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1. INTRODUCTION

Software programs are increasingly being adopted by firms to price their goods and ser-

vices, and this tendency is likely to continue.1 In this paper, we ask whether pricing

algorithms may “autonomously” learn to collude. The possibility arises because of the

recent evolution of the software, from rule-based to reinforcement learning programs. The

new programs, powered by Artificial Intelligence (AI), are indeed much more autonomous

than their precursors. They can develop their pricing strategies from scratch, engaging in

active experimentation and adapting to changing environments. In this learning process,

they require little or no external guidance.

In the light of these developments, concerns have been voiced, by scholars and policy-

makers alike, that AI pricing algorithms may raise their prices above the competitive

level in a coordinated fashion, even if they have not been specifically instructed to do

so and even if they do not communicate with one another.2 This form of tacit collusion

would defy current antitrust policy, which typically targets only explicit agreements among

would-be competitors (Harrington, 2018).

But how real is the risk of tacit collusion among algorithms? That is a difficult question to

answer, both empirically and theoretically. On the empirical side, collusion is notoriously

hard to detect from market outcomes,3 and firms typically do not disclose details of the

pricing software they use. On the theoretical side, the interaction among reinforcement-

learning algorithms in pricing games generates stochastic dynamic systems so complex

that analytical results seem currently out of reach.4

To make some progress, this paper takes an experimental approach. We construct AI

1While revenue management programs have been used for decades in such industries as hotels and
airlines, the diffusion of pricing software has boomed with the advent of online marketplaces. For example,
in a sample of over 1,600 best-selling items listed on Amazon, Chen, Mislove and Wilson (2016) find that
in 2015 more than a third of the vendors had already automated their pricing. Since then, a repricing-
software industry has arisen, which supplies turnkey pricing systems to smaller vendors and customizes
software for the larger ones. But pricing software is increasingly used also in traditional off-line sectors
such as gas stations: see e.g. “Why do gas station prices costantly change? Blame the algorithms,” The
Wall Street Journal, May 8, 2017.

2For the scholarly debate see, for instance, Ezrachi and Stucke (2016, 2017), Harrington (2018), Kühn
and Tadelis (2018) and Schwalbe (2019). As for policy, the possibility of algorithmic collusion has been
extensively discussed, for instance, at the 7th session of the FTC Hearings on competition and consumer
protection (November 2018) and has been the subject of white papers independently issued in 2018 by
the Canadian Competition Bureau and the British Competition and Market Authority.

3With very rich data, however, the problem may not be insurmountable (Byrne and De Roos (2019))
4One notable theoretical contribution is Salcedo (2015), who argues that optimized algorithms will

inevitably reach a collusive outcome. But this claim hinges crucially on the assumption that each algorithm
can periodically observe and “decode” the others, which in the meantime stay unchanged. The practical
relevance of Salcedo’s result thus remains controversial.
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pricing agents and let them interact repeatedly in computer-simulated marketplaces. The

challenge of this approach is to choose realistic economic environments, and algorithms

representative of those employed in practice. We discuss in detail how we address these

challenges as we proceed. Any conclusions are necessarily tentative at this stage, but our

findings do suggest that algorithmic collusion is more than a remote theoretical possibility.

The results indicate that, indeed, relatively simple pricing algorithms systematically learn

to play collusive strategies. The algorithms typically coordinate on prices that are some-

what below the monopoly level but substantially above the static Bertrand equilibrium.

The strategies that support these outcomes crucially involve punishments of defections.

Such punishments are finite in duration, with a gradual return to the pre-deviation prices.

The algorithms learn these strategies purely by trial and error. They are not designed or

instructed to collude, they do not communicate with one another, and they have no prior

knowledge of the environment in which they operate.

Our baseline model is a symmetric duopoly with deterministic demand, but we conduct

an extensive robustness analysis. The degree of collusion decreases as the number of

competitors rises. However, substantial collusion continues to prevail when the active firms

are three or four in number. The algorithms display a stubborn propensity to collude even

when they are asymmetric, and when they operate in stochastic environments.

Other papers have simulated reinforcement-learning algorithms in oligopoly, but ours is

the first to clearly document the emergence of collusive strategies among autonomous pric-

ing agents. The previous literature in both computer science and economics has focused on

outcomes rather than strategies.5 But the observation of supra-competitive prices is not,

per se, genuine proof of collusion. To us economists, collusion is not simply a synonym of

high prices but crucially involves “a reward-punishment scheme designed to provide the

incentives for firms to consistently price above the competitive level” (Harrington (2018),

p. 336). The reward-punishment scheme ensures that the supra-competitive outcomes may

be obtained in equilibrium and do not result from a failure to optimize.

The difference is critical. For example, in their pioneering study of repeated Cournot

competition among Q-learning algorithms, computer scientists Waltman and Kaymak

5Moreover, the vast majority of the literature does not use the canonical model of collusion, where firms
play an infinitely repeated game, pricing simultaneously in each stage and conditioning their prices on
past history. Rather, it uses frameworks similar to Maskin and Tirole (1988) model of staggered pricing.
In this model, two firms alternate in moving, commit to a price level for two periods, and condition
their pricing only on rival’s current price. The postulate of price commitment is however controversial,
as software algorithms can adjust prices very quickly. And probably the postulate is not innocuous.
Commitment may indeed facilitate coordination, as argued theoretically by Maskin and Tirole (1988)
and experimentally by Leufkens and Peeters (2011). At any rate, the best executed paper in this line of
research is probably Klein (2018), which provides also a survey of the earlier literature.

 Electronic copy available at: https://ssrn.com/abstract=3304991 



4 E. CALVANO, G. CALZOLARI, V. DENICOLÒ, S. PASTORELLO

(2008) find that the algorithms reduce output, and hence raise prices, with respect to

the Nash equilibrium of the one-shot game.6 They refer to this as collusion. When the

algorithms are far-sighted and are able to condition their current choices on past actions,

so that defections can be punished, their findings could indeed be consistent with collusive

behavior according to economists’ usage of the term. But Waltman and Kaymak consider

also the case where algorithms are myopic and have no memory of past actions – conditions

under which collusion is either unfeasible or cannot emerge in equilibrium – and find that

in these cases the output reduction is even larger. This suggests that what they observe

may not be collusion but a failure to learn an optimal strategy.7

Verifying whether the high prices are supported by equilibrium strategies is not just a

theoretical curiosity. Algorithms that grossly fail to optimize would, in all likelihood,

be dismissed quickly and thus could hardly become a matter of antitrust concern. The

implications are instead very different if, as we show, the supra-competitive prices are set

by optimizing, or quasi-optimizing, programs.

Yet, there is an important caveat to keep in mind. To present a proof-of-concept demon-

stration of algorithmic collusion, in this paper we concentrate on what the algorithms

eventually learn and pay less attention to the speed of learning. Thus, we focus on al-

gorithms that by design learn slowly, in a completely unsupervised fashion, and in our

simulations we allow them to explore widely and interact as many times as is needed to

stabilize their behavior. As a result, the number of repetitions required for completing the

learning is typically high, on the order of hundreds of thousands. In fact, the algorithms

start to raise their prices much earlier. However, the time scale still remains an open issue;

it will be discussed further below.

The rest of the paper is organized as follows. The next section provides a self-contained

description of the class of Q-learning algorithms, which we use in our simulations. Section 3

describes the economic environments where the algorithms operate. Section 4 shows that

collusive outcomes are common and are generated by optimizing, or quasi-optimizing,

behavior. Section 5 then provides a more in-depth analysis of the collusive strategies that

support these outcomes. Section 6 reports on a number of robustness checks. Section 7

discusses the issue of the speed of learning. Section 8 concludes with a brief discussion of

the possible implications for policy.

6Other papers that study reinforcement learning algorithms in a Cournot oligopoly include, Kimbrough
and Murphy (2009), and Siallagan et al (2013).

7According to Cooper, Homem-de-Mello and Kleywegt (2015) such “collusion by mistake” may some-
times emerge also among revenue management systems that do not condition their current prices on
rivals’ past prices. This may happen in particular when the programs disregard competitors altogether
in the process of demand estimation, which biases the estimated elasticity downwards.
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2. Q-LEARNING

Following Waltman and Kaymak (2008), we concentrate on Q-learning algorithms. Even

if reinforcement learning comes in many different varieties,8 there are several reasons

for this choice. First, one would like to experiment with algorithms that are commonly

adopted in practice, and although little is known on the specific software that firms

actually use, Q-learning is certainly highly popular among computer scientists. Second,

Q-learning algorithms are simple and can be fully characterized by just a few parameters,

the economic interpretation of which is clear. This makes it possible to keep possibly

arbitrary modeling choices to a minimum, and to conduct a comprehensive comparative

statics analysis with respect to the characteristics of the algorithms. Third, Q-learning

algorithms share the same architecture as the more sophisticated programs that have

recently obtained spectacular successes, achieving superhuman performances in such tasks

as playing the ancient board game Go (Silver et al., 2016), the Atari video-games (Mnih

et al., 2015), and, more recently, chess (Silver et al., 2018).9 The downside of Q-learning

is that the learning process is slow, for reasons that will become clear in a moment.

In the rest of this section, we provide a brief introduction to Q-learning. Readers familiar

with this model may proceed directly to section 3.

2.1. Single agent problems

Like all reinforcement-learning algorithms, Q-learning programs adapt their behavior to

past experience, taking actions that have proven successful more frequently and unsuc-

cessful ones less frequently. In this way, they may learn an optimal policy, or a policy that

approximates the optimum, with no prior knowledge of the particular problem at hand.10

Originally, Q-learning was proposed by Watkins (1989) to tackle Markov decision pro-

cesses. In a stationary Markov decision process, in each period t = 0, 1, 2, ... an agent

observes a state variable st ∈ S and then chooses an action at ∈ A(st). For any st and at,

the agent obtains a reward πt, and the system moves on to the next state st+1, according

to a time-invariant (and possibly degenerate) probability distribution F (πt, st+1|st, at).
Q-learning deals with the version of this model where S and A are finite, and A is not

state-dependent.

8For a thorough treatment of reinforcement learning in computer science, see Sutton and Barto (2018).
9These more sophisticated programs might appear themselves to be a natural alternative to Q-learning.

However, they require many modeling choices that are somewhat arbitrary from an economic viewpoint.
We shall come back to this issue in Section 7.

10Reinforcement learning was introduced in economics by Arthur (1991) and later popularized by Roth
and Erev (1995), Erev and Roth (1998) and Ho, Camerer and Chong (2007), among others.
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The decision maker’s problem is to maximize the expected present value of the reward

stream:

(1) E

[
∞∑
t=0

δtπt

]
,

where δ < 1 represents the discount factor. This dynamic programming problem is usually

attacked by means of Bellman’s value function

(2) V (s) = max
a∈A
{E [π|s, a] + δE[V (s′)|s, a]} ,

where s′ is a shorthand for st+1. For our purposes it is convenient to consider instead a

precursor of the value function, namely the Q-function representing the discounted payoff

of taking action a in state s.11 It is implicitly defined as:

(3) Q(s, a) = E(π|s, a) + δE[max
a′∈A

Q(s′, a′)|s, a],

where the first term on the right-hand side is the period payoff and the second term is

the continuation value.12 The Q-function is related to the value function by the simple

identity V (s) ≡ maxa∈AQ(s, a). Since S and A are finite, the Q-function can in fact be

represented as an |S| × |A| matrix.

2.1.1. Learning

If the agent knew the Q-matrix, he could then easily calculate the optimal action for

any given state. Q-learning is essentially a method for estimating the Q-matrix without

knowing the underlying model, i.e. the distribution function F (π, s′|s, a).

Q-learning algorithms estimate the Q-matrix by an iterative procedure. Starting from an

arbitrary initial matrix Q0, after choosing action at in state st, the algorithm observes

πt and st+1 and updates the corresponding cell of the matrix Qt(s, a) for s = st, a = at,

according to the learning equation:

(4) Qt+1(s, a) = (1− α)Qt(s, a) + α

[
πt + δmax

a∈A
Qt(s

′, a)

]
.

Equation (4) tells us that for the cell visited, the new value Qt+1(s, a) is a convex combi-

11The term Q-function derives from the fact that the Q-value can be thought of as an index of the
“Quality” of action a in state s.

12This is uniquely defined even if the maximization problem does not have a unique solution.
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nation of the previous value and the current reward plus the discounted value of the state

that is reached next. For all other cells s 6= st and a 6= at, the Q-value does not change:

Qt+1(s, a) = Qt(s, a). The weight α ∈ [0, 1] is called the learning rate.

2.1.2. Experimentation

To have a chance to approximate the true matrix starting from an arbitrary Q0, all

actions must be tried in all states. This means that the algorithm has to be instructed

to experiment, i.e. to gather new information by selecting actions that may appear sub-

optimal in the light of the knowledge acquired in the past. Plainly, such exploration is

costly and thus entails a trade-off between continuing to learn and exploiting the stock

of knowledge already acquired. Finding the optimal resolution to this trade-off may be

problematic, but Q-learning algorithms do not even try to optimize in this respect: the

mode and intensity of the exploration are specified exogenously.

The simplest possible exploration policy – sometimes called the ε-greedy model of explo-

ration – is to choose the currently optimal action (i.e., the one with the highest Q-value in

the relevant state, also known as the “greedy” action) with a fixed probability 1− ε and

to randomize uniformly across all actions with probability ε. Thus, 1 − ε is the fraction

of times the algorithm is in exploitation mode, while ε is the fraction of times it is in

exploration mode. Even if more sophisticated exploration policies can be designed,13 in

our analysis we shall mostly focus on the ε-greedy specification.

Under certain conditions, Q-learning algorithms converge to the optimal policy (Watkins

and Dayan, 1992).14 However, completing the learning process may take quite a long

time. Q-learning is slow because it updates only one cell of the Q-matrix at a time, and

approximating the true matrix generally requires that each cell be visited many times.

The larger the state or action space, the more iterations will be needed.

13For example, one may let the probability with which sub-optimal actions are tried depend on their
respective Q-values, as in the so-called Boltzmann experimentation model. In this model, actions are
chosen with probabilities

Pr(at = a) =
eQt(st,a)/T∑

a′∈A
eQt(st,a′)/T

where the parameter T is often called the system’s “temperature.” As long as T > 0, all actions are chosen
with positive probability. When T = 0, however, the algorithm chooses the action with the highest Q-value
with probability 1.

14A sufficient condition is that the algorithm’s exploration policy belong to a class known as Greedy
in the Limit with Infinite Exploration (GLIE). Loosely speaking, this requires that exploration decreases
over time; that if a state is visited infinitely often, the probability of choosing any feasible action in that
state be always positive (albeit arbitrarily small); and that the probability of choosing the greedy action
go to one as t→∞.
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2.2. Repeated games

Although Q-learning was originally designed to deal with stationary Markov decision

processes, it can also be applied to repeated games. The simplest approach is to let the

algorithms continue to update their Q-matrices according to (4), treating rivals’ actions

just like any other possibly relevant state variable.15

But in repeated games stationarity is inevitably lost, even if the stage game does not

change from one period to the next. One source of non-stationarity is that if the state

st included players’ actions in all previous periods, the set of states S would increase

with time. But this problem can be avoided by bounding players’ memory. With bounded

recall, a state s will include only the actions chosen in the last k stages, implying that

the state space may be finite and time-invariant.

A more serious problem is that in repeated games the per-period payoff and the transition

to the next state generally depend on the actions of all the players. If a player’s rivals

change their actions over time – because they are experimenting or learning, or both –

the player’s optimization problem becomes inherently non-stationary.

Such non-stationarity is at the root of the lack of general convergence results for Q-learning

in games.16 There is no ex ante guarantee that several Q-learning agents interacting re-

peatedly will settle on a stable outcome, nor that they will learn an optimal policy (i.e.,

collectively, a Nash equilibrium of the repeated game with bounded memory). Neverthe-

less, convergence and equilibrium play may hold in practice. This can be verified only

ex-post, however, as we shall do in what follows.

15In the computer science literature, this approach is called independent learning. An alternative
approach, i.e. joint learning , tries to predict other players’ actions by means of some sort of equilibrium
notion. However, the joint learning approach is still largely unsettled (Nowe et al. (2012)).

16Non-stationarity considerably complicates the theoretical analysis of the stochastic dynamic systems
describing Q-learning agents’ play of repeated games. A common approach uses stochastic approximation
techniques (Benveniste, Metivier and Priouret, 1990), with which one can turn stochastic dynamic systems
into deterministic ones. This approach has made some progress in the analysis of memoryless systems.
The resulting deterministic system is typically a combination of the replicator dynamics of evolutionary
games and a mutation term that captures the algorithms’ exploration. See e.g. Borgers and Sarin (1997)
for the reinforcement learning model of Cross (1973), Hopkins (2002) and Beggs (2005) for that of Erev
and Roth (1998), and Bloembergen et al. (2015) for memoryless Q-learning. The application of stochastic
approximation techniques to AI agents with memory is more subtle and is currently at the frontier of
research, both in computer science and in statistical physics (Barfuss, Donges and Kurths, 2019). To
the best of our knowledge, there are no results yet available for ε-greedy Q-learning. But what we know
for simpler algorithms suggests that, eventually, the dynamic systems that emerge from the stochastic
approximation would have to be integrated numerically. If this is so, however, there is little to gain
compared with simulating the exact stochastic system a large number of times so as to smooth out
uncertainty, as we do in what follows.
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3. EXPERIMENT DESIGN

We have constructed Q-learning algorithms and let them interact in a repeated Bertrand

oligopoly setting. For each set of parameters, an “experiment” consists of 1,000 sessions. In

each session, agents play against the same opponents until convergence as defined below.

Here we describe the economic environment in which the algorithms operate, the explo-

ration strategy they follow, and other details of the numerical simulations.

3.1. Economic environment

We use the canonical model of collusion, i.e. an infinitely repeated pricing game in which

all firms act simultaneously and condition their actions on past history. We depart from

the canonical model only in assuming a bounded memory, for the reasons explained in

the previous section.

We take as our stage game a simple model of price competition with logit demand and con-

stant marginal costs. This model has been applied extensively in empirical work, demon-

strating that it is flexible enough to fit many different industries.

There are n differentiated products and an outside good. In each period t, the demand

for product i = 1, 2, ..., n is:

(5) qi,t =
e
ai−pi,t

µ∑n
j=1 e

aj−pj,t
µ + e

a0
µ

.

The parameters ai are product quality indexes that capture vertical differentiation. Prod-

uct 0 is the outside good, so a0 is an inverse index of aggregate demand. Parameter µ

is an index of horizontal differentiation; the case of perfect substitutes is obtained in the

limit as µ→ 0.

Each product is supplied by a different firm, so n is also the number of firms. The per-

period reward accruing to firm i is then πi,t = (pi,t − ci)qi,t, where ci is the marginal cost.

As usual, fixed costs are irrelevant as long as firms stay active.

3.2. Action space

Since Q-learning requires a finite action space, we discretize the model as follows. For each

value of the parameters, we compute both the Bertrand-Nash equilibrium of the one-shot

game and the monopoly prices (i.e., those that maximize aggregate profits). These are

denoted by pN and pM , respectively. Then, we take the set A of the feasible prices to be
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given by m equally spaced points in the interval [pN − ξ(pM − pN),pM + ξ(pM − pN)],

where ξ > 0 is a parameter. So prices range from below Bertrand to above monopoly.

This discretization of the action space implies that the exact Bertrand and monopoly

prices may not be feasible, however, so there may be mixed-strategy equilibria both in

the stage and in the repeated game. Since by design our algorithms play pure strategies,

they might then oscillate around a target that is not feasible.

3.3. Memory

To ensure that the state space is finite, we posit a bounded memory. Thus, the state is

the set of all past prices in the last k periods:

(6) st = {pt−1, ...,pt−k} ,

where k is the length of the memory.17

Our assumptions imply that for each player i we have |A| = m and |S| = mnk.

3.4. Exploration

We use the ε-greedy model with a time-declining exploration rate. Specifically, we set

(7) εt = e−βt,

where β > 0 is a parameter. This means that initially the algorithms choose in purely

random fashion, but as time passes they make the greedy choice more and more frequently.

The greater β, the faster the exploration diminishes.

3.5. Baseline parametrization and initialization

Initially, we focus on a baseline economic environment that consists of a symmetric

duopoly (n = 2) with ci = 1, ai − ci = 1, a0 = 0, µ = 1
4
, δ = 0.95, m = 15, ξ = 0.1 and

a one-period memory (k = 1).18 For this specification, the price-cost margin is ≈ 47% in

17The assumption here is perfect monitoring, which is reasonable for many online marketplaces. For
example, Amazon’s APIs allow sellers to recover current and past prices of any product with a simple
query.

18It is worth noting that while the assumption of a one-period memory is restrictive, it might have a
limited impact on the sustainability of collusion, because, as noted by Barlo, Carmona and Sabourian
(2016), the richness of the state space may substitute for the length of the memory. Indeed, folk theorems
have been derived also for the case of one-period memory.
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the static Bertrand equilibrium, and about twice as large under perfect collusion.

As for the initial matrix Q0, our baseline choice is to set the Q-values at t = 0 at the

discounted payoff that would accrue to player i if opponents randomized uniformly:

(8) Qi,0(s, ai) =

∑
a−i∈An−1

πi(ai, a−i)

(1− δ) |A|n−1
.

This is in keeping with the assumption that at first the choices are purely random. In a

similar spirit, the initial state s0 is drawn randomly at the beginning of each session.

Starting from this baseline set up, we have performed extensive robustness analyses, the

results of which are reported in Section 6 and the supplementary material file.

4. OUTCOMES

In this section, we focus on our baseline environment and explore the entire grid of the

100 × 100 points that are obtained by varying the learning and experimentation pa-

rameters α and β as described presently.19 The aim of this exercise is to show (i) that

non-competitive outcomes are common, not obtained at just a few selected points, and

(ii) that these outcomes are generated by optimizing, or quasi-optimizing, behavior. Once

these conclusions are established, in the next section we shall focus on one point of the

grid to provide a deeper analysis of the mechanism of collusion.

4.1. Parameter grid

The learning parameter α may in principle range from 0 to 1, but it is well known that

high values of α may disrupt learning when experimentation is extensive, as the algorithm

would forget too rapidly what it has learned in the past. To be effective, learning must be

persistent, which requires that α be relatively small. In the computer science literature,

a value of 0.1 is often used (Sutton and Barto, 2018). In accordance with this common

practice, our initial grid comprises 100 equally spaced points in the interval [0.025, 0.25].

As for the experimentation parameter β, the trade-off is as follows. On the one hand,

the algorithms need to explore extensively, as the only way to learn is multiple visits

to every state-action cell (of which there are 3, 375 in our baseline experiments with

n = 2, m = 15 and k = 1, and many more in more complex environments). On the

other hand, exploration is costly. One can abstract from the short-run cost by considering

19Parameters α and β, as well as the initial matrix Q0, could be chosen strategically by the firm in a
game of delegation, which however is not analyzed here.
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long-run outcomes. But exploration entails another cost as well, in that if one algorithm

experiments more extensively, this creates noise in the environment, which makes it harder

for the other to learn. This externality means that in principle experimentation may be

excessive even discounting the short-term cost.

To get a sense of what values of β might be reasonable, it may be useful to map β into the

expected number of times a “sub-optimal” cell would be visited.20 This number is denoted

by ν.21 We take as a lower bound ν = 4, which seems barely sufficient to guarantee decent

learning. For example, with α = 0.25 the initial Q-value of sub-optimal cells would still

carry a weight of more than 30% after 4 updates, and the weight would be even greater

for lower values of α. (In fact, later we shall mostly focus on larger values of ν.)

When n = 2 and m = 15, the lower bound of 4 on ν implies an upper bound for β of

(approximately) β̄ = 2 × 10−5. As we did for α, we then take 100 equally spaced points

in the interval from 0 to β̄. The lowest value of β we consider corresponds to ν ≈ 450.

4.2. Convergence

As mentioned, for strategic games played by Q-learning algorithms there are no general

convergence results: we do not know whether the algorithms converge at all; or, if they

do, whether they converge to a Nash equilibrium. But while they are not guaranteed,

convergence and optimization are not ruled out either, and they can be verified ex post.

To verify convergence, we use the following practical criterion: convergence is deemed to

be achieved if for each player the optimal strategy does not change for 100,000 consecutive

periods. That is, if for each player i and each state s the action ai,t(s) = arg max [Qi,t(a, s)]

stays constant for 100,000 repetitions, we assume that the algorithms have completed the

learning process and attained stable behavior. We stop the session when this occurs, and

in any case after one billion repetitions.

More than 99.9% of the sessions converged. Typically a great many repetitions are needed

to converge. The exact number depends on the level of exploration, ranging from about

400,000 when exploration is rather limited to several millions when it is very extensive

(details in section A4.1 of the supplementary material file). For example, with α = 0.125

20By sub-optimal cell we mean a cell where the past and current prices are not optimal, given the
relevant Q-matrices. These cells can thus be visited only if both algorithms experimented in the previous
period, and the algorithm at hand experiments also in the current one.

21The exact relationship between ν and β is

ν =
(m− 1)n

mkn(n+1)
[
1− e−β(n+1)

] .
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and β = 10−5 (the mid-point of the grid) convergence is achieved on average after 850,000

periods. So many repetitions are required for the simple reason that with β = 10−5, the

probability of choosing an action randomly after, say, 100,000 periods is still 14%. If the

rival is experimenting at this rate, the environment is still too non-stationary for the

algorithm to converge. In practice, convergence is achieved only when experimentation is

nearly terminated.

It must be noted that only in some of the sessions both algorithms eventually charge a

constant price period after period. A non negligible fraction of the sessions displays price

cycles (details in section A4.2). As shown in Table I below, the vast majority of these

cycles have a period of two. We shall discuss the cycles more extensively later.

4.3. Profits

Having verified convergence, we focus on the limit behavior of our algorithms. We find,

first of all, that the algorithms consistently learn to charge supra-competitive prices,

obtaining a sizable extra-profit compared to the static Nash equilibrium. To quantify this

extra-profit, we use the following normalized measure:

(9) ∆ ≡ π − πN

πM − πN
,

where π is the average per-firm profit upon convergence, πN is the profit in the Bertrand-

Nash static equilibrium, and πM is the profit under full collusion (monopoly). Thus,

∆ = 0 corresponds to the competitive outcome and ∆ = 1 to the perfectly collusive

outcome. Taking πM as a reference point makes sense when δ is sufficiently high that

perfect collusion is attainable in a sub-game perfect equilibrium, as is the case in our

baseline specification. We shall refer to ∆ as the average profit gain.

The average profit gain achieved upon convergence is represented in Figure 1 as a function

of α and β. Over our grid, ∆ ranges from 70% to 90%. The corresponding prices are almost

always higher than in the one-shot Bertrand-Nash equilibrium but rarely as high as under

monopoly (details in section A4.2).

The profit gain does not seem to be particularly sensitive to changes in the learning and

experimentation parameters. It tends to be largest when α and β are low, i.e., exploration

is extensive and learning is persistent, but reducing either α or β too much eventually

backfires.
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Figure 1: Average profit gain ∆ for a grid of values of α and β.

4.4. Equilibrium play

Even if the algorithms almost always converge to a limit strategy, this may not be an

optimal response to that of the rival. Optimality is guaranteed theoretically for single-

agent decision making but not when different algorithms are involved.

But again, this property can be verified ex post. We proceed as follows. In each session,

for each algorithm we calculate the theoretical Q-matrix under the assumption that the

rival uses his limit strategy. This assumption serves to pin down the last term in equation

(3), producing a system of linear equations that can be solved for the “true” Q-matrix.

With these Q-matrices at hand, we then determine the algorithms’ optimal strategies,

i.e., the best responses to the rival’s limit strategy, and compare them to their own limit

strategies. The comparison may be limited to the states that are actually reached on path

(verifying whether a Nash equilibrium is played), or extended to all states (verifying sub-

game perfection). When an algorithm is not playing a best response, we can also compute

the forfeited payoff. We express this in percentage terms and refer to it as the “Q-loss”.

Figure 2 plots the frequency of equilibrium play, i.e., the fraction of sessions where both

algorithms play a best response to the rival’s limit strategy, on path. Lack of equilibrium

is quite common when β is large (that is, exploration is limited). This should not come

as a surprise. As noted, when β is close to the upper bound of the grid, exploration is too

limited to allow good learning. Nevertheless, even when the algorithms do not play a best

 Electronic copy available at: https://ssrn.com/abstract=3304991 
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β × 105
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Figure 2: Fraction of sessions converging to a Nash equilibrium, for a grid of values of α and β.

response, they are not far from it. Most often, the Q-loss is below 0.5%, and in no point

of the grid does it exceed 1.2% (details in section A4.3).

When experimentation is more extensive (i.e., towards the left side of the grid), equilibrium

play becomes much more prevalent. For example, when α = 0.15 and β = 0.4 × 10−5

(meaning that sub-optimal cells are visited on average 20 times), about half the sessions

produce equilibrium play on path, and the Q-loss is a mere 0.2% on average (see Table I

below). In many cases, the reason why the algorithms are not exactly optimizing is that

they approximate the price, which would be the best response in a continuous action

space, by excess rather than by defect, or vice versa. A key implication is that once the

learning process is completed, the algorithms cannot be exploited, no matter how smart

the opponent is.22

Off path, things are somewhat different. Very rarely do the algorithms play a subgame

perfect equilibrium. Again, this is not surprising, given that the algorithms learn purely by

trial and error, and sub-game perfection is a very demanding requirement when the state

space is large.23 Nevertheless, with enough experimentation we observe clear patterns of

behavior even off path, as we shall see in the next section.

22In the computer science literature, the Q-loss is indeed called “exploitation.” Whether Q-learning
algorithms could be exploited during the learning phase is an interesting question for future study.

23However, Table I below shows that the algorithms are not far from optimizing even off path, with an
average Q-loss of less than 2% for the chosen experiment (details in section A4.3).
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Summarizing, we have seen that once they are trained, our algorithms consistently raise

their prices above the competitive level. These supra-competitive prices do not hinge on

sub-optimal behavior: prices are high even if both algorithms play an optimal strategy, or

come quite close to it. In fact, a comparison of Figures 1 and 2 suggests a positive, albeit

modest, correlation between profit gain and equilibrium play: to be precise, Pearson’s

coefficient of correlation is 0.12.24

5. ANATOMY OF COLLUSION

In this section, we analyze the strategies that sustain the anti-competitive outcomes de-

scribed above. A natural question that arises when prices exceed the Nash-Bertrand level

is why firms do not cut their prices. Is it because they are missing an opportunity to

increase their payoff? Or is it because they realize that cutting the price would not be

profitable given the rival’s response in subsequent periods? And in this latter case, what

would that response look like? These are the questions addressed in what follows.

To ease the exposition, we shall often focus on one point of the grid, namely α = 0.15

and β = 4 × 10−6 but the results are robust to changes in these parameters. With these

parameter values, sub-optimal cells are visited on average about 20 times, and the initial

Q-value of such cells counts for just 3% of their final value.

Table I reports various descriptive statistics for the experiment chosen, both jointly for

all sessions and separately for those that converged to a symmetric price, to asymmetric

prices (but still constant over time), or to cycles of differing length. The last column

focuses instead on those sessions in which the algorithms have learned to play a Nash

equilibrium. Two remarks are in order. First, while in almost all sessions the algorithms

manage to coordinate, the exact form of the coordination varies. For example, even if the

algorithms are fully symmetric ex ante, only in little more than a fourth of the sessions

do they end up charging exactly the same price period after period. All the other sessions

display either asymmetries or cycles, or both. Second, the cycles are associated with less

equilibrium play and lower profit gain. This is true to a lesser extent for cycles of period

2, which could be interpreted as orbits around a target that is not feasible because of our

discretization.25 However, for cycles of period 3 or longer the effects are quite significant.

These cycles, which might reflect the difficulty of achieving coordination purely by trial

and error, are not very frequent, however: they materialize in about a tenth of the sessions.

24The correlation is even higher, i.e. 0.24, if equilibrium play is measured by the fraction of cases in
which at least one algorithm is playing a best response to the rival’s limit strategy.

25For period-2 cycles, the fall in the profit gain is indeed small. As for equilibrium play, the decrease
is more substantial but in part it may be due to the mechanical effect of doubling the number of states
that are reached on path.
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TABLE I

Sessions by cycle length Nash
1-Sym. 1-Asym. 1 2 ≥3 All equilibria

Frequency 0.277 0.366 0.643 0.238 0.119 1 0.505
Avg. Profit Gain 0.866 0.855 0.860 0.846 0.793 0.849 0.854
S.D. Profit Gain 0.115 0.114 0.114 0.104 0.097 0.112 0.108
Freq. of Nash Equilibria 0.686 0.661 0.672 0.294 0.025 0.505 1.000
Avg. Q-Loss (on path) 0.001 0.001 0.001 0.002 0.004 0.002 0.000
S.D. Q-Loss (on path) 0.002 0.004 0.003 0.003 0.006 0.004 0.000
Avg. Q-Loss (all states) 0.018 0.018 0.018 0.018 0.018 0.018 0.018
S.D. Q-Loss (all states) 0.006 0.007 0.006 0.006 0.006 0.006 0.006

5.1. Competitive environments

Before inquiring into how cooperation is sustained, we show that the algorithms do learn

to price competitively, at least approximately, when this is the only rational strategy. In

particular, pricing competitively is the unique equilibrium of the repeated game when

k = 0 (the algorithms have no memory and thus cannot punish deviations), and when

δ = 0 (the algorithms are short-sighted and thus the immediate gain from defection cannot

be outweighed by any loss due to future punishments).

Consider first what happens when the algorithms are short-sighted. Figure 3 shows how

the average profit gain varies with δ. The theoretical postulate that lower discount factors

impede collusion is largely confirmed by our simulations. The profit gain indeed decreases

smoothly as the discount factor falls, and when δ = 0.35 it has already dropped from over

80% to a modest 16%.26 This value corresponds to near-competitive behavior: with our

discretization of the price space, the average profit gain would already be around 10% if

the Nash-Bertrand price were simply approximated by excess.

At this point, however, something perhaps surprising happens: the average profit gain

turns back up as δ decreases further. Although the increase is small, it runs counter to

theoretical expectations. We believe that this “paradox” arises because changing δ affects

not only the relative value of future versus present profits, but also the effective rate of

learning. This can be seen from equation (4), which implies that the relative weight of

26The fall in ∆ starts well before δ gets so low that the maximum profit attainable in a subgame perfect
equilibrium is lower than πM . With grim-trigger strategies, the critical threshold of δ is about 40% for
our baseline specification.
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Figure 3: The average profit gain ∆ as a function of the discount factor δ in our representative

experiment.

new and old information depends on both α and δ.27 In particular, a decrease in δ tends

to increase the effective speed of the updating, which as noted may impede learning when

exploration is extensive.28 Figure 3 suggests that if one could abstract from this spurious

effect, collusion would tend to disappear when agents become short-sighted.

For the case of memoryless algorithms, we again find profit gains only slightly higher

than what is implied by the discretization of the action space (details in section A5.1).

All of this means that our algorithms learn to play, at least approximately, the one-shot

equilibrium when this is the only equilibrium of the repeated game. If they do not play

competitively when other equilibria exist, it must be because they have learned other,

more sophisticated strategies.

5.2. Deviations and punishments

Providing a complete description of these strategies is not straightforward. The problem

is not that they must somehow be inferred from observed behavior, as is typically the case

in experiments with humans. Here, at any stage of the simulations we know exactly not

only what the algorithms do but also what they would do in any possible circumstances.

The difficulty lies instead in the description of the strategies. For one thing, strategies

27Loosely speaking, new information is the current reward πt, and old information is whatever infor-
mation is already included in the previous Q-matrix, Qt−1. The relative weight of new information in a
steady state where Q = π

1−δ then is α(1− δ).
28A similar problem emerges when δ is very close to 1. In this case, we observe that the average profit

gain eventually starts decreasing with δ. This reflects a failure of Q-learning for δ ≈ 1, which is well
known in the computer science literature.
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are complicated objects (in our baseline experiment, they are mappings from a set of 225

elements to a set of 15 elements). For another, the limit strategies display considerable

variation from session to session, and averaging masks relevant information.

We therefore start by asking, specifically, whether unilateral price cuts are profitable or

not in view of the rival’s reaction. To this end, we focus once again on the algorithms’ limit

strategies. As discussed above, these generally entail supra-competitive prices. Starting, in

period τ = 0, from the prices the algorithms have converged to, we step in and exogenously

force one algorithm to defect in period τ = 1. The other algorithm instead continues to

play according to his learned strategy. We then examine the reaction of the algorithms in

the subsequent periods, when the forced cheater reverts to his learned strategy as well.

Figure 4 shows the average of the impulse-response functions derived from this exercise

for all 1,000 sessions of our representative experiment.29 It shows the prices chosen by

the two agents after the deviation. In particular, Figure 4 depicts the evolution of prices

following a one-period deviation to the static best-response to the rival’s pre-deviation

price.30

Clearly, the deviation gets punished. As Table III below shows, in more than 95% of the

cases the punishment makes the deviation unprofitable; that is, “incentive compatibility”

is verified.

The dynamic structure of the punishment is very interesting. After an initial price war,

the algorithms gradually return to their pre-deviation behavior. This pattern looks very

different from the one that would be implied, for instance, by grim-trigger strategies.31

These latter strategies, which are the workhorse of many theoretical analyses of collusion,

are never observed in our experiments. The reason for this is simple: with experimenta-

tion, one algorithm would sooner or later defect, and when this happened both would

be trapped in a protracted punishment phase that would last until further (joint) ex-

perimentation drove the firms out of the trap. Our algorithms, by contrast, consistently

learn to re-start cooperation after a deviation. This property seems natural in an environ-

ment characterized by extensive experimentation, where coordination would inevitably be

disrupted if it were not robust to idiosyncratic shocks.32

29When the algorithms converge to a price cycle, we consider deviations starting from every point of
the cycle and take the average of all of them.

30We have also considered the case of an exogenous deviation that lasts for 5 periods. The dynamic
pattern is similar to that of one-period deviations (details in section A5.2).

31Strictly speaking, grim-trigger strategies require unbounded memory, but it is easy to define their
one-period memory counterpart.

32This is not a foregone conclusion, however, as the algorithms may start to cooperate only after
experimentation had already faded away. That cooperation begins earlier is confirmed by the analysis in
Section 7.
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Figure 4: Prices charged by the two algorithms in period τ after an exogenous price cut by

one of them in period τ = 1. The forced cheater deviates to the static best response, and the

deviation lasts for one period only. The figure plots the average prices across the 1,000 sessions.

For sessions leading to a price cycle, we consider deviations starting from every point of the

cycle and take the average of all of them. This counts as one observation in the calculation of

the overall average.

The pattern of punishment we observe is somewhat reminiscent of the “stick-and-carrot”

strategies of Abreu (1984). However, there are differences with Abreu’s strategies as well:

the initial punishment is not as harsh as it could be (prices remain well above the static

Bertrand-Nash equilibrium), and the return to the pre-deviation prices is gradual rather

than abrupt.

To show that the pattern depicted in Figure 4 is not an artifact of the averaging, Figure

5 reports more information on the distribution of the impulse responses.33 While there is

considerable variation across sessions, especially in the first periods after the deviation,

the pattern is robust. (See also the fan chart in section A5.2.)

Figures 4 and 5 focus on deviations that maximize the short-run gain from defection.

However, we have performed the same type of exercise for all possible price cuts. Table II

reports the prices charged by the two algorithms immediately after the defection (i.e., in

period τ = 2). The initial punishment is slightly harsher for bigger price reductions, but

the effect is modest. The algorithms systematically return to the initial prices; in most of

the cases, the punishment ends after 5-7 periods (See table A2 in section A5.2) Table III

shows that these deviations, too, are almost always unprofitable.

33Here we restrict attention to sessions that converge to constant prices to avoid spurious effects that
may arise because of the averaging across different initial conditions.
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Figure 5: For each period τ , the figure shows the mean (black line), the 25th and 75th percentiles

(shaded rectangles), and the ranges (dashed intervals) of the prices charged after an exogenous

price cut in period τ = 1. To be precise, the variable on the vertical axis is the difference between

the current and the long-run price.

For small price cuts, a noteworthy pattern emerges. That is, both algorithms now cut

their prices further in period τ = 2, below the exogenous initial reduction of period τ = 1.

In other words, we have “overshooting.” This is illustrated in Figure 6, which shows the

average impulse-response corresponding to one of these smaller deviations.

The overshooting would be difficult to rationalize if what we had here was simply a stable

dynamic system that mechanically returns to its rest point after being perturbed. But it

makes perfect sense as part of a punishment.34

As mentioned, these results do not depend on the specific values chosen for α and β: we

observe punishment of deviations over the entire grid considered in the previous section.

To illustrate, Figure 7 plots an index of the intensity of the punishment (i.e., the average

percentage price cut of the non-deviating agent in period τ = 2) as a function of α and

β. The figure confirms that punishment is ubiquitous. The harshness of the punishment

is strongly correlated with the profit gain: the coefficient of correlation is 76.2%. This is

one more sign that the supra-competitive prices are the result of genuine tacit collusion.

34It is tempting to say that the deviating algorithm is actively participating in its own punishment.
At the very least, the deviating algorithm is anticipating the punishment – otherwise it would have no
reason to reduce its price as soon as it regains control, i.e. in period τ = 2, given that the rival’s price
was still high in period τ = 1.
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Figure 6: This figure is similar to Figure 4, except that the exogenous price cut is smaller. As

a result, prices fall further down in period τ = 2. In other words, the impulse-response function

exhibits “overshooting.”

5.3. The graph of strategies

Let us now face the problem of describing the limit strategies more fully. Generally speak-

ing, with a one-period memory strategies are mappings from the past prices (p1,t−1, p2,t−1)

to the current price pi,t: pi,t = Fi(p1,t−1, p2,t−1). In our experiments, the algorithms system-

atically coordinate on one pair of prices (or a cycle) and punish any move away from the

agreed upon prices. However, these prices vary from session to session, and the intensity

of the punishment is variable as well, depending rather capriciously on the distance from

the long-run prices. For this reason, one cannot derive a representative strategy by simply

averaging across different functions Fi (details in appendix A5.3).35

One obvious way to work around this problem would be to average only across those

sessions where the algorithms converge to the same pair of supra-competitive prices. In

this case, the average function F must obviously exhibit a spike at that point. Elsewhere

prices must be much lower, reflecting the punishment of deviations. But apart from these

obvious properties, even such conditional averages display no recognizable pattern.

Evidently, there is considerable variation not only in the prices on which the algorithms

converge to but also in their limit behavior off path. In other words, the exact way the

algorithms achieve coordination depends on the specific history of their interactions. One

could not, perhaps, expect anything else from agents that learn purely by trial and error.

35The average function would be almost flat, ranging over prices that are fairly competitive.
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Figure 7: Average percentage price reduction by the non deviating agent in period τ = 2,
for a grid of values of α and β.

This suggests that limit strategies may be better studied in pairs, looking at the combined

behavior of those algorithms that interacted with one another. This combined behavior

may be described using the directed graph produced by any pair of strategies. For ex-

ample, Figure 8 depicts the graph of the limit strategies obtained in one session of our

representative experiment. In any graph like this, the node corresponding to the long-run

prices (which is marked as a square in the figure) is absorbing.36

The graph is quite complex but exhibits a few remarkable properties. First and foremost,

all the nodes eventually lead to the absorbing node. This means that the algorithms

systematically re-start cooperation not only after unilateral but also after bilateral devia-

tions. Second, there are a few key nodes that act as gateways, either directly or indirectly,

to the absorbing node. Third, the paths to the absorbing node are generally rather short:

the average length of the path is 6, and the maximum length is 18. The supplementary

material file (section A5.3) shows that the properties exhibited by this example are in

fact much more general. For example, in 92% of the sessions the system converges to the

long-run prices starting from any possible node; and in 98% of the sessions there are fewer

than 3 nodes, out of 225, that do not eventually lead to the long-run prices.

Figure 9 represents, for the same example, the limit strategies in a way that facilitates the

36For sessions that converge to a price cycle, the system would cycle around two or more nodes.
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Figure 8: The directed graph of the limiting strategies in one session of the representative

experiment. The absorbing node (corresponding to the long-run prices) is represented by the

square, all other nodes by circles. The brightness of the nodes represents the profit gain (the

darker the node, the higher the profit gain), while the size represents the node’s centrality (as

measured by betweenness centrality).

economic interpretation of the nodes. Nodes are ordered according to the level of the prices

charged by algorithm 1 (horizontal axis) and 2 (vertical axis). The arrows starting from

each node indicate the direction of the price change, but to make the figure easier to read

they do not extend as far as the next node that is reached. The figure shows that starting

from any node other than the absorbing one, the system initially moves towards the low

part of the main diagonal and then climbs up to the long-run prices. This suggests that

cooperation does not re-start immediately but only after a punishment phase, and that

bilateral deviations are punished in pretty much the same way as unilateral deviations.
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Figure 9: Phase portrait of the limiting strategies. The Bertrand-Nash price is best approx-

imated by the third lowest price, the monopoly price by the third highest. Form, size and

brightness of the nodes are as in Figure 8.

6. ROBUSTNESS

How robust are our baseline results to changes in the economic environment? In this

section, we consider a number of factors that may affect firms’ ability to sustain a tacit

collusive agreement. Throughout, we continue to focus on our chosen values for the learn-

ing and experimentation parameters, α = 0.15 and β = 4 × 10−6. The supplementary

material file provides more details and presents several other robustness exercises.

6.1. Number of players

Theory predicts that collusion is harder to sustain when the market is more fragmented.

We find that, indeed, the average profit gain ∆ decreases from 85% to 64% in simulations

with three firms. With four agents, the profit gain is still a substantial 56%. The decrease

in the profit gain seems slower than in experiments with human subjects.37

37The early experimental literature indeed found that in the lab, tacit collusion is “frequently observed
with two sellers, rarely in markets with three sellers, and almost never in markets with four or more sellers”

 Electronic copy available at: https://ssrn.com/abstract=3304991 



28 E. CALVANO, G. CALZOLARI, V. DENICOLÒ, S. PASTORELLO

TABLE IV

Cost asymmetry (c1 = 1).

c2 1.000 0.875 0.750 0.625 0.500 0.250

2’s Nash market share 0.500 0.545 0.588 0.627 0.662 0.722
∆ 0.849 0.841 0.812 0.781 0.759 0.713
π1/πN1
π2/πN2

0.997 1.050 1.121 1.193 1.265 1.442

These results are all the more remarkable because the enlargement of the state space

interferes with learning. Indeed, moving from n = 2 to n = 3 or n = 4 enlarges the

Q-matrix dramatically, from 3,375 to around 50,000 or over 750,000 entries. Since the

parameter β is held constant, the increase in the size of the matrix makes the effective

amount of exploration much lower. If we reduce β so as to compensate for the enlargement

of the matrix, at least partially, the profit gain increases. For example, with three firms

we find values of ∆ close to 75%.38

The impulse-response functions remain qualitatively similar to the case of duopoly. We

still have punishments, which however tend to be more prolonged and generally harsher

than in the two-firms case.

6.2. Asymmetric firms

The conventional wisdom has it that asymmetry impedes collusion. Firms contemplating a

tacit collusive agreement must solve a two-fold problem of coordination: they must choose

both the average price level, which determines the aggregate profit, and the relative prices,

which determine how the total profit is split among the firms. Achieving coordination on

both issues without explicit communication is often regarded as a daunting task.

To see how Q-learning algorithms cope with these problems, we considered both cost and

demand asymmetries of different degrees. Table IV reports the results for the case of cost

asymmetry (the case of demand asymmetry is similar).

As the table shows, asymmetry does reduce the average profit gain, but only to a limited

extent. In part the decrease is simply a consequence of the absence of side payments. To

see why this is so, consider how the two algorithms divide the aggregate profit. As the

(Potters and Suetens (2013) p. 17). More recently analyses paint a more nuanced picture, though. In some
experiments, three or four human subjects manage to achieve levels of coordination comparable to our
algorithms: see Horstmann (2018) and Friedman et al (2015).

38In order to make the learning process more effective, the increase in the amount of experimentation
is matched by a decrease in the learning rate. The increase in the profit gain goes hand in hand with the
increase in the frequency of equilibrium play.
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last row of the table shows, the gain from collusion is split disproportionately in favor of

the less efficient firm.

This division clearly has an impact on the joint profit level. The maximization of joint

profit indeed requires that the more efficient firm expand and the less efficient one con-

tract relative to the Bertrand-Nash equilibrium.39 However, this would produce a division

strongly biased in favor of the more efficient firm. Conversely, a proportional division of

the gain, or one that favors the less efficient firm, entails a cost in terms of the total profit.

This by itself explains why the average profit gain decreases as the degree of asymmetry

increases. In other words, it seems that asymmetry doesn’t actually make the coordination

problem tougher for the algorithms but simply leads them to coordinate on a solution that

does not maximize total profit.

6.3. Stochastic demand

While the baseline model is deterministic, in principle each of the model parameters could

be subject to random shocks. In particular, here we investigate the case where the level

of demand (a0) is stochastic, and the case of stochastic entry and exit.

Consider first the case where the aggregate demand parameter a0 varies stochastically.

Specifically, a0, which in the benchmark is nil, is now assumed to be an i.i.d. random

variable that may take on three values, i.e. aL0 = −aH0 , 0 and aH0 , with the same probability,

thus generating both negative and positive demand shocks. The algorithms do not observe

the value of a0 before making their choices. The shocks are purely idiosyncratic and have

no persistency – a challenging situation for the algorithms.

When aH0 = 0.15, the average profit gain under uncertainty decreases slightly, from 85%

to 80%; and even when aH0 = 0.25 the average profit gain is still 70%. Apparently, then,

demand variability does hinder collusion among firms, as one would have expected, but

it does not eliminate it.

6.4. Variable market structure

Next, we analyze the impact of a variable market structure. In particular, we repeat the

simulations with one firm (the “outsider”) entering and exiting the market in random

fashion. This exercise is performed both for the case of two players (the market thus

alternating between monopoly and duopoly) and of three players (duopoly and triopoly).

39This effect may be so pronounced that the less efficient firm may actually earn less under joint profit
maximization than in the Bertrand-Nash equilibrium.
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We take entry and exit to be serially correlated. Formally, let It be an indicator function

equal to 1 if the outsider is in the market in period t and to 0 otherwise. We set

(10) prob{It = 1|It−1 = 0} = prob{It = 0|It−1 = 1} = ρ.

This implies that the unconditional probability of the outsider’s being in at some random

time is 50%. Equivalently, the market is a duopoly half the time on average. The proba-

bility of entry and exit ρ is set at 0.1% or at 0.01%, so that when the outsider enters, it

stays in the market for an average of 1,000 (resp., 10,000) periods. Since in marketplaces

where algorithmic pricing is commonly adopted periods can be very short, these levels of

persistency are actually rather low.

The state s now includes the prices of the previous period if all firms were active, or the

prices of the active firms and the fact that the outsider was not active.

In this exercise, we find that the average profit gain decreases to about 58%. This is the

combined effect of the increase in the size of the matrix, which as noted impedes learning,

and uncertainty. Still, we remain far from the competitive benchmark.

6.5. Product substitutability

In the logit model, a decrease in µ means that the demand for each particular variety

becomes more price-sensitive. That is, the reduction in µ captures an increase in product

substitutability. In principle, the impact of changes in substitutability on the likelihood

of collusion is ambiguous: on the one hand, when products are more substitutable the

gain from deviation increases, but at the same time punishment can be harsher. This

ambiguity is confirmed by the theoretical literature (see e.g. Tyagi, 1999).

In our setting, we test the consequences of changing parameter µ from 0.25 (baseline)

up to 0.5 and down to 0, where products are perfect substitutes. The average profit gain

decreases slightly when µ decreases, but when the products are perfect substitutes (µ = 0)

it is still greater than 77%.

6.6. Initialization

Our baseline choice was to initialize the Q-matrix in accordance with the fact that the

algorithms start by randomizing uniformly across all possible actions. As a robustness

check, we also study other initializations, such as setting Q0 to the value corresponding
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to the rival always playing the Nash-Bertrand price,40 or a grim-trigger strategy, or else

setting Q0 at constant, large values. In this last case, the value of any cell that is visited

inevitably decreases at first, so different actions are tried next. Thus, the updating of

the matrix in itself induces the algorithms to explore systematically, in addition to the

random experimentation entailed by the ε-greedy model. That is, one could set ε = 0 and

still have experimentation and learning.

The average profit gain is not insensitive to the initialization but always remains well

above 70%. The average profit gain is lowest when the Q-matrix is initialized at Nash,

or at grim-trigger strategies. When instead the matrix is initialized at a large, constant

value, and exploration is shut down, the algorithms learn to collude almost perfectly.

6.7. Action set

We have explored the consequences of enlarging the price grid by increasing ξ, enlarging

the grid only downwards so that the lowest feasible price is just below the marginal cost,

and making the grid finer (raising the number of feasible prices m from 15 to 50 or 100).

The greater flexibility in price setting - below Bertrand or above monopoly - turns out

to have a limited impact. This is not surprising, given that the players never converge on

these very low or very high prices. Enlarging the grid only in the downwards direction

decreases the profit gain, confirming that the way in which coordination is achieved is

history dependent. However, the profit gain remains above 60%.

The increase in the number of actions, in principle, could engender misunderstandings in

the absence of explicit communication and thus could prevent cooperation. Indeed, the

average profit gain decreases with m, but with m = 100 it is still a substantial 70%. In

interpreting this result, one should also keep in mind that with m = 100 the Q-matrix is

much larger than in the baseline model, but β is held constant. To achieve the same level

of learning, instead, more experimentation would be required.

The supplementary material file reports the results of more robustness checks, including

the case of longer memory, linear demand, Boltzmann experimentation, and asymmetric

algorithms.

40In fact, this may produce two different initializations depending on whether the Bertrand price, which
is not available on our price grid, is approximated by excess or by defect. We have chosen the closest
approximation.
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Figure 10: The average profit gain as a function of the number of repetitions (moving average

over the last 100 repetitions). The dashed line is the profit gain that results from exogenous

exploration, on the assumption that when they do not explore, the algorithms set the Bartrand-

Nash price (approximated by defect).

7. TIME SCALE

So far we have focused on limit outcomes and strategies; that is, on what the algorithms

do once they have attained stable behavior. But convergence requires a very large number

of periods, on the order of hundreds of thousands. Even if a “period” lasted just a few

minutes, this would correspond to several years or more. In this section, we discuss the

extent to which this limits the practical implications of our results.

7.1. Transition

To begin with, note that the algorithms start to collude long before convergence is

achieved. This is illustrated in Figure 10, which shows the evolution of the average profit

gain in our representative experiment. The profit gain starts from a fairly large value, but

this is simply because the algorithms initially randomize uniformly across prices that, on

average, exceed the competitive level. This effect disappears as experimentation draws

towards a close. One can abstract from this effect by taking as a competitive benchmark

not ∆ = 0 but the profit gain that would result if the algorithms set the Bertrand price

whenever they do not explore. This is represented by the smoothly declining curve in

Figure 10.

Even against this benchmark, our algorithms begin to increase their profits very soon. The

gain is modest initially but gradually increases. Thus, a non-negligible degree of collusion
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may emerge well before the algorithms have completed their learning.

7.2. Off-line training

Typically, algorithms are trained in artificial environments before being put to work in

the real world. For example, AlphaGo was trained for several weeks in self-play mode

before facing professional human players.41 Likewise, firms presumably train their pricing

algorithms off-line before deploying them in real marketplaces. If much of the learning

process can be completed off-line, the algorithms might start to collude the moment they

engage in real action.

However, there is an important difference between zero-sum board games and games of

pricing. For the former, almost everything that has been learned off-line can be directly

applied in real contests (the only problem being that human opponents may adopt a

different style of play). But games of pricing involve coordination in an essential way, and

different sets of players may learn to coordinate in different ways. Moreover, the training

environment may not exactly reflect the reality of the markets in which the algorithms

will be deployed. This implies that what an algorithm has learned off-line may be of little

help in colluding in real life.

To see how far the knowledge gained in playing against one opponent can be transferred

to interacting with another, we re-match the algorithms once they have converged and let

them start to play again. In the newly formed pairs, we shut exploration down by setting

ε = 0. Nevertheless, faced with the “unexpected” choices made by the new competitor,

the algorithms change their strategies. In an initial phase, they keep trying actions that

performed well in the past but are no longer good in the new environment. After this

learning phase, however, they once again stabilize their behavior.

Figure 11 shows the evolution of the average profit gain for such re-matched pairs. At

first the average profit gain falls from 85% to about 20%, confirming that coordination is

almost completely pair-specific. As the algorithms adapt to the new environment, however,

the profit gain rises quite rapidly. Learning ends in less than one tenth of the time it took

in the original interactions, even though the eventual profit gain is somewhat lower. (The

original levels of collusion can be re-produced by re-activating exploration.) This suggests

that even in games of pricing, off-line learning may not be completely useless after all.

41By way of comparison, the “training” of our algorithms takes just a few seconds of CPU time in any
session.
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Figure 11: The average profit gain as a function of the number of repetitions for pairs of

algorithms re-matched as described in the text (moving average over the last 100 repetitions).

7.3. Financial markets

In financial markets, both price adjustments and transactions occur much more frequently

than in goods markets. In other words, a “period” is much shorter. As a result, millions

of interactions could easily take place in days, or even just hours.

Naturally, however, our analysis cannot be applied to financial markets as it stands.

Demand and supply need to be modelled in a different way, and market power is typically

more limited in financial than in goods markets. On the other hand, even a modest price

effect could result in large extra-profits and thus become a matter of antitrust concern.

7.4. More advanced algorithms

As noted, Q-learning algorithms learn slowly by design, as they update only one cell of

the Q-matrix at a time. This is clearly inefficient when the matrix is in fact the discrete

approximation of a smooth function, as in our model, because it totally neglects the

topological structure of the function.

There exist more efficient algorithms, capable of taking advantage of that structure. For

example, value-function-approximation algorithms estimate the Q-function by iterative

updating methods similar to (4) and then derive the Q-matrix by discrete approximation.

In this case, at each period the algorithm would update not only the most recently visited

cell of the matrix but also a number of neighboring cells, thus speeding up the learning

process. The downside of these faster algorithms is that they require modeling choices

that are somewhat arbitrary from an economic viewpoint, in this respect resembling black
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boxes.42 This is, in our opinion, a good reason to start the analysis of algorithmic collusion

from Q-learning, as we have done here. But extending the analysis to algorithms that

learn more quickly is clearly an important objective for future research. In particular, it

is crucial to address the issue of the time scale of collusion.

8. CONCLUSIONS

We have shown that Q-learning pricing algorithms systematically learn to collude. Collu-

sion is typically partial and is enforced by punishment in case of deviation. The punish-

ment is of finite duration, with a gradual return to pre-deviation prices. The algorithms

learn to play these strategies by trial and error, requiring no prior knowledge of the

operating environment. They leave no trace whatever of concerted action: they do not

communicate with one another, nor have they been designed or instructed to collude.

From the standpoint of competition policy, these findings should probably ring an alarm

bell. Today, the prevalent approach to tacit collusion is relatively lenient, in part be-

cause tacit collusion among human decision-makers is regarded as extremely difficult to

achieve.43 While we have no direct comparative evidence for algorithms relative to hu-

mans, our results suggest that algorithmic collusion might not be that improbable. If this

is so, then the advent of algorithmic pricing could well heighten the risk that tolerant

antitrust policy will produce too many false negatives.

On the other hand, algorithmic pricing may open the way to new forms of antitrust

intervention. When they suspect collusive conduct, agencies and the courts can subpoena

and test pricing algorithms in environments that closely replicate the particular industry

under investigation. With humans this was not possible, so the risk of aggressive antitrust

enforcement producing too many false positives may be reduced. Therefore, the advent

of AI pricing could alter the balance between the two types of error, possibly calling for

policy adjustment.

More research is needed, however, to confirm the robustness and external validity of our

findings. Several issues stand out. First, the realism of the economic environment: we

have considered a good many extensions of the baseline model, but all separately, so the

model remains quite highly stylized. In particular, we have not yet considered persistent,

firm-specific demand or cost shocks. In the presence of such shocks, it is not clear how a

42To begin with, one must specify a functional form for the Q-function. Further, these methods are
often implemented by means of neural networks organized on several layers (deep learning). In a model
of deep learning one must also specify the number of estimation layers and the structure of the neural
network in each layer. The arbitrariness of these modeling choices may make it hard to interpret the
results.

43Another reason is the difficulty of devising proper remedies (Harrington (2018)).
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rival firm ought to respond to a price cut. In principle, this depends on whether the price

cut is driven by exogenous shocks or represents a deviation from the implicit agreement.

But when a firm’s shocks are part of its state but not of the rival’s one, the rival faces a

non trivial inference problem. The difficulty of “interpreting” price cuts might then pose

a challenge to the sustainability of collusion.

Another important issue is the diversity of the competing algorithms. There are many

different forms of reinforcement learning, and Q-learning algorithms themselves come in

different varieties. Since tacit collusion is, essentially, a problem of coordination, one may

wonder that the problem is easier when the programs belong to the same class. It would

seem therefore necessary to extend the analysis to the case of player heterogeneity.

A third issue is the speed of learning. As discussed above, further inquiry into this problem

must use algorithms that learn faster. It would also be interesting to move away from

algorithms that adopt a purely model-free approach to learning, considering algorithms

that incorporate some economic structure.

On a more general note, a better understanding of the dynamics of the learning process

could help identify factors that may destabilize collusion. All of these challenging but

important tasks are left for future research.
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