Detection of Units with Pervasive Effects in Large Panel
Data Models*

G. Kapetanios
King’s College, London

M. H. Pesaran
University of Southern California, and Trinity College, Cambridge

S. Reese
Lund University, Sweden

December 29, 2019

Abstract

The importance of units that influence a large number of other units in a network has
become increasingly recognized in the literature. In this paper we propose a new method to
detect such pervasive units by basing our analysis on unit-specific residual error variances
subject to suitable adjustments due to the multiple testing issues involved. Accordingly,
a sequential multiple testing (SMT) procedure is proposed, which allows identification of
pervasive units (if any) without a priori knowledge of the interconnections amongst cross-
section units or availability of a short list of candidate units to search over. The proposed
method is applicable even if the cross section dimension exceeds the time series dimension,
and most importantly it could end up with none of the units selected as pervasive when
this is in fact the case. The SMT procedure exhibits satisfactory small-sample performance
in Monte Carlo simulations and compares well relative to existing approaches. We apply
the SMT detection method to sectoral indices of U.S. industrial production, U.S. house
price changes by states, and the rates of change of real GDP and real equity prices across
the world’s largest economies.
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1 Introduction

Detecting economic agents with influence over a large number of peers has become a relevant
issue in several areas of economics. For example, in banking and finance it is of interest to
consider formal ways of identifying whether particular financial institutions present systemic
risks. At times of economic and financial crises it is often of interest to know if a certain
corporation, particularly among financial institutions, is so large and interconnected that its
failure could lead to cascade effects with important consequences for the economy as a whole.
Such units are often referred to as ‘too big to fail’ and their existence is debated in the press
and in public policy forums, although empirical evidence in support of such claims is often
lacking. In cases where information on interconnections across units exist, it is possible to
use a network approach to detect the most influential unit in the network and examine its
degree of dominance. An important example is input-output data used to analyze the role
that individual production units, such as industrial sectors, play in propagating shocks across
the economy. A major recent contribution in this area is by Acemoglu, Carvalho, Ozdaglar,
and Tahbaz-Salehi (2012) who suggest using the shape parameter of a power law assumed
for the degree sequence of a network to measure the extent to which variations in aggregate
volatility are affected by shocks to individual units within the network. Further developments
are provided by Acemoglu, Akcigit, and Kerr (2016) and Acemoglu, Autor, Dorn, Hanson, and
Price (2016). In related work, Pesaran and Yang (2019) propose extremum estimators based on
outdegrees of a network to detect and identify influential units in the network and to estimate
their degrees of pervasiveness.

In cases where information on network connections is not available, it is still possible to
identify individual units with pervasive effects if there is a sufficient number of time series
observations (7') on all cross section units (/N) under consideration. In this paper we suppose
that such time series observations are available and address the problem of jointly determining
the number as well as the identity of those units that are influential or pervasive, in the sense
that they influence almost all other units in the panel. From the perspective of economic
networks, the central hub in a star network provides a simple example of a pervasive unit. As
noted above, the concept of pervasive units is closely related to the notion of ‘too big to fail’
often used in the context of financial and production networks. However, it is important to
bear in mind that the two concepts are not identical. For example, a unit that is too big to fail
may become influential mainly in crisis periods, implying a nonlinear behavior that our linear
model may not be best equipped to handle.

Our approach shares some features with existing contributions on the same subject (see e.g.
Bai and Ng, 2006; Parker and Sul, 2016; Brownlees and Mesters, 2019) but improves on them
in a number of respects. First, we allow for the possibility that the data under consideration
do not include any pervasive unit in the first place. This is a leading case of interest and, in
fact, some of our empirical applications confirm its practical importance. Secondly, we do not
require a priori information on a potential list of pervasive units or observations on network
linkages. This is a key advantage relative to contributions in the production network literature
which relies on the availability of input-output tables. Third, our detection procedure can
determine pervasive units from a large number of potential candidates, even in the presence
of external common factors that could potentially influence all units (including the pervasive
units). Finally, our procedure applies even if N > T', which is an important consideration in
practice where in many applications of interest the number of time series observations is limited



either because of unavailability of data or due to structural breaks.

Before proceeding to propose an operational procedure to identify pervasive units, we need
to provide a clear mathematical definition of what we mean by pervasive units, using both
intuitive and mathematical arguments. As a result, we consider intuitive properties that a
pervasive unit should have. As we wish to have a simple structure we choose not to focus on
dynamic models that would potentially allow consideration of various concepts of causation.
Accordingly, using a standard multi-factor panel data model, we regard a unit as pervasive if it
affects a large proportion of other units in the panel. In other words, any shock that impacts
a pervasive unit has to impact a large proportion of other units. In contrast, for non-pervasive
units there can be shocks that are idiosyncratic and do not affect many other units. Although
we do not allow for dynamics, our model can be extended to allow for shocks to be serially
correlated.

A major implication of the existence of pervasive units, as defined above, is that the data can
be represented by a factor model where variation in the pervasive units is perfectly explained
by the true factors. This view on pervasive units reflects the fact that an influential unit can
be viewed as a common factor for all other units in the panel. Consequently, factor estimates
obtained from the dataset will have close to perfect explanatory power for true pervasive units.
Using this result, we consider the residual variance from regressions of individual units on the
factor estimates as a metric that quantifies the explanatory ability of the estimated factors.
Based on ideas from multiple testing we then construct thresholds that determine whether the
residual variance estimated for a given unit is sufficiently small to identify that unit as pervasive.
We find that thresholding residual variances across the units provides a powerful approach with
a number of desirable characteristics and good small sample performance.

A further defining characteristic of our work is to consider refinements that again make
use of multiple testing to allow for the possibility that identified pervasive units may not be
fully pervasive - that is they may only affect a subset of cross-sectional units. This further
distinguishes our work from existing methods which either do not pay much attention to such
weak cross-sectional dependence structures or are unclear about the motivation and nature of
these structures. The use of multiple testing focuses on the possibility that some units selected
as pervasive might only affect a majority of the units in the panel rather than being fully
pervasive with non-zero effects on all units. We feel that local to zero representations of factor
loadings, which are sometimes used in the literature, where the magnitude of the loadings
depend on the sample size and tend to zero with the sample size, are less persuasive as a model
for economic interdependence than the weak dependence formulation that we consider in this
paper.

Monte Carlo simulations suggest that our refined thresholding method performs very well
in finite-sample, and most importantly, it reliably detects the absence of pervasive units from a
dataset with many potential candidates. Furthermore, if influential units are part of the model
specification, our detection methodology succeeds in jointly detecting their total number and
their identities. The proposed method also works well even if N is much larger than 7', and
unlike other methods proposed in the literature, its false discovery rate is very low and tends
to zero as N and T' — .

The proposed detection procedure is applied to sectoral indices of U.S. industrial production
(already investigated in the literature), as well as to the rates of change of real GDP and
real equity prices across the world’s largest economies over the period 1979q2-2016g4. Unlike
other detection methods proposed in the literature, we do not find convincing evidence that



there are pervasive sectors within the U.S. industrial production, or that there exist pervasive
economies or equity markets in the global system, once we adequately allow for the presence
of common factors. Finally, we apply the new method to real U.S. house price changes across
the 48 mainland states, and find evidence that New York is pervasive, in contrast to the other
methods that select states such as New Hampshire, Nevada, North Carolina, Maryland and
Virginia (just to mention a few) and not New York as pervasive.

The paper is structured as follows. Section 2 presents a review of the existing literature.
Section 3 provides the main setup of our approach and details our theoretical results. Further
refinements are discussed in Section 5. Sections 6 and 7 present simulation and empirical
evidence on the relative performance of our method compared to existing ones. Formal proofs
and additional simulation results are relegated to Appendix A and an online supplement.

Notation: Generic positive finite constants are denoted by C' when large, and ¢ when small.
They can take different values at different instances. —? denotes convergence in probability as
N, T — 00. Amax (A) and Apin (A) denote the maximum and minimum eigenvalues of matrix
A. A > 0 denotes that A is a positive definite matrix. ||A|| and ||A||; denote the spectral
and Frobenius norm of matrix A. If {f,}°, is any real sequence and {g,} -, is a sequences
of positive real numbers, then f, = O(gy,), if there exists C' such that |f,| /g, < C for all n.
fo=0(gn) if fr/gn — 0asn — oco. If {f,}.2, and {g,} -, are both positive sequences of real
numbers, then f, = S (g,) if there exists ny > 1 and positive finite constants Cy and C, such
that inf,,>n, (fn/gn) > Co, and sup,,>,,, (fn/gn) < C1.

2 Related literature

Asset pricing models have motivated the earliest approaches aimed at determining whether a
given set of observed time series coincides with one of the estimated common factors (principal
components) from a large panel dataset. Bai and Ng (2006) regress each observed candidate
series onto the estimated factors and propose statistics to test the equality between the model
fit from the aforementioned regression and the observed values of a list of (assumed) potential
influential variables. The framework considered by these authors is one where economic theory
reduces the number of potential influential variables to a small, fixed number of economic indi-
cators that are not part of the large dataset at hand. Consequently, using their framework to
identify pervasive units in large datasets without any means of reducing the number of candi-
dates is problematic. The framework considered by these authors is one where economic theory
reduces the number of potentially influential variables to a small set of economic indicators
that are not part of the large dataset at hand. Consequently, using their framework to identify
pervasive units without some a priori knowledge about the list of candidate variables will be
problematic. This shortcoming was recognized by Parker and Sul (2016) who provide an al-
ternative approach to that suggested by Bai and Ng (2006) and consider the identification of
pervasive units by focusing on the idiosyncratic components of the estimated factor model and
identify an observed series as pervasive if it can replace at least one of the estimated factors
in the factor model without introducing common factors in the idiosyncratic components.! 2

'In Parker and Sul (2016) a pervasive unit is referred to as the dominant leader.

2Further empirical applications of the Parker and Sul method (in a simpler form) are provided by Gaibulloev,
Sandler, and Sul (2013) and Greenaway-McGrevy, Mark, Sul, and Wu (2018). Soofi-Siavash (2018) also considers
a version of the Parker and Sul method which is applicable to any cross-section unit taken as potentially
pervasive, and provides an application to the industrial sectors in the U.S..



In order to address multiple testing concerns, Parker and Sul (2016) propose a rule of thumb
to restrict the number of potential pervasive units. However, this only mitigates the problem
rather than providing a full solution. A more general solution is provided by Brownlees and
Mesters (2019), who formalize the notion of a pervasive unit in a framework very similar to the
one used in this study. Their approach consists of using the sample concentration matrix of all
the units in the data, and identify as pervasive those units whose concentration matrix column
norms are considerably larger than those of the remaining units.®> Under certain regularity
conditions, Brownlees and Mesters show that their procedure consistently partitions the units
into pervasive and non-pervasive by ordering the column norms in descending order and then
choosing the maximum ratio between two successive, ordered column norms.

The detection method proposed by Brownlees and Mesters (2019) has the advantage that
it does not require common external factors in the data to be estimated. But this comes at
the expense of requiring the number of time periods to be larger than the number of cross-
section units (7" > N), and the assumption that there exists at least one pervasive unit in
the data. These two requirements could be quite restrictive in practice. First, many datasets,
notably those involving aggregate economic indicators, have a number of cross section units
that is approximately as large as the number of time periods, if not larger. Even if the time
dimension of the dataset is sufficiently large, sub-samples of interest (due to structural breaks)
might be too short to allow for a separate investigation. Second, it is crucial to allow for
the possibility that none of the units in the sample at hand is pervasive. The relevance of
this case is apparent by recent contributions that track the effect of sector-specific shocks on
aggregate fluctuations. For example, application of a structural model to data on U.S. industrial
production leads Foerster, Sarte, and Watson (2011, p.21) to conclude that "|[...] linkages alone
and uncorrelated sector-specific shocks implies noticeably less co-movement across sectors than
in U.S. data." Further evidence is given in Pesaran and Yang (2019) who develop an estimator
for the degree of dominance of the most pervasive unit in a network. Their application to
U.S. input-output tables reveals that there is "[...] some evidence of sector-specific shock
propagation, but [that] such effects do not seem sufficiently strong and long-lasting [...]" in
the sense that the aggregate effect of sectoral shocks vanishes as the number of sectors in the
economy increases. Finally, while the two studies cited above allow for the absence of pervasive
units, they crucially rely on the availability of input-output matrices as a measure of linkages
between cross-sections. Comparable information may not always be available, thus making it
impossible to use the techniques in these studies. By contrast, the approach proposed in the
current paper is applicable to any large dimensional panels without requiring the presence of a
minimum number of pervasive units in the panel.

3 Panel data models with pervasive units

Suppose T' time series observations are available on N cross section units denoted by x;, for
1=1,2,...,Nand t =1,2,...,T. We are interested in determining the number and identity
of pervasive units (if any), in this panel. To define the concept of a pervasive unit, we propose
a mathematical formalization of our intuitive idea that pervasive units are those for which
any shock that impacts them also has to impact a large proportion of other units. In its
most general form, the idea can be formalized in terms of conditional probability distributions

3Brownlees and Mesters (2019) employ the term granular unit to denote a pervasive unit.



where conditioning is on general o-fields that represent information sets. Let (€2, F, P) be some
probability space that is rich enough for modeling x;;, Let G C o(xy) C Fand Gy C o(xy) C F,
for some i, be some o-fields and, assuming stationarity for z;;, let F; (z|.) denote the conditional
distribution of z;;, which, we assume, exists. Then, a unit ¢ is pervasive if for all possible
G1 C o(x;) and Go C o(x;), such that Ep [sup, |F; (z|G1) — F; (x]|Ga)|] > 0, we have that

N
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for some 0 < ¢ < oo, where Ep[.] denotes expectation with respect to P. If there exist
Gi1 C o(zy) and Gy C o(x;) such that Ep [sup, |F; (2|G1) — F; (x|Gs)|] > 0, but

N
. 1
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the unit is not pervasive. This definition becomes clearer if we specialize to the case of con-
ditional expectations, on which we will focus from now, and adopt the following concept of
pervasiveness.

Definition 1 A wunit i is pervasive if for all possible G C o(xy) and Gy C o(xy), such that
Ep[|E (4]|G1) — E (24]G2)|] > 0, we have that

N

. 1

Aim - > Ep[|E@ilG) — E (2;/G)|] = c, (1)
=1,

for some 0 < ¢ < ©.

This definition basically states that if there are no shocks that affect x; but do not af-
fect a non-zero proportion of the other units then z; is pervasive. Later on we shall see
that concepts of weak pervasiveness (or dominance) can be accommodated by, for example,
stating that there is 0 < a < 1, such that a unit is weakly pervasive if, for all possi-
ble G C o(zy) and Gy C o(w4), such that Ep[|E (2i|G1) — E (4]|G2)|] > 0, we have that
limpy oo 7= Z;V:L#i Ep[|E (jt|G1) — E (24|G2)|] = ¢, for some 0 < ¢ < 00, and o < 1.

While this definition is quite general and model free it is not that useful for operationalizing
a procedure that detects the number and identity of pervasive units. Therefore, we proceed
by specifying that all cross sectional units can be modeled using unobserved common factors.
More formally, we consider a data-generating process similar to that used in Brownlees and
Mesters (2019), namely

xit:}\;gt—i—uit, 1= 1,2,....,m, (2)
wzt:A;gt—i_mexﬂ—i_uzta z:m+1,m+2,,N (3)
j=1

The non-pervasive units (namely units i = m+1,m+2, ..., N) are affected by k¥ common external
factors, g, and the common innovations of the m pervasive units (namely units i = 1,2,...,m):

zy = dige + Zbijujt +uyg, t=m+1m+2 .. N,
j=1



where d; = \; + Z;n:l bijAj for i =m+1,m+2,..., N. In matrix notation, we have

Xat = Aagt + Uy, (4)
Xy = Apgt + BXgr + Uy, (5)
fort =1,2,...,T, where x,, and x;; are m x 1 and (N —m) x 1 vectors of observations at time

t on the pervasive and non-pervasive units, respectively. In what follows we set n = N — m.
Only the N x 1 vector x, = (x),; x),)" is observed to the researcher and the true number
of pervasive units m as well as their identities are unknown. The partitioning of x; into m
pervasive units, followed by n non-pervasive units is made exclusively for expositional purposes
and in general there is no a priori information about the cross-section indexes of potential
pervasive cross-sections.

The m pervasive units, z,jt, j = 1,2,...,m affect the non-pervasive units, xy;, @ = m +
1,m+2,...., N via the n x m matrix of loading coefficients B = (b;;), where sup,; [b;;| < K < oo.
For z,j; to be a pervasive unit we must have

bij| >¢>0,fori=m+1,m+2,....N (6)

or, asymptotically equivalently,?

N

Y lbl=06(n), j=12..m (7)

t=m+1

In other words, for a unit to be pervasive it must have non-zero effects on almost all other
units in the panel or network. The following proposition, established in Section S1 of the online
supplement, formalizes the connection between the operational definition of pervasiveness, based
on the above factor model and the more primitive Definition 1 in the slightly simplified case
where \; = 0, for all 7. We impose this condition, which rules out certain pathological cases
that will be dealt with more formally by Assumption 2 below, so as to keep this preliminary
exposition simple. For simplicity we also assume that u;; are independently distributed across
1. Limited dependence across ¢ does not affect the results but complicates the exposition.

Proposition 1 Let the model for x4, i =1,..N, t =1,...,T be given by (2) and (3), where
A =0,i=1,2,...,N, and uy are independent across i. Let (6) hold for some unit i. Then,
unit 1 1s pervasive according to Definition 1.

Following Chudik, Pesaran, and Tosetti (2011), we can also consider units that are not
pervasive but still quite influential. Suppose that there exists an ordering of the non-pervasive
units such that unit z,;; only affects the non-pervasive units, x;, whose index i < [n% |,
where a; (0 < a; < 1) is an exponent parameter that measures the degree of pervasiveness of
T, j¢ in the panel.’ This requirement can be written as

lbijl >c>0,fori=m+1,m+2,....,n%, and |b;| =0, for j =n% +1,....n,

4Strictly speaking, we can allow a finite number of loadings to be zero.
5|a| denotes the integer part of a.



or, equivalently,as®
N

> byl =©(n%), for j =1,2,...m, (8)
i=m+1

which is a natural generalization of (7). The unit z, j with a; < 1 can be viewed as a weak
factor, but as argued in Bailey, Kapetanios, and Pesaran (2016) and Bailey, Kapetanios, and
Pesaran (2019), for z, j; to have pervasive effects on other units we need a; to be reasonably
close to unity. Clearly, the values of a; < 1/2 can be ruled out since for such values, z,
becomes so weak that it loses many of the standard characteristics, associated with factor
variables. In practice, we might need to focus on exponents that fall in the range 2/3 < a; <1
before we can be confident that unit z, ;; has non-negligible impacts on other units in the panel
dataset. In terms of the general definition (8), for all elements of x, to be pervasive it is
required that a; = 1 for j = 1,2,...,m, and pervasive units can be regarded as strong factors.
While our theory focuses on a; = 1, j = 1,2,...,m, it can be extended to a; < 1, using ideas
in the above cited papers. It is also possible to estimate the exponent «; once the unit z, ;; is
selected as pervasive/influential. However, such extensions are beyond the scope of the present
paper. The k x 1 vector g; contains common "external" factors affecting both pervasive and
non-pervasive units via the m x k and the n x k loading matrices A, and A, respectively.
The pervasive units can also be viewed as “internal” factors. Lastly, u,; and u represent
the stochastic components of the pervasive and non-pervasive units, respectively. To simplify
the exposition we abstract from deterministic effects such as intercepts or linear trends, and

without loss of generality assume that x;; have zero means and finite variances.
Denoting the common factors (internal and external) by the p x 1 vector f; = (g}, u/,,) =

at’
(fits fots - - fpr)! where p = m + k, then equations (4)-(5) can be written as a restricted static

factor model:
( “t ) < ) ) f ( X )
Xpt b Upt

= Af, + vy, (9)

where A, = (A,, I,) and A, = (A, + BA,, B). Additionally, denote by a; the i-th row of
A = (A’ A;). Since a pervasive unit is de facto a common factor, then m < p. It is also
shown in Chudik, Pesaran, and Tosetti (2011), that p must be a fixed integer to ensure that
Var(z;) is bounded in N. Accordingly, we assume that 0 < m < p < Pz, Where pyq, is an
upper bound on p.”

We shall also make the following assumptions:

Assumption 1
1. £, is a covariance-stationary stochastic process with E (££]) = 1I,,.
2. There exist sufficiently large positive constants Cy and Cy, and some sy > 0 such that

sup Pr (|fji] > a) < Cyoexp (—Cha’f), for each j =1,2,...,p.
t

6The exponent «; is defined asymptotically (as n — 00), and as such can accommodate a finite number of
loadings for units 1,2,...,n%, to be zero and conversely that a finite number of loadings for units n® +1, ..., n,
to be non-zero.

"The magnitude of m relative to k is immaterial as long as both are fixed.
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8. TV B~ 1y and £ X0 |61 = B (IE7)] =7 0, for j = 3,4, and as T — .
Assumption 2

1. A, and Ay are parameter matrices, satisfying Rank (A,) = m and Rank (Ap) = p.

2. inf; ||a;|| > ¢, and sup, ||a;|| < C, and for any N = n + m (the true number of pervasive
units, mg, being finite),

>c>0. (11)

Amax (n_l i a,»a;) < (C < o0, (10)

Assumption 3

1. The n x 1 vector uy is defined by
Uy = H€t7 (12)

where
Er = (5m+1,t7 €m+2,t7 . 7€Nt)/ ~ IID (0, In) , (13)

and sup; T Zthl Ztszl |Cov(e, ew)| < C < oo.
2. There exist sufficiently large positive constants Cy and Cy, and some s. > 0 such that

sup Pr (|ex| > a) < Cyexp (—Cha™).
it

3. H = (hyj) is an n X n matriz with fived coefficients, with bounded row and column sum
norms, formally |H||, = sup; > 1", |hij| < C, and |H|, = sup; >7_, [hij| < C. Further-
more, Amin(HH') > ¢ > 0.

Assumption 4 f; and ¢;, are independently distributed for all i,s, and t.

Remark 1 Most of the above assumptions relate closely to those made in the literature on the
large dimensional factor models (see Remark 2 below). Restricting the covariance matriz of f;
to be the identity matrix is an innocuous simplification, since the factors are identified only
up to a p-dimensional rotation. However, since the methodology proposed in this article goes
beyond estimation in a large-dimensional factor model, some of the assumptions made above
are slightly stronger than those made in the literature. Covariance stationarity of the common
factors is one such restriction but does not rule out conditional heteroskedasticity. Our use of
results from the multiple testing literature assumes that the probability distributions of €; and
fit have exponentially decaying tails. While this assumption is standard in high-dimensional
statistics, it implies that all moments of €, and fi; exist and thus sharpens our assumptions
beyond those required for the estimation of unobserved factors. This assumption simplifies the
theoretical analysis. It can be relazed, considerably in the case of fi;, and replaced with moment

8



assumptions, at the cost of more complex proofs. We choose to avoid this complexity as we
are mainly focused on suggesting and analyzing a new methodology. Furthermore, to establish
consistency of our proposed criterion, we assume £ to be independently distributed across i
and t.8 Still, dependence between the elements of the unit-specific component uy, is allowed for
by Assumption 8 which admits weak cross-section correlation. The rank condition on A, and
Ay in Assumption 2 ensures that m is identified, x,; 1s pervasive, and that there does not exist
some linear combination of f;, of dimension lower than p, that can fully capture the common
component of Xp;. In particular, it disallows the possibility that A,+BA, = 0, and hence ensures
that g; acts as external factors for non-pervasive units. Assumption 2 implies strong factors in
the sense that the fraction of cross-section units affected is asymptotically non-negligible. This
is a standard property of latent factors in the related literature, as is Assumption 4. On this
see, for example, Assumptions L and LFE in Bai and Ng (2008).

Remark 2 A further consideration concerns how the above assumptions relate to those of the
standard factor model literature as set out, for example, in Bai (2003). As noted above our
assumptions are stricter, and therefore imply the assumptions made by Bai (2003). In partic-
ular, Assumption 1 implies Assumption A of Bai (2003), Assumption 2 implies Assumption B
of Bai (2003) and Assumptions 8 and 4 imply Assumptions C, D, E and F1-F2 of Bai (2003)
while we note that we have no need for Assumptions F3-FJ of Bai (2003).

As shown in the next section, it is possible to consistently estimate the parameters of the
static factor model (9), even if the variance matrix of the N x 1 vector v, = (O;nxbugt),,
containing the idiosyncratic errors, is singular when m > 0. In our theoretical derivations and
Monte Carlo simulations we only require that p,,.. > p is known and base our analysis on p,,q.
principal components of {z;, fori =1,2,...,N, andt=1,2,...,T}.

4 Identification of pervasive units via thresholding of er-
ror variances

The idea behind our detection procedure is simple. It exploits the fact that there is a clear
separation between the fit of pervasive and non-pervasive units in terms of the factors, f;, for
sufficiently large sample sizes. In the context of the restricted factor model representation (9),
a clear separation between a pervasive and non-pervasive unit could be achieved if the common
factors f, as well as x; are observed. In such a case only pervasive units (with exponent
a = 1) will be perfectly correlated with f;. But in practice where only observations on x;
are available to the econometrician, the fit of cross-section specific observations can only be
evaluated in terms of a factor estimate f, . Finite sample errors in the estimation of the true
factors entail an imperfect fit, and hence would yield strictly positive residual variances, for all
cross-sections (irrespective of whether they are pervasive or not). However, residual variances for
non-pervasive units remain bounded away from zero due to their non-degenerate idiosyncratic
error, u;, even asymptotically as N and T' — oo. By contrast, corresponding residual variances
for pervasive units exclusively contain sampling errors due to the fact that f; is replaced by its
estimator f,. This latter source of variation vanishes as the sample size increases. In situations

8This assumption can be relaxed considerably by requiring ¢;; to follow a martingale difference process over
t, or even to be a strong mixing process with sufficiently small mixing coefficients.



where prior information allows narrowing down the number of potential pervasive units to a
small set, it would generally be possible to exploit the behavior of residual variances to develop
a statistical test for the absence of idiosyncratic variation in a given cross-section. However,
in the context of this study, any cross-section unit is considered to be potentially pervasive.
This amounts to a high-dimensional statistical problem for which standard testing approaches
are ill-suited due to the inherent difficulty of controlling size. For this reason, our detection
procedure is based on classification of cross-sections by means of a threshold rule applied to
residual variances.

With this in mind we first extract the first pyay principle components (PC) of the observa-

tions x; fori =1,2,...,N; t =1,2,...,T. We then compute the residual sum of squares from
the regressions of z;;, for 2 =1,2,..., N on f;, where f; is the PC estimator of f; with p = ppax.
Specifically, we compute
/
Mex;
6?T:¥, fori=1,2,..., N, (14)
where x; = (21, Ti2, .. ., Ti7),
" (a2 A
M%:IT—F<FF> P (15)

and ¥ = (f,f,...,f;). We then determine a threshold, C%, > 0, such that if, and only
if, N62, < C%, then unit i is selected as pervasive. Below we proceed by analyzing the
asymptotic properties of 6%, and sketching steps that lead to a procedure that consistently,
namely with probability tending to one, selects only pervasive units. Formal proofs are given
in the appendix. But first we provide an overview of the literature on estimation of F and A
and derive asymptotic properties for functions of their estimators that are needed to establish
our main theoretical results.

4.1 Consistent estimation of A and F by principal components

Let X = (x4, X2,...,Xy) be the T" x N matrix of observations on z;; for i = 1,2,..., N;t =
1,2,...,T. It is well known that the 7" x T" matrix XX’ and the N x N matrix X'X have the
same eigenvalues. Denote the first p largest eigenvalues of these two matrices by (p1, 2, - . ., fp) ,

and the associated orthonormal eigenvectors of XX’ and X'X by the T' x p matrix P and the
N x p matrix Q, respectively. Also note that by construction P'P =1, and Q'Q = I,, where
I, is an p x p identity matrix. We will express the central results in this section in terms of the
PC estimators
A=VNQ, (16)
F= XQ =—XA, (17)

which satisfy N-1A’A = I, and T = f)NT, with Dy = (NT) ' Diag (pr, pa2, - - pp).”
We shall make use of a number of existing results from the literature on large-dimensional factor
models that are expressed in terms of the alternative estimators

F = VTP, (18)
A =T'X'F, (19)

9For example, see Bai and Ng (2008, equation (3.1)).
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where (18) satisfies T'F'F = I,. However, the two pairs of estimators (A, f‘) and (A f‘) are
related via the equalities

F=FDy., and A = AD,, (20)

as shown by Bai and Ng (2008, equation (3.2)). Consequently, it follows that

A~ A A _1 A =~ = bt 1
and hence . .
52, = X MpX; — X Mgxi
T T T

Furthermore, by Lemma A.3 in Bai (2003), Dyr 2 D, where D is a diagonal matrix with
finite elements (see the proof of Lemma A.1 in Bai (2003)). It follows that

DNTHF ~0,(1). (22)

This latter result, together with the equalities in equation (20), allows us to directly apply
existent convergence results on A, F to our estimators A, F. For example, Bai and Ng (2002)
show in their equation (5) that

1= 2 1
_||F - FH H —0, (=), 23

T H N p P (5]2VT) (23)
where 6%, = min(N,T), and Hyr is a non-singular p X p matrix that could depend on N and
T, so long as its probability limit exists and is non-singular.!’ Using (23) and the fact that
HHJ_V}H = O,(1) holds by the properties of Hy7, then

%HF—}?‘QNT i:()p (%) (24)
where Qnr = HyY, noting that this matrix is non-singular and satisfies |Qnr||p = O,(1).
Setting Qnr = ]AD}\{;, and noting the relation between F and f‘, we also have T~1 ||’ =
O, ((5;,2T), and more generally,

lHF—FsNT ‘2 — 0, (%) (25)

T F 0%

for any non-singular p x p matrix Syp that satisfies ||Syr||» = O, (1). Result (23) is well know
and plays an important role in our analysis. However, for our analysis we require additional
results that, to a large extent, go beyond those existing in the literature. We provide these
in the following proposition. To simplify the exposition and without loss of generality, we set
Syt = I,. Since only the product FA’ is identified, this restriction is innocuous and implies
the normalization N"'A’A =T,.!!

OMatrix Hyp is a p X p rotation matrix and should not be confused with the n x n matrix H defined in
Assumption 3.
Hsee also Bai and Ng (2008) and Onatski (2012) who make a similar assumption for 7~ F'F.
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Proposition 2 Under Assumptions 1-4, and setting Syr = I,,, we have

ko8] o, g) (A)
|a-4] -0, gv_ﬁ) (®)
v (o8], =0 (57 ©

IVAll» = O, (VNT), (D)

[ (2= 2)] =0 (577) ®

where ¥ and A are defined by (17) and (16), and Fy and Ay denote the true values of F and
A, and 6% = min(N, T).

The above proposition follows from Lemmas 3-6 set out in Section S1.2 in the online sup-
plement. For general rotation matrices Hyr, Qnr and Syr, Proposition 2 can be used to

obtain )
V(A - AgHL) 1
—0, [ {/=— . (26)
N N Sz

F
The matrix Hyr has been introduced into the expression above in order to ensure compatibility
with the results (23) and (25). Again, V <A — AOH]_V1T> =V <AHNT — A0> H,}, so that

v (R8s =80, < el [V (& - Asttii ),
and letting Hyp = D} /QSNIT, we have

[V (40 - D', < 0, 00, |

(&~ Az,

Recall that A = A]ADI_\,le by equation (20). Hence,

fo (a5, 0[] (3 - a0
~o. (1T &

6NT

by the equality Hy, = D%;S ~nr and application of result (26). This concludes our discussion
of principal components estimators. The preceding results will be extensively used in the next
section under the simplifying restrictions Sy = I,.
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4.2 Thresholding of 6%

Equipped with the results of Proposition 2, we consider the asymptotic properties of 5%, defined
by (14). Our aim is to develop a threshold C%, such that N62. < C%, with probability
approaching 1 as N,T — oo if cross-section i is pervasive, while the reverse is true if cross-
section ¢ is non-pervasive. Consider first the case where a given unit ¢ is pervasive. By equation
(9), we have x; = Fya;, where Fy is the T' x m matrix of observations on the true factors.
Consequently, the sample error variance of unit i, once the effects of estimated factors are
filtered out, is given by

2 aF MzFoa;
T )
A / A
al (FO - F> M, (FO - F) a;

— - . (28)

3
S

A / A
The last result is obtained noting that F{MpF, = (FO —FS NT> M; (FO —FS NT), for any

positive definite matrix, Syr. Now, using (9) and post-multiplying both sides by Ay we also
have

XAy  FoAjA, VA, VA,
N N N Pty

where to derive the last step we have made use of the normalization N~'A{ A, = I,,,. Further-
more, since F = N71XA by equation (17), then

oor)- 205 v

Using this result in Mg <F0 - f‘) together with (9) to substitute out X, we obtain

N - N N

FyA) (AO _ A) \% (AO _ A) VA
M;Fo = M; — Mg <—0) (29)
The results of Proposition 2 suggest that the leading term in the above expression is M (N 'VA,),
whereas the other two terms are of lower order in probability. As detailed in Lemma 1 in the
online supplement, this allows us to rewrite expression (28) as

"ATV' ™ Ma VA a; 1 v N
N§2. — a; g P 04
G NT + 0, . + 0, —5]2v N (30)

where the orders of probability on the right-hand side of (30) hold uniformly over i. However,
if unit 7 is not pervasive, N6% includes the additional two terms:

A\
NvIMgv; Naj <F0—F> Mgv;
1 1 d
—  an e ,
which are due to the idiosyncratic component v; # 0 in x; when 4 is not pervasive.!? As
shown formally in Appendix A.1, the first term, N (viMgv/T) diverges at rate N, while the

!2Note that in the absence of any pervasive units v; = u;. In general, we use v; (and V) in line with the
general factor model given by (9).
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N/
second term, NT'a/ (FO—F) M;v; is 0,(N). Consequently, a threshold C%, that allows us

to distinguish pervasive from non-pervasive units must diverge at a rate considerably slower
than N, as N,T — oc.

To establish a minimum requirement on the rate at which C%; must diverge, we return
to expression (30). We set d; = Apa; and note that d;V'MzVd; < d;V'Vd,. Suppose that
cross-section unit ¢ is pervasive, then it follows that

d/V'Vd,
Pr (No% > (%) < Pr (W . cfw> Fo(l). (31)
if VN /6%, — 0. Also note that

VN (YT <N
6%r —~ otherwise’

and so the condition for the remainder term to vanish is *g — 0, a8 N,T — 00."® Under this
condition, we focus on the first probability term in (31) and note that

T N 2 T
d;V'vd; = Z (Z thdij) = Z (dgvt)2 ;
t=1

t=1 \j=1

where as before d; = Aga; = (di, dia, - - - ,diN)'. Note that if the panel contains m pervasive
units, v = (01xm, uy,)’, where u,; = He,. See (12). Partition d; = (d};, d},)’, where d;; and
d;» are the m x 1 and n x 1 sub-vectors of d; (recall that n = N — m). Hence

T

dV'Vd; =) (djuy)’ Z ' He,)?,

t=1 t=1

and by assumption H is an n X n matrix with bounded row and column absolute sum norms,
and €, = (€414, Epyots - - -1 ENg) ~ 11D (0,1,). Using the above results we can now write

dV'Vd,  ny 1 (d;QHst)2
NT (N)T; Jn

() LS e (32)

where Y; = n_l/zH’dig = (QOZ'l, Di2y ooy szn)/ Let
1 1
o = ipi = —dipHH'djy = ~dj, B, d, (33)
n n
where 3, = F (uyuj,) = HH', which is time-invariant, by assumption.'* We also have

sup n2, < sup (n~'d}ydiz) Amax (E4), and irilf n, > iIiIf (n™'djydiz) Amin (),

13t is possible that this condition can be relaxed if one finds a tighter upper bound for HAf) (AO — A) H than
result (E) in Proposition 2, and if stationarity is imposed on E(v;v; ), where V = (v;). For now, we adhere
to Assumptions A-F of Bai (2003), and require that @ —0,as N,T — oco.

4 However, one can still allow for conditionally time-varying covariances.
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where by assumption 0 < ¢ < Apin (£4) < Apax () < C < 0o. Noting that, in view of (10)
and (11), we have

N
sup (n~'alAjAya;) < sup 2% A <n—1 Z aja;.> < C < oo, (34)
7 7 j=mt1
and
N
inf (n'aA; Apa;) > inf ||a]|* Amin (w > aja;) >¢>0, (35)
j=m+1

we also have sup, (n'dyd;2) < C, and inf; (n"'d’yd;2) > 0. Hence, it follows that sup, n?, < C,
and inf; n2, > 0, for all n. Now using (32) in (31), we have

Pr [n&fT > (%) C’JQVT] <Pr [i (pler)’ > T (%) Cxr| +o(1)

t=1

< Z Pr|(¢ien) > (5) Chr| +0(1). (36)

where the last line applies Lemma A1l in the online supplement to Chudik, Kapetanios, and
Pesaran (2018) in order to bound the tail probability of a non-negative sum by the sum of
individual tail probabilities. Additionally, letting pie; = Z?Zl ©ij€jt, We can write

Pr [(902515)2 > <%> CJQVT} =Pr <|90;€t| > (%)1/2 CNT)
= Pr ( , > <%>1/2 ONT) .

Z Pij€jt
7j=1
In order to proceed from the above expression, we note that under Assumption 3, Var <Z;’L:1 gpijgjt) =

n 2 _ 2
Zj:l (pij = Nins and

Pr(leji| > a) < Cyexp (—Cha’),

for all @ > 0, s > 0 and some fixed constants Cy and C;. This assumption allows us to employ
a concentration inequality in order to bound the tail probability of our expression of interest by
an exponential function of its second natural moment. More specifically, by applying Lemma
A3 of Chudik, Kapetanios, and Pesaran (2018) we obtain

n - - 2 ~2
Pr ( Zgoijsjt > C’NT) < exp [ (1—m) CNT] , (37)

2
j=1 277111

for some 0 < 7 < 1 and Cyr = O (n*), with 0 < X < 2 (note that n/N =1 —m/N = 1).

Now using (37) in (36) and assuming that unit 7 is pervasive yields

—(1-7n)2C%, (n) o),

Pr ( N2, > (%) Chrliis pervasive> < Texp o il

N
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for some 0 < m < 1, and 7?2, as defined by (33). Hence,

Pr [N&fT < (%) Cyr | iis pervasive] >1—exp 22 N

g (1) (L= Cha (z>] |

and (note that n/N — 1)

Pr|No% > (1

N> C%rl i is pervasive] — 0, as N,T — oo,

if
2 ~2
g—ﬂ), and log(T)—%ﬁ—

This last condition is satisfied if (again setting n/N to unity) if C%, > %, or equivalently
if C%, = 2Cn?, log (T), for some C > 1. Accordingly, 7 can be selected as a pervasive unit if
62, < w, for some C' > 1. Our Monte Carlo results presented in Section 6 show that
the simple choice C' = 1, works well in practice. Additional simulation results which show that
the performance of the thresholding rule described here is fairly robust to the exact choice of
C can be found in Section S5 of the online supplement accompanying this article.

Furthermore, as shown in Appendix A.2, none of the remainder terms in (30) can exceed
the threshold, with probability approaching one if the unit i is pervasive. We also show that
Biz = O, (N) and B;s = 0, (N), and further, using (47), that the residual variance, 6%., will
exceed the threshold with probability approaching one if the unit i is not pervasive.

An important issue relates to the estimation of n?,. Since m is unknown and typically
small, at the estimation stage we assume m = 0, and set n = N and note that in this case
¥, = E (uyu},) = E (vyv,) = 3,. Consequently, ny = N~ taA{X,Aga; for which a consistent
estimator can be obtained using the PC estimators of a; and Ay, and a suitable threshold
estimator of ¥, (or X,). Also, recall that ¥, = HH' where by assumption H is row and
column bounded (see Assumption 3), and hence ¥, is also row-bounded and therefore satisfies
the usual sparsity conditions assumed in the literature on estimation of large covariance matrices
(see, e.g., El Karoui, 2008 or Bickel and Levina, 2008). Then, n?; can be consistently estimated
by

WAy = N7'ajA'S, A4, (38)
where A is given by (16), &, is the OLS estimator of a; in the regression of x; (the selected
pervasive unit) on F, where the latter is given by (17), and %, = (5,;) is a consistent estimator

of ¥,. Here we use the multiple testing estimator of Bailey, Pesaran, and Smith (2019) given
by

5 5 A cr (N) _ T
O'ij:O'ij[ (’p1]|> \/T ), CW(N):(I) 1<1_W>7
) 'y

T
. 1 . .
Oij = T Zuitujta Pij = 1. 1/2°
t=1 Oii Ojj
where u;,t = 1,2,...,T are the OLS residuals from the regression of x;; (the selected perva-

sive unit) on F (including an intercept in all regressions), ®~* (-) is the inverse of cumulative
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distribution function of a standard normal variate, 7 is the nominal size for the multiple testing
procedure, which we set to 1%, and ¢ is set to 1.5, which allows for possible departures from
Gaussian errors, u;. Other estimators can also be used such as the universal thresholding by
El Karoui (2008) and Bickel and Levina (2008), and the adaptive thresholding by Cai and Liu
(2011).

Our threshold detection algorithm, referred to as o? thresholding, can be summarized as
follows:

Algorithm 1 Let x; be the T x 1 wvector of observations on the i-th unit in the panel, and
X = (xq,X2,...,xn) be the T' x N matriz of observations on all the N units in the panel.
Suppose that p < Pmax, Where Pmax is selected a priori. Compute F = \/LNXQ, where Q
is the N X pmax matriz whose columns are the orthonormal eigenvectors of X'X, such that
NQQ = L. Compute &;, 0y and 6% to be the OLS estimator, residual and residual
variance of the regression of x; on F, namely

PP et SN
a = (F’F) F'x;,

, NP PN
ui:(uﬂ,uig,...,uigp) :MFXZ: IT—F<FF> F X,
~2 _ =1/ e
o =T "x;Mgx;.

Sort 6% in ascending order and denote the sorted series by &(21)T’ 6(22)T, . ,&?N)T with &(Qi)T
being the it" smallest value. Consider the cross-section indexes iy, s, . . .  Upmax COTTESPONAING O

(7(21)T, 6(22)T, . ,&?pmx)T . Then, select unit j € {iy,iz,...1 } to be pervasive if

YPmax
202 log T’
~9D IN
Oir < N (39)
where 77y is given by (38).
The following theorem provides a formal summary statement of the preceding analysis.

Theorem 2 Suppose that observations on xy, for i = 1,2,....N, and t = 1,2,...,T are
generated according to the general linear factor model given by (4) and (5) with m pervasive
units. Let Ip be the set of indices of the pervasive units, and Inp its complement, with Ip
allowed to be an empty set. Denote by Ip and Ipy their estimates based on the threshold
criteria (39). Let Assumptions 1-4 hold and ‘/TN — 0. Then as N and T" — oo, jointly, we
have

lim Pr ({fD = ID} N {[AND = IND}) =1.
N,T—o0
This theorem establishes that the proposed error variance threshold criterion is consistent,
in the sense that it correctly selects the pervasive (if any) and the non-pervasive units asymp-
totically.

Remark 3 Note that both the theoretical exposition above and the formal arguments of the
appendiz apply both to the case of no external factors as well as the case where all units are
affected by a finite number of external factors, represented by g, in (4) and (5).
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5 A sequential, multiple testing version of the ¢? thresh-
olding

The o2 thresholding procedure, has good but not exceptional small sample properties as we
illustrate in Section S4 of the online supplement to this article. However, it provides a basis
for further development. The first point to note is that while the method is good at detecting
the presence of pervasive units, in general it tends to pick too many units as pervasive. Finite
sample adjustments are needed to achieve a more conservative detection outcome. A simple
and effective refinement of the main method is a sequential algorithm that detects pervasive
units one at a time. Considering a sequential algorithm suggests the use of pervasive units
that have been identified at earlier steps of the procedure as observed factors. This reduces the
number of unobserved factors to be estimated for any given maximum number of considered
factors, pmae- Therefore, the static factor model (9) employed to conduct o2 thresholding is
replaced by the augmented factor model

ry =f£'al + x5bl + vy, t=1,2,...,T;i=1,... Ny, (40)

where x}, is a 7 x 1 vector of identified pervasive units (the row ¢ of the 7" x r matrix X}), £} is a
Pmaz — T Vector of unobserved common factors and v;; constitutes the idiosyncratic variation of
unit 7 at time point t. With regards to the procedure of Section 4.2, the role of o thresholding
is not to determine the number and the identities of the pervasive units directly. Instead, o2
thresholding is used to determined whether or not there is evidence of remaining pervasive
units in the data, conditional on the pervasive units that have been identified already. Being
initiated with » = 0 (i.e. no identified pervasive units), N; = N —r = N and some chosen value
of Pz sSubject to the condition p,,q, > m + 1, the sequential algorithm, referred to as S — o2
thresholding is an iteration of the following two-step procedure:

Algorithm 2 1. Conduct o? thresholding using model (40), with m* = Ppee — T estimated
factors. Let m be the estimated number of pervasive units estimated using Algorithm 1.
If m =0, stop and conclude that there are r pervasive units.

2. If m > 0, obtain i* = argmin; 62. Append x; to X* and drop x from X. Update r to
r—+1 and Ny to N; — 1.

The above two steps are repeated until either m = 0 in the first step or 7 = P at the
end of step 2. The number of pervasive units is then m = r and their identities correspond to
the indices of the columns in the initial 7' x N vector X that are found in the T" x r matrix
X = (Xt -5 x0p)"

Effectively the method constructs residuals of the remaining units on the selected units and
repeats the selection on these residuals. The use of residuals in the algorithm’s steps requires
further theoretical refinements. These are discussed in Appendix A.4 where it is shown that
our proposed threshold is valid only if N < T', which is a more restrictive condition than that
of Theorem 2. In particular, we prove the following result:

Corollary 1 Suppose that observations on xy, fori = 1,2,...,N, and t = 1,2,...,T are
generated according to the general linear factor model given by (4) and (5) with m pervasive
units. Let Ip be the set of indices of the pervasive units, and Inp its complement, with Ip
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allowed to be an empty set. Denote by Ip and Ipy their estimates based on S — o thresholding.
Let Assumptions 1-4 hold and % — 0. Then as N and T — oo, jointly, we have

lim Pr ({jD :[D} N {fND :[ND}> = 1.

N, T—o0

If N > T, then an alternative threshold could be considered. This is given by

262 logT
A.2 < U
O-lT — T )

where 62, = T~ 321 (2 — X%47)%, with 4 being the estimated vector of slope coefficients
from a regression of Mgx; on My X?. This is justified in Appendix A.4. As its small sample
properties are inferior to those of our main procedure we do not pursue this further in the main
paper but only in Section S4 of the online supplement. However, it is important to note that
it provides a theoretical justification for our general methodology when N > T.

Finally, the sequential algorithm can be supplemented with an additional multiple testing
hurdle in order to reduce the risk of falsely detecting a pervasive unit in small samples. Anal-
ogous to the basic sequential algorithm discussed above, the extended algorithm is initiated
with r =0, N; = N and some chosen value of p,,., subject to the condition p,,.. > m + 1. It
consists of the following five steps which are repeated until the estimated number of pervasive
units m in the first step is equal to zero:

Algorithm 3 1. Conduct o thresholding using model (40) and m* = pPpae — v estimated
factors. Let m be the estimated number of pervasive units estimated using Algorithm 1.
If m =0, stop and conclude that there are r pervasive units.

2. If m > 0, obtain i* = argmin; 62. For each j = 1,...7* — 1,i* + 1,..., Ny estimate the
model

Tje =y + vey; + QG xybL v, t=1,2,..0,T, (41)

where the unobserved factors £f are estimated by the eigenvectors associated to the ppaz—1

largest eigenvalues of X_ X' o with X _jo = (X135 .+ .3 X1, Xjr 415 - - - ;XN )-

3. Carry out N1 — 1 individual t-type tests to check the statistical significance of the slope
parameters 45 for all j # i in (41). These tests are based on statistics of the form

1/2
Ty 2l
t = T4 (M) 7 (42)

J j 1T -
T3 0]2'15
where vy = Tjp — I — TV — £ a;— xZ’tBZ] Let the critical value for each of these tests
be given by 1 [1 - my where the nominal size of the individual tests, 7, is chosen
by the investigator. In our analysis we set m = 0.01. The null hypothesis 7; # 0, is reject,
il >0t 1= 5]

2(N1—2)
4. Let M denote the number of rejections among these Ny—1 tests. Iflog(M)/log(N) < 1/2,
stop and conclude that there are r pervasive units.
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5. Iflog(M)/log(N) > 1/2, append x;+ to X% and eliminate x;« from X. Update r to r + 1
and Ny to Ny — 1

We refer to this algorithm as Sequential-MT o2 thresholding or SMT — ¢? thresholding
for short. Two remarks concerning algorithm 3 are in order. First, deviating from a standard
t-statistic when conducting N; — 1 significance tests is a necessary adjustment to account for
the nonstandard properties of the auxiliary regression (41). If i* denotes the index of a true

pervasive unit, then the set of regressors [ z;«; f't*’ is asymptotically multicollinear since f't*’

is consistent for the space spanned by all common factors driving x;, including z;+;. As shown
in Appendix A.5, this characteristic of the model affects the properties of a test statistic for
the statistical significance of 77 and is resolved by replacing the standard estimator of Var (%*)
with a different standardization for 47. A further important point is that we need to have an

estimator of the full common factor space, such as f't*. Otherwise, even non-pervasive units will
appear significant in (41) since the impact of external factors and pervasive units will turn them
into a proxy for unaccounted sources of common variation.

Second, the rule log(M)/log(N) < 1/2, or M < N2 is motivated by the fact that if a
factor enters only M units, where M = o(N'/2), then, it is considered to be a very weak factor,
and under certain conditions, it is not detectable using principal components - see, e.g., Bailey,
Kapetanios, and Pesaran (2016). Again, after stopping the sequential algorithm, the number
of pervasive units is m = r and their identities correspond to the indices of the columns in the
initial T x N vector X that are found in the T x r matrix X! = (x*,;...;x%.)".

The additional multiple testing step ends up being very effective in small samples and is
therefore our preferred approach. We conclude this section by presenting the Theorem below,
which states that both Algorithms 2 and 3 share the consistency properties of 1.

Theorem 3 Suppose that observations on xy, for i = 1,2,...,N, and t = 1,2,...,T are
generated according to the general linear factor model given by (4) and (5) with m pervasive
units. Let Ip be the set of indices of the pervaswe units, and Inp its complement, with Ip
allowed to be an empty set. Denote by Ip and Ipy their estimates based on either Algorithm 2
or 8. Let Assumptions 1-4 hold and % — 0. Then as N and T — oo, jointly, we have that

lim Pr ({fD == ]D} N {fND == ]ND}> =1.
N, T—oc0

6 A comparative analysis of detection procedures by Monte
Carlo simulations

Using Monte Carlo simulations we now investigate the small sample performance of our new
method relative to the methods proposed by Parker and Sul (2016, henceforth PS) and Brown-
lees and Mesters (2019, BM in the following).!®> The PS method yields identical outcomes
irrespective of whether the observations are standardized to have in sample zero means and
unit standard deviations or not. Our proposed method, being based on residuals, is also not
affected by demeaning of the observations and the scaling is done through the determination
of the unit-specific thresholds, and hence standardization will not be an issue. In contrast,

15 The detection methods of Parker and Sul and Brownless and Mesters are described in some detail in Section
S3 of the online supplement.
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BM'’s detection method can be quite sensitive to standardization in finite samples, although
asymptotically it should not matter whether the individual series in the panel are standard-
ized. The BM method is also applied either including all the N units, or only the N/2 most
connected units when selecting the pervasive units.! Accordingly, we consider four variants of
the BM method: modified and unmodified with and without standardization. We shall refer
to these variants as BM and BM (standardized) when only the N/2 most connected units
are considered at the selection stage, and unmodified BM and unmodified BM (standardized)
when all the NV units are included when selecting the pervasive units. In the paper we focus on
the modified version of BM, and give the results for their unmodified version in Section S7 of
the online supplement. It is clear that fewer units will be detected when the modified version
is used, but the effect of standardization is less clear cut. Amongst the various o2 thresholding
procedures discussed, we focus on SMT — o? thresholding as described by Algorithm 3.17

In accordance with the formal presentation in Section 3, we simulate the pervasive unit
model as

Xta = Mg, + Aagt + Ugt, (43)
X = My, + Bxyo + Apgr + gy, (44)

fort =1,2,...,T. The N x 1 vector of fixed effects, u = (p,; ), are drawn from I7DU (0, 1).
The kg x 1 vectors g;, for t = 1,2,...,T, representing the unobserved common factors, are
generated as g; = R},ﬂ(g*,t —274)/2, where T, = (1,1,...,1), g.; is a k x 1 vector generated
as I1Dx?(2), R}/? is the square root of the kg x ko matrix R, defined by

R, = (1— pg)Ik + pngT;w

where p, represents the pair-wise correlation coefficients of the distinct (4, j) elements of g,
assumed to be the same across all ¢ and j = 1,2, .., k. Specifically, Cov(g;) = R,. Similarly,
the mg X 1 vector u,,; is generated analogously as

Uy, = R}/Q(uzt —27)/2, Ra= (1= pa)Ln + paTinThy,

where u}, ~ [1Dx?(2). It follows that Cov(u,) = Ry, and p, represents the pair-wise correla-
tions of the elements of u,;, assumed to be the same across all pairs. The mg X kg matrix A,
and the n x ko matrix A, are obtained as IIDU(0,1). The correlation coefficients p, and p,
are drawn from U(0.2,0.8), and are allowed to vary across replications.

The importance of the pervasive units for the non-pervasive units is represented by the
(N —mg) x my loading matrix B = (b;;). To allow for the possibility of both strong and weak
pervasive units, b;; are generated as

~ 1IDU(0,1 if i <|(N — @
bl-j{ (0.1) if i< mo)J,fori:1,2,...,N—m0;j:1,2,...,m0, (45)

=0 otherwise.

where as introduced in (8), « is the exponent that measures the degree of dominance of x;, in
the panel. For the sake of simplicity, all pervasive units are assumed to have the same degree

16Tn their simulation analysis BM seem to be using the unmodified version of their method without standard-
ization, whilst in their empirical applications they apply the modified version after standardization. See Section
6 of Brownlees and Mesters (2019).

17Simulation results for other two variants of o2 thresholding, described by Algorithms 1 and 2, are provided
in Section S4 of the online supplement.
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of dominance so that a subscript on « is redundant . When o = 1 the units are pervasive, in
the sense that they have non-zero effects on all the N — m( non-pervasive units. This is the
standard case in the common factor literature and ensures that limy_,..(N — mo)_lB’ Bisa
positive definite mg x my matrix. This condition clearly breaks down when a < 1. As we noted
before, x;, are then referred to as weakly pervasive units.

The errors u,, = (up;¢) are generated as heterogeneous first order autoregressive processes

Upi = pitipi—1 + (1 — p2)Y%ey, for t = —49,...,0,1,2,...,T;i=1,2,...,N —my,

where p; ~ 1IDU(0.2,0.5). The errors ¢; are allowed to be cross-sectionally weakly cor-

related. To achieve this we set &, = (£y,€0,...,6mt) = 21/2R,1)/2Ct, n = N — m, with
= diag(all, 022, ... 70nn>7 and
Lo b o
e Ly :02_3
Ro=| /% m 1 ... p
oyt P Pt 1

We set p, = 0.5, 04 = 0.4/440.5, and 0, ;; ~ I1Dx?(2), thus ensuring that F(c;;) = 1. Lastly,
Gt = (Ceit — 2)/2, where (. iy ~ ITDx?*(2). In order to avoid dependence of uy on its starting
values we discard the first 50 observations. All random variables are redrawn at the start of
each replication of the simulation experiments.

We carry out all the different experiments for the following N and 7" combinations:

N € {50,100, 200,500} and T € {60, 110,210,250} .

These N and T values allow for both cases where T' > N, which is required for the BM procedure
to be applicable, as well as when 7" < N, which often arises in empirical applications, and can
be considered using our proposed method and the PS procedure.

The above setup allows us to control the number of pervasive units, mg, the number of
external factors, kg, as well as the degree of dominance of the pervasive unit, . We consider
all mg < 2 and ky < 2 combinations, namely

{m07 kO} = {07 0} ’ {07 1} ) {07 2}7 {17 0} ) {17 1} ’ {17 2}7 {27 O} ’ {27 1} ) {27 2} .

In cases where my > 0, we experiment with two values of & = 1 and o = 0.8. Our theoretical
derivations relate to the case of strongly pervasive units, namely when o = 1. However, in
practice it is more likely that the pervasive units are not strong, but still quite influential,
which we represent by the choice of @ = 0.8. In the production network literature where the
degree of the dominance can be computed from input-output tables, « is estimated to lie in the
region of 0.7 — 0.8. See Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012) and Pesaran
and Yang (2019, Definition 1).
Finally, all simulations in this section are conducted using 2, 000 replications.

6.1 MC results

The first scenario to consider is one without any pervasive units (mg = 0). The results for
SMT—c? and the PS procedures are summarized in Table 1, which gives the empirical frequency
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of correctly estimating mg to be 0. This table does not include the detection procedure proposed
by BM, since the BM method pre-assumes that my > 0, and therefore always incorrectly selects
at least one pervasive unit. As can be seen from this table, the SMT —o? thresholding performs
very well, even in the presence of external common factor (namely when ky > 0), so long as N
is sufficiently large. It is only outperformed by the PS procedure when N is small (N = 50)
and there are external factors (kg > 0). Table 2 reports the average number of non-pervasive
units (across replications) that are falsely selected as pervasive by SMT — ¢?, PS and BM. In
this regard, SMT — o* and PS perform perfectly when there are no external factors (kg = 0),
and register a small number of incidence of false discovery when ky = 1, and N relatively
small. However, the PS procedure seems to break down when the number of external factors is
increased to ky = 2, and its average number of false discoveries reaches 41 with N = 500 and
T = 250. However, the SMT — o2 thresholding continues to perform well even for kg = 2. As
can be seen from Table 2, the average number of false discoveries of SMT — o2 thresholding is
at most 0.7 over all values of N and 7', and tends to zero as N is increased. By contrast, the BM
procedure will always falsely selects non-pervasive units as pervasive even for panels with N
and T large (subject to T' > N). The average number of false discoveries for the BM procedure
lies in range of 3 to 4, and is unaffected by standardization. However, modification of the BM
procedure seems to play a crucial role in controlling the number of false discoveries. If we use
the unmodified version of BM the average number of false discoveries rise dramatically and can
reach around 100 for N = 200 and 7" = 250, with standardization only helping marginally. See
Section S7 of the online supplement for details.

Table 1: Empirical frequency of correctly identifying the absence of a pervasive unit

SMT — 52 PS

ko =0 ko =0
N\T| 60 110 210 250 N\T| 60 110 210 250
50 | 100 100 100 100 50 | 994 99.2 99.6 99.8
100 | 100 100 100 100 100 | 100 100 100 100
200 | 100 100 100 100 200 | 100 100 100 100
500 | 100 100 100 100 500 | 100 100 100 100

ko = 1 ko = 1
N\T| 60 110 210 250 N\T| 60 110 210 250
50 | 88.4 864 82.7 803 50 | 53.2 92.0 97.3 97.7
100 | 941 923 90.7 88.9 100 | 75.5 985 100 100
200 | 99.8 99.2 99.4 99.2 200 | 90.6 100 100 100
500 | 100 100 100 100 500 | 92.9 100 100 100

ko = 2 ko = 2
N\T| 60 110 210 250 N\T| 60 110 210 250
50 | 61.6 559 47.7 443 50 | 81.0 80.1 695 695
100 | 84.0 745 642 60.9 100 | 86.6 85.7 63.1 57.4
200 | 98.6 97.7 942 94.1 200 | 82.5 66.1 46.3 39.7
500 | 100 100 100 99.9 500 | 99.4 46.8 22.6 17.6

Notes: SMT — o2 thresholding is implemented using Algorithm 3, with pmaz =
mo + ko + 1, where mg is the true number of pervasive units (if any) and ko is
the number of external factors. Threshold in the o2 thresholding step is given by
62, <272y N~ 1log(T). PS refers to the Parker and Sul (2016) method by setting the
number of potential pervasive units to N/10 per estimated factor, with the number of
factors selecting using ICpa criterion of Baiand Ng (2002). See also online supplement.
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Table 2: Average number of non-pervasive units falsely selected as pervasive (mgy = 0)

ko=0 ko=1 ko =2
SMT — o2 SMT — o2 SMT — o2
NA\T 60 110 210 250 NA\T 60 110 210 250 NA\T 60 110 210 250
50 0 0 0 0 501 01 02 02 02 50| 04 05 06 0.7
100 0 0 0 0 100 | 0.1 01 01 0.1 00| 02 03 04 04
200 0 0 0 0 200 0 0 0 0 200 0 0 0.1 0.1
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
PS PS PS
NA\T 60 110 210 250 NA\T 60 110 210 250 NA\T 60 110 210 250
50 0 0 0 0 50| 09 02 02 0.1 50 | 0.7 1.2 1.8 1.8
100 0 0 0 0 100 | 0.3 0 0 0 100 | 1.0 14 37 4.2
200 0 0 0 0 200 | 0.1 0 0 0 200 | 3.2 6.7 107 12.0
500 0 0 0 0 500 | 0.1 0 0 0 500 0 262 384 41.0
BM BM BM
NA\T 60 110 210 250 NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 41 3.7 47 49 50 |1 3.9 40 45 49 o0 | 3.9 3.8 4.5 4.7
100 | n/a 3.6 3.6 4.1 100 | n/a 3.5 3.7 4.2 100 | n/a 37 36 4.0
200 | n/a n/a 3.2 3.1 200 | n/a n/a 3.2 3.0 200 | n/a n/a 3.1 3.0
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
BM (standardized) BM (standardized) BM (standardized)

NA\T 60 110 210 250 NA\T 60 110 210 250 NA\T 60 110 210 250
50| 41 34 33 32 501 39 33 36 39 50| 36 34 35 36
100 | n/a 4.1 3.0 29 100 | n/a 3.4 34 34 100 | n/a 3.2 3.3 3.4
200 | n/a n/a 34 2.8 200 | n/a n/a 3.0 2.8 200 | n/a n/a 3.0 2.7
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a

Notes: The SMT — o2 and PS methods are as described in the notes to Table 1. BM refers to the modified detection method
used in Section 6 of Brownlees and Mesters (2019). BM (standardized) stands for application of BM to data that have been
recentered and rescaled so that each cross-section specific time series has an average of zero and a variance of one. BM methods
are not applicable (n/a) if T < N.

Consider now cases where the DGP contains one or two pervasive units. Table 3 reports
the empirical frequency of correctly estimating the number and the identity of the pervasive
units by all the three detection procedures. The top panel of the table gives the results when
there is one pervasive unit (mg = 1), with and without external factors, namely for kg = 0, 1
and 2. The lower part of the table gives the empirical frequencies when mg = 2, and kg = 0, 1
and 2. For the BM procedure we are only able to provide results when 7" > N. The relative
performance of the three detection procedures very much depends on whether the observations
are affected by an external factor, and the relative sizes of N and T. For example, the PS
method works very well only if my = 1 and ky = 0, and breaks down completely if there
are external factors or if there is more than one pervasive unit. The BM method performs
well when it is known that my > 1 and 7" > N. By contrast, our proposed method works
reasonably well for all values of my and kg, and continues to be applicable even if T" < N.
Amongst the three methods considered only the SMT — o2 thresholding method is able to
select the true pervasive units with probability approaching unity as both N and 7" become
large. Not surprisingly, the small sample performance of SMT — o2 thresholding deteriorates
as the number of common factors, be it pervasive units or external factors, is increased. In
Table 4 we again consider the average number of false discoveries. The results are similar
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to the ones obtained earlier, with SMT — o? procedure performing best overall. It is also
interesting to note that standardization of observations affect the BM procedure adversely.
This is particularly pronounced when my = 2. Again, the modification of the BM procedure is
critical for its performance. When the BM procedure is applied without modification we again
obtain a large number of false discoveries, as can be seen from the results in Section S7 of the
online supplement.

The above findings continue to hold when the DGP contains weakly pervasive units in-
stead of pervasive units. Table 5 reports the results for models with weakly pervasive rather
than strong pervasive units, where the exponent of cross-sectional dependence of the pervasive
unit(s), is set to a = 0.8 instead of o = 1. (see (45) for a definition of «)). Not surprisingly,
the empirical frequency of correctly identifying the true weakly pervasive units is generally
lower as compared to the case where the pervasive units are strong. Nevertheless, SMT — o2
thresholding and BM procedure perform reasonably well even in this case. Of course, the BM
method is applicable only in the case of panels with 7" > N and if it is known that mgy > 0. In
cases where both BM and SMT — o2 thresholding are applicable, the proposed method seems
to perform somewhat better, particularly when 7'— NV is not that large. Finally, considering the
average number of non-pervasive units, falsely selected, in Table 6 we again note very similar
patterns to those present in Table 4, with SMT — o2 again performing best.

7 Empirical Applications

In this section we present empirical applications that showcase our proposed detection method-
ology. We consider three different applications, and report the pervasive units (if any) selected
by SMT — o2 thresholding, as well as the methods of Parker and Sul (2016) and Brownlees and
Mesters (2019). As in the MC section, we focus on the modified version of the BM procedure
(where selection is based only on the N/2 most connected units), but report results with and
without standardization of the individual time series.!®

7.1 U.S. industrial production

We begin with a panel of monthly observations on production of N = 138 industrial sectors
of the U.S. economy over the period 1972m1-2007m12. This data set has been compiled by
Foerster, Sarte, and Watson (2011), and used by Brownlees and Mesters (2019) to study the
presence of pervasive production sectors in the U.S.!Y As noted previously, by construction
BM method will end up finding at least one pervasive sector. In fact, Brownlees and Mesters
(2019) find between 2 and 5 pervasive sectors, predominantly related to the production of
light motor vehicles and aluminum products. They arrive at these results by applying their
modified detection procedure to sectoral growth rates after standardization. In addition to
determining which sectors are pervasive, the authors rank different sectors according to their
level of dominance by ordering the column norms of the inverse sample covariance matrix. A
comparison of this ranking with one based on the explanatory power of estimated common

I8 Estimation results for unmodified BM without restrictions on the maximum number of pervasive units can
be found in Section S8 of the online supplement.

9Tn their study, Foerster, Sarte, and Watson (2011) make use of a quarterly version of this data set, and BM
choose monthly frequency to ensure T' > N, which their detection procedure requires.
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factors on sector-specific series is provided, revealing substantial differences in the suggested
list of highly influential sectors.

We apply all the three detection methods to the full dataset as well as to the two sub-
samples, 1972m1-1983m12 and 1984m1-2007m12, investigated in Foerster, Sarte, and Watson
(2011). For application of the PS method we selected the number of factors using the IC,,
criterion of Bai and Ng (2002). We set the maximum number of factors to 10 and obtain
1 common factor for the full sample and the first sub-sample, and 2 common factors for the
second sub-sample. In application of the SMT — 0? we do not need to estimate the number
of factors, but set a maximum value for p = m + k. To this end and to cover a wide range of
possible factors, and to check the robustness of the SMT — o2 thresholding to the choice of
Pmaz, We tried all the values of p,,q, in the range {2,3,4,5,6}.

The results are summarized in Table 7. The top panel of the table gives the results for the
full sample, followed by the two sub-sample results. Starting with SMT — o2 thresholding,
we find that no sector is identified as pervasive, with the result being robust to the choice of
Pmaz and the sample period. This conclusion is in line with the estimates obtained by Pesaran
and Yang (2019) who make use of input-output tables for the whole U.S. economy. The PS
procedure arrives at the same outcome and does not detect any pervasive sector when the full
sample is used, but identifies Plastic Products as pervasive in the first sub-sample, and as many
as 19 sectors as pervasive in the second sub-sample. The list of these 19 sectors is given at the
bottom of Table 7, and includes a diverse array of sectors such as Cheese, Breweries, Plastic
Products, Shipping Containers, and more.

The results from the application of the BM procedure are mixed and depend on whether the
observations are standardized, and the sample period considered.?’ Still, due to the underlying
assumptions of this approach, at least one pervasive sector is found in all cases. As can be seen
from the last two columns of Table 7, for the full sample BM selects Fluid Milk as the pervasive
sector if observations are not standardized, and selects Automobiles and Light Duty Motor
Vehicles, and Motor Vehicle Parts, as pervasive when observations are standardized. For the
two sub-samples the results are much more dispersed, and only Motor Vehicle Parts is included
in the list of the pervasive sectors for all sub-samples when the observations are standardized.

In addition to splitting the sample at the end of 1983, we also applied our detection method
to rolling samples with window sizes of 10, 12, 15 and 20 years, in order to obtain further
evidence on how the number and identity of pervasive units could be subject to change. As
previously, the maximum admissible number of common factors and pervasive units is set to
Pmaz € {2,3,4,5,6}. For the sake of brevity, only SMT — 02 thresholding is considered. The
results unanimously confirm our previous finding that there is no pervasive sector in the U.S.
industrial production.

7.2 Are there pervasive economies or equity markets in the global
economy?

In a second application, we use quarterly observations on real GDP and real equity prices over a
number of countries and equity markets spanning the period 1979q2-2016q4, providing 7" = 151

20The detection outcomes also very much depend on whether one uses the modification of the BM procedure
or not. The results for unmodified BM is in Section S8 of the online supplement.
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observations for each country.?! Data on real GDP is available for 33 countries and account for
over 90 percent of global output. The equity price observations are available for 26 countries,
and include all major equity markets.

7.2.1 Cross country output growth

A recent investigation of cross country correlation of real GDP growth rates is given in Cesa-
Bianchi, Pesaran, and Rebucci (2019), and shows that accounting for one common factor is
enough to reduce average pairwise cross country correlations to almost zero. Despite this
suggestive evidence for the presence of only one factor in GDP, we consider a wider set of
choices concerning the number of latent factors, and experiment with pp.. € {2,3,4,5,6}
when applying o2 thresholding. As in the previous application, the results from the application
of SMT — o? thresholding are compared to the other two detection procedures (BM and BM
standardized as well as PS). The results are summarized in Table 8. In this application SMT —
o2 thresholding selects 1 country (France) as pervasive in terms of GDP growth when p,,,., = 3,4
or 5, and selects no pervasive country if p,,.. = 2 or 6. Given the cross country growth evidence
provided by Cesa-Bianchi, Pesaran, and Rebucci (2019) it is more reasonable to rely on the
detection evidence when p,,.. = 2, which is compatible with assuming one common global
technology factor (i.e. ko = 1) with one possible pervasive country, say U.S., (with my = 1)
which gives pp.. = 2. Also if we use the IC)y criterion of Bai and Ng (2002) to select the
number of factors across country growth rates we also end up with one factor. (see footnote 1
of Table 8). So we conclude that there is no compelling evidence for the presence of a pervasive
country in terms of output growth, and the detection of France as a pervasive economy when
Pmaz = 3,4 and 5, is most likely a false discovery. This conclusion is also supported when we
consider the result obtained from the application of the PS procedure to the GDP growth series.
In contrast, BM procedure selects France and Spain as pervasive economies when the growth
series are not standardized, and selects an additional 9 economies (a total of 11 economies out
of 33) as pervasive, if observations are standardized. This outcome is difficult to interpret and
most likely reflects the tendency of the BM procedure to over-select as documented in the MC
section.

7.2.2 Cross market rate of change of real equity prices

The results for the rate of change of real equity prices are summarized in the lower panel of
Table 8. In this application SMT — o2 thresholding is the only method not identifying any of
the equity markets as pervasive. Both PS and BM procedures select 6 markets as pervasive, and
agree only on Germany and Netherlands as the pervasive equity markets. Interestingly enough,
BM only selects Netherlands as pervasive when observations are standardized. Once again we
find the BM detection method to be highly sensitive to standardization of observations.

Finally, it is important to bear in mind, that not finding a pervasive unit does not mean
that the global economy is not subject to global shocks. Our results suggest that once we allow
for the possibility of global shocks, it is difficult to find convincing evidence that any country
can be singled out as pervasive. This result is also compatible with the presence of influential
economies such as U.S.; China, Japan and Germany as having important global and regional
impacts in the world economy.

21 Cross country data is taken from the latest vintage of the GVAR data set as described in Mohaddes and
Raissi (2018).
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Table 8: Pervasive unit detection methods applied to cross country rates of change of real GDP
(33 countries) and real equity prices (26 markets) over the period 1979q2-2016q4 (151 time
periods)

Rate of change of real GDP

Approach: SMT — o> PS BM BM (standardized)

Pmaz 2 {3,4,5} 6 1f

Number of pervasive units: 0 1 0 0 2 11

Identities: France France Italy UK
Spain Spain  Malaysia

France Belgium
USA Finland
Germany South Africa

Canada

Rate of change of real equity prices

Approach: SMT — o PS BM BM (standardized)
Dimazs 2,3,4,5,6 ot
Number of pervasive units: 0 6 6 1
Identities: France USA Netherlands
Germany Netherlands
Malaysia UK

Netherlands Canada
Singapore  Switzerland
Thailand Germany

t This value minimizes the ICpg criterion of Bai and Ng (2002) for selecting the number of common factors. The maximum
number of factors is set to 10.

Note: Data taken from the GVAR database (Mohaddes and Raissi, 2018).

7.3 U.S. house price changes

It is well established that house price changes in the U.S. are governed by common national and
regional factors (see e.g. Holly, Pesaran, and Yamagata, 2010; Bailey, Holly, and Pesaran, 2016),
and it is of interest to investigate if any of these common factors are due to the dominance of
particular states amongst the 48 mainland states of the U.S.. To this end we consider state-level
quarterly data on real house prices over the 1975q1-2014q4 period (T = 160).?? In our analysis
we use the rate of change of real house prices, after seasonal adjustment, with nominal house
prices deflated by the state-level consumer price indices.

To investigate whether house price changes in any of 48 mainland U.S. states could be
regarded as pervasive for the rest of the states, as in the previous applications, we implement
SMT — o thresholding with p.. = {2,3,4,5,6}. The PS and BM methods are applied as
before. The results are summarized in Table 9. As can be seen there are significant differences
in the outcomes depending on the method used. In the case of SMT — o2 thresholding New
York is identified as pervasive when the maximum number of common factors is set to 2 and
3. No pervasive unit is found for p,... € {4,5,6}, and Kentucky is also selected as pervasive
when p,,.. = 3, which could be false discovery. The BM procedure identifies many more states
as pervasive with no clear geographical patterns. Without standardization, BM selects North

22House price data is taken from Freddie Mac House Price Indexes (http://www.freddiemac.com/research/
indices/house-price-index.html). State-level consumer price indexes were taken from Yang (2018) who
updated a previously constructed dataset of Bailey, Holly, and Pesaran (2016).
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Table 9: Estimated U.S. states with pervasive housing market

Approach: SMT — o2 PS BM BM (standardized)
Pmaxz 2 3 4,5, 6 5f
Number of per- 1 2 0 2 4 6
vasive units:
Identities: New York Kentucky New Hampshire North Carolina Connecticut
New York Nevada Maryland New Hampshire
Virginia Massachusetts
Connecticut Maryland
Virginia

Rhode Island

t: This value minimizes the ICpa criterion of Bai and Ng (2002) for selecting the number of common factors. The maximum
number of factors is set to 10.

Notes: Data taken from Freddie Mac House Price Indexes and Yang (2018).

Carolina, Maryland, Virginia and Connecticut as pervasive, whilst with standardization three
additional states are selected as pervasive, namely New Hampshire, Massachusetts and Rhode
Island. Connecticut is not selected when we use BM (standardized). We take these results
as weak evidence for the influential role of the north-eastern part of the United States with
New York being the most plausible candidate. By contrast, PS detects two pervasive units in
two opposite corners of the U.S., namely New Hampshire and Nevada, thus providing a less
coherent picture compared to the other two approaches.

8 Concluding remarks

Recent developments in network and panel literature have emphasized the importance of some
key units for interdependencies among economic agents. For example, financial networks can
be resilient with no units playing an unduly important (i.e. ’systemic’) role while others may
have pervasive units that need close monitoring. There is a small literature on how to detect
such units but all existing methods are either not rigorously analyzed or have drawbacks such
as assuming, rather that ascertaining, the presence of at least one pervasive unit, or considering
panel datasets where the time dimension is larger than the number of cross-section units.

We contribute to this literature by proposing a new thresholding method which is rigorously
developed using theory on large factor models as well as recent developments on multiple testing.
It has good small sample properties and allows for the presence of no pervasive units while being
able to detect weakly influential cross-section entities. The ideas developed in this paper can
also be applied to other aspects of the dependence across units. Tail dependence is particularly
relevant in risk analysis and it would be interesting to develop detection methods that identify
units with pervasive effects by quantiles.
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Appendix

This appendix provides the proofs of the main results. The auxiliary lemmas used are stated
and proven in Section S1 of the online supplement.

A Proof of main results

A.1 Analyzing residual variances for non-pervasive units

Recalling that x; = Fypa; + v; and

M, (FO—F)Ag (AO—A) MFV<A0_A> M (VA0>
M, (20

M;F, = + =

N N (46)

we can expand residual variances, 67 = T~ 'x,Mpx;, into the sum of eight terms.
N6? = By + Bip + ... Big + By + Big.

The final two terms, B;; and B;g, are zero if i is the pervasive unit. The first 6 terms are
defined and discussed in the proof of Lemma 1 in the online supplement. In this section, we are
concerned with the last two terms which only appear in the case of non-pervasive units. These
terms are given by

. NV;MFVz NV;MFFOai

Bz T

s and BiS =

First, note that

VI-MFVZ‘ Nv! (M* — MF) V;
Bz:N L L ¥ .
()

Since T~ 'V/Mpv; = O,(1), it holds that B;; = O, (). Consider now Bs, and note that, using
(46), we obtain

viMpFoa; = + ViVl VA4,
N N N
_ Bi81 Bi82 Bi83

N N N’

We examine the terms B;g1, B;ss and Bigs, in turn. For B;g; we have

< Ilvill IMg | |[Fo—F|| | Af (A0~ A) | il

Recall that by Assumption 2, ||a;|] = O, (1), whereas results (A) and (E) yield
. T
o5, =0 ( ey
F min (N, T)

|45 (a0-4)|| =0, (ﬁ)
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Furthermore, since M is an idempotent matrix we also have | M| = O, (1). Lastly, note that
Vil = O, (\/T ) holds by Assumption 3 and the fact that v; = u; for any non pervasive unit,

1. Consequently,

X . NT
<1l = (VMg (Fo— ¢ - | = min (N.T)
|3181| VzMF <F0 F) AO (AO A) & Op (mln (N7 T)) .
Next,
| Biga| = [VIMpV (AO —A) a;| < [vill Mg HV (Ao —A)H ladl-

Again, recall that by result (C),
« VvVNT
[v(a0-4)], =0 i)
F min (N, 7T)
So
| Biga| =

vIMV (AO - A) a;

i TV N
"\ V/min (N, T) )
Next, | Biss| = [VIMgVAoai| < [[vil| Mgl [ VAo|l |lai]| . Here, (D) yields | VA . = O, (VNT),

and |Bss| = O, <\/NT) Overall,

1
Bis = T (Bis1 + Bisa — Biss)

~0, <—min é\jfv T)> +0, <—m1Z(NN T)) +0, (VN) =0, (V).

as required.

A.2 Proof of Theorem 2

We need to show that

lim Pr ({fD — JD} N {fND - ]ND}> — 1.

N,T—oc0

It suffices to show that

21% log T
lim Pr (ﬂigD {&fT < %}) =1,

N/T 500
and )
P (e {5 < ZEPET ) o
bet ,  alAE,Apa, 202y log T
Ny = — N , and Cijyp = — N
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Then, we need to show equivalently that

. . 2logT .
lim Pr <ﬂi61D {O’?T + ]\% (anN - ?’]ZQN) S C’iNT}) = 1,

N, T—o0

and

. . 2log T .
NI%IBOO Pr (UieIND {U?T + ]5 (772‘21\1 - m-zN) < CiNT}) = 0.
The proof of Lemma 1 in the online supplement establishes the expansion N2, = Z?Zl Bi;
for i € Ip, where all terms apart from B;; = (NT) 'alA{V'M;VApa; converge to zero. More
specifically, we have

a/A\V'M:VAya; 1
No2, = 220 TR TPO0T L o) (—
oir NT T\ Gar )
as long as —Vzﬁv — 0. Moreover, the terms B;;, j = 1,...,6 depend on ¢ only through a; and by

assumption sup, ||a;||*> < C' < co. Therefore, it follows immediately that

i | < =1,j=1,2,...
N,ljl“riloo Pr (Slzlp |Bm| = DNT) 17 J 1727 a67

for any sequence Dy bounded away from zero.
If i € Iyp then N6% =3 | By, with

NviMgv; Na/F,\Mav;
By = %, and Bjs = %’
and as shown in Appendix A.1, B;7 = O, (N) and B;s = 0, (N), respectively. Further, we need
to show that
lim Pr (ﬂiEIND {|Bl7 -+ Blgl > CiNT}) = 1, (47)

N, T—oc0

and it will be sufficient (assuming NC;y7 = o0 (min(\/ﬁ ,T )“)) to show that

N,I%IEOO GIZ Pr <|BZ-7| < mln(\/ﬁ, T) ) =0,
7 ND

and
lim Pr <|Bi8\ > min(V/'N, T)a> =0,

N, T—oo
i€IND

for some 0 < a < 1. This result follows straightforwardly by noting from a direct application
of Lemma A7 of Chudik, Kapetanios, and Pesaran (2018) that

Pr (|viMpv; — To}. | > TNCyr) < exp (~CTN*C3y) = exp [-CTnjy (log T)2] ,

for some C' > 0. It is easily seen that N exp (—CTnfy (log T)?) = o(1), noting that sup; (ny) >
0. A similar result obtains for Pr (|vMzv; — viMgv;| > TNCyr), along the lines of our analy-
sis below for 7;y starting with (50).
To complete the proof it now suffices to show that
lim Pr(Niz12.. n{|Ba|l < NCinr}) =1, (48)

N, T—o0
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and

NI%IBOO Pr (Niz12,..n {‘U?N - ﬁZQN‘ <nn}) =1, (49)

or limy 7. Pr (sup; |2y — NZy] < C) = 1,for some finite C' > 0, since 7?y is uniformly bounded
away from zero and infinity. (48) follows from auxiliary Lemmas 3-6.
Consider now (49), and note that by equations (33) and (38), we have

2 a;AE)EUAOai é;A/ivA{ll (50)

Then,
}771'2N - ﬁ?N‘ <

a;A{)EUAO (ai — él)
N

ajAj <§~Jv — 2U> Aja; - ajA(x, (A — A0> a
_|._

C
! N 3 N

Cs

= A+ Aip + Ais,

where A;; and A;3 depend on ¢ only via a;. By the boundedness of a;, auxiliary Lemmas 3-6,
and Theorem 1 of Bailey, Pesaran, and Smith (2019), A;» = 0, (1) and A;3 = 0,(1). Hence

lim Pr (sup Ap < C’) =1, and lim Pr (sup Az < C’) =
N,T—o0 i N, T—o0 i

Now consider A;;, and note all elements of N~'a/A{3,A, are uniformly bounded (recall
that sup, |a;|° < C < oo, and X, is row bounded). Therefore, it suffices to show that
limy 7,00 Pr (sup; ||a; — &|] < C') = 1.We have

T

—a; = Z tVit + Zlﬁt (ft - ft) .

So we need to show that

T
Z fvi

N, T—o0 i
t=1

lim Pr (sup

< TC) =1, (51)

and

<TC

Z it <ft . ft)

(51) follows easily. We focus on (52). For example, by (A1) of Bai (2003) we note that

(52)

lim P
i P [SHP

— fit = Z fgl%t + Z leClt + = Z fgl%u + 5 Z fglflt, (53)

where vy, = yvie = N7V SN E(viva), Gr = N7y — qi, 59 = N7 AQv,, and &; = 5. So
we need to show the following (C' changes from instance to instance).

1
szt fojl’Ylt
=1
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lim Pr [sup <TC (54)

N, T—o0




T T
1 ~
th Pr [sup int (Tz ]lgt> <TC| =1, (55)
o tolt=1 I=1
and
T LI
Nl%m Pr |sup int TZ o || <TC| =1 (56)
> L I=1

We proceed in turn.

T 1 Z
Pr [sup int < Z l%t)

=1
(sup

A,
Z Z l"z‘tfjl%t
We have, for some 0 <

>TC| <Pr >TC| +

Sup %Zi%ﬁ (sz - fjl) Vit

t=1 =1

> TC) = A + Aia;.

szzt (f]l f]l) Vit >TC>
t=1 1=1

1 min(N,T)¢ T £ 2)12 1 T T 2 1/2
iz | T 1 2121 (fjl - fjl> [T Zt:l Zl:l ’Vlt]

min 1/2
supz[ (NT Zt 1 zt:| >C

W T 1/2 P 1/2
IIllIl N T A 2 1
E (sz — sz) T E E ’let] >C o+

=1 t=1 [=1

im0 L)
Pr |sup (% Z:Eft) > (C

But using Theorem 1 in Bai and Ng (2002),

min NT“Z( z—fﬂ>2

=1

t=1 =1

Aq; = Pr <Sup

Pr T

1
< Pr T1/2

1/2
1

T1/2

T 1/2
E9) 95| NPt

t=1 =1

and using Lemma 2 to show

1/2
(N, T)"
Pr |sup (mm szt) >C| =o0(l).

>o)<pr(
>c).
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Hence, it follows that A;;; = o(1). Next

T T

1} Z Z xitfjl’ylt

t=1 =1

1 LT
) Z Z Vit [

t=1 [=1

Ajg; = Pr (SUP

(sup

1 T T
sztfgl%t
1=1

t=1

>c)




We have

Pr

P I
r(T

sup

1 LI
> Z Z £ fie
t=1 =1

>C’> =o0(1),

1 < 1 <
f Z Vit <T Z fjl'Ylt)
t=1 =1

By the independence of f;; and v; and the martingale difference (m.d.)

property of v,

(% Z;‘il fjmt> vy is also m.d., and by the martingale difference exponential inequality of
Lemma A3 of Chudik, Kapetanios, and Pesaran (2018),

Next, for (55),

Az =Pr [Sup =

Pr

Pr

As before

Pr

min ( ,T “i (f]l_f]l)

N
I
—

xitflelt

sup

>TC

S

<)

Tt (fgz - fjl) Gt

11/2

11/2

(fjl - fjl>2

T
1 Z 1
T — (T

<Pr

>TC> =

sup

T
> fjl%t)
=1

sup

> (C

%

> C +Pr{
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ZT:XT:SL’# (fjl - fjl) Qe

mmNT e

sup
i

o(1).

T
t=1

T 1/2
szthlt] >C ) <
=1

min ( NT ai

t=1

T
thClt
=1

>TC| +

>o}



Then,

T
1
Pr [sup (f fot> < C'min (N, T)*
‘ t=1

But since 7723, 32, ¢! = 0,(1), then Pr (T‘2 ST ST ¢G> C’> = o(1), and using
Lemma 2 we obtain

=o(1).

T
1
Pr [sup (f Zm?t> > C'min (N, T)*
‘ =1

A very similar analysis can be applied to (56), proving the required result.

A.3 Proof of Theorem 3

We start with Algorithm 2. It is sufficient to show that adding an extra set of regressors, of
finite size, to the regressions underlying (14), and using o2 thresholding to select dominant
units, still implies that a dominant unit will be selected with probability approaching one and
a non-dominant one with probability approaching zero. This is shown in Appendix A.4. Then,
consistency follows by noting that at every step of the sequential algorithm some dominant unit
will be selected with probability approaching one and once all dominant units are selected no
further unit will be selected again with probability approaching one.

Moving on to Algorithm 3, we need to show that if we have a potential dominant unit, x;,
then a set of t-type test statistics of the form given in (42), will reject the null hypothesis that
v; =0, for all j, in

T = py + TierVs + f*/a* + X*/b* +vje, t=1,2,....T, (57)

with probability approaching one, exponentially fast, if x;+; is a dominant unit and do so with
probability approaching zero, exponentially fast, if x;«; is not. This is shown in Appendix A.5.

A.4 Analysis of sequential o> thresholding

Consider the extension to a model of the form

ry = af, + bz, fori=1,2,...,m,
zy = af, + b'zy + uy, fori=m+1,m+2,...,N,
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where z; is a known and observed vector of variables. We wish to repeat the analysis of the

threshold based selection, for x;; — b’z; but use OLS regression of z;; on z; to obtain the

OLS coefficient b and construct Tit — b’ z;. Repeating our earlier analysis without z;, we note

that N62. contains now a further term that potentially dominates other previously analyzed

N(b-b)'z'Z(b-b)
T

terms. This term is given by . A possibility is to modify N2, and consider

min(N, T)6% instead. So we consider <b b) YAY/ <f) — b) . We simplify the analysis by using

a scalar z;. We wish to bound Pr [(B — b) 7'7 (B — b) > C’T} . We have

Using our derivations in the previous sections of the appendix, we have

T
Pr (Zt 1 ZW@) Z zi| > CT <Pr ( Z ztz — Ug > C/CT> +Pr ( Z 2t Vit
Zt L2 \/_

t=1 t=1

> 01/2>

(58)
The right hand side of (58) can be bounded using a martingale difference exponential inequality,
as before, thus providing justification for a criterion of the following form. Select unit i to

272y log T A 262 log T N
TnE- for T > N and 67, < 2= for T < N, where 62, =

. . /\2
be pervasive if 67 < S

L =T S )2
!
T E :t:1 <xz’t —b Zt) .

A.5 Analysis of the t-type statistic in Algorithm 3
Recall from Section 3 that the model is given by

Xat = Aagt + Ugt, (59)
xpt = Apgr + Bxyy + uyy, (60)
fort =1,2,...,T, where x,; and x;; are m x 1 and n x 1 vectors of observations at time

t on the pervasive and non-pervasive units, respectively. For simplicity, let u; ~ #dN (0, 02).
Assume we want to apply the MT hurdle to an element of x,; or x;, denoted by z;. The
auxiliary regressions considered here are

xz‘t:’ﬁzt‘i‘)\ift-i—“z‘t, t=1,2,...,T,

for each © = 1,2,..., N where f . denotes other variables included in the regression. This
amounts to collecting both estimated factors f't* and previously selected pervasive units x7,
, as specified in equation (40), into a single vector and this vector f ;» which should not
be confounded with the factor estimate f; in Sections 4-5 . In the first instance, we will
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not specify how factors are estimated for extra generality. In vector form, we can write the
model as x; = z7] + F\; +v;, or Mgx; = Mzzvy' + Mgv;, where Mz = Iy — Py and Pp

A /ot a1 A
=F (F/F> F’'. The OLS estimator of the slope coefficient ~; is given by

e (T‘lz’l\/Iﬁz)_1 T_lz’MFXi, (61)

and we are interested in finding the limit expression of both terms on the right-hand side. Both
numerator and denominator are of the form T7'z'Mps = Tz’ (Ir — Pz) s for some variable
s. We consider two cases: The case where z is an element of x,; and the case where it is an
element of x;;. In both cases we assume that f . spans (u,, g;)" asymptotically, i.e. that there

exists some matrix C such that plim H Ccf . — (ul;, gr) H = 0. We start by considering the case

where z is pervasive. In that case there exists H such that z = FH where plim F = F.
We have

T2 (Ir —Pg)s=T"'2 Iy — Pp)s—T'2 (Ir — Pz)s
= T2 (Pp—Pp)s = T2 (F F) (F'F)" F's+
~ ~ ~ -1 ~ ~ ~ —1 ~ /
717 F [(F’F)_l - (F'F) ] F's + T2 F (F’F) (F—F> s
— Ay + Ay + Ay,

Let T 17/ (F—F‘) = O, (c1,nr) where ¢y yr — 0 and depends on the factor estimation
method. Further assuming that F's = O,(T), we obtain A; = Tz’ (F—F) (F'F) ' F's =
O, (c1,n). Similarly, A = T2/ F (13‘,13‘> B (F—ﬁ’)ls = O, (c1,n,r) . The order in probabil-
ity of Ay differs slightly since this expression is a function of F <f‘ — F> = F' (f‘ — F) —
(F — F)l <ﬁ‘ — F) Let T—1 (f‘ — F)I (F — F) = O, (ca.nr) - More specifically, we have

Ay =T 7' F {(F’F)1 - (F F ] F's =T '2F (F'F)'F <F - F> (F’F) F's+
T2/ F (F'F)™" (F - F) F (F’F>_ F's = 0, (ciyr) + Oy (con) -

Note that by Lemma Al of Bai and Ng (2006), we have that for PC factor estimation
A A / A
Tz (F—F) = O, (min (N,7)"") and T~ (F — F) (F — F) = 0, (min (N, 7)), so that

for this factor estimator ¢; yr = conr = min (N, T)_l. It follows that both T-'zZ'Mx; and
T-'2’Mgx; are O, (min (N, T)fl), and using (61) we have 4, = O, (1) .

—— / ——
Next consider t;, = [Var (ﬁ;‘z)] 4% where Var (5) = (2Mpz) ' T~' Y1, 92, and hence

~1/2
t. = <T*1 Zthl ﬁi) (Z’Ml;ﬂz)fl/2 z’Mzx;. It is also easily seen that 7! Zthl 02 =0, (1),
and

T'2ZMpz = O, (min (N, 7)), T7'2Mpx; = O, (min (N, 7))
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So overall t;, = O, (min (N, T) 21V 2), implying that a standard t-statistic to test the sta-
tistical significance of 77 need not diverge if z; is a pervasive unit.
Now consider the t-type statistic of (42), given by

T ~1/2
tr = L = (Z’z)1/2 (Tl Z@i) (Z'Mﬁz)_l ZMpx; = O, (T1/2) .
—==i t=1

We therefore note that, unlike the standard t statistic which does not necessarily diverge if z

is pervasive, t7, does diverge at the usual rate.

Under the case where the z is not pervasive and assuming that p.. is large enough to span
the true factors, it is obvious that t;, = O, (1) and ¢}, = O, (1). Using arguments similar to
the rest of the paper (consider, e.g., the proofs of (54)-(56) and Lemma 2) it follows that, using
standard multiple testing critical values cy = O (In(N)*?), we can make 1 — Pr (¢}, > cy)
exponentially small if z denotes a pervasive unit and Pr (¢}, > cy) exponentially small if z
denotes a non-pervasive unit.
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This online supplement contains additional theoretical, simulation and empirical results that
complement the main paper. It is composed of six sections. Section S1 provides the statement
and proofs of a number of auxiliary lemmas used in the proofs. Section S2 gives a more detailed
description of the steps required to implement the various variants of the basic o2 thresholding
method proposed in the paper. A summary of other approaches proposed in the literature for
the detection of pervasive units is given in Section S3. The finite sample performance of the
different variants of the 0% thresholding (that are not considered in Section 6 of the paper) is
discussed in Section S4. The robustness of our detection method to the choice of the constant
C' (which is set to C' = 1 in our MC and empirical analyses) that enters the threshold rule is
investigated in Section S5. Two additional o2 thresholding schemes, based on the difference
and the ratio of two successive ordered error variance estimates, are considered in Section S6
and their small sample properties investigated using Monte Carlo simulations. Finally, Sections
S7 and S8 report simulation and empirical results using an unmodified version of (Brownlees
and Mesters, 2019, BM in the following) procedure.

S1 Proof of Proposition 1 and Auxiliary Lemmas

This section provides proofs of Proposition 1 and the lemmas used in the paper.

S1.1 Proof of Proposition 1
Let G, C o(xy) C F and Gy C o(xy) C F be any o-fields for which
Ep [|E (uit|G1) — E (uit|G2)[] > 0.

and, therefore,
Ep[|E (zit|G1) — E (2:]G2)[] > 0.

By independence across 1,
Ep [|E (u;e|G1) — E (u;e|G2)|] = 0, j # i.
Then, as long as |b;;| > 0, for i =m +1,m +2,...., N, and sup;; |b;;| < K < oo,
Ep[|E (2tG1) — E(2:G2)[] = Ep [|E (bijuie|G1) — E (bijui|G2)[] > 0, j #i.

Therefore, (1) holds, proving the result.



S1.2 Auxiliary Lemmas

We next present and prove auxiliary lemmas. First we provide a lemma handling the remainder
terms of N6Z.. We have

Lemma 1 Let i denote a pervasive unit, Assumptions 1-4 hold and ‘/TN — 0, as N,T — oc.

Then,
a'AgV' Mz VAya; 1 VN
NoZ = & P V03, . v
O NT + 0, <5NT>+OP<512VT ,

uniformly over i, where 6% = min(N, T).

Proof. Since unit i is pervasive, we have N6 = (N/T)a,FoMzFoa,. Now using (29) we
obtain N2, = 2?21 B;j, where

B\ — afL»A()V/MFVAOaZ',
il — NT
AV MgV (Ao~ A)a
Bi2 =2 )
NT
Bz =2
13 NT )
~ / ~
2 (Ao~ A) VMV (A0 A)
Bi - 9
! NT
~ , A~ ~
& (Ao~ A) VMg (Fo— F) Aj (A0~ A) a,
Bi5 =2 NT )
N / ~\/ ~ -~
ag AO—A A() FO—F Mi;‘ FO—F A6 AO—A a;
o e A N ) 1) )

First, note that
2 "
1Ball < < llasll* [AGV/[| Mg ||V (Ao — A) |-
NT

But |[Mg]|| = 1, since My is an idempotent matrix. Furthermore, sup; ||a;||* < C, by Assump-
tion 2. Together with (C) and (D) of Proposition 2, these two results imply

| Bizl| = NLTOp (\/ﬁ) Op (W) =0, ( : ) :

SN SNt

Similarly, using (A), (D) and (E) of Proposition 2,

IBall < o 145V
! op(m)()p(ﬁ)op( N)

7o~ 4340 - 4)]
T NT vt Nt

o)

2
5NT



Next,

15l < 7 [V (80 - &) [ =0, (5 )

0Nt
follows from (C). Using this latter result, as well as (A) and (E), we also obtain

151 < 577 [V (80 - 8) | s~ 7] i (20 - 8)]
VNT VT
N NlTOp ( 5§TT) O (%) O <%>
~o.(32)

I1Bsll < <7 ’A’ (AO A) i P

1 N2 T N
= Nt (%) r (%) =0 (%) ’

by the same intermediate results. Summarizing the order results above and noting that g — 0,

we have
A’V'M VAja; 1 v N
N2 =2 %40, <—> +0, <—> :
T

Finally,

2

NT

proving the required result. m
Lemma 2 Let Assumptions 1-4 hold. Then,

Pr [Slz_p ( th) > C

Proof. We will prove the case for j = 4 only. The cases for j = 1,2, 3 follow straightforwardly.
We have

=o(1), j=1,2,3,4.

!
i = afy + vir = Qi + Vi,
So

%t + 4€0ztvzt + GSthUzt + 490ztvzt + Uzt Z Ajit-

So

T

ol (1)




where m; > 0, and 25:1 m; = 1. We examine each B; in turn. We have that for sufficiently
large finite constant C, there exists some constant C'; such that

B T
1 1
Pr [sqp (T ZAm> > ch] < Pr |sup T Z (a;ft)4 > 7T10]
¢ t=1 | t=1

B T

= e | (s ') | 7 S IR > me
L g T t=1
M| T

<Pr | IR = E(I£IY)]| > TmCy
L | t=1

However, since by Assumption 1, %23:1 [Hft|]4 —F (HftH‘l)} =0, (1),

Pr > T7T101 =0 (1) s

T
SOIEN = E(IE1")
t=1

for any finite C) > 0. For By — Bs it is sufficient to note that A, j = 2,...,5 are martingale
difference processes since y; and v; are independent and vft - F (vft), for j = 1,2,3,4 are
martingale difference processes by the serial independence of €; (see Assumption 3). Therefore,
by the martingale difference exponential inequality Lemma A3 of Chudik, Kapetanios, and
Pesaran (2018), we have that for j = 1,...,4, and for a sufficiently large finite constant, C
there exist some constants C; and Cy such that

T
1
Pr lsup (T Z Aijt) > WjC] < Pr lsup > ;01| <exp(—C.T),
=1

2 3

T

1

T E Aijy — F (Aijt)
t=1

proving the result. m

The rest of the lemmas in this section prove the results of Proposition 2 in the main text.
The five results A-E are analyzed in separate lemmas due to the length of the proofs. It is also
important to note that the required assumptions for the subsequent lemmas are considerably
weaker than those needed for consistency of the o2 thresholding procedure. The minimal
conditions needed, which are satisfied by Assumptions 1-4 in the main text, as noted in Remark
2, are as follows:

1. E|fi||* < C < oo, T' S £if! % %) for some m x m positive definite matrix 3. Ag
has bounded elements. Further ||[N"!A{A, — D|| — 0, as N — oo, where D is a positive
definite matrix.

2. E(vy) =0, Elvy|® < C where v; = (vy, ..., vn¢)" The variance of v; is denoted by 3,. f,
and v; are independent for all s, t.

3. For 7, 1+ = E(vyvjs) the following hold

° <NT)_1 Ele Zf:l ‘ Zfil Ti,i,t,s‘ <C.
. 21T=1 [1/N Zf\il Tiisi| < C for all s.

4



1N N
N7 Zj:l |Ti s8] < C.

(NT)™ Z§:1 Zthl Zi\il Z;V:I T, < C.

For every (t,s), E|(N)"Y2 N (vigviy — Tiasa)|* < C.

For each t, \/Lﬁ Zf\il a;v;; —4 N (0,T;) where T'y = limpy_oo Zf\il Zjvzl E (aia;-vitvjt).

The above list is essentially the set of assumptions in Bai (2003). Analogous to the definition
. . 1 N
in Appendix A.2, let vy = Vvt = ¥ Diq Tisit,s-

Lemma 3 Under Assumptions 1—4

V(A—A[)) JT JT 1
T -0 (i) <o () 1o ()

F
Proof.
We have by the proof of Theorem 2 of Bai (2003, expression above (B.2)) that
1 1~ /a
Bi—ai= ; v+ ; it <ft . ft> . (62)



We have

f, — £,

~

5

1 s/ s#£s’
2

>

T

S

1

T2

2
it

We have

Also




Next, we have

. T . 2
- ok ([ off )

- TQN;ZZUZ (Zzj (fis = £5s) )] <

J=1 t=1 =1
T
max T2N2 ZZUZQt (in (f]s ij) )
t=1 =1

But

Py Y (iw"’ (£ £ ) _

t=1 i=1

T N
=99 3] £ 9 EYCRVAR S 9 ARV AN

s=1 i=1 —1 i=1

where z;; = (% S vfs> 7. Note that sup;, ' (23) < co. Then, by a similar analysis to term
A in (63) of Lemma 5,
C5 =0, (N 'min(N,T)7").

Further,
1 T N
C’4:mzzvi Z Z |xzsxzs s_ 5 . fsl—fs/ F)
t=1 i=1 =1 5 s s’
o\ 1/2
1 (ﬁ Zs:l Zs’,s;ﬁs’ (TisTis) )
<2l v N e e
t=1i=1 (% Zs:l ZS’,S#s’ fs - fs P fsl — Iy F)
[ T T 9 1/2
1 L& 2 <% Zs:l ZS/7S¢S/ (:L“isxis,) )
= N2 Z Z Uit e ) 2 (| ) ) 12
t=1 =1 {T ZS:I |: fS - fS I <T ZSI,S;&S/ fs - fs F)‘| }
T
1 A 2
< | = f. —f,
1 T 1 T T 1/2
2
N2 (EZ > \x:c|)
t=1 =1 s=1 s/ s£s’
But

1 L. I 1/2
sup £ (T— > 2 <>) = 0(1),
! s=1 s’ s#s’



and therefore

1 T N 1 T T 1/2
I (T— Sy <>) — 0, (TNY).
t=1 =1 s=1 s',s#s’

Further,

1 T
E(TZ £, —f,

S=

i) = O [min(N,T)7"],

and overall we have Cy = O, <L) Finally,

N min(N,T)

T N

But using Lemma A.1 of Bai (2003) and sup;, E (3,) < oo,

1 T
H?ins’ (i}s’ - fs’)

= O, [min(N,T)™"],

and

So, we have

1 T N
—szi =0, [TN'min(N,T)7'],

1 &
T2 Z Z xis’visfé (f‘s/ - f51>

N

and hence

V(A - ) JT JT
_ ~1/2 =
N _OP(N )+Op( Nmin(N7T)> _Op( Nmin(N,T)>'

F—FO‘ .
F_
T p(min(N,T))'
Proof.
Since
e —w|[f =2 T it
Fle—m -3l

then the required result follows immediately from Theorem 1 of Bai and Ng (2002). =

8



Lemma 5 Under Assumptions 1—4,

V' (F-Fo) :Op<@>+op<i)+0p(ﬂ4).

T

Proof. We have that

\'% (F —FO) i

But,

1 & . 2
:—zzzvi (fjt_fjt> +

i=1 t=1

9 N T T R
T2 ZZZU”UW <th - fjt) <fjs - fjs) = A; + As.

i=1 t=1 s=1

By equation (53) we can write

T T
. 1 <A
— fit = ngmt + = ijlClt ijl%zt + Tijlglb
=1 =1

where ¢, = N™'jv, — v, 2. = N/ Ajvy, and &, = ;. We have

1 4N T 1 X 2
LSS (- n) s AY Y (T 7) +
=1 t=1 =1 t=1 1
1 L& 1 i
N fzfﬂgt) ;
=1 t=1 l

N T 1 2
33 (32 ) ¢

i=1 t=1 l

N T 1 A 2
ﬁzzvi Tijl&t)
i=1 t=1 =1

= Ay + Ao+ Az + Awge

W
Il

W

Now,

1 N T T R 2 ] T A ) N T T
= ﬁZZvi (Z fjl’Ylt) < (?Z j21> ﬁzzvi (Z,ﬁ) '
=1 i

=1 t=1

But 7' Y0, jl = 0,(1), and 3 72 < C. Hence

DRI IEIED DS

i=1 t=1 i=1 t=1

(63)



So

T T 2
Ay = Ti Z Zﬂi (Z fjl’Ylt) =0, (NT™?).
=1

i=1 t=1

Next
| N T 2 L N T 2
A = ﬁ Zvi (T ijlClt> = ﬁ Z Zvi (Z flelt)
i=1 t=1 =1 i=1 t=1 =1
1 r T T N
== (Z fitfju Z GutCut (Z Ui)) <
=1 u=1 t=1 i=1
1/2 2y 1/2
NI1 2, A | N
ﬁ _222<f]lf]u> ] _QZZ ZgltCut szzt
=1 u=1 =1 u=1 [t=1 i=1
N (12 TR T | 2 /2
=1 =1 u=1 Lt=1 i=1
But
T XN 2
E (Z Gt CQut (N Z U?t)) <T*N~?
t=1 i=1
So N
Ap = T2 O, (1) - VI?N~2 =0, (T_l)
Next,

(%Z )( ZHsz) =
:(%i )(Tznfln)%

Similarly for Aq4. So, overall

vm@mﬂ
;

=0, (67 +0,) =0, (e ).

Next we consider A,, and note that

10



I\Mﬂ

(fio = i) (fis = £i) = ( fiowe + Z FinGn + = Z fivsee + Z ﬁ@)
T
( Z ins + 4 Z FinGis + Z fizas + % Z fjlfls)
=1 =1 =1

1 T T 9 T T o
2 Z Z lfj“%tfyus + YTQ Z ijlfju’YltCus"i‘

=1 u=1

’ﬂ

T T
Ti Z Z lfjuVlt%us T2 Z Z f]lf]ur)/ltgus—i_
1 ; ; o T T
75 D D JifnuuCus + Z Z FirfiuCuotus + Z > FifiuCubust
l;lu;l 2l;u; N 1l;uT N
T_ Z Z lfju%hs%us + T2 Z Z Fitfjurat€us + T2 Z Z Tt fiubieEus-
=1 u=1 =1 u=1 =1 u=1

Therefore
o M. I T . ) 10
A= 5 30 3 vt (B ) (Fie = 1) = 3o A
i=1 t=1 s=1 =1

Denoting equality in order of probability by A ~ B, we proceed term by term noting that
A23 ~ A24, A26 ~ A27 and Agg ~ A210. So the terms to consider are A21, AQQ, A23, A25, A26,
A28 and Agg. Starting with A21 we have

9 N T T T T o
Aoy = ﬁ Z Z Z Vit Vis (Z Z fjlfju’}’lt’)’us)
) z;l t;l s;l N l:; u:Tl
ﬁ Z Z Z f lfju Z Z Uitvis’)/lt’)/us)
i=1 =1 u=1 t=1 s=1

1/2

{ et (d))

2
T3 El 1 u=1 (Zt 125 1UztU157lt7us> ]

9 N | I T T 271/ T
— ﬁ Z ,172 Z Z (Z Z Uit”isVlt’Yus) (T Z j2u> :
u=1

=1 =1 u=1 t=1 s=1

But, due to summability of v

T T 2
E (Z Z UitUiS/YZt/yus) S T C.

11



Noting further that, again due to summability of v;, the double sum over [ and u will only
have terms bounded away from zero if [ and u are close we obtain

T T T 2
Z <Z Z vitvis’ylt’}/us) == O (1) s
t=1 s=1

1 u=1

1
El7s

T
=

and hence Ay; = O, (NT~2). Consider now

g N T T T
h = 23S v (z 5 ffc)
i=1 t=1 s=1 =1 u=1
T T

N T T
—% Z Z Z fitfiu (Z Z Uitvis%t§u3>
i=1 I=1 u=1 t=1 s=1
LT T (7 7\ 1/2
2 & (ﬁ 21:1 Zu:l <fjlfju> )
< 7o > 2
=t {% Zszl 25:1 <ZtT=1 23:1 Uitvis’YltCus>

o1 1/27 ]

11/2

1<~

N

2 1 T T T
R IES>S (zzwtmcm)

=1 =1 u=1 t=1 s=1

T 2
E (Z Z /Uitvisfyltgus) S T2N71-

t=1 s=1

Further, due to summability of v;; the double sum over [ and ¢ will only have terms bounded
away from zero if [ and t are close so

p %zz(zzwt@s) o), (64

=1 u=1 \t=1 s=1

and as a result Ay = O, (N'/2T~%?). Next, and similarly to the previous terms

Mﬂ

jlfjurYZt%us> S

97 1/2

2 O 1 d e 1 ¢ £2
|2t [ (S ) | (55 5).



which again, by a manipulation similar to that used for (64), yields As3 = O, (N 1/2=3/ 2).
Next,

T (z S fﬂfjucltcus)

=1 u=1

T T
lfju <Z Z CltCusUitvis)]

t=1 s=1 B g "
(% ZZT:I Zle (fﬂfJ'U> )
i=1 |:7%4 Zszl 25:1 <Z?:1 Zz:l CltCusUitUw) 2:|

\

SE{(ER) fEE )]

—1 I=1 u=1 \t=1 s=1

|
(IS
M=1
M=
NE
=

1/2

~

1/2

~

But, by absolute summability of the autocovariance of v,

< CT?E (¢;) < CT*N 2.

T T 2
<Z Z CltCusUitvis)

t=1 s=1

% 1 LT T 27 /2
[ 4 Z Z (Z Z CltCusv'Lt’Uzs> ] = Op (Nil) )
=1 u=1 t=1 s=1
9 N T 1 T T 27 /2
and A25 = Op (Tﬁl) Next
g N T T roT
Agp = T Zzzvitws (ZZ jlfjuglt%us> <
i=1 t=1 s=1 =1 u=1
5 N | I T T 27 1/2 1 X
< T Z i ZZ (ZZ%‘t%‘th%w) ] (f fou) :
i=1 =1 u=1 t=1 s=1 u=1

But
T T 2
E (Z Z Uitvisglt%us> S T2N_2,
and

=y XT: (Z XT: Uitvis(lt%us> 2} — O (N,

13




So Ags = O, (T1). Similarly, we obtain Ass = O, (T') and Ay = O, (T 1). Collecting the
terms, we have
Ay =0, (NT?)+ 0, (NV*T73?) + 0, (T™).

Thus )
= =0, (NT?) + 0, (T™") + O, (N'?T37?)
F
and hence
= =0, (N'?T™") + 0, (T7'?) + O, (N'*T3/*)
F
[ |

Lemma 6 Under Assumptions 1-/,

. 2
A~ A .
—F:Op —_,
N min(N,T)

s (A-20)],=0r (Smrs) o

Proof. We have by the proof of Theorem 2 of Bai (2003, expression above (B.2)) that

1 « 1 «
éi—ai:T;ftvit—i—T;xit (ft—ft) .

and

14



This result can be used to obtain

LA A =25 a0 - (s
NH( - 0>HF—N;(%—3¢) (az‘—az')
N

1 1 &, , 1 r I

= N Tzfsfs“is‘f‘ﬁz Z fif 000 | +
=1 s=1 s=1 s s/

1 LT a2 | —f i +
_Z T2 s=1"1is SA s i ) N
N =1 7%2233;1 ZZ—;,S;&S’ ’xisxis/‘ fs _fs - fsl — fs/ -
2 N 1 T T
DI ESH ERICEBIE

i=1 s=1 s'=1
1 X
N Z; T2 Zf/ sU zs)
1 Z&
NZ _Z Z f;f’vzsvzs>

=1 s=1 s s£s'
1L (1 &,
Nz_; 7722;‘1‘@5 s s +
N1 o1 A A
(R o )
o N
N; TQlezlajzs’Uzs < r— £y >>

We have
1 on (1 &
Cy = N Z <—2 Zf;fsvi> =0, (Tﬁl)
i=1 s=1
Also
1 N 1 T T
02 = N ; (ﬁ ; ;Slf s'VisVis! )
11 al 1 d / - -1
:N?; —T;Uzsf ( g ’vzs> (T )’
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and

£, —f,

N T
CS:%Z<TLZ%28 2)
<m1nNT

~

a 2 1 - -1
mmNTNTX_: I :OP(T min(N, T) )v

noting that by Lemma A.1 of Bai (2003) and sup, sup, £ (z%) < oo,

A~

2
2
Sup ( x?s f, — 1, ) = O(1).
F
Further,
N
1 p -
o\ 1/2
]. N (ﬁ ZSZI Zs’,s#s’ (xisxis’) )
= N Z 1 7 T a 2 |4 2\ /2
=1 (,ITQ Zs:l 25’75765’ fs - fS . fSI — fS/ F)
i 1/2
1 N <% Zstl 25,57&5/ (%sﬂiis/)2>
= N Z T . 2 . ) 9 1/2
=1 {% ZS:l |: fs - fS r (% Zsﬁsis’ fs - fS F>:| }
1 r _ 1 1 T 1/2
< (T ; fs - fs F) N Zz:; (ﬁ ; 827;5/ ($zs$zs’) )
But
1 T T 1/2
e (£33 wenst) o,
‘ s=1 g/ s#s’
and so
1 N 1 T T 1/2
| (AE S ) | =0
=1 s=1 s’ s#s’
Further,

So, overall Cy = O, (min( N T)> Finally, noting by Lemma A.1 of Bai (2003) (or can be proven
by first principles) that

1/2

Tis Vsl ( o — f5/>] 2 =0, [min(N, T)_l} ;
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we have
T

1 T
772 Z Z xzs’vzs ( s’ fs’)

s=1 s/'=1
2 1
—0 [ — ).
HF ! (min(N, T))

To prove (65), recall that by equation (62),

1 « 1<
a; = f;ftvit"f—ftz:;xit (ft_ft>-

Define B = AjA,. Note that every element of B is O (V) and so every element of N™'B is
bounded. We have

HAMA—AOM;JWKA—AQMANA—AOJ=z]&—mﬂﬂ@—w

=1

(%Zf; W}, Z Z £/Bf mw%)

s=1 s=1 g/ s#£s’

=0, [min(N, T)_l} ,

| XN
:NZ:

So overall

<y

N
=1

2
s|| T+

s —

+

T
HBH i %Zs:l I??S
F
io1 \ 72 PO P st | TisTis

N
Z ;2 szls/vzsf B < r— fs/>

=1 s=1 s/'=1

T T
(Tz Zf'stvzs) + Z (;2 >3 £Bf ,vwvw)

s=1 s/ s#£s’

< T2 Zs 1 Zs 5Fs’ |xzs$zs | >

F

Mz

1

%

B i (Tz A

Li=1

+

s_s

Mz

Bl 2 i _fSH Hf | +
N 1 T T

Z TZZxZS/UMfB( — £ )]

=1 s=1 s/'=1

s

We have
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Also

N T
~ 1
=3 (5 3 e
i=1 s=1 s’ s#s’
N T
X (> )| o,
=1 T s=1 ﬁ s!,s#s!
and
. N1 X . 2
813 (3 o)
i=1 s=1
N T
1 min(N,T) 5 || 2
=||Bllp —7m —_— ‘s — £
H ||F mil’l(N, T)T Zzl ( T ; 18 F)
= O, [N*T ' min(N,T)"'].
Further,
N TR
o181, 3 (32 3 b [ [,
=1 s=1 s’ s#s’
i 1/2
N (% S0 0 o st
< ||BHFZ LT ) 2 1. o\ 1/2
=1 (ﬁ Zs:l Zs/,s#s/ £, — 1, . fo —fo F)
i 1/2
v (% 0 50 i)
SIBILY | (e e
=1 I {T 25:1 |: fS - fs P <T ZS’,S;&S, fs - fS F):| }
1 I ) N A 1/2
<ol (35l ) 130 | (73 3 )| £
s=1 F =1 s=1 g/ s#£s’
and it follows that C, = O, <mm]g, T)>. Finally, since
sup § E | 7 SN wivif] (f — f)] = 0, (min(N,T)7'),
i s=1 s'=1
we have
A I
05 = ||B||F Z 172 szis’visf; (fs’ - fs’) = Op |:N2 min(N, T>_1] .
i=1 s=1 s/=1
So overall
% (3= 20)[ =0 (v
0 °Jllr — 77 \min(N,T) ) -
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and

o (a-a)

’ =0y (L) )
F min(N,T)

S2 Variants of the basic ¢? thresholding Methods

proving the required result. m

This section provides a step by step description of the various refinements of the basic o2

thresholding advanced in Section 5 of the paper. Let x; be the T" x 1 vector of observations
on the i-th unit in the panel, and X = (x,,Xs,...,Xy) be the T" x N matrix of observations
on all the N units in the panel. Suppose that p < punax, Where pha, is selected a prior: to be
sufficiently large. Denote by X* the 7" x r matrix containing all pervasive units that have been
identified at a given step of the two algorithms described below. Analogously, let the T" x N;
matrix X; = (Xp1;...;Xpn,) contain observations for the Ny = N — r remaining cross-section
units that have not been identified as pervasive. Furthermore, let

Iy, ifr=0,

Mx; = { Ip — XH(XHXA) 71X if r > 0.

Given the sequential nature of the two algorithms described below, the values of r, Ny, X} and
X and the dimensions of the latter two matrices change as the algorithm proceeds. Further-
more, X and X represent an estimated partition of the data into pervasive and non-pervasive
units which is to be distinguish from the true partition X = (X,; Xj).

Algorithm 4 (Sequential ¢ thresholding)

1. Setr=0.

2. Compute F = \/LNMXZXZQ, where Q is the N x (Pmax — ) matriz whose columns are

the orthonormal eigenvectors of X;'Mx:Xj, such that N QQ=1,,.. Foreachi=1,
compute &;, Uy and 62 to be the OLS estimator, residual and residual variance of the
regression of x;; on F, namely

A oA\ 1 4
a; = (F'F) Fx

~ ~ ~ Y * i
vV, = (Uﬂ,UZ'Q, R ,’UiT) = Mﬁ’xb,i = |:IT —F <

~2 —1 %/ ok
o =T Xb,iMFXb,i'

3. Sort 6% in ascending order and denote the sorted series &(21)T7 &(22)T, . ,6(2N)T with &(Qi)T
being the i-th smallest value. Consider the cross-section indexes 11,12, ..., 0, . —r COTTE-
sponding to (3(21)T, 6(22)1“7 e ’&(meax—r)T . Compute

. AA'Z A
177,N = N )
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for every j € {i1,ia,...9pp—r } where 3, is the multiple testing estimator of 3, by
Bailey, Pesaran, and Smith (2019), as described in Section 4.2 of the main paper. If for
all j,

52 22y log T

TS TN

then stop the algorithm and conclude that there are m = r pervasive units whose identities
are given by the indezes of the columns in X that coincide with columns in X . Otherwise,
proceed to step 4.

4. Let ©* = argmin; 62. Update X = (X¥;xp,+) and eliminate x4 from X;. Update,

i

r:=r+1 and Ny := Ny — 1 and return to step 2.

Algorithm 5 (Sequential-MT o2 thresholding )
1. Setr =0.

2. Compute F = \/LNMXZXZ‘Q, where Q is the N X (Pmax — T) matriz whose columns are

the orthonormal eigenvectors of X;'Mx: X5, such that N _IQ’ Q =1,.. Foreachi=1,
compute &;, Uy and 62 to be the OLS estimator, residual and residual variance of the
regression of x;; on F, namely

~ A\ 1 4
4 = <F’F> Fx
, NSRS
-~ ~ ~ ~ * *
i = (b1, Biay - i) = Mg}, = IT—F<FF> Bl xt

~2 —1 %/ R
o =T Xb,iMFXb,i'

3. Sort 6% in ascending order and denote the sorted series (3(21)T, &(22)7,, . ,&(ZN)T with &(Zi)T
being the ith smallest value. Consider the cross-section indexes 11,1z, ..., %, —r COTTE-
sponding to 6(21)T, &(22)T, . ,&?pmx_r)T . Compute

. aA'S, Aj
nZN - N )

for every j € {i1,ia,...0pp..—r } where 3, is the multiple testing estimator of 3, by
Bailey, Pesaran, and Smith (2019), as described in Section 4.2 of the main paper. If for
all g,

52 277J2N log T

T N )

then stop the algorithm and conclude that there are m = r pervasive units whose identities
are given by the indexes of the columns in X that coincide with columns in X. Otherwise,
proceed to step 4.

4. Let i* = argmin; 62. For each j =1,...1* —1,4* +1,..., Ny estimate the model
Mx; % ; = Mx:Xpi-7; + £'aj + vy,
where £ is a ppa. — 1 — 1 vector of unobserved factors which we estimate as in step 2 but

using Mx: Xj . with Xy, s = (Xp,15 - Xpir—13 Xpeg1s - - -3 Xp N, ) Instead of Mx: X .

20



5. Apply individual significance tests to the N1 —1 estimated slope parameters 47, ..., Y5 1,515 Yy
using the critical value ! [1 — m] with ®~1(-) denoting the inverse normal CDF,

and 7 s set to 0.01.

6. Let M denote the number of rejections among these Ny—1 tests. Iflog(M)/log(N) < 1/2,
stop and conclude that there are m = r pervasive units whose identities are given by the
indices of the columns in X that coincide with the columns of X*. Otherwise proceed to
step 7.

7. Update X! = (X%:xp+) and eliminate xp« from X;. Update, v :=r+1 and Ny := Ny —1
and return to step 2.

S3 Pervasive unit detection procedures proposed in the
literature

S3.1 Brownlees and Mesters (BM) procedure

The model considered in Brownlees and Mesters (2019, BM in the following) has an equivalent
reformulation of our pervasive unit model, formally given by

Xtq = T, (66)
mx1
xu = Bxy, +uy, (67)
nx1

where the covariance matrix of f; may be any positive definite matrix. Brownlees and Mesters
(2019) also allow for the presence of unobserved common factors, but we will be abstracting
from such factors to simplify the exposition. The model described by equations (66)—(67) is
very similar to the pervasive units model expressed by equations (4)—(5) in the paper. Differ-
ences between what Brownlees and Mesters (2019) call granular shocks and innovations u,; to
our pervasive units are purely notational. More substantial differences arise with respect to the
properties of B, where Brownlees and Mesters prove the validity of their method in the case
of weak factors, assuming that restrictions on deviations from sphericity of F (u,u}) are even
stronger than restrictions on the pervasiveness of the least pervasive granular unit. By con-
trast, our results on the consistency of o-thresholding are derived in the case where pervasive
units affect (nearly) all non-pervasive units since this scenario is far more relevant for policy
questions related to systemically important entities. However, the validity of our approach
relies predominantly on the consistency of PC estimates of the unobserved factors in equation
(9). As argued by Onatski (2012, p.248), consistency of both factor estimates and estimated
factor loadings is warranted if factors are only slightly stronger than assumed by Brownlees and
Mesters (2019), i.e. if the diagonal elements of B'B diverge as N — oco. Consequently, we can
confidently conjecture that the properties of o thresholding established in Theorem 2 continue
to hold for cross-section units that are close to being strongly pervasive.

Brownlees and Mesters (2019) estimate the number of pervasive units*® and their identities
from the precision matrix (i.e. the inverse covariance matrix) of the observed data X. Formally,

ZFor notational consistency with the remainder of this article, we will use this term rather than the notion
of granular shocks employed by Brownlees and Mesters (2019).
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let R
K= (T"'X'X-xx)"",

where X = (71;...;7y), and 7; = T} Zthl 2. Additionally, let K = (Rl RN) BM
then compute &; = |[k||, i = 1,2,..., N, where ||k;|| = y/kk;. These N vector norms are
then ordered in a descending manner, denoted as k1), &), - - -, (). The estimated number of

pervasive units is then

m = argmax &,
j=1,2,...N—=1K(j+1)
and the pervasive units are determined as columns with the norms &), K(2), ..., k). Monte
Carlo simulations and empirical applications in the main paper employ a slight modification
of this procedure, also used in Section 6 of Brownlees and Mesters (2019), whereby the above
maximization problem is solved with respect to the first N/2 ratios instead of all N — 1 ratios.
Supplementary simulation results obtained without this modification are reported in Sections
S7 and S8.

BM detection method is subject to two main shortcomings. First, estimation of the precision
matrix requires 7" > N. Second, by construction the estimated number of pervasive units is
at least one. Consequently, it is impossible to use the BM procedure to investigate whether
there is in fact any pervasive unit in the panel data set under consideration. As an illustration

consider the simple factor specification
T = Bift + wit, (68)

where f; ~ (0,1) is the common factor, 3; is the factor loading with sup |3;| < K, and u; is the

unit-specific component which we assume to be I1D (0,0%) over all i and ¢, i =1,2,..., N;t =
1,2,...,T. Assuming that 02 > 0 ensures that there is no pervasive unit in this model. Let
Xt = (m1t7x2t7 cee 7th),7 /6 = (517/627 to 7&1\/) ) and u; = (ulta Uty - - - 7uNt) ) and write (68) as
x; = Bfi + uy, (69)
and note that
Cov (x,) =% = B8 + o’Iy. (70)
Then,
K:( ki ko -+ ky )
_ 1 66’
=>"! = (0’1 NV = Iy - — 71
(@1v+08) " = 1 (v 12005 ()

where § = (01,0s,...,0y) and &; = B;/o. Then, it is easily seen that

N2 2y 52
el = 2 (1— %0 ) UL (72)
o 1+4'0 (1+4'6)

Suppose that 38 = 028’6 = © (N?), with o = 1, signifying f; to be strong. Then, |k;||> =

!
;{153(1f§,5)2, and hence, as N — oo,

S (11| I L e
lim = = — (73)
N—oo| k|| [0s]  [Bs]
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and |/k;|| is maximized for the unit with the largest factor loading in absolute value.

The same result holds if we allow the variance of u; to vary over i. In such a case the
relevant measure is |3;| /o2, where 02 =V (uy), with 0 < 0? < K. Thus, the column norms of
the concentration matrix measure the relative importance of the common factors for the units
in the panel, and is not informative about the importance of the unit for the rest of the units
in the panel.

S3.2 Parker and Sul (PS) procedure

The pervasive leader framework of (Parker and Sul, 2016, henceforth PS) is primarily aimed at
investigating whether a time series external to the dataset at hand is one of the latent factors
driving the observed data. However, this framework can be represented in terms of the model
(66)—(67) by simply including the potential pervasive unit(s) into the dataset (see also Parker
and Sul, 2016, p.229). The pervasive leader framework also deals with approzimate pervasive
leaders which will not be considered here.

The key idea of PS is whether a known potentially pervasive unit can replace one of the
factor estimates obtained from the factor model representation of the pervasive unit model. If
so, then this candidate unit is identified as pervasive.

PS assume a priori knowledge of a fixed number r of potential pervasive units, denoted as
G = (g1,82,.-.,8-). Each time series in the dataset is standardized and the true number of
factors in the data is determined. In order to avoid a subjective choice, we let p,,.. = #(X)
where #(X) denotes the number of factors in X minimizing the the /C), criterion of Bai and
Ng (2002).2* Subsequently, the factor estimates F are obtained as v/T times the eigenvectors
corresponding to the pp.. largest eigenvalues of N~'XX'’. Now, for each potential pervasive
unit g,/ = 1,. .., pmas, Parker and Sul consider the p,,., regression models
Tit = Yi1Gee + Oéz‘,2ft,2 o Qs ft,pmam + 77;:1)7

3 ¢ (2)
Tit = Oéz',1ft,1 + Yi2gte + ...+ A prnas ft,pmax R/

(pmaz)

Tit = infin + Qiafro+ oo F Vipman 9t + N )

fori =1,2,...,N. Let HO = (nﬁ), e ,ﬁﬁg) e ,fl(pmaz) = (ﬁ%?o), e ,7755;"““) denote the

OLS residuals of the p,,.. regression models above. If at least one among # (ﬂ(1)> e # (I:I(pm‘“f))

is equal to zero then g, is considered as a pervasive unit.
PS suggest a further step if any of the units in the dataset is selected as pervasive. For each
unit x;, the authors consider the p,,,, regression models

= a2
ft2—01,ft1+0()$zt+ +C

pmaz )

ft’Pmax + gt I
ftipmaac + Ct )

£ _ pmaar pma:c) (pma:t) pma:c
ft,mo C1 f +C ft,2+...+ it + (;

Dmazt

24In application of the Bai-Ng selection procedure, we set the maximum number of factors to 10.
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The coefficients of determination Rj ... ,R}%maw for these py,q, regression equations are ob-
tained. Having done this for every ¢ = 1,2,..., N, the R? values for the first model above,
denoted by Ril, o ,Ri ~» are ordered in a descending manner. The units with the coefficient
of determination Ri(l), ey Ri(r*) are chosen as r* potential pervasive units. This procedure
is repeated for the remaining p,,.. — 1 models as set out above, providing in total 7 = r*p,,4z
potential pervasive units (duplicates included). A guideline for the choice of 7* is “[...] around
10% of the size of N.” (Parker and Sul, 2016, p.232).

The PS procedure is subject to two limitations. First, Parker and Sul (2016, p.230) acknowl-
edge that treating all units in the sample as potentially pervasive may lead to a non-negligible
probability of making a Type I error. However, this problem is not solved by restricting the
number of potential pervasive units to 10% of the number of cross-sections. Second, the perfor-
mance of the procedure depends crucially on the choice of m, the number of factors, and how
well it is estimated. If m is underestimated not all true pervasive units may be chosen. If it is
overestimated, non-pervasive units may falsely be identified as pervasive.

S4 Finite sample performance of alternative o thresh-
olding methods

As discussed in Section 5 of the paper, it is possible to apply certain refinements to the o2
thresholding method in order to improve its finite sample properties. Our preference for the
sequential-MT o2 thresholding is based on its finite sample performance relative to a number of
other modified versions of the basic method. This section provides simulation results to support
our choice.

The o2 thresholding variations considered are as follows:

1. o? thresholding, as described by Algorithm 1 in the paper.
2. S—o? thresholding, as described by Algorithm 4 given above, or Algorithm 2 in the paper.

3. Sequential-MT o2 thresholding with an alternative threshold. This method coincides with
Algorithm 5 except for the application of the threshold specified in Appendix A.4 for the
o? thresholding step.

We conduct simulation experiments identical to those in Section 6 of the paper, and report
the performance of o2 thresholding, as discussed in Section 4.2, as well as S—o? thresholding,
and the SMT — o2 thresholding with an alternative scaling, as set out above. As before, our
performance measures are (a) the percent probability of correctly determining only the true
pervasive units, and (b) the average number of units falsely selected as pervasive.

Tables S4.1 and S4.2 report results for the case where there is no pervasive unit. The
performance of the four measures considered differs only with respect to whether they involve a
multiple testing hurdle or not. Algorithms that include this extra step perform better, especially
when the DGP includes an external factor. This observation suggests that the multiple testing
hurdle makes a noticeable contribution to minimizing the probability of falsely discovering a
pervasive unit.

Noticeable differences between all four algorithms begin to emerge when the number of
pervasive units is at least equal to one. As reported in Table S4.3, the performance of o2
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thresholding declines considerably when the total number of factors, both pervasive units and
external factors, is larger than one. This problem is somewhat mitigated if one considers S—o?
thresholding. However, this method often fails to correctly detect the true pervasive units
when 7' > N , and there are external factors affecting the observations. The multiple testing
hurdle in SMT — 0% thresholding addresses this problem and leads to substantial performance
gains, thus making it our method of choice. Finally, considering the alternative scaling of the
threshold value (variant 3 above) leads to ambiguous results: improved performance is obtained
when N is much larger than 7', in the case where there are two pervasive units and at least
one external factor. However, the opposite result is obtained if N is only twice as large as T
For this reason, we discard the alternative thresholding even though it certainly has benefits in
samples where N — T' is sufficiently large.

Summary results for the number of units falsely detected as pervasive are reported in Table
S4.4, and suggest that all the four methods generally perform well in this respect and do not
severely overestimate the number of pervasive units. However, there is some evidence of false
discovery when ky = 2, and N and T" are relatively small.

Qualitatively similar results are obtained when we consider Monte Carlo designs with weakly
pervasive units. Table S4.5 summarizes the results when o« = 0.8. As can be seen these
results are comparable to those reported in S4.3 for @ = 1, the main difference being that
with weakly pervasive units the probability of correctly determining the true pervasive units is
lower. Additionally, all o2 thresholding versions suffer from performance losses if N is too large
relative to T'. This is to be expected since the fraction of cross section units that are unaffected
by pervasive units increases in N. Finally, Table S4.6 reports the empirical frequency of false
discoveries in the case of weakly pervasive units. Once again the results are similar to those
obtained for o = 1.
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Table S4.1: Empirical frequency of correctly identifying the absence of a pervasive unit

o? thresholding S—o?

ko=10 ko =0
NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 96.1 93,5 93.6 926 50 | 96.1 93,5 93.6 92.6
100 | 99.0 98.1 96.3 96.6 100 | 99.0 98.1 96.3 96.6
200 | 99.8 99.6 99.5 98.9 200 | 99.8 99.6 99.5 98.9
500 | 100 100 100 100 500 | 100 100 100 100

ko=1 ko =1
NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 60.9 47.8 41.5 40.4 50 | 60.9 47.8 41.5 404
100 | 89.8 80.8 71.4 68.9 100 | 89.8 80.8 71.4 68.9
200 | 99.3 98.6 97.6 97.0 200 | 99.3 98.6 976 97.0
500 | 100 100 100 99.9 500 | 100 100 100 99.9

ko =2 ko =2
NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 35.1 24.0 17.1 15.8 50 | 35.1 24.0 17.1 15.8
100 | 77.3 60.4 43.9 39.7 100 | 77.3 60.4 43.9 39.7
200 | 98.3 95.7 90.9 89.3 200 | 98.3 95.7 90.9 89.3
500 | 100 100 100 99.8 500 | 100 100 100 99.8
SMT — o? SMT — o2, alternative scaling

ko=0 ko=0
NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 100 100 100 100 50 | 100 100 100 100
100 | 100 100 100 100 100 | 100 100 100 100
200 | 100 100 100 100 200 | 100 100 100 100
500 | 100 100 100 100 500 | 100 100 100 100

ko=1 ko=1
NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 88.4 86.4 827 80.3 50 | 884 86.4 827 80.3
100 | 94.1 92.3 90.7 88.9 100 | 94.1 92.3 90.7 88.9
200 | 99.8 99.2 994 99.2 200 | 99.8 99.2 994 99.2
500 | 100 100 100 100 500 | 100 100 100 100

ko =2 ko =2
NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 61.6 559 47.7 44.3 50 | 61.6 559 47.7 44.3
100 | 84.0 74.5 64.2 60.9 100 | 84.0 74.5 64.2 60.9
200 | 98.6 97.7 942 94.1 200 | 98.6 97.7 94.2 94.1
500 | 100 100 100 99.9 500 | 100 100 100 99.9

Notes: o2 thresholding is implemented using Algorithm 1 in the main article, with
DPmaxz = mo + ko + 1, where mg is the true number of pervasive units (if any) and
ko is the number of external factors. S—o? and SMT — o2 refer to Sequential o2
thresholding and Sequential-MT &2 thresholding, as implemented using Algorithms
2 and 3 in the main article, respectively. Threshold in the o2 thresholding step of
all three algorithms is given by 62, < 2A%  N~1log(T). The threshold chosen for
N > T in the alternative version of SMT — o2 is given by 62, < 262, T~ log(T). See
Appendix A .4 for further details.
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Table S4.2: Average number of non-pervasive units falsely selected as pervasive (mq

o2 thresholding S—o?

ko =0 ko=0
NA\T | 60 110 210 250 N\T | 60 110 210 250
50 0 01 01 0.1 50 0 01 0.1 0.1
100 0 0 0 0 100 0 0 0 0
200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0

ko =1 ko=1
NA\T | 60 110 210 250 NA\T | 60 110 210 250
50 | 04 06 07 0.7 50 | 0.5 07 08 0.8
100 | 0.1 0.2 0.3 0.3 100 | 0.1 0.2 0.3 0.4
200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0

ko =2 ko =2
NA\T | 60 110 210 250 NA\T | 60 110 210 250
50109 11 14 14 50109 12 1.5 1.5
100 | 0.2 0.5 0.7 0.8 100 | 0.3 0.5 0.8 0.9
200 0 0 0.1 01 200 0 0 0.1 0.1
500 0 0 0 0 500 0 0 0 0
SMT — o2 SMT — o2, alternative scaling

ko =0 ko=0
NA\T | 60 110 210 250 NA\T | 60 110 210 250
50 0 0 0 0 50 0 0 0 0
100 0 0 0 0 100 0 0 0 0
200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0

ko =1 ko=1
NA\T | 60 110 210 250 N\T | 60 110 210 250
50 [ 0.1 0.2 0.2 0.2 50| 0.1 02 0.2 0.2
100 | 0.1 0.1 0.1 0.1 100 | 0.1 0.1 0.1 0.1
200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0

ko=2 ko =2
NA\T | 60 110 210 250 NA\T | 60 110 210 250
5004 05 06 0.7 50104 05 06 0.7
100 { 0.2 03 04 04 100 1 0.2 03 04 0.4
200 0 0 01 01 200 0 0 0.1 0.1
500 0 0 0 0 500 0 0 0 0

Notes: See the notes to Table S4.1.
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S5 Sensitivity of o2 thresholding to different normalizing
constants

Section 4.2 in the main paper established the expression 2Cn? log(T)/N as a threshold for
cross-section specific residual variances from a static factor model in order to detect pervasive
units in the data. o2 thresholding and its refinements were based on this threshold with C' = 1.
The purpose of this section is to illustrate the sensitivity of o2 thresholding as well as SMT — o2
thresholding to the value of C. In particular we consider the values C' = 1,1.25,1.5 and iterate
the set of simulation experiments leading to Tables 1-4 in Section 6 in the main paper. The
results of these simulations are reported in Tables S5.1-S5.3. Generally, increasing the constant
C will render o2 thresholding less conservative. That is, the number of detected pervasive units
will generally be higher. As one can observe from Tables S5.1 and S5.3, a direct consequence
is a slight increase in the average number of falsely detected units. The effect on the ability of
o2 thresholding to detect the correct pervasive units (and no others) is ambiguous: While the
performance of o2 thresholding, judged by this measure, decreases in C for mq = 0, performance
improvements can be observed for mg > 0 in large-N datasets. Corresponding results for
SMT — o? thresholding can be observed in Tables S5.4-S5.6. While the general patterns
observed in these three tables are in line with those seen for o2 thresholding, the magnitude
of performance changes due to changed in C is smaller. This is a reasonable result, given that
SMT — o2 thresholding complements the thresholding procedure on residual variances with
a second criterion. This set-up allows eliminating some of the units falsely detected by o?
thresholding and can even lead to noticeable performance improvements in the case my = 2.
However, overall the performance of SMT — o2 thresholding is not drastically affected by the
choice of C.
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Table S5.1: mg = 0: Performance of o2 thresholding

Part A: Empirical frequency of correctly identifying the absence of pervasive units

c=1 C=1.25 C=15
ko =0 ko=0 ko =

N T 60 110 210 250 N T 60 110 210 250 N T 60 110 210 250
50 | 96.1 93.5 93.6 92.6 50 | 93.9 90.8 90.3 89.2 50 | 91.4 87.9 87.3 85.6
100 | 99.0 98.1 96.3 96.6 100 | 98.4 96.8 94.2 94.7 100 | 96.9 954 91.9 929
200 | 99.8 99.6 99.5 98.9 200 | 99.6 99.3 98.6 98.2 200 | 99.3 98.8 979 974
500 | 100 100 100 100 500 | 100 100 99.8 99.9 500 | 100 100 99.8 99.9

ko =1 ko =1 ko =1
N T 60 110 210 250 N T 60 110 210 250 N T 60 110 210 250
50 | 60.9 47.8 415 404 50 | 45.0 34.4 29.3 28.9 50 | 34.9 26.6 22.1 20.7
100 | 89.8 80.8 71.4 68.9 100 | 77.4 64.3 55.3 52.3 100 | 65.2 53.0 44.2 42.1
200 | 99.3 98.6 97.6 97.0 200 | 98.2 96.1 923 91.8 200 | 95.7 89.4 82.6 80.2
500 | 100 100 100 99.9 500 | 100 100 99.8 99.7 500 | 99.9 99.8 99.5 99.3

k() =2 k[) =2 ko =2
N T 60 110 210 250 N T 60 110 210 250 N T 60 110 210 250
50 | 35.1 24.0 17.1 15.8 50 | 18.0 12.1 8.4 7.0 50 | 10.4 7.0 4.1 4.1
100 | 77.3 604 43.9 39.7 100 | 58.6 379 23.5 21.3 100 | 40.4 23.3 133 12.2
200 | 98.3 95.7 90.9 &89.3 200 | 92,5 85.7 T76.5 73.3 200 | 84.9 714 574 523
500 | 100 100 100 99.8 500 | 99.9 99.9 99.9 99.6 500 | 99.6 99.7 99.0 99.0

Part B: Average number of non-pervasive units falsely selected as pervasive

C=1 C =125 C=15
ko =0 ko =0 ko =0
NT| 60 110 210 250 N T| 60 110 210 250 N T| 60 110 210 250
50 0 01 01 01 50| 0.1 01 01 01 50| 01 01 01 01
100 0 0 0 0 100 0 0 01 0.1 100 0 0 01 0.1
200 0 0 0 0 200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
ko = 1 ko = ko =
NT| 60 110 210 250 N T| 60 110 210 250 N T| 60 110 210 250
50| 04 06 07 07 50| 0.7 08 09 09 50| 0.8 1.0 10 11
100 01 02 03 03 100 02 04 05 05 100 04 06 07 07
200 0 0 0 0 200 0 0 01 0.1 200 0 01 02 02
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
ko = 2 ko = 2 ko = 2
NT| 60 110 210 250 N T| 60 110 210 250 N T| 60 110 210 250
50 09 1.1 14 14 50 | 1.3 15 1.7 17 50 1.6 1.8 20 20
100 02 05 07 0.8 100 05 08 12 1.2 100 08 1.2 15 1.5
200 0 0 01 0.1 200 01 02 03 03 200 02 03 05 06
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

Notes: o2 thresholding is implemented using Algorithm 1 in the main article, with pmaez = mo + ko + 1, where mg is the true
number of pervasive units (if any) and ko is the number of external factors. The threshold is given by &7,‘2T < 2Cﬁ2.2NN_1 log(T),
where different values of C' are specified in this table.
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Table S5.2: o2 thresholding: Empirical frequency of correctly identifying only the true pervasive
units for mg > 0

Part A: mpy=1

cC=1 C=1.25 C=1.5
ko=0 ko=0 ko=0
N T 60 110 210 250 N T 60 110 210 250 N T 60 110 210 250
50 | 76.5 67.4 64.1 63.0 50 | 65.2 56.2 53.8 53.8 50 | 56.4 489 47.0 454
100 | 93.0 89.5 85.0 &1.9 100 | 86.3 794 74.7 71.3 100 | 79.3 71.6 65.7 63.1
200 | 994 99.3 98.2 97.2 200 | 98.5 97.1 953 94.7 200 | 96.8 93.8 89.1 88.7
500 | 100 100 100 100 500 | 100 100 99.9 99.8 500 | 99.9 100 99.7 99.7
ko = 1 ko = 1 ko = 1
N T 60 110 210 250 N T 60 110 210 250 N T 60 110 210 250
50 | 22.3 25.8 22.3 234 50 | 17.2 17.3 14.6 14.7 50 | 13.6 12.7 9.4 9.0
100 | 54.2 59.2 494 49.9 100 | 47.2 42,5 31.8 31.9 100 | 38.8 304 21.2 20.9
200 | 774 95.2 932 91.8 200 | 79.1 87.0 814 79.6 200 | 75.3 T74.0 64.2 63.0
500 | 82.1 99.9 100 99.8 500 | 88.2 100 99.8 99.3 500 | 91.0 99.7 99.5 98.9
ko =2 ko =2 ko =2
N T 60 110 210 250 N T 60 110 210 250 N T 60 110 210 250
50 9.8 8.5 7.8 7.6 50 4.6 4.0 2.9 3.2 50 2.3 1.5 1.0 0.9
100 | 40.0 36.1 224 21.0 100 | 27.1 18.0 9.7 8.5 100 | 17.0 7.6 4.1 4.0
200 | 68.0 86.9 80.1 78.1 200 | 66.7 70.9 559 52.2 200 | 57.1 50.5 32.0 28.6
500 | 77.0 99.4 99.9 99.7 500 | 83.5 99.5 994 99.3 500 | 87.7 98.9 98.0 98.0

Part B: mg =2

C=1 C =125 C=15
ko =0 ko =0 ko =0
NT| 60 110 210 250 N T| 60 110 210 250 N T| 60 110 210 250
50 | 17.3 288 356 35.2 50 | 19.8 308 325 316 50 | 20.1 27.2 29.6 27.6
100 | 37.3 56.1 634 66.6 100 | 39.9 53.7 540 55.1 100 | 38.4 494 46.6 44.2
200 | 50.8 821 926 9L7 200 | 57.1 83.2 87.0 85.8 200 | 59.5 79.4 784 76.6
500 | 54.3 93.3 100 99.8 500 | 62.7 952 99.8 99.7 500 | 68.6 96.5 995 99.5
ko =1 ko = ko =
NT| 60 110 210 250 N T| 60 110 210 250 N T| 60 110 210 250
50 | 5.4 7.2 74 7.8 50 | 3.6 52 50 5.1 50 | 26 33 31 38
100 | 20.0 324 293 27.0 100 | 18.9 221 156 14.9 100 | 155 151 9.1 9.1
200 | 35.2 71.1 8.1 79.4 200 | 39.5 650 634 60.8 200 | 38.0 51.8 429 40.2
500 | 417 90.0 99.6 99.8 500 | 5.3 92.0 99.5 99.4 500 | 57.6 93.8 98.1 98.2
ko =2 ko =2 ko =2
NT| 60 110 210 250 N T| 60 110 210 250 N T| 60 110 210 250
50 19 21 23 25 50| 0.8 09 08 1.2 5| 02 04 02 06
100 [ 174 203 110 9.5 100 [ 127 89 35 3.4 100 | 65 42 10 13
200 | 36.4 678 63.5 60.5 200 | 37.4 486 338 319 200 | 31.9 295 154 14.0
500 | 38.4 90.9 99.4 99.5 500 | 49.5 93.1 98.7 98.6 500 | 58.2 927 94.7 954

Notes: See the notes to Table S5.1
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Table S5.3: o2 thresholding: Average number of non-pervasive units falsely selected as pervasive

for mg > 0

Part A: mg=1

Cc=1 C =125 C=15
ko=0 ko=0 ko=0
N T| 60 110 210 250 N T | 60 110 210 250 N T | 60 110 210 250
50102 03 04 04 50 103 04 05 0.5 5004 05 05 0.5
100 { 0.1 0.1 0.2 0.2 100 { 0.1 0.2 03 0.3 100 { 0.2 0.3 03 0.4
200 0 0 0 0 200 0 0 0 0.1 200 0 0.1 01 01
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
ko=1 ko=1 ko=1
N T| 60 110 210 250 N T| 60 110 210 250 N T | 60 110 210 250
50 |07 09 1.0 1.0 5010 1.1 1.2 1.2 50 1.2 1.3 14 1.4
100 | 0.2 04 0.6 0.6 100 | 0.4 0.7 0.9 0.9 100 06 09 1.1 1.1
200 0 0 01 0.1 2001 0.1 0.1 02 0.2 2001 0.1 03 04 04
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
ko=2 ko=2 ko=2
N T| 60 110 210 250 N T| 60 110 210 250 N T | 60 110 210 250
50 1.3 16 1.7 1.7 50 | 1.8 2.0 21 2.1 50 | 2.1 22 23 23
100 | 05 0.7 11 1.2 100 | 0.8 12 16 1.7 10012 16 19 20
200 1 0.1 0.1 0.2 0.2 2001 0.2 03 05 0.6 200104 06 1.0 1.0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
Part B: mg =2
Cc=1 C=1.25 C=15
ko = ko = ko =
N T| 60 110 210 250 N T | 60 110 210 250 N T | 60 110 210 250
5004 04 05 0.5 50 105 06 06 0.6 50 0.7 0.7 0.7 0.7
100 | 0.1 0.2 03 0.3 100 | 0.2 03 04 04 100 | 0.3 04 0.5 0.6
200 0 0 0 0.1 200 0 0.1 01 0.1 200 | 0.1 0.1 0.2 0.2
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
ko=1 ko=1 ko=1
N T| 60 110 210 250 N T | 60 110 210 250 N T | 60 110 210 250
50 | 1.0 1.1 1.2 1.2 50 | 1.3 14 15 14 50 | 1.5 16 1.6 1.6
100 | 0.3 0.6 0.8 0.9 10006 09 1.1 1.2 10009 11 13 1.4
200 | 0.1 0.1 0.1 0.2 2001 02 02 04 04 200 1 0.3 05 0.7 0.7
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
ko = ko=2 ko =
N T| 60 110 210 250 N T| 60 110 210 250 N T | 60 110 210 250
50 | 1.8 1.9 2.0 2.0 50 |22 23 24 23 50 | 2.5 2.5 2.6 26
100 |07 1.0 15 1.6 100 1.2 16 20 21 100 | 1.6 20 23 23
2001 0.1 02 04 04 2001 0.3 06 09 09 200106 10 14 14
500 0 0 0 0 500 0 0 0 0 500 0 0 0.1 0

Notes: See the notes to Table S5.1
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Table S5.4: mg = 0: Performance of SMT — o2 thresholding

Part A: Empirical frequency of correctly identifying the absence of pervasive units

C=1 C =125 C=15
ko =0 ko =0 ko =
NT| 60 110 210 250 N T| 60 110 210 250 N T| 60 110 210 250
50 | 100 100 100 100 50 | 100 100 100 100 50 | 100 100 100 100
100 | 100 100 100 100 100 | 100 100 100 100 100 | 100 100 100 100
200 | 100 100 100 100 200 | 100 100 100 100 200 | 100 100 100 100
500 | 100 100 100 100 500 | 100 100 100 100 500 | 100 100 100 100
ko = 1 ko = 1 ko =1
NT| 60 110 210 250 N T| 60 110 210 250 N T| 60 110 210 250
50 | 884 864 82.7 30.3 50 | 865 854 819 79.2 50 | 85.8 852 81.7 783
100 | 94.1 923 90.7 88.9 100 | 88.3 888 88.6 86.6 100 | 845 868 87.8 85.8
200 | 99.8 99.2 994 99.2 200 | 99.0 97.8 97.6 98.0 200 | 98.0 94.9 94.8 95.0
500 | 100 100 100 100 500 | 100 100 100 99.9 500 | 100 100 99.7 99.9
ko = 2 ko = 2 ko =
NT| 60 110 210 250 N T| 60 110 210 250 N T| 60 110 210 250
50 | 61.6 55.9 477 44.3 50 | 53.8 52.0 445 39.8 50 | 51.5 50.6 43.2 38.6
100 | 84.0 745 642 60.9 100 | 71.6 628 53.9 52.3 100 | 60.5 55.9 48.8 48.3
200 | 98.6 97.7 94.2 94.1 200 | 942 91.3 85.9 842 200 | 88.5 82.6 755 T73.1
500 | 100 100 100 99.9 500 | 99.9 99.9 99.9 99.7 500 | 99.6 99.7 99.3 99.5

Part B: Average number of non-pervasive units falsely selected as pervasive

Cc=1 C =125 C=15

ko=0 ko=0 ko =0
N T 60 110 210 250 N T 60 110 210 250 N T 60 110 210 250
50 0 0 0 0 50 0 0 0 0 50 0 0 0 0
100 0 0 0 0 100 0 0 0 0 100 0 0 0 0
200 0 0 0 0 200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

ko =1 ko=1 ko=1
N T 60 110 210 250 N T 60 110 210 250 N T 60 110 210 250
50 01 02 02 02 50| 01 02 02 03 50 02 02 02 03
100} 01 01 01 0.1 00| 01 01 01 0.2 00| 02 01 01 0.2
200 0 0 0 0 200 0 0 0 0 200 0 01 01 01
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

ko = ko =2 ko =

N T 60 110 210 230 N T 60 110 210 250 N T 60 110 210 250
50| 04 05 06 0.7 50| 05 05 07 08 50| 05 05 07 0.8
100 02 03 04 04 00 03 04 05 05 100 04 05 06 0.6
200 0 0 01 01 200 01 01 02 02 200 01 02 03 03
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

Notes: SMT — o2 refers to Sequential-MT o2 thresholding, as implemented using Algorithm 3 in the main article. The threshold
in the 02 thresholding step of this algorithm is given by &fT < 2C’ﬁi2NN_1 log(T), where different values of C' are considered in
this table.
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Table S5.5: SMT — o2 thresholding: Empirical frequency of correctly identifying only the true
pervasive units for mg > 0

Part A: mg=1

C=1 C =125 C=15
ko =0 ko =0 ko =0
NT| 60 110 210 250 N T| 60 110 210 250 N T| 60 110 210 250
50 | 97.7 99.9 100 100 50 | 97.7 99.9 100 100 50 | 97.7 99.9 100 100
100 | 100 100 100 100 100 | 100 100 100 100 100 | 100 100 100 100
200 | 100 100 100 100 200 | 100 100 100 100 200 | 100 100 100 100
500 | 100 100 100 100 500 | 100 100 100 100 500 | 100 100 100 100
ko = 1 ko = ko =
NT| 60 110 210 250 N T| 60 110 210 250 N T| 60 110 210 250
50 | 58.0 80.6 82.9 82.3 50 | 65.0 84.1 8h.1 833 50 | 68.6 855 853 83.5
100 | 68.1 884 93.3 93.0 100 | 74.9 89.8 925 924 100 | 781 90.5 922 92.3
200 | 79.1 97.8 99.6 99.5 200 | 84.7 97.5 99.0 98.9 200 | 87.4 963 97.9 97.7
500 | 82.1 99.9 100 100 500 | 88.2 100 100 100 500 | 91.3  99.9 100 99.9
ko = 2 ko = 2 ko = 2
NT| 60 110 210 250 N T| 60 110 210 250 N T| 60 110 210 250
50 | 525 61.7 6L.1 555 50 | 53.1 62.1 60.1 54.0 50 | 53.3 62.0 59.2 53.5
100 | 65.3 75.9 747 T74.2 100 | 65.9 70.9 69.4 68.4 100 | 63.5 68.1 67.1 66.5
200 | 727 95.6 97.1 96.0 200 | 79.4 93.1 91.6 90.3 200 | 80.8 88.5 858 83.7
500 | 77.1 99.4 100 100 500 | 83.8 99.6 99.9 99.9 500 | 88.3 99.7 99.8 99.8

Part B: mg =2

C=1 C =125 C=15
ko =0 ko = ko =
NT| 60 110 210 250 N T| 60 110 210 250 N T| 60 110 210 250
50 | 55.8 85.0 96.0 97.7 50 | 688 92.3 988 99.1 50 | 73.6 947 994 99.5
100 | 58.9 87.3 982 98.6 100 | 727 953 99.6 99.8 100 | 83.3 983 100 100
200 | 59.0 88.8 98.4 98.9 200 | 67.9 933 995 99.7 200 | 75.1  96.9 99.9 100
500 | 60.9 948 100 100 500 | 68.7 96.3 100 100 500 | 73.4 975 100 100
ko =1 ko =1 ko =1
NT| 60 110 210 250 N T| 60 110 210 250 N T| 60 110 210 250
50 | 36.2 67.3 79.1 795 50 | 43.8 751 844 83.8 50 | 480 78.0 86.4 85.6
100 | 41.7 785 915 924 100 | 56.6  86.7 93.7 94.2 100 | 65.6 90.4 945 94.4
200 | 43.5 87.6 98.3 99.3 200 | 56.7 92.0 98.1 99.6 200 | 64.7 943 97.6 98.9
500 | 46.0 96.2 100 100 500 | 57.3 974 100 100 500 | 66.3 98.4 99.9 100
ko =2 ko = ko =
NT| 60 110 210 250 N T| 60 110 210 250 N T| 60 110 210 250
50 | 389 61.3 630 60.5 50 | 41.2 638 64.6 611 50 | 427 65.1 649 61.1
100 | 484 733 79.6 79.6 100 | 57.3 759 7.7 784 100 | 61.0 76.1 76.8 78.2
200 | 47.5 86.9 96.8 97.1 200 | 59.6 88.2 94.3 93.8 200 | 67.3 87.1 90.7 90.2
500 | 4.0 94.6 99.9 100 500 | 53.6  96.9 99.9 99.9 500 | 62.8 97.6 99.9 99.8

Notes: See the notes to Table S5.4.
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Table S5.6: SMT — o2 thresholding: Average number of non-pervasive units falsely selected as
pervasive for mg > 0

Part A: mg=1

Cc=1 C =125 C=15
ko=0 ko=0 ko=0
N T| 60 110 210 250 N T | 60 110 210 250 N T | 60 110 210 250
50 0 0 0 0 50 0 0 0 0 50 0 0 0 0
100 0 0 0 0 100 0 0 0 0 100 0 0 0 0
200 0 0 0 0 200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
ko=1 ko=1 ko=1
N T| 60 110 210 250 N T| 60 110 210 250 N T | 60 110 210 250
50 0.2 01 02 02 50102 01 02 0.2 50 1 0.2 01 0.2 0.2
100 | 0.1 0.1 0.1 0.1 100 { 0.1 0.1 0.1 0.1 100 | 0.1 0.1 0.1 0.1
200 0 0 0 0 200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
ko=2 ko=2 ko =
N T| 60 110 210 250 N T| 60 110 210 250 N T | 60 110 210 250
50 104 03 04 0.5 5004 04 05 0.5 50 | 0.5 04 0.5 0.5
100 { 0.1 0.2 03 0.3 100 | 0.2 0.3 0.3 0.4 100 { 0.3 0.3 04 04
200 0 0 0 0 200 0 01 01 0.1 200 | 0.1 0.1 0.2 0.2
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
Part B: mg =2
Cc=1 C =125 C=15
ko=0 ko=0 ko=0
N T| 60 110 210 250 N T | 60 110 210 250 N T | 60 110 210 250
50 0 0 0 0 50 0 0 0 0 50 0 0 0 0
100 0 0 0 0 100 0 0 0 0 100 0 0 0 0
200 0 0 0 0 200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
ko=1 ko=1 ko=1
N T| 60 110 210 250 N T | 60 110 210 250 N T | 60 110 210 250
50 |10.2 01 0.1 0.1 50 1 0.2 01 0.1 0.1 50 | 0.2 01 0.1 0.1
100 0 0 0 0 100 | 0.1 0 01 0.1 100 | 0.1 0.1 0.1 0.1
200 0 0 0 0 200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
ko=2 ko=2 ko=2
N T| 60 110 210 250 N T | 60 110 210 250 N T | 60 110 210 250
50103 03 03 04 50 104 03 04 04 50 |04 03 04 04
100 | 0.1 0.1 02 0.2 100 | 0.2 0.2 02 0.2 100 1 0.2 0.2 03 0.2
200 0 0 0 0 200 0 01 01 0.1 200 1 0.1 0.1 0.1 0.1
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

Notes: See the notes to Table S5.4.
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S6 Maximum difference and maximum ratio threshold-
ing

The idea of considering the maximum difference or the maximum ratio between two ordered
statistics, has been recently suggested by Ahn and Horenstein (2013) and used by Brownlees and
Mesters (2019) in the context of detecting pervasive units, can also be applied to o2 thresholding.
Denote by 6(21)T, &(22):,,, e ,&(QN)T the ordered estimated error variances in ascending order for a
dataset with IV cross section units and 7" time periods. Then the following two simple algorithms
can be considered:

Algorithm 6 (Max o?—difference algorithm)

1. Conduct 02 thresholding using pma. estimated factors. If the estimated number of pervasive
units, denoted by m, is zero, stop and conclude that there is no pervasive unit. Otherwise,
proceed with step 2.

2. Let the estimated number of pervasive units be given by

A ~2 ~2
]:1727~~~7pmaz

and the estimated identities by the indices of the units whose estimated error variances

are 6(21)T, &(22)7“7 e ’&(an)T'
Algorithm 7 (Max o?—ratio algorithm)

1. Conduct o thresholding using pma. estimated factors. If m = 0, stop and conclude that
there is no pervasive unit. Otherwise, proceed to step 2.

2. Let the estimated number of pervasive units be given by

2
m = argmax % ,
J=L,....Pmax O-(j)T
and the estimated identities by the indices of the units whose estimated error variances

~2 ~2 ~2

In Table S6.1 we report the performance of the two approaches described above using the
Monte Carlo set up described in Section 6 of the paper. The case m = 0 is left out since
the probability of correctly detecting the absence of pervasive units is entirely determined
by the initial 02 thresholding step of max difference and max ratio thresholding methods.
Results for models with at least one pervasive unit show that the two algorithms, based on
either the maximum difference or the maximum ratio, perform quite similarly to the SMT —
o? thresholding. However, the former two methods exhibit inferior performance in samples
where N is small. This comparative disadvantage is compensated by a superior performance
in cases where there are both external common factors and more than one pervasive units.
However, empirical evidence for the presence of at least one pervasive unit in the existing
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applied literature is rather limited.?® Furthermore, the relative advantage of max difference or
max ratio thresholding disappears when weakly pervasive units are considered. As reported
in Table S6.3, SMT — o? thresholding has a performance comparable to that of the two new
algorithms considered here, even when N is large and the number of pervasive units is larger
than 1.

Tables S6.2 and S6.4 report the average numbers of falsely selected pervasive units, and
show that the max difference and max ratio thresholding procedures perform reasonably well.
But as compared to SMT — o2 thresholding, the max thresholding approaches tend to show a
higher proportion of false discoveries, and overall we are led to favor SMT — o2 thresholding
over the max difference and the max ratio thresholding.

Zsee e.g. Pesaran and Yang (2019) or Dungey and Volkov (2018) who find that the degree of dominance of
the most influential unit in their datasets is quite far from the value of 1 that would indicate a pervasive unit
in the sense of a factor common to all cross-section units.
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Table S6.1: Empirical frequency of correctly identifying only the true strongly pervasive units
(m>0,a=1)

Part A: mg=1

SMT — o2 max o2—diff max o2—ratio
ko=0 ko=20 ko=0
NA\T 60 110 210 250 NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 97.7 99.9 100 100 50 |1 89.9 974 99.1 99.4 50 | 94.6 99.2 99.8 99.8
100 | 100 100 100 100 100 | 97.9 99.5 100 100 100 | 99.7 100 100 100
200 | 100 100 100 100 200 | 99.5 100 100 100 200 | 100 100 100 100
500 | 100 100 100 100 500 | 100 100 100 100 500 | 100 100 100 100
ko=1 ko=1 ko=1
NA\T 60 110 210 250 NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 58.9 80.6 82.9 82.3 50 | 45.3 74.1 88.1 91.7 50 | 49.9 789 90.9 93.7
100 | 68.1 &88.4 93.3 93.0 100 | 62.6 90.4 99.2 99.1 100 | 66.4 924 99.4 99.3
200 | 79.1 97.8 99.6 99.5 200 | 76.3 98.1 100 100 200 | 786 98.2 100 100
500 | 82.1 99.9 100 100 500 | 81.8 99.9 100 100 500 | 82.1 99.9 100 100
ko = ko = ko =
NA\T 60 110 210 250 NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 52.5 61.7 61.1 55.5 50 | 45.9 T71.1 854 87.7 50 | 51.7 75.7 89.7 90.4
100 | 65.3 75.9 74.7 74.2 100 | 62.4 89.8 98.8 99.2 100 | 67.0 91.5 99.1 99.6
200 | 72.7 95.6 97.1 96.0 200 | 71.7 97.0 100 100 200 | 73.3 97.3 100 100
500 | 77.1 99.4 100 100 500 | 76.3 99.4 100 100 500 | 77.1 994 100 100
Part B: mg =2
SMT — o2 max o2—diff max o2—ratio
ko=0 ko=0 ko=0
NA\T 60 110 210 250 NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 55.8 85.0 96.0 97.7 50 | 37.8 67.3 86.6 89.1 50 | 36.6 66.2 86.5 88.6
100 | 58.9 87.3 98.2 98.6 100 | 49.5 83.9 97.7 98.2 100 | 48.4 84.9 97.8 985
200 | 59.0 88.8 98.4 98.9 200 | 57.1 88.5 98.4 98.9 200 | 58.0 88.8 98.4 98.9
500 | 60.9 94.8 100 100 500 | 60.5 94.7 100 100 500 | 60.9 94.8 100 100
ko=1 ko=1 ko=1
NA\T 60 110 210 250 NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 36.2 67.3 79.1 79.5 50 | 30.7 56.1 72.2 76.5 50 | 28.2 52.6 67.3 70.3
100 | 41.7 785 91.5 924 100 | 49.1 84.9 974 98.2 100 | 44.3 77.6 91.6 92.7
200 | 43.5 87.6 98.3 99.3 200 | 64.4 97.0 99.9 100 200 | 56.8 91.1 99.3 99.5
500 | 46.0 96.2 100 100 500 | 75.1 98.3 100 100 500 | 65.4 97.6 100 100
ko=2 ko=2 ko=2
NA\T 60 110 210 250 NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 38.9 61.3 63.0 60.5 50 | 29.4 53.2 73.0 75.8 50 | 28.7 50.1 65.5 69.8
100 | 48.4 73.3 79.6 79.6 100 | 54.2 87.5 97.8 985 100 | 49.8 78.3 91.9 93.0
200 | 47.5 86.9 96.8 97.1 200 | 71.0 98.5 100 99.9 200 | 61.4 92.8 99.2 99.7
500 | 41.0 94.6 99.9 100 500 | 77.6 99.3 100 100 500 | 66.0 97.8 100 100

Notes: SMT — o2 refers to SMT — o2 thresholding, implemented with pmax = mo + ko + 1 as described in Algorithm 5. max
o2 —diff and max o2 —ratio denote detection of pervasive units via algorithms 6 and 7, conducted with pmaz = mg + ko + 1.
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Table S6.2: Average number of non-pervasive units falsely selected as pervasive units (mg > 0
and o = 1)

Part A: mg=1

SMT — o2 max o2 —diff max o2—ratio
ko=0 ko=0 ko=0
N\T | 60 110 210 250 NA\T | 60 110 210 250 N\T | 60 110 210 250
50 0 0 0 0 50 | 0.1 0 0 0 50 | 0.1 0 0 0
100 0 0 0 0 100 0 0 0 0] 100 0 0 0 0
200 0 0 0 0 200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
ko = 1 ko = 1 ko = 1
NA\T | 60 110 210 250 NA\T | 60 110 210 250 NA\T | 60 110 210 250
50 (0.2 0.1 02 0.2 50 | 0.5 0.2 0.1 0.1 50 | 0.4 0.2 0.1 0
100 { 0.1 0.1 0.1 0.1 100 | 0.1 0 0 0 100 | 0.1 0 0 0
200 0 0 0 0 200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
ko = 2 ko = 2 ko = 2
N\T | 60 110 210 250 NA\T | 60 110 210 250 NA\T | 60 110 210 250
50 | 04 0.3 04 0.5 50 | 0.7 04 0.2 0.1 50106 03 01 0.1
100 { 0.1 0.2 0.3 0.3 100 | 0.2 0.1 0 0 100 | 0.2 0 0 0
200 0 0 0 0 200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
Part B: mg =2
SMT — o2 max o2 —diff max o2—ratio
ko=0 ko=0 ko=0
NA\T | 60 110 210 250 NA\T | 60 110 210 250 NA\T | 60 110 210 250
50 0 0 0 0 50102 0.1 01 0.1 50 | 0.2 0.1 0 0
100 0 0 0 0 100 | 0.1 0 0 0 100 | 0.1 0 0 0
200 0 0 0 0 200 0 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
ko = 1 ko = 1 ko = 1
N\T | 60 110 210 250 NA\T | 60 110 210 250 N\T | 60 110 210 250
50 (0.2 01 01 0.1 50104 02 01 0.1 50 103 0.1 0.1 0
100 0 0 0 0 100 | 0.2 0.1 0 0 100 | 0.1 0 0 0
200 0 0 0 0 200 | 0.1 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
ko = 2 ko = 2 kg = 2
NA\T | 60 110 210 250 NA\T | 60 110 210 250 NA\T | 60 110 210 250
50 { 0.3 03 03 04 50106 03 01 0.1 50104 02 01 0.1
100 { 0.1 0.1 0.2 0.2 100 | 0.2 0.1 0 0 100 | 0.1 0 0 0
200 0 0 0 0 200 | 0.1 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

Notes: See the notes to Table S6.1.
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Table S6.3: Empirical frequency of correctly identifying only the true weakly pervasive (influ-
ential) units (m > 0, o = 0.8)

Part A: mg =1

SMT — o2 max o2—diff max o2—ratio
ko=0 ko=0 ko=0
NA\T 60 110 210 250 NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 51.2 80.6 954 97.5 50 | 47.4 74.6 88.0 89.9 50 | 50.4 77.8 90.8 92.6
100 | 87.2 98.9 100 100 100 | 75.6 95.0 99.2 99.5 100 | 79.3 97.3 99.8 99.9
200 | 97.5 100 100 100 200 | 91.6 99.4 100 100 200 | 94.1 99.9 100 100
500 | 97.7 100 100 100 500 | 96.3 100 100 100 500 | 97.5 100 100 100
ko = ko = ko =
NA\T 60 110 210 250 NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 37.4 65.2 79.1 78.9 50 | 26.3 49.6 73.1 T77.4 50 | 28.9 53.5 76.9 81.0
100 | 65.1 90.5 93.7 93.5 100 | 48.9 84.7 98.0 98.1 100 | 52.8 88.2 99.3 99.1
200 | 84.6 99.4 99.6 99.5 200 | 72.0 98.1 100 100 200 | 76.0 99.4 100 100
500 | 82.7 99.9 100 100 500 | 80.2 99.7 100 100 500 | 81.9 99.9 100 100
ko=2 ko =2 ko=2
NA\T 60 110 210 250 NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 37.7 53.3 58.2 54.5 50 | 28.2 50 70.9 74.1 50 | 32.0 54.3 755 78.6
100 | 64.2 79.7 753 T74.4 100 | 50.3 83.1 97.6 98.2 100 | 54.5 87.9 98.6 99.4
200 | 82.7 98.2 97.1 96.0 200 | 71.3 98.0 99.8 100 200 | 75.8 99.2 100 100
500 | 80.9 100 100 100 500 | 77.5 99.9 100 100 500 | 79.6 100 100 100
Part B: mg =2
SMT — o2 max o2—diff max o2—ratio
ko=0 ko = ko=0
NA\T 60 110 210 250 NA\T 60 110 210 250 NA\T 60 110 210 250
50| 6.6 31.6 63.7 67.3 50 | 14.1 27.0 39.2 41.5 50 | 13.4 25.7 38.6 40.2
100 | 13.7 57.4 89.2 926 100 | 13.0 36.8 62.4 68.1 100 | 12.6 359 60.4 66.2
200 | 7.7 482 88.1 92.0 200 | 54 36.0 78.7 85.1 200 | 4.8 34.8 77.0 84.0
500 | 09 230 71.0 79.3 500 | 0.6 20.1 70.6 79.1 500 | 0.5 19.9 70.6 79.2
ko=1 ko=1 ko=1
NA\T 60 110 210 250 NA\T 60 110 210 250 NA\T 60 110 210 250
50| 8.9 320 60.6 63.7 50| 9.6 21.6 323 34.1 50| 9.5 20.7 31.6 33.1
100 | 16.5 61.3 88.8 91.5 100 | 13.6 37.8 60.6 65.3 100 | 13.3 36.4 58.7 63.9
200 | 11.4 61.8 94.7 97.1 200 | 9.8 44.1 825 8&7.7 200 | 89 42,7 80.7 86.2
500 1.8 323 84.6 91.7 500 | 0.9 284 83.7 915 500 | 0.9 279 83.7 91.7
ko=2 ko =2 ko =2
NA\T 60 110 210 250 NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 13.3 33.5 50.1 50.4 50 | 9.7 187 329 36.7 50| 9.4 188 322 36.3
100 | 26.6 65.3 79.3 80.2 100 | 16.6 39.2 67.5 728 100 | 15.3 383 65.3 70.9
200 | 17.6 75.7 96.1 96.6 200 | 13.1 51.2 88.0 91.8 200 | 12.5 50.4 86.4 90
500 | 2.4 36.5 89.2 93.8 500 1.6 33.0 885 93.6 500 1.7 319 884 93.6

Notes: See the notes to Table S6.1.

43



Table S6.4: Average number of non-pervasive units falsely selected as pervasive units (mg > 0
and a = 0.8)

Part A: mg =1

2

SMT — o2 max o2 —diff max o-—ratio
ko=0 ko=0 ko=0
N \T 60 110 210 250 N \T 60 110 210 250 N \T 60 110 210 250
50 0 0 0 0 50104 02 01 0.1 5004 02 0.1 0.1
100 0 0 0 0 100 | 0.2 0.1 0 0 100 | 0.2 0 0 0
200 0 0 0 0 200 | 0.1 0 0 0 200 0 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
ko=1 ko=1 ko=1
N\T | 60 110 210 250 N\T | 60 110 210 250 NA\T | 60 110 210 250
50102 02 02 02 50109 07 03 0.3 50108 0.6 03 0.2
100 0.1 0.1 01 0.1 100 | 0.5 0.2 0 0 100 | 0.4 0.1 0 0
200 0 0 0 0 200 | 0.2 0 0 0 200 | 0.1 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
ko =2 ko=2 ko =
N\T | 60 110 210 250 NA\T | 60 110 210 250 NA\T | 60 110 210 250
50105 04 05 0.5 50111 08 04 04 50110 07 04 0.3
100 | 0.2 0.2 03 0.3 100 | 0.6 0.2 0 0 100 | 0.5 0.2 0 0
200 0 0 0 0 200 | 0.2 0 0 0 200 | 0.2 0 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
Part B: mg =2
SMT — o2 max o2 —diff max o2 —ratio
ko=0 ko=0 ko=20
NA\T | 60 110 210 250 N \T 60 110 210 250 N\T | 60 110 210 250
50 | 0.1 0.1 0 0 50105 04 03 0.3 50105 04 02 0.2
100 0 0 0 0 100 | 03 0.2 0.1 0.1 100 | 0.2 0.2 0.1 0.1
200 0 0 0 0 200 | 0.1 0.1 0 0 200 | 0.1 0.1 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
ko=1 ko=1 ko=1
N\T | 60 110 210 250 N\T | 60 110 210 250 NA\T | 60 110 210 250
50102 02 02 0.2 50109 07 05 05 50108 06 04 04
1001 0.2 0.1 0.1 0.1 100 | 06 04 0.2 0.2 100 | 0.5 04 0.2 0.2
200 0 0 0 0 200 | 0.2 0.2 0.1 0 200 | 0.2 0.1 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0
ko =2 ko =2 ko =2
N\T | 60 110 210 250 NA\T | 60 110 210 250 NA\T | 60 110 210 250
50105 04 04 05 50112 09 06 0.6 501 1.0 0.7 05 05
100 | 0.3 0.2 0.2 0.2 100 | 0.8 0.5 0.2 0.2 100 | 0.7 0.4 0.1 0.1
200 | 0.1 0 0 0 200 | 0.3 0.3 0.1 0 200 | 0.2 0.2 0 0
500 0 0 0 0 500 0 0 0 0 500 0 0 0 0

Notes: See the notes to Table S6.1.
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S7 Simulation results for unmodified BM

In the paper we have used a modified version of BM’s detection method discussed in Section
6 of Brownlees and Mesters (2019), whereby only the N/2 most connected cross-section units
are considered when determining the number of pervasive units. This section complements
the simulations in Section 6 of the paper and report results for BM without this modification
(henceforth unmodified BM ). When implementing this procedure, the number of pervasive units
is determined from all NV cross section units in the dataset. All other details of the simulation
exercise are as described in Section 6 of the paper.

Results on the probability of correctly determining the absence of pervasive units from the
data are left out since BM selects at least one unit as pervasive by construction. The results for
experiments with mg > 0 are summarized in Table S7.1. As can be seen the average number
of units detected as pervasive turns out to be much larger as compared to the modified BM.
In fact, more than half of the cross section units in the sample are, on average, found to be
pervasive. In some cases, standardization of the data leads to a considerable decrease in the
number of detected units. However, the set of cross section units falsely identified as pervasive
continues to be sizeable.

In cases where the data are driven by at least one pervasive unit, unmodified BM method
exhibits a reasonable performance if T'— N is large enough, and if the data is not standardized
(see Table S7.2). By contrast, standardizing individual-specific time series has severe conse-
quences for the probability of correctly detecting the true pervasive units, especially in the
presence of external factors. As can be seen from Table S7.4, the same results obtain if the true
pervasive units are weakly pervasive. The average number of units falsely detected as pervasive
can be substantial. See Table S7.3 and Table S7.5).
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Table S7.1: Average number of non-pervasive units falsely selected as pervasive (mg = 0)

unmodifed BM

unmodified BM (standardized)

]{70 — 0 k?() — 0
NA\T 60 110 210 250 NA\T 60 110 210 250
50| 29.7 312 364 36.9 50 1 29.3 232 26.0 29.5
100 | n/a 617 69.0 71.9 100 | n/a 60.7 46.3 49.0
200 | n/a n/a 1262 1234 200 | n/a n/a 1260 93.8
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
k’o =1 k?() =1
NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 28.7 316 37.1 374 50 | 26.0 17.2 14.3 14.6
100 | n/a 60.6 67.9 73.1 100 | n/a 548 20.8 26.2
200 | n/a n/a 123.1 1284 200 | n/a n/a 111.1 78.5
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
]{30 =2 ]{70 =2
NA\T 60 110 210 250 NA\T 60 110 210 250
50 [ 30.5 314 36.1 37.6 20| 25.8 178 139 126
100 | n/a 61.6 69.3 72.1 100 | n/a 522 254 24.8
200 | n/a n/a 1268 127.2 200 | n/a n/a 1055 T72.0
500 | n/a n/a n/a nj/a 500 | n/a n/a n/a n/a

Notes: unmodified BM refers to the detection method of Brownlees and Mesters (2019) as intro-
duced formally in Section 3 of their paper. unmodified BM (standardized) stands for application of
unmodified BM to data that have been recentered and rescaled so that each cross-section specific
time-series has an average of zero and a variance of one. BM methods are not applicable (n/a) if
T < N.
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Table S7.2: Empirical frequency of correctly identifying only the true strongly pervasive units
(mg >0, and o = 1)

Part A: mg=1

unmodifed BM

unmodified BM (standardized)

]{?0 — 0 ]{70 — 0
N\T 60 110 210 250 NA\T 60 110 210 250
50 | 484 98.3 100.0 100.0 o0 | 47.0 982 99.7 99.9
100 | n/a 73.6 100.0 100.0 100 | n/a 69.3 100.0 100.0
200 n/a n/a 89.6 100.0 200 | n/a n/a 87.4 100.0
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
]fo =1 ]f() =1
N\T 60 110 210 250 NA\T 60 110 210 250
o0 | 42.1 96.7 999 99.9 o0 | 25.6 747 90.7 93.1
100 | n/a 67.3 100.0 100.0 100 | n/a 47.6  99.0 99.8
200 | n/a n/a  85.0 100.0 200 | n/a n/a 694 99.9
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
ko = ko =
N\T 60 110 210 250 NA\T 60 110 210 250
50 | 36.7 954 99.6 99.8 50 | 12.8 45.1 62.7 65.4
100 | n/a 63.6 100 100 100 | n/a 29.6 944 96.0
200 | n/a n/a 83.7 100 200 | n/a n/a 53.3 983
500 | n/a n/a n/a nj/a 500 | n/a n/a n/a n/a
Part B: my =2
unmodifed BM unmodified BM (standardized)
k?o — 0 k?o — 0
N\T 60 110 210 250 NA\T 60 110 210 250
50 | 23.6 91.7 994  99.7 50| 5.4 408 68.7 724
100 | n/a 46.0 100.0 100.0 100 | n/a 16.7 949 98.4
200 | n/a n/a 66.5 100.0 200 | n/a n/a 381 978
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
]f() =1 ]f() =1
N\T 60 110 210 250 NA\T 60 110 210 250
50 | 17.1 85.1 979 98.5 50| 14 75 16,5 17.7
100 | n/a 369 99.9 100.0 100 | n/a 5.6 585 63.1
200 n/a n/a 55.7 99.9 200 | n/a n/a 14.8 75.6
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
k’o =2 k’o =2
N\T 60 110 210 250 NA\T 60 110 210 250
50 [ 15.55 79.5 96.3 97.35 50 0.2 1.0 2.2 1.6
100 | n/a 33.1 99.95 99.85 100 | n/a 1.5 228 28.7
200 | n/a n/a 50.35 99.65 200 | n/a n/a 5.8 46.0
500| n/a n/a n/a nj/a 500 | n/a n/a n/a n/a

Notes: See the notes to Table S7.1.



Table S7.3: Average number of non-pervasive units falsely selected as pervasive (mg > 0, and
a=1)

Part A: mg=1

unmodifed BM unmodified BM (standardized)
]{?0 — 0 l‘Co — 0
NA\T 60 110 210 250 N\T 60 110 210 250
50 | 14.7 03 0.0 0.0 50 | 125 0.0 0.0 0.0
100 | n/a 16.0 0.0 0.0 100 | n/a 154 0.0 0.0
200 | n/a n/a 12.1 0.0 200 | n/a n/a 123 0.0
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
]{?0 =1 k’o =1
NA\T 60 110 210 250 N\T 60 110 210 250
50 | 17.6 0.6 0.0 0.0 50 119.1 29 05 0.3
100 | n/a 19.6 0.0 0.0 100 | n/a 26.0 0.0 0.0
200 | n/a n/a 19.6 0.0 200 | n/a n/a 30.0 0.0
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
ko =2 ko =2
NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 185 1.1 0.1 0.1 50 | 23.7 10.0 53 4.7
100 | n/a 21.6 0.0 0.0 100 | n/a 376 0.7 0.3
200 | n/a n/a 194 0.0 200 | n/a n/a 49.1 04
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
Part B: mg =2
unmodifed BM unmodified BM (standardized)
]{?0 — 0 l‘Co — 0
NA\T 60 110 210 250 N\T 60 110 210 250
50 | 11.7 04 0.0 0.0 50 1169 22 04 0.5
100 | n/a 82 0.0 0.0 100 | n/a 196 0.0 0.0
200 | n/a n/a 62 0.0 200 | n/a n/a 182 0.0
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
]{?0 =1 ko =1
NAT 60 110 210 250 NA\T 60 110 210 250
50 [ 13.0 1.1 0.1 0.0 50 [ 214 10.0 68 6.3
100 | n/a 13.7 0.0 0.0 100 | n/a 33.7 1.0 0.7
200 | n/a n/a 10.0 0.0 200 | n/a n/a 425 0.6
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
ko =2 ko =2
NA\T 60 110 210 250 NA\T 60 110 210 250
50 1 13.8 1.1 0.2 0.2 50 | 26.0 19.2 17.8 18.2
100 | n/a 13.7 0.0 0.0 100 | n/a 44.0 83 6.3
200 | n/a n/a 12.7 0.0 200 | n/a n/a 67.3 4.9
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a

Notes: See the notes to Table S7.1.
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Table S7.4: Empirical frequency of correctly identifying only the true weakly pervasive (influ-
ential) units (mg > 0, and o = 1)

Part A: myg =1

unmodifed BM unmodified BM (standardized)
]{?0 — 0 k?() - O
N\T 60 110 210 250 NA\T 60 110 210 250
50 | 15.8 63.2 876 904 50 | 21.9 69.3 85.3 87.8
100 | n/a 30.1 99.0 100.0 100 | n/a 37.8 98.4 994
200 | n/a n/a 44.8 99.3 200 | n/a n/a 54.9 99.0
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
mo = 1, k=1 k’g =1
N\T 60 110 210 250 NA\T 60 110 210 250
50| 13.3 59.8 87.1 89.3 50 | 9.7 31.1 454 45.1
100 | n/a 27.5 98.8 99.6 100 | n/a 21.7 82.0 84.9
200 | n/a n/a 443 98.7 200 | n/a n/a 37.5 89.8
500 | n/a n/a n/a nj/a 500 | n/a n/a n/a n/a
mo =1,k =2 ko =2
NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 13.3 59.0 84.6 88.7 50 | 5.9 135 159 174
100 | n/a 25.6 98.8 99.5 100 | n/a 129 52.8 59.7
200 | n/a n/a 44.6 98.6 200 | n/a n/a 24.3 75.3
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
Part B: mg =2
unmodifed BM unmodified BM (standardized)
]{?0 — 0 k?o - O
N\T 60 110 210 250 NA\T 60 110 210 250
50 | 4.6 438 749 794 50| 1.4 49 9.0 11.5
100 | n/a 10.8 94.3 98.0 100 | n/a 3.1 43.7 50.9
200 | n/a n/a 207 942 200 | n/a n/a 10.3 64.5
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
mo = 2, k=1 kIQ =1
N\T 60 110 210 250 NA\T 60 110 210 250
50| 4.2 416 70.2 76.5 50| 0.2 06 07 0.7
100 | n/a 10.2 94.3 96.4 100 | n/a 1.3 119 11.8
200 | n/a n/a 17.1 922 200 | n/a n/a 3.3 29.3
500 | n/a n/a n/a nj/a 500 | n/a n/a n/a n/a
mo =2,k =2 ko =2
NA\T 60 110 210 250 NA\T 60 110 210 250
50| 3.2 39.1 68.8 73.5 50 0.0 0.1 00 0.0
100 | n/a 9.1 92.1  95.9 100 | n/a 04 15 14
200 | n/a n/a 17.0 91.2 200 | n/a n/a 14 94
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a

Notes: See the notes to Table S7.1.
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Table S7.5: Average number of non-pervasive units falsely selected as pervasive (mg > 0, and
a=0.8)

Part A: mg=1

unmodifed BM unmodified BM (standardized)
]{?0 — 0 l‘Co — 0
NA\T 60 110 210 250 N\T 60 110 210 250
50 | 25.1 10.1 44 3.3 501192 27 03 0.2
100 | n/a 435 0.3 0.0 100 | n/a 327 0.0 0.0
200 | n/a n/a 729 0.6 200 | n/a n/a 46.5 0.1
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
]{?0 =1 k’o =1
NA\T 60 110 210 250 N\T 60 110 210 250
50 [ 26.8 12.0 43 3.5 50212 73 33 28
100 | n/a 44.1 04 0.3 100 | n/a 387 1.1 04
200 | n/a n/a 726 1.3 200 | n/a n/a 59.4 2.2
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
ko =2 ko =2
NA\T 60 110 210 250 NA\T 60 110 210 250
50 | 25,5 122 52 3.9 501|231 11.7 88 8.1
100 | n/a 46.8 0.7 0.3 100 | n/a 436 7.0 44
200 | n/a n/a 69.4 1.5 200 | n/a n/a 721 8.6
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
Part B: mg =2
unmodified BM unmodified BM (standardized)
]{?0 — 0 l‘Co — 0
NA\T 60 110 210 250 N\T 60 110 210 250
50 | 225 7.1 2.7 22 50 [ 186 5.2 3.3 3.2
100 | n/a 33.7 0.2 0.1 100 | n/a 29.8 0.9 0.6
200 | n/a n/a 482 04 200 | n/a n/a 43.0 0.9
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
]{?0 =1 ko =1
NAT 60 110 210 250 NA\T 60 110 210 250
50 | 221 85 33 25 50 1202 95 6.5 6.6
100 | n/a 354 04 0.1 100 | n/a 355 4.6 3.5
200 | n/a n/a 52.3 0.7 200 | n/a n/a 568 5.8
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a
ko =2 ko =2
NA\T 60 110 210 250 NA\T 60 110 210 250
50 1232 79 35 29 50 | 21.6 12.8 104 10.0
100 | n/a 369 0.6 0.1 100 | n/a 41.3 12.6 10.2
200 | n/a n/a 56.3 0.7 200 | n/a n/a 75.1 185
500 | n/a n/a n/a n/a 500 | n/a n/a n/a n/a

Notes: See the notes to Table S7.1.
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Table S8.1: Pervasive units in sector-wise industrial production in the U.S.

Full sample (1972m1 - 2007m12)

Approach: unmodified BM unmodified BM (standardized)

Number of perva- 137 2

sive units:

Identities: all except Automobiles and Light Duty Motor Vehicles
Iron Ore Mining Motor Vehicle Parts

Sub-sample A (1972m1 - 1983m12)

Approach: unmodified BM unmodified BM (standardized)

Number of perva- 135 2

stve units:

Identities: all except Motor Vehicle Parts

Iron Ore Mining
Heavy Duty Trucks
Motor Homes

Sub-sample B (1984m1 - 2007m12)

Approach: unmodified BM unmodified BM (standardized)
Number of perva- 137 5

stve units:

Identities: all except Motor Vehicle Parts

Audio and Video Equipment Automobiles and Light Duty Motor Vehicles
Aluminum Extruded Products

Miscellaneous Aluminum Materials
Motor Vehicle Bodies

Notes: Data taken from Foerster, Sarte, and Watson (2011).

S8 Empirical results for unmodified BM

In this section we provide results obtained if the unmodified BM procedure is used in our em-
pirical applications. The data sources and transformations are as described in Section 7 of the
paper. Again, unmodified BM method is applied to the data with and without standardization.
The results are summarized in Tables S8.1-S8.3, and suggest that unmodified BM grossly over-
estimates the number of pervasive units in almost all applications, regularly detecting all but
one or two cross section units as pervasive. The use of standardized data leads in all but one
case to a lower detected number of pervasive. However, while the reduction can be quite sub-
stantial, in a number of applications the number of pervasive units detected using standardized
data can be quite large (5 or more in some the applications).
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Table S8.2: Pervasive countries in terms of quarterly macroeconomic indicators

Variable: real GDP growth real equity price growth

Approach: unmodified BM  unmodified BM (std) unmodified BM  unmodified BM (std)

Number of perva- 2 11 25 1

sive units:

Identities: France * all except Netherlands
Spain Argentina

*: Ttaly; Spain; France; USA; Germany; Canada; UK; Malaysia; Belgium; Finland; South Africa.
Notes: Data taken from GVAR database (Mohaddes and Raissi, 2018).

Table S8.3: Estimated U.S. states with pervasive housing market

Approach: unmodified BM  unmodified BM (standardized)

Number of perva- 47 6

sive units:

Identities: all except Connecticut Maryland
Nevada New Hampshire Virginia

Massachusetts Rhode Island
Notes: Data taken from Yang (2018) and Freddie Mac House Price Indexes.
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