).

I can now prove proposition 1. First taking the partial derivative of π2 with respect

to π? (using equation (47)),

∂π2

∂π?
=

(1− φπ − φπ′)
1− φπ − φπ′ − φx(1− β)/κ

≡ c2, (53)

which is positive if φπ + φπ′ > 1.18 Hence if a variable is increasing in π2 it is increasing

in π?. Define f(φπ′ , φx) ≡ λ(1 − β + βλ + σ−1κ + βσ−1φx − σ−1κφπ′), g(φπ, φπ′ , φx) ≡
κσ−1(φπ + (1− λ)(φπ′ − 1)) + (λ+ σ−1φx)(1− β(1− λ)), h(φπ, φπ′) ≡ λκσ−1(1− βφπ −
φπ′) + λ(1− β)(1− β(1− λ)), and c = κσ−1(1− β(1− λ)). Then,

π1 =
f(φπ′ , φx)c2π

? − σ−1κī1
g(φπ, φπ′ , φx)

and x1 =
h(φπ, φπ′)c2π

? − c̄i1
κg(φπ, φπ′ , φx)

. (54)

Taking partial derivatives,

∂π1

∂π?
=

f(φπ′ , φx)c2

g(φπ, φπ′ , φx)
and

∂x1

∂π?
=

h(φπ, φπ′)c2

κg(φπ, φπ′ , φx)
. (55)

Furthermore,

g(φπ, φπ′ , φx) > 0⇒ φπ + (1− λ)φπ′ + φx
1− β(1− λ)

κ

> 1− λ(1 +
1− β(1− λ)

σ−1κ
) > 1− λ (56)

18Recall, monetary policy in regime two is assumed to be independent of monetary policy in regime
one. Formally there are separate policy parameters in each regime and the partial derivatives of c2 with
respect to monetary policy parameters in regime one are all zero.
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f(φπ′ , φx) > 0⇒ 1 +
1− β(1− λ)

κσ−1
+
βφx
κ

> φπ′ (57)

h(φπ, φπ′) > 0⇒ 1 +
(1− β)(1− β(1− λ))

κσ−1
> βφπ + φπ′ (58)

If φπ + φπ′ ≥ 1, then g(φπ, φπ′ , φx) > 0, ∂x1
∂π?

> 0 ⇔ h(φπ, φπ′) > 0, and ∂π1
∂π?

> 0 ⇔
f(φπ′ , φx) > 0. Taking second derivatives,

∂2π1

∂π?∂φπ
=
−σ−1κf(φπ′ , φx)

g(φπ, φπ′ , φx)2
< 0⇔ f(φπ′ , φx) > 0, (59)

∂2π1

∂π?∂φx
=
λβσ−1g(φπ, φπ′ , φx)− σ−1(1− β(1− λ))f(φπ′ , φx)

g(φπ, φπ′ , φx)2
< 0

⇔ λβσ−1g(φπ, φπ′ , φx) < σ−1(1− β(1− λ))f(φπ′ , φx) > 0

⇔ 1 +
(1− β)(1− β(1− λ))

κσ−1
> βφπ + φπ′ +

β(1− β(1− λ)2)

κ
φx, (60)

and

∂2π1

∂π?∂φπ′
=
−λσ−1κg(φπ, φπ′ , φx)− σ−1κ(1− λ)f(φπ′ , φx)

g(φπ, φπ′ , φx)2
< 0

⇔ λσ−1κg(φπ, φπ′ , φx) + σ−1κ(1− λ)f(φπ′ , φx) > 0

⇔ κφπ + φx > −
1− β(1− λ)

σ−1
, (61)

which is always true. This completes the comparative statics portion of the proposition,

but that π1 < π2 ≤ π? and x1 < x2 if monetary policy parameters aside for the inflation

target are the same in both regimes still needs to be shown. π2 ≤ π? follows from equation

(47) for active monetary policy. To verify that π1 < π2,

π1 =
λ(1− β + βλ+ σ−1κ+ βσ−1φx − σ−1κφπ′)π2

κσ−1(φπ + (1− λ)(φπ′ − 1)) + (λ+ σ−1φx)(1− β(1− λ))
< π2

⇔ λ(1− β + βλ+ σ−1κ+ βσ−1φx − σ−1κφπ′) <

κσ−1(φπ + (1− λ)(φπ′ − 1)) + (λ+ σ−1φx)(1− β(1− λ))

⇔ (φπ + φπ′ − 1)σ−1κ+ σ−1φx(1− β) > 0, (62)

but this always holds if φπ + φπ′ > 1. Similarly x1 < x2 implies

λκσ−1(1− βφπ − φπ′) + λ(1− β)(1− β(1− λ))π2

κ(κσ−1(φπ + (1− λ)(φπ′ − 1)) + (λ+ σ−1φx)(1− β(1− λ)))
<

1− β
κ

π2

⇔ λκσ−1(1− βφπ − φπ′) + λ(1− β)(1− β(1− λ)) <

(1− β)(κσ−1(φπ + (1− λ)(φπ′ − 1)) + (λ+ σ−1φx)(1− β(1− λ))), (63)
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which simplifies to

κσ−1(1− β(1− λ))(φπ + φπ′ − 1) + σ−1φx((1− β)2 + λ(β − β2)) > 0 (64)

and always holds if φπ + φπ′ > 1. This completes the proof of proposition 1.

Before proving proposition 2, first I extend it to the case where monetary policy may

respond to both the output gap and expected inflation. It is assumed that monetary

policy in regime two is active and therefore has a unique solution for π2 and x2 given by

(46) and (47). The modified version states:

1. If f(φπ′ , φx) = g(φπ, φπ′ , φx), then π1 = π2 and x1 = 1−β
κ
π2

2. If f(φπ′ , φx) > g(φπ, φπ′ , φx) and g(φπ, φπ′ , φx) > 0 then π1 > 0 and x1 >
1−β
κ
π2 and

lim
g(φπ ,φπ′ ,φx)→0+

π1 = lim
g(φπ ,φπ′ ,φx)→0+

x1 =∞

3. If g(φπ, φπ′ , φx) < 0, then π1 < 0 and x1 < 0

To get to the simplified version in the main text, substitute in φπ′ = φx = 0 into f and

g. For the first part, f(0, 0) = g(φπ, 0, 0) implies φπ = 1. For the second part note that

f(0, 0) > g(φπ, 0, 0) implies φπ < 1 and g(φπ, 0, 0) > 0 implies φπ > 1− λ(1 + 1−β(1−λ)
σ−1κ

).

For part three, note that g(φπ, 0, 0) < 0 implies φπ < 1− λ(1 + 1−β(1−λ)
σ−1κ

)

Now for the proof, first express π1 in terms of f and g notation.

π1 =
f(φπ′ , φx)π2 − σ−1κī1

g(φπ, φπ′ , φx)
=

f(φπ′ , φx)π2

g(φπ, φπ′ , φx)
, (65)

where the second equality holds since π?1 = 0 and therefore ī1 = 0. From (65), it is

evident that setting π2 = π1 ⇒ f(φπ′ , φx) = g(φπ, φπ′ , φx). Additionally since π2 = π1,

(48) simplifies to x1 = 1−β
κ
π2, which completes the first part of the proposition.

For the second part, under passive policy

min
φπ′ ,φx

f(φπ′ , φx) = min
φπ′ ,φx

λ(1− β + βλ+ σ−1κ+ βσ−1φx − σ−1κφπ′)

= λ(1− β + βλ+ σ−1κ− σ−1κ) = λ(1− β + βλ), (66)

which is a positive constant. Therefore as g(φπ, φπ′ , φx) approaches 0 from above, the

numerator of π1 is at least λ(1−β+βλ), while the denominator approaches zero. Hence

π1 → ∞. Furthermore since, f(φπ′ , φx) and g(φπ, φπ′ , φx) are positive in this range and

by assumption f(φπ′ , φx) > g(φπ, φπ′ , φx), then π1 =
f(φπ′ ,φx)π2
g(φπ ,φπ′ ,φx)

> π2. For the output

gap, solve (51) for x1,

x1 =
π1(1− β(1− λ)− βλπ2

κ
(67)
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Since in this range π1 > π2,

x1 =
π1(1− β(1− λ)− βλπ2

κ
>
π2(1− β(1− λ)− βλπ2

κ
>

1− β
κ

π2 (68)

Finally, since limg(φπ ,φπ′ ,φx)→0+ π1 =∞, then by (67) the limit of x1 also foes to infinity.

For the final part of the proposition, since π1 =
f(φπ′ ,φx)π2
g(φπ ,φπ′ ,φx)

, f(φπ′ , φx) is always positive

under passive policy, and by assumption g(φπ, φπ′ , φx) < 0, then π1 < 0. For output, since

x1 =
h(φπ, φπ′)π2 − c̄i1
κg(φπ, φπ′ , φx)

=
h(φπ, φπ′)π2

κg(φπ, φπ′ , φx)
, (69)

h(φπ, φπ′) is always positive under passive policy (see (58)), and by assumption g(φπ, φπ′ , φx) <

0, then x1 < 0.

A.2 Monetary Policy Response Dynamics

Proposition 3 has two components, the set of outcomes the central bank can achieve and

the property that any such outcome can be achieved without affecting the volatility of

output or inflation in the stochastic model. The outcome in regime one is determined by

the intersection of the two linear equations (51)

π1 =
βπ2λ+ κx1

1− β(1− λ)

and (52) which can be expressed as

π1 = c3x1 + c4π2 + c5π
?
1. (70)

Since c3 6= κ/(1−β(1−λ)), the two equations will intersect. By changing π?1, the second

equation can be shifted up or down along equation (51). Hence by changing π?1, any

outcome consistent with equation (51) can be achieved. The second part of this proof is

to show that changing π?1 does not affect the volatility of output or inflation, which I do

at the end of this subsection as it involves finding an analytical solution to the stochastic

model.

Proposition 4 states that reducing the constant in the policy rule for the current

regime, ī1, will raise inflation and output in the current regime if φπ + (1 − λ)φπ′ +

φx
1−β(1−λ)

κ
> 1−λ(1 + 1−β(1−λ)

σ−1κ
). To see this, take partial derivatives of (54) with respect

to ī1,
∂π1

∂ī1
=

−σ−1κ

g(φπ, φπ′ , φx)
and

∂x1

∂ī1
=

−c
κg(φπ, φπ′ , φx)

. (71)

Both of the above are less than zero if g(φπ, φπ′ , φx) > 0, which by equation 56 is the

condition in the proposition.
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Proposition 5 claims that to achieve a zero inflation in regime one, the central bank

needs to generate a recession of magnitude βλπ2
κ

which can be accomplished by setting

π?1 = λπ2
1

1−φπ−φπ′
(1 − φπ′ + βφx

κ
+ 1−β(1−λ)

σ−1κ
). The Phillips Curve (51) determines the set

of possible outcomes in regime one. Setting inflation in regime one to zero and solving

for the output gap results in x1 = −βλπ2
κ

. Plugging the values for inflation and output in

regime one into the Euler equation for regime one merged with the interest rate rule (52),

I can solve for the regime one inflation target consistent with a zero inflation outcome.

0 = − λ+ σ−1φx
σ−1(φπ + (1− λ)(φπ′ − 1))

(−βλπ2

κ
)+

λ(1− β + σ−1κ(1− φπ′))π2 − σ−1κ(1− φπ − φπ′)π?1
κσ−1(φπ + (1− λ)(φπ′ − 1))

⇒ (1− φπ − φπ′)π?1 =
λπ2

σ−1κ
(1− β(1− λ) + σ−1κ(1− φπ′) + σ−1βφx)

⇒ π?1 = π2
λ

1− φπ − φπ′
(1− φπ′ +

βφx
κ

+
1− β(1− λ)

σ−1κ
) (72)

Proposition 6 describes the optimal allocation a central bank chooses with future

inflation target uncertainty. The central bank’s problem is to minimize losses as given by

(29), but since regime two is an absorbing regime this can be simplified. Starting from

(29),

Et

∞∑
t=0

βt(π2
t + θxx

2
t )

= Et

∞∑
t=0

(β(1− λ))t(π2
1,t + θxx

2
1,t) +

∞∑
t=0

(βt
t−1∑
j=0

λ(1− λ)j(π2
2,t + θxx

2
2,t))︸ ︷︷ ︸

≡C

= Et

∞∑
t=0

(β(1− λ))t(π2
1,t + θxx

2
1,t) + C

=
1

1− β(1− λ)
(π2

1 + θxx
2
1) + C (73)

From the solution for x2,t and π2,t, we know that they do not depend on policy parameters

for regime one, and therefore C is exogenous from the perspective of a central banker

that is only optimizing regime one policy. Therefore for policy optimization problems over

policy parameters for regimes which cannot be transitioned into as part of the Markov

process, minimizing losses is equivalent to minimizing losses while the current regime

lasts, and from a timeless perspective is equivalent to minimizing Etπ
2
1,t + θx2

1,t. To prove

proposition 6, I solve for the loss minimizing allocation on the Phillips Curve (which
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relates π1 to x1 for any π2):

min
x1,π1

1

1− β(1− λ)
(π2

1 + θx2
1) + C such that π1 =

βπ2λ+ κx1

1− β(1− λ)
(74)

Substituting in the constraint and taking the first order condition:

2(π2βλ+ κx1)κ

(1− β(1− λ))3
+

2θx1

1− β(1− λ)
= 0⇒ x1 =

−π2λβ

κ+ κ−1(1− β(1− λ))2θ
(75)

Substituting in x1 from (75) into (51) and solving for π1:

π1 =
βπ2λ

1− β(1− λ)
+

κ

1− β(1− λ)

−π2λβ

κ+ κ−1(1− β(1− λ))2θ

⇒ π1 =
π2λβ

1− β(1− λ)

κ−1(1− β(1− λ))2θ

κ+ κ−1(1− β(1− λ))2θ
(76)

Finally, substitute in (75) and (76) into (52) to solve for the inflation target in regime

one that results in the optimal allocation. Doing so,

π?1 =
1

1− φπ − φπ′
λσπ2

κ2 + z2
1θ

(βλκ+ (1− β)(κ+ κ−1z2
1θ)+

σ−1βκφx − λβz1θσ
−1φπ − (φπ′ − 1)σ−1(κ2 + z2

1θ + λ(1− λ)βz1θ)), (77)

where z1 ≡ 1− β(1− λ).

A.2.1 Stochastic Two Regime Model Solution

To complete the proof of proposition 3, I need to derive the solution for the stochastic

model. That is, I need an analytical solution to the two regime model described by (6) -

(9). To simplify the notation denote the Markov process

Π =

[
γ1 1− γ1

1− γ2 γ2

]
.

and define γ11 ≡ γ2
1 +(1−γ1)(1−γ2), γ22 ≡ γ2

2 +(1−γ1)(1−γ2), γ12 ≡ γ1(1−γ1)+(1−γ1)γ2,

and γ21 ≡ γ2(1−γ2)+(1−γ2)γ1. The first step is to combine the equations for each regime

into a single expression that eliminates interest rate and output gap terms. Starting with

(7),

π1,t = βEt(γ1π1,t+1 + (1− γ1)π2,t+1) + κx1,t + (1− β)π̄1 + µSt

⇒ κx1,t = π1,t − βγ1Etπ1,t+1 − β(1− γ1)Etπ2,t+1 − (1− β)π̄1 − µSt (78)
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Similarly,

κx2,t = π2,t − β(1− γ2)Etπ1,t+1 − βγ2Etπ2,t+1 − (1− β)π̄2 − µSt (79)

Now multiplying (6) though by κ, simplifying, and plugging in κx1,t and κx2,t,

κx1,t = κEt(γ1x1,t+1 + (1− γ1)x2,t+1)− κσ−1(φ1,ππ1,t + φ1,π′Et(γ1π1,t+1 + (1− γ1)π2,t+1)

− (φ1,π + φ1,π′ − 1)π?1 + φ1,xx1,t + µIt − Et(γ1π1,t+1 + (1− γ1)π2,t+1)) + κµDt

⇒ κx1,t(1 + σ−1φ1,x) = γ1Etκx1,t+1 + (1− γ1)Etκx2,t+1 − κσ−1φ1,ππ1,t − κσ−1µIt + κµDt

+ κσ−1(φ1,π + φ1,π′ − 1)π?1 + (1− φ1,π′)κσ
−1γ1Etπ1,t+1 + (1− φ1,π′)κσ

−1(1− γ1)Etπ2,t+1

⇒ (1 + σ−1φ1,x)(π1,t − βγ1Etπ1,t+1 − β(1− γ1)Etπ2,t+1 − (1− β)π̄1 − µSt ) =

γ1Et(π1,t+1 − βγ1Etπ1,t+2 − β(1− γ1)Etπ2,t+2 − (1− β)π̄1 − µSt+1)

+ (1− γ1)Et(π2,t+1 − β(1− γ2)Etπ1,t+2 − βγ2Etπ2,t+2 − (1− β)π̄2 − µSt+1)

− κσ−1φ1,ππ1,t + (1− φ1,π′)κσ
−1γ1Etπ1,t+1 + (1− φ1,π′)κσ

−1(1− γ1)Etπ2,t+1

+ κσ−1(φ1,π + φ1,π′ − 1)π?1 − κσ−1µIt + κµDt

⇒ π1,t(1 + σ−1φ1,x + κσ−1φ1,π)− Etπ1,t+1γ1(β(1 + σ−1φ1,x) + 1 + (1− φ1,π′)σ
−1κ)

+ Etπ1,t+2βγ11 − Etπ2,t+1(1− γ1)(β(1 + σ−1φ1,x) + 1 + (1− φ1,π′)σ
−1κ) + Etπ2,t+2βγ12

= (1 + σ−1φ1,x)µ
S
t − EtµSt+1 − κσ−1µIt + κµDt︸ ︷︷ ︸

≡µ1,t

+(1− β)((1 + σ−1φ1,x − γ1)π̄1 − (1− γ1)π̄2) + κσ−1(φ1,π + φ1,π′ − 1)π?1︸ ︷︷ ︸
≡a1

= µ1,t+a1 ≡ z1,t

(80)

Similarly,

π2,t(1 + σ−1φ2,x + κσ−1φ2,π)− Etπ2,t+1γ2(β(1 + σ−1φ2,x) + 1 + (1− φ2,π′)σ
−1κ)

+ Etπ2,t+2βγ22 − Etπ1,t+1(1− γ2)(β(1 + σ−1φ2,x) + 1 + (1− φ2,π′)σ
−1κ) + Etπ1,t+2βγ21

= (1 + σ−1φ2,x)µ
S
t − EtµSt+1 − κσ−1µIt + κµDt︸ ︷︷ ︸

≡µ2,t

+(1− β)((1 + σ−1φ2,x − γ2)π̄2 − (1− γ2)π̄1) + κσ−1(φ1,π + φ1,π′ − 1)π?1︸ ︷︷ ︸
≡a2

= µ2,t+a2 ≡ z2,t

(81)
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Note that the inflation targets and the indexing parameters based on the inflation targets

only occur in the a1 and a2 terms. Next define the polynomials,

Qj(y) = βγjjy
2 − γj(β(1 + σ−1φj,x) + 1 + (1− φj,π′)σ−1κ)y + (1 + σ−1φj,x + κσ−1φj,π)

≡ cj,1y
2 − cj,2y + cj,3 (82)

Pj(y) = y(βγj,−jy − (1− γj)(β(1 + σ−1φj,x) + 1 + (1− φj,π′)σ−1κ) ≡ y(dj,1y − dj,2) (83)

Rewriting (80) and (81) using lag notation,

Et(Q1(L−1)π1,t + P1(L−1)π2,t) = z1,t (84)

Et(Q2(L−1)π2,t + P2(L−1)π1,t) = z2,t (85)

Next combine (84) and (85) to get one equation in one variable. To eliminate π2,t, multiply

(84) through by Q2(L−1), (85) through by P1(L−1), and subtract them to get

Et(Q1(L−1)Q2(L−1)− P2(L−1)P1(L−1))π1,t

= Et(Q2(L−1)z1,t − P1(L−1)z2,t) ≡ Ỹ1,t (86)

Similarly,

Et(Q1(L−1)Q2(L−1)− P2(L−1)P1(L−1))π2,t

= Et(Q1(L−1)z2,t − P2(L−1)z1,t) ≡ Ỹ2,t (87)

Next, define ˜C(y) ≡ Q1(y)Q2(y)− P2(y)P1(y), then

˜C(y) = (c1,1c2,1 − d1,1d2,1)y4 − (c1,2c2,1 + c2,2c1,1 + d22,1d1,2 + d1,1d2,2)y3

+ (c1,3c2,1 + c1,2c2,2 + c1,1c2,3 − d2,2d1,2)y2 − (c2,2c1,3 + c1,1c2,3)y + c2,3c1,3 (88)

In this notation, (86) and (87) become

Et( ˜C(L−1)πj,t) = EtỸj,t (89)

Define C(y) ≡
˜C(y)

c1,1c2,1−d1,1d2,1 and Yj,t ≡ Ỹj,t
c1,1c2,1−d1,1d2,1 , then

Et(C(L−1)πj,t) = EtYj,t (90)
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Let λ1, λ2, λ3, and λ4 be the roots of C(y). For a unique forward solution all the roots

must be greater than one in absolute value. Continuing,

Et((L
−1 − λ1)(L−1 − λ2)(L−1 − λ3)(L−1 − λ4)πj,t) = EtYj,t ⇒

Et(λ1λ2λ3λ4(1− 1

λ1

L−1)(1− 1

λ2

L−1)(1− 1

λ3

L−1)(1− 1

λ4

L−1)πj,t) = EtYj,t

⇒ πj,t = Et[
1

(1− 1
λ1
L−1)(1− 1

λ2
L−1)(1− 1

λ3
L−1)(1− 1

λ4
L−1)

1

λ1λ2λ3λ4

Yj,t]

= Et[(
1

(λ3 − λ1)(λ4 − λ1)(λ2 − λ1)
(

1

λ1

1

1− 1
λ1
L−1
− 1

λ2

1

1− 1
λ2
L−1

)+

1

(λ1 − λ3)(λ2 − λ3)(λ4 − λ3)
(

1

λ3

1

1− 1
λ3
L−1
− 1

λ4

1

1− 1
λ4
L−1

))Yj,t]

= (
1

(λ3 − λ1)(λ4 − λ1)(λ2 − λ1)
(
∞∑
k=0

1

λ1

k+1

EtYj,t+k −
∞∑
k=0

1

λ2

k+1

EtYj,t+k)+

1

(λ1 − λ3)(λ2 − λ3)(λ4 − λ3)
(
∞∑
k=0

1

λ3

k+1

EtYj,t+k −
∞∑
k=0

1

λ4

k+1

EtYj,t+k) (91)

Next simplifying EtYj,t+k, first note

Etzj,t+k = (1 + σ−1φj,x − ρS)ρkSµ
S
t − κσ−1ρkIµ

I
t + κρkDµ

D
t + aj (92)

Then,

EtY1,t+k =
1

c1,1c2,1 − d1,1d2,1

Et(Q2(L−1)z1,t − P1(L−1)z2,t)

=
1

c1,1c2,1 − d1,1d2,1

Et((c2,1L
−2 − c2,2L

−1 + c2,3)z1,t − (d1,1L
−2 − d1,2L

−1)z2,t)

=
1

c1,1c2,1 − d1,1d2,1

[((1 + σ−1φ1,x − ρS)(c2,1ρ
2
S − c2,2ρS + c2,3) + (1 + σ−1φ2,x − ρS)

∗ (−d1,1ρ
2
S − d1,2ρS))µSt − κσ−1((c2,1 − d1,1)ρ2

I + (d1,2 − c2,2)ρI + c2,3)µIt

+ κ((c2,1 − d1,1)ρ2
D + (d1,2 − c2,2)ρD + c2,3)µDt + (c2,1 − d1,1 + d1,2 − c2,2 + c2,3)a1]

≡ e1,1µ
S
t + e1,2µ

I
t + e1,3µ

D
t + e1,4a1 (93)

Similarly,

EtY2,t+k =
1

c1,1c2,1 − d1,1d2,1

[((1+σ−1φ2,x−ρS)(c1,1ρ
2
S−c1,2ρS +c1,3)+(1+σ−1φ1,x−ρS)

(−d2,1ρ
2
S − d2,2ρS))µSt − κσ−1((c1,1 − d2,1)ρ2

I + (d2,2 − c1,2)ρI + c1,3)µIt

+ κ((c1,1 − d2,1)ρ2
D + (d2,2 − c1,2)ρD + c1,3)µDt + (c1,1 − d2,1 + d2,2 − c1,2 + c1,3)a2]

≡ e2,1µ
S
t + e2,2µ

I
t + e2,3µ

D
t + e2,4a2 (94)
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Plugging this into (91) and rearranging the sums such that each element of EtYj,t+k is in

a separate sum

πj,t = (
1

(λ3 − λ1)(λ4 − λ1)(λ2 − λ1)
(
∞∑
k=0

1

λ1

k+1

Etej,1µ
S
t+k −

∞∑
k=0

1

λ2

k+1

Etej,1µ
S
t+k)+

1

(λ1 − λ3)(λ2 − λ3)(λ4 − λ3)
(
∞∑
k=0

1

λ3

k+1

Etej,1µ
S
t+k −

∞∑
k=0

1

λ4

k+1

Etej,1µ
S
t+k)

+ (
1

(λ3 − λ1)(λ4 − λ1)(λ2 − λ1)
(
∞∑
k=0

1

λ1

k+1

Etej,2µ
I
t+k −

∞∑
k=0

1

λ2

k+1

Etej,2µ
I
t+k)+

1

(λ1 − λ3)(λ2 − λ3)(λ4 − λ3)
(
∞∑
k=0

1

λ3

k+1

Etej,2µ
I
t+k −

∞∑
k=0

1

λ4

k+1

Etej,2µ
I
t+k)

+ (
1

(λ3 − λ1)(λ4 − λ1)(λ2 − λ1)
(
∞∑
k=0

1

λ1

k+1

Etej,3µ
D
t+k −

∞∑
k=0

1

λ2

k+1

Etej,3µ
D
t+k)+

1

(λ1 − λ3)(λ2 − λ3)(λ4 − λ3)
(
∞∑
k=0

1

λ3

k+1

Etej,3µ
D
t+k −

∞∑
k=0

1

λ4

k+1

Etej,3µ
D
t+k)

+ (
1

(λ3 − λ1)(λ4 − λ1)(λ2 − λ1)
(
∞∑
k=0

1

λ1

k+1

Etej,4aj −
∞∑
k=0

1

λ2

k+1

Etej,4aj)+

1

(λ1 − λ3)(λ2 − λ3)(λ4 − λ3)
(
∞∑
k=0

1

λ3

k+1

Etej,4aj −
∞∑
k=0

1

λ4

k+1

Etej,4aj)

(95)

Next consider the sums over any one of the four expected shock terms, for example µS,

1

(λ3 − λ1)(λ4 − λ1)(λ2 − λ1)
(
∞∑
k=0

1

λ1

k+1

Etej,1µ
S
t+k −

∞∑
k=0

1

λ2

k+1

Etej,1µ
S
t+k)+

1

(λ1 − λ3)(λ2 − λ3)(λ4 − λ1)
(
∞∑
k=0

1

λ3

k+1

Etej,1µ
S
t+k −

∞∑
k=0

1

λ4

k+1

Etej,1µ
S
t+k)

=
1

(λ3 − λ1)(λ4 − λ1)(λ2 − λ1)
(
∞∑
k=0

1

λ1

(
ρS
λ1

)kej,1µ
S
t −

∞∑
k=0

1

λ2

(
ρS
λ2

)kej,1µ
S
t )+

1

(λ1 − λ3)(λ2 − λ3)(λ4 − λ1)
(
∞∑
k=0

1

λ3

(
ρS
λ3

)kej,1µ
S
t −

∞∑
k=0

1

λ4

(
ρS
λ4

)k+1ej,1µ
S
t )

= [
1

(λ3 − λ1)(λ4 − λ1)(λ2 − λ1)
(

1

λ1 − ρS
− 1

λ2 − ρS
)+

1

(λ1 − λ3)(λ2 − λ3)(λ4 − λ3)
(

1

λ3 − ρS
− 1

λ4 − ρS
)]ej,1µ

S
t

= [
1

(λ3 − λ1)(λ4 − λ1)

1

(λ1 − ρS)(λ2 − ρS)
+

1

(λ1 − λ3)(λ2 − λ3)

1

(λ3 − ρS)(λ4 − ρS)
]ej,1µ

S
t

≡ gSej,1µ
S
t (96)
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Similarly, define gD, gI , g1, where ρS is replaced by ρD, ρI , and 1. Then using these

definitions, (95) simplifies to

πj,t = gSej,1µ
S
t + gIej,2µ

I
t + gDej,3µ

D
t + g1ej,4aj (97)

Using (78) and (79), I find the solution for x1,t and x2,t are

x1,t = κ−1(π1,t − βγ1Etπ1,t+1 − β(1− γ1)Etπ2,t+1 − (1− β)π̄1 + µSt

= κ−1(gS(e1,1(1−βγ1ρS)−β(1−γ1)ρSe2,1)+1)µSt +κ−1gI(e1,2(1−βγ1ρI)−β(1−γ1)ρIe2,2)µIt

+κ−1gD(e1,3(1−βγ1ρD)−β(1−γ1)ρDe2,3)µDt +κ−1g1(1−βγ1)e1,4a1−κ−1g1β(1−γ1)e2,4a2)−(1−β)π̄1

≡ f1,Sµ
S
t + f2,Iµ

I
t + f1,D u

D
t + f1,1a1 + f1,2a2 − (1− β)κ−1π̄1 (98)

x2,t = κ−1(π2,t − βγ2Etπ2,t+1 − β(1− γ2)Etπ1,t+1 − (1− β)π̄2 + µSt

= κ−1(gS(e2,1(1−βγ2ρS)−β(1−γ2)ρSe1,1)+1)µSt +κ−1gI(e2,2(1−βγ2ρI)−β(1−γ2)ρIe1,2)µIt

+κ−1gD(e2,3(1−βγ2ρD)−β(1−γ2)ρDe1,3)µDt +κ−1g1(1−βγ2)e2,4a2−κ−1g1β(1−γ2)e1,4a1)−(1−β)π̄2

≡ f2,Sµ
S
t + f2,Iµ

I
t + f2,D u

D
t + f2,1a1 + f2,2a2 − (1− β)κ−1π̄2 (99)

Equations (93), (98), and (99) are the analytic solutions to the stochastic two regime

model. Finally, calculating the first and second moments,

Eπj,t = E(gSej,1µ
S
t + gIej,2µ

I
t + gDej,3µ

D
t + g1ej,4aj) = g1ej,4aj (100)

Exj,t = E(fj,Sµ
S
t + fj,Iµ

I
t + fj,D u

D
t + fj,1a1 + fj,2a2 − (1− β)κ−1π̄j)

= fj,1a1 + fj,2a2 − (1− β)κ−1π̄j (101)

V ar(πj,t) = V ar(gSej,1µ
S
t + gIej,2µ

I
t + gDej,3µ

D
t + g1ej,4aj)

= g2
Se

2
j,1V ar(µ

S
t ) + g2

Ie
2
j,2V ar(µ

I
t ) + g2

De
2
j,3V ar(µ

D
t )

= g2
Se

2
j,1

V ar(εSt )

1− ρ2
S

+ g2
Ie

2
j,2

V ar(εIt )

1− ρ2
I

+ g2
De

2
j,3

V ar(εDt )

1− ρ2
D

(102)

V ar(xj,t) = V ar(fj,Sµ
S
t + fj,Iµ

I
t + fj,Dµ

D
t + fj,1a1 + fj,2a2 − (1− β)κ−1π̄j)

= f 2
j,SV ar(µ

S
t ) + f 2

j,IV ar(µ
I
t ) + f 2

j,DV ar(µ
D
t )

= f 2
j,S

V ar(εSt )

1− ρ2
S

+ f 2
j,I

V ar(εIt )

1− ρ2
I

+ f 2
j,D

V ar(εDt )

1− ρ2
D

(103)
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Recall that the regime specific inflation target and the indexing based on them only

appear in a1 and a2. Therefore the variances of inflation and output do not depend on

the inflation targets, completing the proof of proposition 6.

A.3 Perfect Foresight Solution

The model is described by three equations

xt = Etxt+1 − σ−1(it − Etπt+1) (104)

πt = βEtπt+1 + κxt, and (105)

it = φππt − (φπ − 1)π?t (106)

Furthermore,

π?t =

0, if t < T

π?, if t ≥ T
and Ejπ

?
t =


0, if j < 0

0, if 0 ≤ j < T and 0 ≤ t < T

π?, if j ≥ 0 and t ≥ T

.

A.3.1 Recursive Formulation

To get the recursive formulation for 0 ≤ t < T , first note that xt = Et−1xt and πt = Et−1πt

as this is a perfect foresight model and π?t = 0. Then we can rewrite equations (104),

(105), and (106) as [
1 −κ

σ−1φπ 1

][
πt−1

xt−1

]
=

[
β 0

σ−1 1

][
πt

xt

]
. (107)

Solving for xt−1 and πt−1,

[
πt−1

xt−1

]
=

[
1 −κ

σ−1φπ 1

]−1 [
β 0

σ−1 1

][
πt

xt

]
=

1

1 + κσ−1φπ

[
β + κ+ σ−1 κ

−βσ−1φπ + σ−1 1

][
πt

xt

]
. (108)

Equation (108) is equivalent to equations (40) and (41) in the main text.

A.3.2 One Period in Advance Announcement

Let us first verify the dynamics in equation (34). Prior to the announcement and after

the inflation target changes, expectations for the inflation target are constant and there

are no other shocks; therefore, the model is in two steady states. Combining equations
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104 and 106 and using the steady state property,

x = x− σ−1(φππ − (φπ − 1)π? − π)⇒ π = π?. (109)

Then by the Philips curve,

x =
1− β
κ

π?. (110)

Therefore,

xt =

0, if t < 0

1−β
κ
π?, if t > 0

and πt =

0, if t < 0

π?, if t > 0
. (111)

The t = 0 allocation can be obtained by combining equations (108) and (111),[
π0

x0

]
=

1

1 + κσ−1φπ

[
β + κσ−1 κ

−βσ−1φπ + σ−1 1

][
π?

1−β
κ
π?

]
=

[
1+κσ−1

1+κσ−1φπ
π?

1−β−σ−1κ(βφπ−1)
κ(1+κσ−1φπ)

π?

]
. (112)

Next, I prove proposition 7. Since

π0 =
1 + κσ−1

1 + κσ−1φπ
π?, (113)

if φπ = 1, then π0 = π?. If φπ < 1, then the denominator is less than the numerator and

π0 > π?. If φπ > 1, then π0 < π? and limφπ→∞ π0 = 0. Since

x0 =
1− β − σ−1κ(βφπ − 1)

κ(1 + κσ−1φπ)
π?, (114)

x0 < 0⇔ 1− β − σ−1κ(βφπ − 1) < 0⇔ σ−1κ+ 1− β
βσ−1κ

> φπ. (115)

Furthermore,
∂π0

∂φπ
=
−κσ−1(1 + κσ−1)π?

(1 + κσ−1φπ)2
< 0 (116)

and
∂x0

∂φπ
=
−σ−1(1 + κσ−1)π?

(1 + κσ−1φπ)2
< 0. (117)

A.3.3 T Period in Advance Announcement

I solve for the outcomes with a T period in advance announcement by rewriting the model

as a single difference equation in inflation. I then solve the model using the properties of

lag operators. Let ît = −(φπ − 1)π?t , then we can rewrite equation (106) as

it = φππt + ît. (118)
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Then, I can rewrite the model in lag operator notation and combine equations (118) and

(104),

Et(1− L−1)xt = σ−1Et(L
−1 − φπ)πt − σ−1ît (119)

Et(1− βL−1)πt = κxt (120)

Multiplying equation (119) through by κ and equation (120) through by (1 − L−1) and

then equating them,

Et(1− L−1)(1− βL−1)πt = κσ−1Et(L
−1 − φπ)πt − σ−1κît. (121)

Rearranging,

Et(1−
1 + β + σ−1κ

1 + σ−1κφπ
L−1 +

β

1 + σ−1κφπ
L−2)πt =

−σ−1κ

1 + σ−1κφπ
ît. (122)

I can rewrite this as

Et(1− λ1L
−1)(1− λ2L

−1)πt =
−σ−1κ

1 + σ−1κφπ
ît, (123)

where

λ =
1 + β + σ−1κ±

√
(1 + β + σ−1κ)2 − 4β(1 + σ−1κφπ)

2(1 + σ−1κφπ)
. (124)

If φπ > 1, then |λ1| and |λ1| are less then one and the model can be solved forward. Doing

so

πt = −Et
1

(1− λ1L−1)(1− λ2L−1)

σ−1κ

1 + σ−1κφπ
ît

=
σ−1κ

1 + σ−1κφπ

1

λ1 − λ2

Et(−λ1

∞∑
j=0

λj1ît+j + λ2

∞∑
j=0

λj2ît+j), (125)

which is the same as equation (35). If Etît+j = 0 ∀j, then πt = 0 and xt = πt−βEtπt+1

κ
= 0,

which is the pre-announcement steady state. Simplifications of equation (125) depend on

whether λ1 and λ2 are real or complex numbers. They are real if

(1 + β + σ−1κ)2 − 4β(1 + σ−1κφπ) ≥ 0

⇔ (1− β)2

κσ−1
+ κσ−1 ≥ 2(βφπ − 1) + 2β(φπ − 1) (126)
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Assuming equation (126) holds, I can rewrite equation (125) for period T − t and then

simplify to get

πT−t =
σ−1κ

1 + σ−1κφπ

1

λ1 − λ2

ET−t(−λ1

∞∑
j=0

λj1îT−t+j + λ2

∞∑
j=0

λj2îT−t+j)

=
σ−1κ

1 + σ−1κφπ

1

λ1 − λ2

(−λ1

∞∑
j=t

λj1î+ λ2

∞∑
j=t

λj2î)

=
σ−1κ

1 + σ−1κφπ

1

λ1 − λ2

(−λt+1
1

∞∑
j=0

λj1 + λt+1
2

∞∑
j=0

λj2)̂i

=
σ−1κ

1 + σ−1κφπ

1

λ1 − λ2

−λt+1
1 (1− λ2) + λt+1

2 (1− λ1)

(1− λ1)(1− λ2)
π?(1− φπ)

= π?
(1− φπ)σ−1κ

1 + σ−1κφπ

1 + σ−1κφπ
(φπ − 1)σ−1κ

−λt+1
1 (1− λ2) + λt+1

2 (1− λ1)

−1(λ2 − λ1)

= π?
−λt+1

1 (1− λ2) + λt+1
2 (1− λ1)

λ2 − λ1

, (127)

where î = −(φπ − 1)π?. Solving for xT−t,

xT−t =
πT−t − βET−tπT−t+1

κ
=

(1− λ1)λt2(λ2 − β)− (1− λ2)λt1(λ1 − β)

κ(λ2 − λ1)
(128)

Equations (126) though (128) verify the first half of proposition 8. To verify the rest of

it, I solve for πT−t when equation (126) is violated. First note we can express λ1,2 as

λ1,2 =
1 + β + σ−1κ± i

√
−((1 + β + σ−1κ)2 − 4β(1 + σ−1κφπ)

2(1 + σ−1κφπ))

≡ a± bi = re±iω = r(cosω ± i sinω), (129)

where

r =
√
a2 + b2 =

√( 1 + β + σ−1κ

2(1 + σ−1κφπ)

)2

+
−((1 + β + σ−1κ)2 − 4β(1 + σ−1κφπ)

4(1 + σ−1κφπ)2

=

√
β

1 + σ−1κφπ
(130)

and

ω = cos−1(
a

r
) = cos−1(

1 + β + σ−1κ

2(1 + σ−1κφπ)

/√ β

1 + σ−1κφπ
)

= cos−1(
1 + β + σ−1κ

2
√
β(1 + σ−1κφπ)

). (131)
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Now to simplify equation (125),

πt =
σ−1κ

1 + σ−1κφπ

1

λ1 − λ2

Et(
∞∑
j=0

(λj+1
2 − λj+1

1 )̂it+j)

=
σ−1κ

1 + σ−1κφπ

1

reiω − re−iω
Et(

∞∑
j=0

((re−iω)j+1 − (reiω)j+1)̂it+j)

=
σ−1κ

1 + σ−1κφπ

1

2ri sinω
Et(

∞∑
j=0

−2rj+1i sin(ω(j + 1))̂it+j)

=
−σ−1κ

1 + σ−1κφπ
Et(

∞∑
j=0

rj
sin(ω(j + 1))

sinω
ît+j). (132)

Rewriting equation (132) for period T − t,

πT−t =
−σ−1κ

1 + σ−1κφπ
ET−t(

∞∑
j=0

rj
sin(ω(j + 1))

sinω
îT−t+j)

=
−σ−1κ

1 + σ−1κφπ

∞∑
j=t

rj
sin(ω(j + 1))

sinω
î

=
−σ−1κ

1 + σ−1κφπ

∞∑
j=0

rj+t
sin(ω(j + 1 + t))

sinω
π?(1− φπ)

= π?
σ−1κ(φπ − 1)

1 + σ−1κφπ
rt
∞∑
j=0

rj
sin(ω(j + 1 + t))

sinω
, (133)

which completes the proof of proposition 8.

Next, I prove proposition 9. Recall equations (40) and (41) and define a, b, c, and d

as

πt−1 =
β + σ−1κ

1 + σ−1κφπ︸ ︷︷ ︸
a

πt +
κ

1 + σ−1κφπ︸ ︷︷ ︸
b

xt (134)

xt−1 =
−σ−1(βφπ − 1)

1 + σ−1κφπ︸ ︷︷ ︸
c

πt +
1

1 + σ−1κφπ︸ ︷︷ ︸
d

xt. (135)

Let us first consider the φπ < 1 case. First note that πT−1 = aπT + bxT > aπT > πT =

π? > 0, because a > 1, b > 0, and xT > 0. Similarly,

xT−1 > xT ⇔
1− β − σ−1κ(βφπ − 1)π?

κ(1 + κσ−1φπ)
>

1− β
κ

π? ⇔ φπ < 1. (136)

Hence xT−1 > xT = 1−β
κ
π? > 0. Now I prove by induction that 0 < πT−n < πT−n−1

and 0 < xT−n < xT−n−1 for all n, which implies the first part of proposition 2. I have

just shown that this holds for n = 0. Now assume this is true for n = k − 1, that is
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0 < πT−k+1 < πT−k and 0 < xT−k+1 < xT−k. Then for n = k,

πT−k−1 = aπT−k + bxT−k > aπT−k+1 + bxT−k+1 = πT−k > 0

xT−k−1 = cxT−k + dxT−k > cπT−k+1 + dxT−k+1 = xT−k > 0,

which completes the proof by induction.

Next, let us consider the φπ = 1 case. From equations (134) and (135), πT−1 = π? = πT

and xT−1 = 1−β
κ
π? = xT . Since πT−t and xT−t are recursively defined and constant

between t = 0 and t = 1, they will be constant for any t.19

Next, let us consider the 1 < φπ ≤ 1
β

case. Note that, πT−1 = 1+κσ−1

1+κσ−1φπ
π? < π? = πT

and xT−1 < xT as this is the opposite case of (136). Additionally, a, b, c, d, xT−1,

and πT−1 are all positive. Now I prove by induction that 0 ≤ πT−n−1 < πT−n and

0 ≤ xT−n−1 < xT−n for all n, which implies the third part of proposition 9. I have

just shown that this holds for n = 0. Now assume this is true for n = k − 1, that is

0 < πT−k < πT−k+1 and 0 < xT−k < xT−k+1. Then for n = k,

πT−k−1 = aπT−k + bxT−k < aπT−k+1 + bxT−k+1 = πT−k

xT−k−1 = cxT−k + dxT−k < cπT−k+1 + dxT−k+1 = xT−k.

Furthermore since a, b, c, d, xT−k, and πT−k are all positive, then so are πT−k−1 and

xT−k−1, which completes the proof by induction.

The final case is φπ >
1
β
, and as argued before xT−1 < xT and πT−1 < πT . Furthermore

as long as πt and xt are both greater than zero, xt−1 < xt and πt−1 < πt. For the output

gap, xt−1 = cπt + dxt < dxt < xt because c < 0 and d < 1. For inflation the previous

induction argument still holds. So at time T − 1 and as long as both inflation and

output are positive, they are both monotonically increasing. If t is large enough given

the calibration that πt and xt are not both greater than zero, then may exist some perhaps

different t and t′ for which πt and xt′ are monotonically decreasing as a consequence of

the functional form of the solutions given in equations (127) and (128) (the solutions’

functional form aλt1 + bλt2 is where 0 < λ1 < 1 and 0 < λ2 < 1 and a and b can be

either positive or negative implies there can be at most one change in the sign of the first

derivative).

A.4 Time Varying Optimal Policy Rule

In this section I solve for the optimal time varying policy rule and outcome for a T period

in advance change in the inflation target described in section 6.2. Let the central bank

19This can be shown formally by an induction argument similar to the one used to prove the first part
of the proposition.

64



declare at time t = 0 that t = T the inflation target will be raised from 0 to π̄. The

central bank optimization problem is

min
xt,πt

T∑
t=0

βt(π2
t + θxx

2
t ) s.t. πt = κxt + βπt+1, πT = π̄ (137)

The Lagrangian is

L =
T∑
t=1

βt(π2
t + θxx

2
t + 2γt(πt − κxt − βπt+1)) (138)

The FOC for t = 0, ..., T are

θxxt = γtκ (139)

πt = γt−1 − γt (140)

πt = κxt + βπt+1 (141)

πT = π̄ and γ−1 = 0 (142)

I can rewrite these as

πt =
θx
κ

(xt−1 − xt) (143)

πt = κxt + βπt+1 (144)

for t = 0, ..., T along with γ−1 = 0 and end point (πT+1, xT+1) = (π̄, 1−β
κ
π̄).

To solve these equations, I turn this into a second order difference equation in the

inflation rate and solve for the transition path of inflation. Once the path of inflation

is solved for I can back out the path of the output gap and interest rates (and the

components thereof). Solving (144) for output:

xt =
πt − βπt+1

κ
(145)

Plugging this into (143) and simplifying

πt =
θx
κ

(
πt−1 − βπt

κ
− πt − βπt+1

κ
)

⇒ πt+1 −
κ2 + θx(1 + β)

βθx
πt +

1

β
πt−1 = 0

⇒ πt+1 − aπt + bπt−1 = 0, (146)

where a = κ2+θx(1+β)
βθx

and b = 1
β
.
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Guess πt = Awt so

Awt+1 − aAwt + bAwt−1 = 0⇒ w2 − aw + b = 0⇒ (w −m1)(w −m2) = 0, (147)

where

m1,2 =
a±
√
a2 − 4b

2
(148)

m1,2 are real and distinct if

a2 − 4b = (
κ2 + θx(1 + β)

βθx
)− 4

β
> 0

(κ2 + θx(1 + β))2 > 4βθ2
x

κ4 + 2κ2θx + 2κ2βθx + θx(1− β)2 > 0 (149)

Since the last line will hold for any set of reasonable parameters (non negative and β < 1),

the general solution will be of the form

πt = A1m
t
1 + A2m

t
2 (150)

Notably, cyclical dynamics such as those exhibited under a constant policy rule will never

be optimal.

To solve for the specific solution, I use πT = π̄ and γ−1 = 0 which in turn implies

π0 = −θx
κ
x0 (151)

Solving this for x0 and plugging into (144) for t = 0 to get

1

β
(1 +

κ2

θx
)π0 = π1 (152)

Define z1 = 1
β
(1 + κ2

θx
), then to solve for the specific solution, I solve

π̄ = A1m
T
1 + A2m

T
2 (153)

z1(A1 + A2) = A1m1 + A2m2 (154)

Doing so

A2 =
π̄

−mT
1 (m2−z1

m1−z1 ) +mT
2

≡ π̄

mT
1 z2 +mT

2

(155)

A1 = −A2
m2 − z1

m1 − z1

≡ A2z2, (156)
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where z2 = −m2−z1
m1−z1 . Given A1 and A2,

πt = A1m
t
1 + A2m

t
2 (157)

xt =
πt − βπt+1

κ
=
mt

1A1(1− βm1) +mt
2A2(1− βm2)

κ
(158)

Furthermore since it = φππt + (1− φπ)π?t ≡ φππt + īt, I can back out the values for it, īt

and π?t using the IS equation;

xt = xt+1 − σ−1(it − πt+1) (159)

it = σ(xt+1 − xt) + πt+1 (160)

īt = σ(xt+1 − xt) + πt+1 − φππt (161)

π?t =
σ(xt+1 − xt) + πt+1 − φππt

1− φπ
(162)

Next I turn to a proof of proposition 10. As preliminaries to the proof, I first show

that m1 > z1 > m2, m1 > 1 > m2 > 0, z2 > 0, and that A1, A2 > 0 if π̄ > 0 and

A1, A2 < 0 if π̄ < 0.

First to show m1 > 0, recall that m1 = a+
√
a2−4b
2

, but a = κ2+θx(1+β)
βθx

> 0 and we have

already shown that a2 − 4b > 0. Hence, m1 > 0.

Next to check that m2 > 0:

m2 =
a−
√
a2 − 4b

2
> 0⇔ a >

√
a2 − 4b (163)

⇔ a2 > a2 − 4b (164)

⇔ 0 > −4b⇔ 0 > − 4

β
, (165)

which always holds.20

Next to verify that m1 > 1:

m1 =
a+
√
a2 − 4b

2
> 1⇔

√
a2 − 4b > 2− a, (166)

but

2− a = 2− (
κ2

βθx
+

1

β
+ 1) < − κ2

βθx
< 0 (167)

Hence,
√
a2 − 4b > 0 > 2− a.

20Equation (164) holds because both a and
√
a2 − 4b are both always positive. Similarly, equations

(169) and (173) hold because the preceding inequalities are between positive numbers.
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Now to verify that m2 < 1:

m2 =
a−
√
a2 − 4b

2
< 1⇔ a− 2 >

√
a2 − 4b (168)

⇔ a2 − 4a+ 4 = (a− 2)2 >
√
a2 − 4b

2
= a2 − 4b (169)

⇔ 1 < a− b =
κ2 + θx(1 + β)

βθx
− 1

β
⇔ βθx < κ2 + θx(1 + β)− θx ⇔ 0 < κ2, (170)

which always holds.

Next to verify that m1 > z1:

m1 =
a+
√
a2 − 4b

2
>

1

β
(1 +

κ2

θx
) = z1 (171)

⇔
√
a2 − 4b >

2

β
(
θx + κ2

θx
)− a =

2

β
(
θx + κ2

θx
) +

κ2 + θx(1 + β)

βθx
=

(1− β)θx + κ2

βθx
(172)

⇔ a2 − 4b > (
(1− β)θx + κ2

βθx
)2 (173)

⇔ (
κ2 + θx(1 + β)

βθx
)2 − 4

β
> (

(1− β)θx + κ2

βθx
)2 ⇔ (

κ2 + θx(1 + β)

βθx
)2 − (

(1− β)θx + κ2

βθx
)2 >

4

β

(174)

⇔ 2θx(1 + β)κ2 − 2θx(1− β)κ2 + θ2
x(1 + β)2 − θ2

x(1− β)2 > 4βθ2
x ⇔ θxκ

2 > 0, (175)

which always holds.

Now to verify that m2 < z1:

m2 =
a−
√
a2 − 4b

2
<

1

β
(1 +

κ2

θx
) = z1 (176)

⇔ a− 2

β
(
θx + κ2

θx
) <
√
a2 − 4b (177)

⇔ κ2 + θx(1 + β)

βθx
− 2

β
(
θx + κ2

θx
) =
−κ2 − θx(1− β)

βθx
< 0 <

√
a2 − 4b, (178)

which always holds.

To verify that z2 > 0:

z2 = −m2 − z1

m1 − z1

> 0⇔ 0 > m2 − z1 ⇔ z1 > m2, (179)

which we have already confirmed.

Finally, I need to show that A1 and A2 are both positive if π̄ is positive, and they are

both negative if π̄ is negative. From 155 and 156:

A2 =
π̄

mT
1 z2 +mT

2

and A1 = A2z2,
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and I have shown that m1, m2, and z2 are all positive. Therefore A1 and A2 have the

same sign and are both positive if π̄ > 0 and negative otherwise.

Since π0 = A1 + A2 and A1 and A2 are of the same sign as π̄:

π0 =

> 0, if π̄ > 0

< 0, if π̄ < 0
(180)

So inflation at the time of the announcement jumps in the direction of π̄. To show that

it then monotonically adjusts increases (decreases) to approach a positive (negative) π̄, I

use a proof by induction for each case.

Case 1: π̄ > 0. Claim πt < πt+1. For t = 1, from (152):

π1 =
1

β
(1 +

κ2

θx
)π0 > π0, (181)

since 1
β
(1 + κ2

θx
) > 1. Now I need to show that if πt < πt+1 for t = k, then it also holds for

t = k + 1. Hence, I need to show that:

πk+1 < πk+2 ⇔ A1m
k+1
1 + A2m

k+1
2 < A1m

k+2
1 + A2m

k+2
2 (182)

⇔ A1m
k+1
1 (1−m1) < A2m

k+1
2 (m2 − 1) (183)

⇔ A1

A2

>
mk+1

2

mk+1
1

m2 − 1

1−m1

, (184)

but by assumption:

πk < πk+1 ⇔ A1m
k
1 + A2m

k
2 < A1m

k+1
1 + A2m

k+1
2 (185)

⇔ A1m
k
1(1−m1) < A2m

k+1
2 (m2 − 1) (186)

⇔ A1

A2

>
mk

2

mk
1

m2 − 1

1−m1

>
mk

2

mk
1

m2 − 1

1−m1

m2

m1

=
mk+1

2

mk+1
1

m2 − 1

1−m1

, (187)

where the second inequality in (187) holds because
mk2
mk1

m2−1
1−m1

> 0 and m2 < m1.

Case 2: π̄ < 0. Claim πt > πt+1. For t = 1, from (152):

π1 =
1

β
(1 +

κ2

θx
)π0 < π0, (188)

since 1
β
(1 + κ2

θx
) > 1 and π0 < 0. Now I need to show that if πt > πt+1 for t = k, then it
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also holds for t = k + 1. Hence, I need to show that:

πk+1 > πk+2 ⇔ A1m
k+1
1 + A2m

k+1
2 > A1m

k+2
1 + A2m

k+2
2 (189)

⇔ A1m
k+1
1 (1−m1) > A2m

k+1
2 (m2 − 1) (190)

⇔ A1

A2

>
mk+1

2

mk+1
1

m2 − 1

1−m1

, (191)

but by assumption,

πk > πk+1 ⇔ A1m
k
1 + A2m

k
2 > A1m

k+1
1 + A2m

k+1
2 (192)

⇔ A1m
k
1(1−m1) > A2m

k+1
2 (m2 − 1) (193)

⇔ A1

A2

>
mk

2

mk
1

m2 − 1

1−m1

>
mk

2

mk
1

m2 − 1

1−m1

m2

m1

=
mk+1

2

mk+1
1

m2 − 1

1−m1

, (194)

where the second inequality in (194) holds because
mk2
mk1

m2−1
1−m1

> 0 and and m2 < m1.

A.5 Price Indexing Solution

In this section I provide a sketch of the preceding analysis where the assumption that

firms do not index prices is relaxed. Both the approach and the results largely mimic

that of the main specification. The key differences are that inflation after the change in

the inflation target is at its target, while the output gap is zero, and the optimal policy

analysis no longer consists of choosing a point along a stationary Phillips curve.

A.5.1 Regime Shifts

The model is described by:

πj,t = βEtπj,t+1 + κxj,t + (1− β)π?j (195)

xj,t = Etxj,t+1 − σ−1(ij,t − Etπj,t+1) (196)

ij,t = φππj,t + φπ′Etπj,t+1 + φxxj,t + π?j (1− φπ − φπ′) (197)

First consider the outcome in regime two, which by assumption remains an absorbing

state of the Markov process. As there are no shocks and regime two is in a steady state,

(195) and (196) become

π2 = βπ2 + κx2 + (1− β)π?2 ⇒ π2(1− β) = κx2 + (1− β)π?2 (198)

x2 = x2 − σ−1(i2 − π2)⇒ i2 = π2 (199)
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Plugging everything into (197),

π2(1− φπ − φπ′) = φxx2 + π?2(1− φπ − φπ′)

⇒ κπ2(1− φπ − φπ′) = φx(π2(1− β)− (1− β)π?2) + κπ?2(1− φπ − φπ′)

⇒ π2(κ(1− φπ − φπ′)− φx(1− β)) = π?2(κ(1− φπ − φπ′)− φx(1− β))⇒ π2 = π?2.

(200)

Then by (198),

x2 = 0 (201)

Hence in the absorbing regime, inflation is always at it’s target and the output gap is

zero. Long run neutrality of money holds in the absorbing regime, but as will soon be

shown expectations of a regime shift will lead to none neutrality of money in regime one,

albeit with the caveat that regime one is by its very nature not a long run outcome.

As in the main specification, regime one is in a steady state. Adopting steady state

notation and solving (195) for π1,

π1 =
βλπ?2 + κx1 + (1− β)π?1

1− β(1− λ)
(202)

The regime one Philips curve depends not just on the inflation target in the other regime

but also the current inflation target. This will play a major role in the welfare analysis.

Plugging in (197) into (196) and solving for π1,

π1 = − σλ+ φx
φπ + (1− λ)(φπ′ − 1)

x1 −
λ(φπ′ − 1)

φπ + (1− λ)(φπ′ − 1)
π?2 −

1− φπ − φπ′
φπ + (1− λ)(φπ′ − 1)

π?1,

(203)

which is nearly identical to (52) except for the coefficient on π?2. Solving (202) and (203)

for x1 and π1,

π1 =
λ(β(σλ+ φx) + κ(1− φπ′))π?2 + ((1− β)(σλ+ φx) + κ(φπ + φπ′ − 1))π?1

κ(φπ + κ(1− λ)(φπ′ − 1)) + (1− β(1− λ))(σλ+ φx)
(204)

x1 =
λ(1− φπ′ − βφπ)π?2 + λ(βφπ + φπ′ − 1)π?1

κ(φπ + κ(1− λ)(φπ′ − 1)) + (1− β(1− λ))(σλ+ φx)
(205)

With active policy (φπ + φπ′ − 1 > 0),

�
∂π1
∂π?2

> 0 ⇔ βσλ + βφx + κ(1 − φπ′) > 0, which is the same as without indexing

except a smaller constant term. Qualitatively, a higher π?2 still increases π1 unless

the response to expected inflation is so strong that a large large recession reduces

marginal costs sufficiently for firms to reduce prices despite the higher anticipated

future prices.
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�
∂π1
∂π?1

> 0, which is the same as without indexing.

�
∂x1
∂π?2

< 0⇔ φπ′+βφπ > 1, which is a weaker condition that for the main specification.

Under the main specification, a higher inflation target in regime two results in both

a change in the real interest rate and the output level in regime two. The higher

x2 implies a consumption smoothing motive that pushes up x1. For x1 to fall,

real interest rates must rise enough so that the savings motive is greater than the

consumption smoothing motive. With price indexing, the consumption smoothing

force no longer exists, and therefore any increase in the real interest rates is sufficient

to push output down.

�
∂x1
∂π?1

> 0⇔ φπ′ + βφπ > 1, whereas in the main specification this partial derivative

is always positive with active policy.

The zero inflation outcome in regime one can be achieved by lowering the inflation

target in regime one such that

π?1 = − λ(β(σλ+ φx) + κ(1− φπ′))
(1− β)(σλ+ φx) + κ(φπ + φπ′ − 1)

π?2 (206)

Optimal policy in this setup is complicated by the movement of the Philips Curve in

response to changes in the current regime’s inflation target. While it is possible to derive

the optimal policy by substituting in the expressions for inflation and output in regime

one into the loss function, it is no longer simply a function of the inflation target, but

changing the other policy parameters will effect the inflation-volatility tradeoff which

in the numerical analysis section is shown to be the dominant determinant of welfare.

Instead here I provide a broad intuition for the range the optimal response may take.

First of by changing the other policy parameters, the slope and intercept of (205) will

change and the optimal response will generally involve at least minor modifications of

these parameters. Increasing π?1 shifts both (204) and (205) up, increasing inflation but

with an ambiguous effect on the output gap. If φπ′ + βφπ > 1, then both inflation and

output in regime one increase. This preserves the same qualitative trade off as simply

moving along the Philips curve: more positive inflation vs a less negative output gap.

Therefore, the central bank still chooses some point between zero inflation and a negative

output gap and positive inflation and a zero output gap, but achieving zero inflation

requires a less negative output gap and achieving a zero output gap requires a larger

inflation rate than simply moving along the Philips curve without price indexing. If

φπ′ + βφπ < 1, then decreasing π?1 results in both lower inflation and a less negative

output gap, improving welfare among both dimensions until inflation is at zero. Further

decreasing the inflation target creates a trade-off of a more negative inflation rate vs a

less negative output gap. Therefore the optimal policy will choose some point between
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a zero inflation rate and a negative output gap and a zero output gap and a negative

inflation rate.

A.5.2 Perfect Foresight

The only difference from the main specification described in section 8.1 is that equations

(105) becomes

πt = βEtπt+1 + κxt + (1− β)π?t (207)

The recursive formulation of the variables between 0 ≤ t < T , remains unchanged because

for t in this range π?t = 0. To solve for the one period in advance outcome first note that

prior to the announcement and after the inflation target changes the model is in a single

regime setting identical to regime two. Therefore by (200) π = π? and from (201) x = 0.

The t = 0 allocation can be obtained by using the recursive formulation (108) with t = 1,[
π0

x0

]
=

1

1 + κσ−1φπ

[
β + κσ−1 κ

−βσ−1φπ + σ−1 1

][
π?

0

]
=

[
β+κσ−1

1+κσ−1φπ
π?

σ−1(1−βφπ)
(1+κσ−1φπ)

π?

]
(208)

Following the same procedure as in the main specification results in a modified version

of proposition 1. If equation (208) holds and π? > 0, then

1. π0 ∈ (0, π?) if φπ > 1− 1−β
κσ−1 and π0 ≥ π? otherwise

2. x0 < 0 if φπ >
1
β

and x0 ≥ 0 otherwise

3. ∂x0
∂φπ

< 0 and ∂π0
∂φπ

< 0

The T period in advance announcement solution remains very similar to the solution

under the main specification and the approach to solve for it is the same. First rewriting

the equations

κxt = Etκxt+1 − κσ−1(φππt − (φπ − 1)π?t − Etπt+1) (209)

κxt = πt − βEtπt+1 − (1− β)π?t (210)

Now combine and rearrange terms,

πt(1 + κσ−1φπ)− (1 + β + κσ−1)Etπt+1 + βEtπt+2 =

κσ (φπ − 1)π?t︸ ︷︷ ︸
ît

+ (1− β)(π?t − Etπstart+1)︸ ︷︷ ︸
ηt

(211)

Adopting lag notation and rearranging,

Et(1−
1 + β + σ−1κ

1 + σ−1κφπ
L−1 +

β

1 + σ−1κφπ
L−2)πt =

−σ−1κît + ηt
1 + σ−1κφπ

, (212)
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which except for the ηt term is identical to (122). (123) becomes

Et(1− λ1L
−1)(1− λ2L

−1)πt =
−σ−1κît + ηt
1 + σ−1κφπ

, (213)

where

λ =
1 + β + σ−1κ±

√
(1 + β + σ−1κ)2 − 4β(1 + σ−1κφπ)

2(1 + σ−1κφπ)
, (214)

which are the same as in the main specification. If φπ > 1, then |λ1| and |λ1| are less

then one and the model can be solved forward. Doing so,

πt = −Et
1

(1− λ1L−1)(1− λ2L−1)

σ−1κît + ηt
1 + σ−1κφπ

=
σ−1κ

1 + σ−1κφπ

1

λ1 − λ2

Et(−λ1

∞∑
j=0

λj1ît+j + λ2

∞∑
j=0

λj2ît+j)

+
1

1 + σ−1κφπ

1

λ1 − λ2

Et(−λ1

∞∑
j=0

λj1ηt+j + λ2

∞∑
j=0

λj2ηt+j) (215)

If Etît+j = Etηt+j = 0 ∀j, then πt = 0 and xt = 0, which is the pre-announcement steady

state. Simplifications of equation (216) depend on whether λ1 and λ2 are real or complex

numbers. They are real if

(1 + β + σ−1κ)2 − 4β(1 + σ−1κφπ) ≥ 0

⇔ (1− β)2

κσ−1
+ κσ−1 ≥ 2(βφπ − 1) + 2β(φπ − 1), (216)

which remains unchanged from (126). Assuming equation (216) holds, I can rewrite
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equation (215) for period T − t and then simplify to get

πT−t =
σ−1κ

1 + σ−1κφπ

1

λ1 − λ2

ET−t(−λ1

∞∑
j=0

λj1îT−t+j + λ2

∞∑
j=0

λj2îT−t+j)

+
1

1 + σ−1κφπ

1

λ1 − λ2

ET−t(−λ1

∞∑
j=0

λj1ηT−t+j + λ2

∞∑
j=0

λj2ηT−t+j)

=
σ−1κ

1 + σ−1κφπ

1

λ1 − λ2

(−λ1

∞∑
j=t

λj1î+ λ2

∞∑
j=t

λj2î) +
λt2 − λt1
λ2 − λ1

(1− β)π?

1 + σ−1κφπ

=
σ−1κ

1 + σ−1κφπ

1

λ1 − λ2

(−λt+1
1

∞∑
j=0

λj1 + λt+1
2

∞∑
j=0

λj2)̂i+
λt2 − λt1
λ2 − λ1

(1− β)π?

1 + σ−1κφπ

=
σ−1κ

1 + σ−1κφπ

1

λ1 − λ2

−λt+1
1 (1− λ2) + λt+1

2 (1− λ1)

(1− λ1)(1− λ2)
π?(1− φπ) +

λt2 − λt1
λ2 − λ1

(1− β)π?

1 + σ−1κφπ

= π?
(1− φπ)σ−1κ

1 + σ−1κφπ

1 + σ−1κφπ
(φπ − 1)σ−1κ

−λt+1
1 (1− λ2) + λt+1

2 (1− λ1)

−1(λ2 − λ1)
+
λt2 − λt1
λ2 − λ1

(1− β)π?

1 + σ−1κφπ

= π?
−λt+1

1 (1− λ2) + λt+1
2 (1− λ1)

λ2 − λ1

+
λt2 − λt1
λ2 − λ1

(1− β)π?

1 + σ−1κφπ
, (217)

xT−t is implicitly defined by xT−t = πT−t−βET−tπT−t+1

κ
. The simplification of the infinite

sum of ηT−t+j relies on noting that

ET−tηT−t+j = (1− β)(π?T−t+j − π?T−t+j+1) =

0, if j 6= t− 1

−(1− β)π?, if j = t− 1
(218)

Therefore,

1

1 + σ−1κφπ

1

λ1 − λ2

ET−t(−λ1

∞∑
j=0

λj1ηT−t+j + λ2

∞∑
j=0

λj2ηT−t+j)

=
1

1 + σ−1κφπ

1

λ1 − λ2

(−λ1λ
t−1
1 (−(1− β)π?) + λ2λ

t−1
2 (−(1− β)π?)

=
λt2 − λt1
λ2 − λ1

(1− β)π?

1 + σ−1κφπ
(219)

The solution for πT−t when equation (216) is violated proceeds in a similar manner.

Since λ1,2 are unchanged r and ω are also unchanged. Then (215) can be simplified

by looking at the two terms separately. The first term involving ît+j is unchanged and

simplifies to (133). Following the same steps as in (132),

1

1 + σ−1κφπ

1

λ1 − λ2

Et(−λ1

∞∑
j=0

λj1ηt+j + λ2

∞∑
j=0

λj2ηt+j) (220)
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can be expressed as
1

1 + σ−1κφπ
Et(

∞∑
j=0

rj
sin(ω(j + 1))

sinω
ηt+j), (221)

which simplifies to
φπ − 1

1 + σ−1κφπ
rt−1 sin(ωt)

sinω
π?, (222)

because ηT−t+j = 0 for all j 6= t− 1. Combining the two parts,

πT−t = π?
σ−1κ(φπ − 1)

1 + σ−1κφπ
rt
∞∑
j=0

rj
sin(ω(j + 1 + t))

sinω

+
φπ − 1

1 + σ−1κφπ
rt−1 sin(ωt)

sinω
π? (223)

Together (223) and (217) form the solutions for inflation depending on whether the

roots of the polynomial equation (212) are real or complex. The broad properties of

the solution are unchanged. When the roots are complex, the solution exhibits cyclical

properties. Qualitatively the main difference is whether after the inflation target increases

the output gap is zero or greater than zero as in the main specification. If the roots

are real, the solution exhibits more monotonic properties. Unfortunately, I am unable to

prove a version of proposition three for the price indexing model. However, computational

analysis shows that if φπ < 1 − 1−β
κσ−1 , then the further in the future the announcement

is made the more explosive the solutions for inflation and output are. Unlike the no

indexing case, there does not exist a case for which inflation and output jump to the new

inflation target steady sate values and remain at them forever. For 1
β
> φπ > 1− 1−β

κσ−1 , a

variety of dynamics are possible, but as φπ increases in this range the outcome changes

from both inflation and the output gap increasing past their future steady state values

if the announcement is made atleast a few period in advance to the output gap falling

while inflation increasing but by less than π?. For 1
β
< φπ but with real roots to the

polynomial equation, inflation increases at the announcement and monotonically increases

as the inflation target change period approaches. For announcements made sufficiently in

advance, the output gap at the announcement declines and continues to decline for some

amount of periods, but as the period when the inflation target increases approaches the

output gap will eventually begin to monotonically grow and approach zero.

A.6 Neither Regime is Absorbing

In this section, I briefly go though the analytical solution when the assumption that

regime two is absorbing is relaxed. The key difference is that regime two outcomes are

no longer independent of regime one policy and have to be solved jointly. For simplicity I

assume interest rates respond only to inflation, but allow different coefficients in the two

76



regimes. That is let the policy response function (9) be

ij,t = φπ,jπj,t + (φπ,j − 1)π?j ≡ φπ,jπj,t + ī1 (224)

and the Markov process

Π =

[
1− λ λ

γ 1− γ

]
.

As with an absorbing second regime, both regimes are still in a steady state. The two

regime specific Phillips Curves after rearranging terms and using steady state notation

from section 8.2 are:

π1(1− β(1− λ)) = βλπ2 + κx1 (225)

π2(1− β(1− γ)) = βγπ1 + κx2 (226)

And the aggregate supply relationships are:

λx1 = λx2 − σ−1((φπ,1 + λ− 1)π1 − λπ2 + ī1) (227)

γx2 = γx1 − σ−1((φπ,2 + γ − 1)π2 − γπ1 + ī2) (228)

Next, combine these four equations into three equations in terms of x1 − x2, π1, and π2

by rearranging (227) and (228) and combining (225) with (226);

x1 − x2 =
−σ−1

λ
((φπ,1 + λ− 1)π1 − λπ2 + ī1) (229)

x1 − x2 =
σ−1

γ
((φπ,2 + γ − 1)π2 − γπ1 + ī2) (230)

x1 − x2 =
1

κ
(π1(1− β(1− λ− γ))− π2(1− β(1− λ− γ))) (231)

Combining (230) and (231),

σ−1

γ
((φπ,2 + γ − 1)π2 − γπ1 + ī2) =

1

κ
(π1(1− β(1− λ− γ))− π2(1− β(1− λ− γ)))

⇒ π2 =
π1γ(1− β(1− γ − λ) + σ−1κ)− σ−1κī2
γ(1− β(1− γ − λ)) + σ−1κ(φπ,2 + γ − 1)

(232)

or

π1 =
π2γ(1− β(1− γ − λ) + σ−1κ(φπ,2 + γ − 1)) + σ−1κī2

γ(1− β(1− γ − λ) + σ−1κ)
(233)
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Combining (229) and (231),

−σ−1

λ
((φπ,1 + λ− 1)π1 − λπ2 + ī1) =

1

κ
(π1(1− β(1− λ− γ))− π2(1− β(1− λ− γ)))

⇒ π1 =
π2λ(1− β(1− γ − λ) + σ−1κ)− σ−1κī1
λ(1− β(1− γ − λ)) + σ−1κ(φπ,1 + λ− 1)

(234)

or

π2 =
π1λ(1− β(1− γ − λ) + σ−1κ(φπ,1 + λ− 1)) + σ−1κī1

λ(1− β(1− γ − λ) + σ−1κ)
(235)

Combining (229) and (230),

−σ−1

λ
((φπ,1 + λ− 1)π1 − λπ2 + ī1) =

σ−1

γ
((φπ,2 + γ − 1)π2 − γπ1 + ī2)

⇒ π1 = −λ(φπ,2 − 1)π2 + λī2 + γī1
γ(φπ,1 − 1)

(236)

or

π2 = −γ(φπ,1 − 1)π1 + λī2 + γī1
λ(φπ,2 − 1)

(237)

Setting (237) equal to (232)

− γ(φπ,1 − 1)π1 + λī2 + γī1
λ(φπ,2 − 1)

=
π1γ(1− β(1− γ − λ) + σ−1κ)− σ−1κī2
γ(1− β(1− γ − λ)) + σ−1κ(φπ,2 + γ − 1)

, (238)

which simplifies to

π1 = − λ(z + σ−1κ)̄i2 + (γz + σ−1κ(φπ,2 + γ − 1))̄i1
λ(z + σ−1κ)(φπ,2 − 1) + γz + σ−1κ(φπ,2 + γ − 1)(φπ,1 − 1)

, (239)

where z = 1−β(1−λ−γ). Similarly, setting (236) equal to (234) and simplifying results

in

π2 = − γ(z + σ−1κ)̄i1 + (λz + σ−1κ(φπ,1 + λ− 1))̄i2
γ(z + σ−1κ)(φπ,1 − 1) + γz + σ−1κ(φπ,1 + λ− 1)(φπ,2 − 1)

(240)

The regime specific output gaps are implicitly defined by (225) and (226) and can be

shown to be of the form xj = fj,1(φπ,1φπ,2)̄i1 + fj,2(φπ,1φπ,2)̄i2, where fj,k are functions of

the policy parameters.

From (239) and (240), we can observe that if policy is active in both regimes then

inflation in each regime is the weighted average of the inflation targets in the two regimes

and is increasing in each inflation target. Therefore, to reduce inflation generated from an

expectation of a future shift to a higher inflation regime the central bank needs to reduce

the current inflation target just as when regime two is absorbing. However, reducing π?1

will now also reduce inflation in regime two thereby changing how much the inflation

target in the current regime needs to be adjusted. By setting π1 = 0 in (239), I can solve
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for the regime one inflation target that results in zero inflation in regime one. Doing so,

π?1 =
−λ(z + σ−1κ)

λ(z + σ−1κ) + σ−1κ(φπ,2 − 1 + γ)

1− φπ,2
1− φπ,1

π?2 (241)

As in the main specification with active policy (and in the absence of responding to

expected inflation), if policy is more responsive to inflation in the current regime then

inflation doesn’t change by as much and the inflation target does not need to be lowered

by as much. However, the responsiveness of policy in the other regime determines by

how much changing π?1 effects inflation in the other regime, which in turn effects how

expected inflation changes and how much π?1 needs to be changed by. I do not solve for

the optimal policy in this setting as conceptually it is not clear what real world scenario

such an optimization captures and is not likely to provide useful expressions.
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