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Abstract

When vacancies are �lled, the ads that were posted are often not withdrawn, creating

�phantom�vacancies. The existence of phantoms implies that older job listings are less likely

to represent true vacancies than are younger ones. We assume that job seekers direct their

search based on the listing age and so equalize the expected bene�t of a job application across

listing age. Since wages do not depend on listing age, this is equivalent to equalizing the job

�nding rate across listing ages. Forming a match with a vacancy of age a creates a phantom

of age a with probability � and this leads to a negative informational externality that a¤ects

all vacancies of age a or older. Thus, the magnitude of this externality decreases with a.

Relative to the constrained e¢ cient search behavior, the directed search of job seekers leads

them to over-apply to younger listings. We illustrate the model using US labor market data.

The contribution of phantoms to overall frictions is large, but, conditional on the existence

of phantoms, the social planner cannot improve much on the directed search allocation.

1 Introduction

This paper is based on two premises. First, many listings for job openings that are advertised

on job boards or newspapers or are heard about from friends and acquaintances are out of date.

We use the concept of phantom vacancies to model this out-of-date information, where by a

phantom vacancy we mean a job listing that continues to be advertised even though the vacancy

has already been �lled. We present evidence below that this type of stale information exists on

job boards such as Craigslist.
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Second, job seekers are aware of this stale information and adjust their search behavior

accordingly. On job boards, searchers can observe the posting date for job listings. They un-

derstand that older listings are more likely to be phantoms. They also understand that other

searchers also understand this so there is likely to be more competition at younger listings.

Workers take these countervailing forces into account when directing their search based on list-

ing age. In the directed search equilibrium that we analyze, workers follow a mixed strategy

with respect to listing age that trades o¤ the probability the listing is a phantom against the

extent of competition for the position.

We argue that phantom vacancies are an important source of labor market frictions and hence

unemployment. Why is there unemployment? A job seeker may fail to �nd an advertised position

that matches his or her skills. Alternatively, appropriate positions may be advertised, but the job

seeker�s application may be met with the response, �Sorry, but the job has already been �lled.�

Job search theory has ignored the latter friction, i.e., phantom vacancies, which we emphasize

here. And, as online job search becomes more common, we argue that the frictions caused

by phantoms may become relatively more important as a source of unemployment. From the

individual job seeker�s perspective, with online search, it should be easier to identify appropriate

advertised positions, but it may become more di¢ cult to be sure that they haven�t already been

�lled.

The concept of phantom vacancies was introduced in Chéron and Decreuse (2017), and we

use the matching function developed in that paper. Chéron and Decreuse (2017) is a model of

random search in the sense that a job seeker is just as likely to apply to one listing as to any

other; i.e., the unemployed are assumed to be unable to adapt to the existence of phantoms. In

contrast, ours is a model of directed search �job seekers can direct their search based on listing

age and can thus take the existence of phantoms into account.

We therefore have two objectives in our paper. The �rst is to characterize the directed

search equilibrium. In equilibrium, searchers allocate themselves across �submarkets�that are

de�ned by listing age. Worker directed search satis�es a no-arbitrage condition, namely, that

the expected payo¤s associated with searching in the various submarkets must be equalized. On

the other side of the market, �rms decide how many new vacancies to list. We also allow �rms

to �renew�their listings �for a fee, a �rm can relist its vacancy, thereby e¤ectively resetting its

age to zero. The wage is determined by Nash bargaining in the decentralized equilibrium.

Our second objective is to characterize the constrained e¢ cient allocation and to understand

how and why it di¤ers from the equilibrium allocation. The nature of the constrained e¢ cient

allocation depends on the tools we allow the social planner to employ. We �rst suppose that

the social planner can choose �rms�vacancy posting and listing renewal behavior. Second, we
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suppose that the social planner can also choose the allocation of searchers across submarkets;

i.e., we allow the social planner to direct job seekers�search.

Before we address these questions, we o¤er some evidence for our two premises. Are phantoms

important in real-world labor markets? To the extent that workers apply for jobs that are already

�lled,1 and casual empiricism suggests this is often the case, phantoms matter. More formally,

Chéron and Decreuse (2017) presents evidence of phantoms from an online job site. Using

Craigslist data, they show that the distribution of job listings by age over one month (the time

at which Craigslist destroys ads) is uniform by week. This implies that ads are not withdrawn as

soon as the corresponding jobs are �lled; instead, job listings persist for some time as phantoms.

We are not arguing that all job boards fail to remove every obsolete listing immediately, but

the Craigslist evidence clearly suggests the existence of stale information in the labor market.

Similarly, Davis and Samaniego de la Parra (2018) argue that �...�stale postings�are a major

concern about measuring posting durations in empirical studies that rely on data from some

prominent online platforms for posting job vacancies.�(p.8) See also footnote 10 (p.10) in their

paper, which discusses the existence of phantoms on CareerBuilder.com and Monster.com.2

There is also evidence that job seekers direct their search towards recently posted job listings.

First, as the following query to AskaManager.com suggests, this is what some job seekers say

they do:

I am currently on the job hunt and I had a question about applying to jobs online.

You know how most websites will tell you the job has been posted 1 day ago, 28

days ago, etc. For some reason, I have concluded that I need to apply to a job the

�rst week they post the position to have the best chances of being hired. Although I

heard that it can take up to a month for the company to hire anyone for the position,

I feel that applying to a job that was posted 3 weeks ago isn�t that promising. What

is your take on this situation?

Second, data that link applications to vacancy postings indicate that job applicants direct

their search towards younger listings. The DHI Vacancy and Flow Applications Database, which

1 In Acharya and Wee (2018), �rms that have �lled their vacancies continue to advertise those positions in an

e¤ort to �nd more productive "replacement" workers. The longer a job has been advertised, the less likely it

is that an application for that position will be successful. In this sense, these listings are similar to phantoms.

The important di¤erence between our model and that of Acharya and Wee (2018) is that we allow job seekers to

respond to the existence of phantoms by directing their search.
2There is also evidence of phantoms in other markets with search frictions. Fradkin (2017) documents that

on Airbnb, about 15% of �rst attempts to make a booking by prospective renters in his sample fail due to �stale

vacancies,�i.e., because the hosts failed to block out speci�c dates on their calendars promptly even though those

dates were in fact not available.
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links 77 million applications to nearly 7 million vacancy postings, dating from January 2012, is

an example of such a linked dataset. Using data from Dice.com, the primary source for the DHI

database, Davis and Samaniego (2018) state (p.13) that �job seekers exhibit a striking propensity

to target new and recently posted vacancies: 39 percent of applications �ow to vacancies posted

in the last 48 hours, and 59 percent go to those posted in the last 96 hours. Older postings

attract relatively few applications.�The results of Belot, Kircher and Muller (2018, pp.16-17)

show the same pattern. In an audit study in which paired vacancies di¤ered only in the posted

wage and the listing date, they �nd that job seekers are substantially more likely to save the

younger listing, even if the di¤erence in the listing date was only one or two days.

Another piece of evidence that workers react to listing age is that �rms choose to repost their

vacancies even though there is a cost to doing so. Listing renewal appears to be quite common.

Employers relist their vacancies in order to let workers know that the jobs are still un�lled. In

Appendix A1, we show that listing renewal is quite common on Craigslist.

There are other explanations for why job seekers target younger listings. In stock-�ow

models such as Coles and Smith (1998), new job seekers �owing into the market search through

the entire stock of listed vacancies.3 A job seeker who fails to �nd a match in this �rst search

step, having already examined the extant stock, is then limited to searching through the in�ow of

new listings. As with phantoms, stock-�ow implies that most applications go to younger listings.

Two pieces of evidence suggest that stock-�ow matching may not be the sole explanation for the

way that job seekers direct their search. First, as we noted above, listing renewal appears to be

quite common. In a stock-�ow model, employers have no incentive to relist. Second, the stock-

�ow model can be tested by looking at how worker application behavior changes with elapsed

duration of unemployment. All else equal, recently unemployed workers should be equally likely

to apply to a young listing as to an old one, while workers who have been unemployed for a longer

time should only apply to young listings. Data on how worker application behavior varies over

an unemployment spell are scarce, but there is one study that addresses this question. Using

data from SnagAJob, Faberman and Kudlyak (2014) �nd (p.4) that �The fraction of applicants

to a newly-posted vacancy rises with duration, consistent with a stock-�ow model, but it does

so only slightly ...�

Another possible explanation for why worker search is concentrated on younger listings is

job heterogeneity. Some jobs are �lemons��a worker contacting such a job is unlikely to �nd

it acceptable or they may �nd the employer is overly picky �while other jobs are �plums.�

Lemons would then be over-represented in the stock of old listings, and workers would respond

3This assumption seems most applicable when an intermediary is present to help job seekers identify all

appropriate job openings in the stock of vacancies. In Coles and Smith (1998), that intermediary role is played

by the UK Jobs Centre.
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by directing their applications towards young listings.4 However, it is di¢ cult to imagine that

the existence of lemons explains why almost 40% of the applications observed in the Dice.com

data go to listings that are at most 48 hours old. While stock-�ow matching and lemons may be

part of the reason that young listings receive more applications than old listings do, the evidence

suggests that there is room for other explanations, e.g., phantom vacancies.

In the model we present below, we focus on phantoms and abstract from considerations of

stock-�ow matching and lemons. We use a model of sequential search in which unemployed

workers apply for one job at a time. An alternative would be to allow for multiple applications,

but as both Albrecht, Gautier, and Vroman (2006) and Galenianos and Kircher (2008) show, this

would introduce other ine¢ ciencies, and in this paper, we are interested in concentrating on the

externality caused by phantom vacancies. Another alternative would be to assume nonsequential

search in which �rms actively recruit and screen workers,5 e.g., Woltho¤ (2018), but, in order

to focus clearly on the role that phantoms play in labor market equilibrium, we have chosen to

follow the main thread of the literature and to assume that search is sequential.6

Our basic results are as follows. In the decentralized equilibrium allocation, workers follow

a mixed strategy with respect to the choice of submarket. Speci�cally, workers allocate their

applications across submarkets so that the job-�nding rate is constant with respect to listing

age. Younger listings, i.e., new listings and recently renewed listings, receive a high weight and a

disproportionate number of applications while older listings receive relatively few applications.

If the social planner is limited to choosing how many new vacancies are posted and the age at

which job listings are renewed, we show there is a modi�ed Hosios condition that implements the

constrained e¢ cient allocation. In this case, if �rms can post and commit to a wage rather than

engage in Nash bargaining, a competitive search equilibrium decentralizes the social planner

allocation.7 However, when the social planner can also choose the allocation of job seekers

across submarkets, then the equilibrium allocation is generically ine¢ cient. In equilibrium, job

4The idea that time on the market may be used as a signal of quality when search frictions are present has

been explored in several papers, e.g., Kim (2017).
5Based on their analysis of the Dice.com data, Davis and Samaniego (2018) suggest that models of nonsequential

search are the better tool for analyzing labor market outcomes. However, their data pertain to high-skill workers

seeking technical jobs where screening is likely to be particularly important.
6We argue that phantoms are likely to be important even if �rms search nonsequentially. With nonsequential

search, �rms advertise a position and then collect a list of applicants. At some point �when the applicant list is

long enough �the �rm makes an o¤er. The longer a position has been advertised, the more likely it is that an

o¤er has been made and accepted, i.e., the more likely it is that the listed vacancy is a phantom.
7Note that ours is a model of directed search rather than competitive search. In our baseline model, workers

direct their search based on listing age. Listing age is a variable that �rms can�t control (except by renewal), i.e.,

they cannot compete by choosing listing age. In competitive search equilibrium, however, �rms can compete for

worker applications through their posted wages.
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seekers direct their search more toward younger listings than the social planner would have them

do. The equilibrium allocation of worker applications across listing ages generates a dynamic

congestion externality. When matches are formed, phantoms congest the market, and a phantom

that is created when a younger listing leads to a match is more costly than one that is created

when an older listing does so. That is, the magnitude of the externality decreases with the

listing age of the vacancy, and workers have no incentive to incorporate this dynamic e¤ect into

their decision calculus.8

We supplement our theoretical results with numerical illustrations (WORK IN PROGRESS).

We do this in three steps. First, we calibrate our model to US labor market outcomes over the

period 2000-2008. In doing this, we make a baseline parameter assumption, namely, that the

fraction of ads that are not removed when the corresponding vacancy is �lled equals 1=2:We then

examine the sensitivity of our result to changes in this key parameter. Second, we numerically

solve for the constrained e¢ cient allocation when the social planner can choose the level of new

vacancy creation and the listing renewal age but is unable to direct worker search. Finally, we

numerically solve for the full constrained e¢ cient allocation; i.e., we allow the social planner to

allocate job seekers across listing ages in addition to setting vacancy creation and listing age.

Discussion of numerical results.

In the next section, we lay out our model of directed search with phantom vacancies. We then

discuss the social planner�s problem in Section 3. Section 4 contains our numerical simulations

and conclusions are given in Section 5.

2 Decentralized Equilibrium

In this section we develop an equilibrium search and matching model of unemployment with

directed search by listing age, phantom vacancies, endogenous job creation and endogenous

listing renewal. We set up the model and analyze the decentralized allocation.

8A related e¤ect is present in the frictionless dynamic matching model of Board, Meyer-ter-Vehn and Sadzik

(2017). In their model, each �rm hires a worker from a pool of applicants. Firms with more talented incumbent

workers are better at recruiting (distinguishing good from bad hires) and o¤er higher wages in order recruit before

other �rms. This leads to dynamic adverse selection �the further down a �rm is in the recruiting queue, the lower

is the average quality of the applicant pool it faces. The analogy with our result is that the adverse selection that

a �rm creates through its hiring decision is greater the higher the �rm�s position in the recruiting queue. The

externality created thus has a cascading quality as does our phantom externality.
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2.1 The model setup

We focus on the stationary state of a continuous time model. The unit of time is a month. There

is a continuum of workers of unit mass, and each worker can be either employed or unemployed.

The endogenous mass of unemployed is u. There is also a continuum of vacancies of endogenous

mass v. There is a listing for each vacancy, and these di¤er by age, a � 0.
Creating a new vacancy comes at a one-time cost c. Once the vacancy is created, the �rm

has a listing that gradually ages with calendar time. The listing can be renewed at any time at

cost k, 0 < k < c. In exchange for the renewal cost, the �rm has a new listing of age 0. We will

endogenize the age, A; at which a �rm that has failed to �ll its vacancy renews its listing.

Filled jobs produce y. All jobs, �lled or vacant, are destroyed at Poisson rate �, and newly

separated workers join the pool of unemployed.

The labor market is segmented by listing age. In submarket a, u(a) unemployed try to match

with v(a) vacancies. Each time there is a match, with probability �; the corresponding ad is not

withdrawn and a phantom vacancy is created: Phantoms, once created, persist in the market.

The matching process is frictional. In addition to the usual search frictions, information

persistence about vacancies that have already been �lled but are still advertised creates an

added friction. The �ow of new matches in submarket a is

M(a) = �(a)m(u(a); v(a) + p(a));

where p(a) is the phantom �ow, �(a) = v(a)
v(a)+p(a) is the nonphantom proportion. The contact

function, m(�); is strictly increasing in both arguments, strictly concave and has constant returns
to scale.9

Workers cannot distinguish between phantoms and nonphantoms. Therefore the number

of contacts m(�) depends on the number of listings v(a) + p(a). As no one can match with a
phantom, m(�) is multiplied by the fraction of contacts that are with un�lled vacancies.

We denote market tightness for listings of age a by �(a) = (v(a)+p(a))=u(a). The job-�nding

rate for submarket a is �(a) = m(1; �(a))�(a) and the job-�lling rate is �(a) = m(1; �(a))=�(a).

We write m(�) for m(1; �) below when there is no risk of confusion.

Each time a vacancy is �lled or destroyed, a phantom is created with probability � 2 [0; 1].
For all a 2 [0; A], phantoms and vacancies evolve as follows:

_v(a) = �(�(a) + �)v(a);

_p(a) = �(�(a) + �)v(a);

9The form of the matching function is taken from Chéron and Decreuse (2017). They derive their matching

function from �rst principles in discrete time and then extend it to continuous time. As noted in the introduction,

their analysis is based on random search, whereas ours is a model of directed search based on listing age.
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where a dot over a variable denotes its derivative with respect to the listing age. These laws of

motion imply p(a) = �(v(0)� v(a)).
The resulting nonphantom proportion has the following law of motion:

_�(a) = �(m(�(a))=�(a) + �)�(a)(1� (1� �)�(a)):

The nonphantom proportion decreases with age. Phantoms accumulate as employers gradually

�ll their jobs and as vacancies are destroyed at exogenous rate �.

2.2 Equilibrium

Workers direct their search by listing age. The values of being unemployed, U , and employed,

W , are de�ned as follows:

rU = max
a2[0;A]

fb+ �(a)[W � U ]g; (1)

rW = w + �[U �W ]: (2)

In equilibrium, job seekers allocate themselves across the di¤erent listing ages so that the job-

�nding rate �(a) = �(a)m(�(a)) stays constant; i.e., since �(0) = 1; �(a)m(�(a)) = m(�(0)) for

all a. Since the nonphantom proportion decreases with listing age, this condition implies that

market tightness increases with listing age.

Let V (a) be the value of a vacancy of age a and let J be the value of a �lled job. We have

rV (a) = �(a)[J � V (a)]� �V (a) + V 0(a); (3)

rJ = y � w � �J: (4)

The value of a vacancy changes with the listing age, re�ecting the rate of applications by vacancy

age and the length of time until renewal. Immediately after renewal, the listing age is reset to 0.

By continuity of the value function, we have V (A) = V (0)�k. Let F (a) = exp(�
R a
0 (�(s)+�)ds)

be the survival probability for a vacancy, i.e., the probability that the vacancy is neither �lled

nor destroyed by age a: Integrating equation (3) forward with this boundary condition gives

V (0) =
J
R A
0 �(s)e

�rsF (s)ds� ke�rAF (A)
1� e�rAF (A)

: (5)

To derive the optimal renewal age, we need to discuss the �rms� coordination problem.

Consider a �rm with the belief that all other �rms set renewal age ~A > 0 and that rational

workers also hold this belief. In this case, workers would not consider job listings older than ~A.

They would suppose that these must be phantoms. It follows that the �rm must either set a
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renewal age lower than ~A or equal to it. Keeping the listing after ~A would be pointless because

the job-�lling rate is 0 after ~A.

Suppose �rst that ~A is very large. The optimal renewal age Â, the �rm�s best-response to
~A, results from the condition V 0(Â) = 0. Using equation (3), we obtain

V (Â) = V (0)� k = �(Â)

r + �+ �(Â)
J: (6)

Firms renew their listings when the rate of applications to their vacancies becomes su¢ ciently

small. The threshold rate, �(Â), increases as the value of a �lled job falls. Therefore parameters

that decrease the value of a �lled job such as � raise the threshold rate �(Â).

Now suppose that ~A is small, i.e., smaller than the bA given by equation (6). Then the �rm
sets A = ~A. It follows that any ~A belonging to [0; Â] can be an equilibrium of the renewal game.

Hereafter, we only focus on equilibria such that ~A = Â.10 As we show later, an equilibrium

of this type produces the choice of renewal age, A; that the social planner would choose when

the social planner can select the renewal age and the number of vacancies to create but cannot

direct the job seekers�choice of submarket.

The wage is determined by Nash bargaining over the match surplus. We assume this wage

can be renegotiated at any time, which explains why it is not conditional on the listing age.

We also assume that the job is destroyed if the �rm and the worker do not reach an agreement.

This means that the �rm�s outside option is 0. If 
 2 (0; 1) denotes workers�bargaining power,
then the wage that maximizes the Nash product solves (1� 
)(W � U) = 
J . Using equations
(1) to (4) and solving for the wage gives

w = 
y
r + �+m(�(0))

r + �+ 
m(�(0))
+ (1� 
)b r + �

r + �+ 
m(�(0))
;

J =
(1� 
)(y � b)
r + �+ 
m(�(0))

:

Finally, free entry implies that �rms create vacancies until V (0) = c.

10Such equilibria are symmetric. There cannot be asymmetric equilibria. In an asymmetric equilibrium, there

would be at least two distinct Â solving the �rst-order condition (6), say A1 and A2; with A1 < A2 without loss

of generality. This would imply that �(A1) = �(A2), with �(a) > 0 for a 2 [A1; A2]. This is impossible because
the no-arbitrage condition states �(a)m(�(a)) = m(�(0)), whereas �(A1) > �(A2).
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The equilibrium allocation is characterized by the following system of equations:

m(�(0)) = �(a)m(�(a)); (7)

�0(a) = �
�
m(�(a))

�(a)
+ �

�
�(a)[1� (1� �)�(a)]; (8)

c(1� e�rAF (A)) + ke�rAF (A) =
(1� 
)(y � b)
r + �+ 
m(�(0))

Z A

0
�(a)e�raF (a)da; (9)

c� k =
�(A)

r + �+ �(A)

(1� 
)(y � b)
r + �+ 
m(�(0))

; (10)

u = �=(�+m(�(0)); (11)

with �(0) = 1 and �(a) = m(�(a))=�(a).

In the free-entry condition (9), the left-hand side is the mean stock cost of a new listing.

The cost of renewal is weighted by the discounted probability e�rAF (A) that the job is still

available at the renewal age. The cost of a new vacancy is weighted by the complementary term,

1 � e�rAF (A). The right-hand side is the value of a �lled job, (1�
)(y�b)
r+�+
m(�(0)) , multiplied by the

discounted probability that the job is �lled before the renewal age is reached.

From the no-arbitrage condition (7), we can express tightness in submarket a as a function

of initial tightness and the nonphantom proportion, i.e., �(a) = m�1(m(�(0))=�(a)). We then

insert this into the law of motion of the nonphantom proportion (8) to obtain the following

Cauchy problem:

�
�(a) = �

�
m(�(0))=�(a)

m�1(m(�(0))=�(a))
+ �

�
�(a)[1� (1� �)�(a)]; �(0) = 1:

We write the solution to this problem as �(a; �(0)) to highlight the dependence on �(0). Solving

for equilibrium reduces to �nding the initial tightness �(0) and the optimal renewal age such that

the free-entry condition (9) and the optimal renewal condition (10) hold. Lastly, unemployment

is determined by the Beveridge curve (11).

There exists an equilibrium provided (1 � 
)(y � b)=(r + �) > c. The left-hand side is the
maximum value of a �lled job. This maximum value must exceed the cost of job creation. Initial

tightness qualitatively responds to changes in the economic environment in a standard way. It

decreases with workers�bargaining power, 
, unemployment income, b, the discount rate, r, the

job destruction rate, �, and the vacancy creation cost, c. It increases with output per worker,

y. Unemployment varies accordingly.

The density function of listings by listing age is

�v+p(a) = (v(a) + p(a))=

Z A

0
(v(s) + p(s))ds

and the associated cumulative distribution function is

�v+p(a) =

Z a

0
(v(s) + p(s))ds=

Z A

0
(v(s) + p(s))ds:
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The growth rate of the density is _�v+p=�v+p = �(1��)(�+�)� � 0. The growth rate is generally
declining, re�ecting the listing stock depletion as workers gradually �nd jobs. However, phantom

formation reduces the rate of depletion. The listing density does not vary with age when � = 1

because the job-�lling rate is exactly o¤set by the rate at which phantoms are created.

The density function of applications by listing age is �u(a) = u(a)=u = (v(a)+p(a))=(�(a)u)

and the associated cumulative distribution function is �u(a) = u�1
R a
0 (v(s)+p(s))�(s)

�1ds. The

growth rate of the density is _�u=�u = _�v+p=�v+p � _�=� < _�v+p=�v+p when � > 0, i.e., when

there are phantoms in the market. Since the growth rate of the density of applications with age

is less than the corresponding growth rate of listings, the model predicts a concentration of job

seekers�e¤orts at younger listing ages than would occur in the absence of phantoms.

To conclude this section, we brie�y discuss the case without phantoms. This corresponds to

� = 0. The nonphantom proportion is one at all ages and the no-arbitrage condition becomes

m(�(a)) = m(�(0)): Tightness does not change across submarkets. As the job-�lling rate does

not decrease with age, �rms have no incentive to renew their listings. Formally, the value

V (A) = V (0) for all possible renewal ages so it is not worth paying the cost k, as small as it

may be, to get a new listing. Thus, A!1 and the free-entry condition becomes

c =
�(�(0))

r + �(�(0)) + �

(1� 
)(y � b)
r + �+ 
m(�(0))

: (12)

This equation is analogous to the standard free-entry condition with a �ow cost of posting jobs.

The left-hand side is a stock cost and therefore the right-hand side is a fraction of the value of

a �lled job. The economic mechanism behind entry, though, is fundamentally the same as in

the standard model. An increase in tightness has two e¤ects that reduce the value of a vacancy.

First, it increases the bargained wage, thereby lowering the value of a �lled job. Second it

decreases the job-�lling rate.

3 Constrained e¢ cient allocation

To focus on steady states, we study the constrained e¢ cient allocation in the case in which

the discount rate, r, tends to 0. We �rst consider the case in which the planner is unable to

direct worker search so that the job-�nding rate does not vary across submarkets. We show

that the decentralized allocation can generate the constrained e¢ cient allocation provided a

modi�ed Hosios condition holds. We then turn to the case in which the planner allocates job

seekers across the di¤erent submarkets. In this case, we highlight a novel externality: in the

decentralized equilibrium, due to phantoms, job seekers over-apply to young listings relative to

the social planner optimum.
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In both cases, the planner maximizes net �ow output less vacancy creation costs and listing

renewal costs, i.e.,


 = b+ (1� u)(y � b)� c[v(0)� v(A)]
new vacancies

� k v(A)
renewals

: (13)

3.1 Social Planner Problem 1

In this subsection, we assume that the social planner can choose the �ow of new vacancies,

v(0)�v(A); and the renewal age, A; but is unable to allocate job seekers across listing ages. This
means that the job-�nding rate must be the same in all submarkets, i.e., �(a)m(�(a)) = m(�(0))

for all a 2 [0; A].
It is useful to express v(0) and v(A) as functions of �0 and A; where �0 is the planner�s choice

of initial market tightness. This allows us to write the planner�s objective in a more convenient

form. To do this, we use the steady-state condition that the rate at which vacancies are �lled

equals the rate at which workers �nd jobs, i.e.,

v(0)

Z A

0
�(a)F (a)da = m(�0)u or

v(0) = m(�0)u=

Z A

0
�(a)F (a)da:

Then, using v(A) = v(0)F (A); we rewrite the social planner problem as

max
�0;A

�
m(�0)

�+m(�0)
(y � b)� �

�+m(�0)
m(�0)Z(�0; A)

�
;

where Z(�0; A) = [c(1� F (�0; A)) + kF (�0; A)]=
R A
0 �(�0; a)F (�0; a)da. This notation highlights

the dependence of the survivor function and the job-�lling rate across submarkets on �0.

This social planner objective di¤ers from the standard one in three ways. First, absent

phantoms, in the standard model, there is never an incentive to renew a vacancy, i.e., A!1:
Second, since A!1 and �(a) is a constant in the standard model, the denominator of Z(�0; A);

i.e.,
R A
0 �(�0; a)F (�0; a)da; is simply m(�0)=�0; so v(0) = �0u: In our problem, the social planner

needs to take into account the fact that the choice of �0 determines the pro�le of the job-

�lling rate �(�0; a) across submarkets. Finally, in the usual formulation, the cost associated

with posting and maintaining vacancies is a constant independent of market tightness. Here, in

contrast, the vacancy cost depends directly on �0 since an increase in initial market tightness

makes it more likely that the vacancy renewal cost will be incurred.

To characterize the social planner optimum, let �0 = �0m0(�0)=m(�0) be the elasticity of the

contact function with respect to initial market tightness, let �0 = �0Z�0(�0; A)=Z(�0; A) be the
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elasticity of Z(�0; A) with respect to �0, and de�ne "0 = �0=(�0+�0). The �rst-order condition

of the social planner problem with respect to �0 gives

Z(�0; A) = "0
y � b

�+ (1� "0)m(�0)
; i.e., (14)

c(1� F (�0; A)) + kF (�0; A) = "0
y � b

�+ (1� "0)m(�0)

Z A

0
�(�0; a)F (�0; a)da:

The left-hand side is the average cost of a new listing, which is a weighted average of the cost of

a new vacancy, c, and the cost of renewal, k. The weights correspond to the respective shares

of new vacancies and renewals in each new cohort of listings. The right-hand side is the social

value of a �lled job, "0
y � b

�+ (1� "0)m(�0)
, multiplied by the probability that the listing is �lled

before A is reached,
R A
0 �(�0; a)F (�0; a)da.

The �rst-order condition with respect to A gives

(c� k)[�(�0; A) + �]
Z A

0
�(�0; a)F (�0; a)da = �(�0; A)[c(1� F (�0; A)) + kF (�0; A)]: (15)

The left-hand side is the increase in average listing cost induced by a higher A. The right-hand

side is the marginal welfare gain due to the higher probability of vacancy �lling. In computing

this condition, we use the fact that f(�0; a) = (�(�0; a) + �)F (�0; a):

Combining equations (14) and (15) gives

c� k = �(�0; A)

�(�0; A) + �
"0

y � b
�+ (1� "0)m(�0)

: (16)

A listing is renewed when the capital gain induced by renewal, c�k, is equal to the opportunity
cost of keeping the listing alive, i.e., a term measuring the probability of �nding a worker

multiplied by the social value of a �lled job.

There is a modi�ed Hosios condition under which the decentralized equilibrium gives the

constrained e¢ cient allocation. Comparing equations (14) and (15) to equations (9) and (10)

when r ! 0 implies that the two allocations coincide, i.e., the initial labor market tightness

and the renewal date in the decentralized equililbrium equal those chosen by the social planner

when the bargaining power 
 = 1 � "0. That is, the elasticity of the matching function in the
standard Hosios condition must be replaced by "0 = �0=(�0 + �0).

This condition di¤ers from the standard Hosios condition for several reasons. First, as noted

above, the cost per vacancy varies with �0: This generates a modi�ed Hosios condition for a

reason similar to the one discussed in Julien and Mangin (2019).11 Second, also as discussed

11Julien and Mangin (2019) derive a modi�ed Hosios condition that achieves the constrained e¢ cient outcome.

Their modi�ed Hosios condition accounts for the possibility that net �ow output per �lled vacancy may vary with

market tightness. The similarity here is that the cost per vacancy varies with (initial) market tightness.
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above, �0 determines the shape of market tightness across submarkets, and hence the job-�lling

rate, across submarkets, a feature that is absent in the model without phantoms. Finally, and

less essentially, our model di¤ers from the standard one insofar as (i) there is a �xed cost of

vacancy creation rather than a �ow cost and (ii) vacancies are destroyed at a constant rate.

Neither (i) nor (ii) are due to the presence of phantoms. In Appendix A, we show that when

�rms can post and commit to wages rather than engaging in Nash bargaining, the corresponding

competitive search equilibrium decentralizes the social planner solution in this case.

If the phantom birth rate is set to zero, �rms do not renew their listings and A ! 1: In
this case, the job-�lling rate, �; is a constant over listing age and depends only on initial labor

market tightness, �0; i.e., the job-�lling rate is �(�0) and Z(�0) = c(�(�0) + �)=�(�0). This in

turn implies that the elasticity of Z(�0) with respect to �0 is �0 = (1��0)�=(�(�0)+�), and so

"0 =
�0

�0 + (1� �0)�=(�(�0) + �)
: (17)

Again, the decentralized equilibrium allocation is constrained e¢ cient provided that 
 = 1� "0.
Obsolete information and listing renewal only a¤ect the modi�ed Hosios condition through

the elasticity �0. Vacancy creation and listing renewal do not in themselves generate new

externalities.

3.2 Social Planner Problem 2

We now turn to the case in which the planner can allocate job seekers across submarkets. We

�x the replacement age, A, and the �ow of new vacancies, n0 = v(0) � v(A), to their values
in the decentralized equilibrium. This allows us to focus on the externality associated with

phantoms. We then suppose that the planner chooses tightness by listing age to maximize the

social criterion, 
.

We �rst rewrite 
 in a more convenient form. Noting that

�(1� u) =
Z A

0
�(a)u(a)da

andZ A

0
�(a)u(a)da =

Z A

0
�(a)v(a)da =

Z A

0
(�(a) + �)v(a)da� �

Z A

0
v(a)da = n0 � �

Z A

0
v(a)da;

the planner�s objective can be rewritten as


 = b+ n0

�
y � b
�

� c
�
� (y � b)

Z A

0
v(a)da� kv(A): (18)

The constrained e¢ cient allocation is then the solution to the following optimal control problem:

max
�(�)

�
�(y � b)

Z A

0
v(a)da� kv(A)

�
(�)
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subject to

_v = �(�(�) + �)v (c1)

v(0) = n0 + v(A) (c2)

_p = �(�(�) + �)v (c3)

p(0) = 0; (c4)Z A

0
[(v(a) + p(a)) =�(a)� v(a)] da = 1� n0=�: (c5)

The planner is constrained by the evolution of vacancies by age, (c1) - (c2), the evolution of

phantoms by age, (c3)� (c4), and the equality between the �ows into and out of unemployment

(c5). Equation (c5) can be rewritten as

n0 = �(1� u) + �
Z A

0
v(a)da

and can be interpreted as a resource constraint in the sense that new vacancies just equal

destroyed jobs plus destroyed vacancies.

Let �1(a) and �2(a) be the costates associated with the state variables v(a) and p(a); re-

spectively. In the discussion that follows, we use normalized versions of these costates, s1(a)

and s2(a): The normalizing constant is such that the value of applying to a new listing equals

one. Also, let �e¤ : [0; A] ! R+; �e¤ : [0; A] ! [0; 1]; and ue¤ : [0; A] ! R+ denote the social
planner�s solution.12

In Appendix B, we prove that the solution to the social planner problem has the following

properties for all a 2 [0; A]:
(i) (�s2(a)� s1(a))(1� �(�e¤))�e¤m(1; �e¤) = 1 where s1(a) < �s2(a) � �s2(A) = 0:

The functions s1 : [0; A]! R and s2 : [0; A]! R satisfy

_s1 = B +
1

�e¤
� 1

(1� �(�e¤))�e¤�e¤
� �

(1� �(�e¤))�e¤m(�e¤)
; (19)

_s2 =
1

�e¤
; (20)

with

s1(A) = s1(0)� (B + 1)k=(y � b) = �[(1� �(�e¤(A)))�e¤(A)m(1; �e¤(A))]�1

�s2(0) = [(1��(�e¤(0)))m(1; �e¤(0))]�1�[(1��(�e¤(A)))�e¤(A)m(1; �e¤(A))]�1+(B+1)k=(y�b)
12Note that in an e¤ort to keep the equations manageable, we suppress the dependence of �e¤ ; �e¤ ; and ue¤ on

a:

15



and

B =
�(�e¤(0)) + ��e¤(0)=m(1; �e¤(0))

1� �(�e¤(0))
ue¤(0)

n0
��(�

e¤(A)) + ��e¤(A)=m(1; �e¤(A))

1� �(�e¤(A))
ue¤(A)

n0
> �1:

(ii) Market tightness and the nonphantom proportion evolve according to

� �
e¤�0(�e¤)

1� �(�e¤)
_�
e¤

�e¤
+ �(�e¤)

_�
e¤

�e¤
+
_�e¤

�e¤
=

�
B +

1� �
�e¤

�
(1� �(�e¤))�e¤m(1; �e¤)�

 
m(1; �e¤)

�e¤
+ �

!
;(21)

_�e¤

�e¤
= �

 
m(1; �e¤)

�e¤
+ �

!�
1� (1� �)�e¤

�
: (22)

The initial conditions are �e¤(0) = 1 and �e¤(0) = �0; where �0 is de�ned implicitly by the

resource constraint (c5):

(iii) The nonphantom proportion �e¤(a) is everywhere decreasing in a; and, provided �0(�) �
0, the job-�nding rate is higher when searching listings of age 0 than when searching listings of

age A, i.e., �(0) > �(A):

Property (i) describes the e¢ cient allocation of job seekers across listing ages. Allocating an

additional job seeker to a listing of age a increases expected employment by (1��(�))�m(1; �),
but this increase in expected employment entails an opportunity cost, namely, the creation

(with probability �) of a phantom with shadow value s2(a) and the elimination of a vacancy

with shadow value s1(a).

Both shadow values are negative and the phantom value is larger (less negative) than the

vacancy value. The shadow value of a vacancy is negative because of the resource constraint.

Adding an additional age a vacancy means one fewer �lled job and hence less output. The

shadow value of a phantom is also negative since phantoms hinder the matching process. The

shadow value s2(a) quanti�es the externality associated with phantoms. Integrating equation

(20) forward gives s2(a) = �
R A
a �(b)

�1db. At given tightness � = (v+p)=u, having an additional

phantom increases the number of job seekers by 1=�, a social loss because these job seekers

could be allocated to di¤erent submarkets. As the phantom ages, this impact persists, though

its magnitude varies with tightness. The shadow value of a phantom is the cumulative impact

from its current age to A.

The shadow value s1(a) accounts for the social costs and bene�ts of a vacancy. Integrating

equation (19) forward gives

s1(a) = s1(A)�
Z A

a
fB+�(b)�1gdb+

Z A

a
f[(1��(�(b)))�(b)�(b)]�1+�[(1��(�(b)))�(b)m(1; �(b))]�1gdb
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That is, the shadow value of a vacancy of age a equals the shadow value it will have if it remains

un�lled at age A minus any costs or bene�ts associated with the vacancy in the interim. There

is a �xed opportunity cost B at each instant in time, and given the tightness �; the vacancy

attracts 1=� job seekers, just as phantoms do. The bene�ts are represented by the �nal integral.

Recalling that (�s2(a)� s1(a))(1� �(�))�m(1; �) = 1 and that the vacancy is converted into a
job at rate �(�(a)) = m(1; �(a))=�(a) and gets destroyed at rate �, the last term can be rewritten

as Z A

a
f[�(�(b)) + �][�s2(b)� s1(b)]gdb:

That is, it is the rate at which the vacancy is �lled or destroyed times the associated change in

value.

Property (ii) shows the laws of motion for tightness and the nonphantom proportion in

the social planner solution. By di¤erentiating the allocation rule in (i) and using (19) and

(20), we can eliminate the two costate variables. Equation (21) shows the law of motion for

(1 � �(�(a)))�(a)m(�(a)) the marginal productivity of an age a vacancy, and equation (22)
shows the law of motion for the nonphantom proportion. Combining the two equations, we

obtain the following di¤erential equation characterizing the change in tightness:

[� �
e¤�0(�e¤)

1� �(�e¤)
+ �(�e¤)]

_�
e¤

�e¤
= B(1� �(�e¤))�e¤m(1; �e¤)� (1� �)�e¤(�(�e¤)�(�e¤) + �):

Property (iii) describes some of the characteristics of the e¢ cient allocation. The nonphan-

tom proportion falls as listings age and the marginal productivity of job seekers is larger at age

A than at age 0. When the elasticity � is well-behaved, i.e., when �0(�e¤) � 0, this also implies
that the job-�nding rate tends to decrease with listing age.

The directed search allocation is not constrained e¢ cient. The rules allocating job seekers

across listing ages in the directed search (decentralized) and the constrained e¢ cient allocations

are, respectively

�ds(a)m(1; �ds(a)) = m(1; �ds(0)) (23)

(�s2(a)� s1(a))(1� �(�e¤(a)))�e¤(a)m(1; �e¤(a)) = 1: (24)

Comparing equations (23) and (24) reveals three di¤erences.

The �rst di¤erence is due to the presence of an intertemporal externality that is internalized

in the social planner allocation. The social planner accounts for phantom birth and phantom

persistence. Allocating a job seeker to listings of a given age translates into more matches at that

age, which fuels the phantom stock. The magnitude of this informational externality decreases

with age. This occurs for two reasons. First, a young phantom persists for a relatively long
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time and thus has the potential to a¤ect many job seekers during its lifetime. Second, given the

concentration of job seekers at young listing ages, the phantom has the potential to a¤ect a large

number of job seekers. Symmetrically, an old phantom has a short life and only impacts the

distribution of job seekers where the density is low. Formally, the shadow value of a phantom

is negative and strictly increases with listing age. It is equal to 0 when A is reached. After this

age, all vacancies have been relisted and phantoms are irrelevant, which explains why phantoms

have a smaller e¤ect as A gets closer.

The second di¤erence is unrelated to phantoms. In the directed search allocation, what

matters is the job-�nding rate �m(1; �), which must be constant over listing age. This implies

that its growth rate, _�=�+� _�=�; equals 0. In the e¢ cient allocation, what matters is the marginal

productivity of job seekers (1� �)�m(1; �), i.e., the job-�nding rate times the elasticity 1 � �.
This elasticity may vary with age, which is re�ected in the term �[��0=(1� �)] _�=� on the left-
hand side of equation (21). Of course, in the special case of a Cobb-Douglas contact function

�0 = 0:

The third di¤erence is also not related to phantoms. Instead, it is due to the relisting cost

that must be paid once the listing reaches A. Suppose � = 0 so that there are no phantoms and,

for simplicity, suppose also that � does not change with �. Evaluating equation (24) at a = A

and a = 0 gives

�s1(A)(1� �)m(1; �e¤(A)) = 1; (25)

�s1(0)(1� �)m(1; �e¤(0)) = 1: (26)

As s1(A) = s1(0) � (B + 1)k=(y � b) < s1(0), we have �(A) < �(0). The relisting cost implies
that the shadow value of a vacancy is discontinuous in A. It is then e¢ cient to allocate more

job seekers per listing at age A than at age 0. Intuitively, the best way to minimize the duration

of a vacancy is to allocate evenly the job seekers across job listings. However, the planner also

wants to minimize vacancy renewal spending. The planner is then willing to increase the average

duration of a vacancy in exchange for a reduction in the probability of reaching age A.

4 Numerical illustrations

We solve the model when the contact function is Cobb-Douglas, i.e., m(�) = ���, 0 < � < 1.

We choose parameters so that the decentralized allocation reproduces various US labor market

outcomes. We then compute the constrained e¢ cient allocation, �rst when the job-�nding rate

is constrained to be constant across listing ages and second when it can vary optimally with a.

Lastly, we discuss the role played by the phantom birth probability.
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4.1 Baseline parametrization

The key to simulating the decentralized allocation is that knowledge of �0 and Amakes it possible

to �nd the functions �ds(a) and �ds(a). (Here the superscript �ds�denotes the decentralized, i.e.,

directed search, allocation.) For our baseline parameterization, we set A = 1; corresponding to

the maximum age of an ad on Craigslist. We now explain how we set �0.

We begin by de�ning the auxilliary function �(a) = v(a)=v(0): Since (i) _� = �(�(�) + �)� ;
(ii) � = �0�

�1=� (using the assumption that the contact function is Cobb-Douglas), and (iii)

� = v=(v + p) =
�

� + (1� �)� ; we have

_�ds = �

24����10

�
�ds

� + (1� �)�ds

� 1��
�

+ �

35 �ds, (27)

�ds(0) = 1. (28)

Given a trial value for �0; once we set values for �; �; � and �; we can solve this di¤erential

equation numerically. We then choose �0 to match the average duration of a vacancy, which can

be written as

d =

Z A

0
�ds(a; �0)(1� �ds(A; �0))�1da:

Davis et al (2013) estimate that the mean vacancy duration is between 14 and 25 days. However

they also report that the work only starts a couple of weeks later. Thus we set d to one month.

This implies an updated value for �0; and we iterate to a solution.

To set the parameters �; �; � and �; we proceed as follows. First, for our baseline calibration,

we set � = 0:5, i.e., �lled vacancies become phantoms with probability 1=2. We then choose

the search parameters �, � and �. Using Shimer�s (2005) methodology, we compute the mean

job-�nding rate and the mean job separation rate for the period 2000-2008. This gives � = 0:5

and � = 0:03. The corresponding unemployment rate is u = �=(�+ �) = 0:0563.

We set � and � to match an aggregate elasticity of hires to the aggregate ratio v=u of

about :3. This is the typical estimate when regressing the log job-�nding probability on the log

vacancy-to-unemployed ratio. Since ���0 = �, �xing � also sets � = ��
��
0 . This elasticity is

d ln�

d ln v=u
= �

d ln �0
d ln v=u

: (29)

Phantoms may impact the number of reported vacancies so that econometricians use (v + p)=u

in lieu of v=u. Therefore we numerically compute the two elasticities.

Once we have solved for �0; we have our numerical solution for the di¤erential equation that

determines �ds(a; �0); we can solve for �ds and �ds: We know that � = �=(� + (1 � �)�) and
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that the equilibrium condition �m(�) = m(�0) implies � = �0��1=�. This gives �ds and �ds for

all a 2 [0; A], namely,

�ds(a; �0) =
�ds(a; �0)

� + (1� �)�ds(a; �0)
; (30)

�ds(a; �0) = �0�
ds(a; �0)

�1=�: (31)

We now set the remaining model parameters: r, y, b, 
, c and k. We normalize y = 1 and

set r = 0 to be able to compute the constrained e¢ cient allocation. We set b = 0:7, a standard

value in the literature.

Last, we set the parameters 
, c and k so that the free-entry condition holds, A = 1 is

optimally chosen and the bargaining power decentralizes the constrained e¢ cient allocation.

That is 
, c and k are chosen to solve


 = 1� "0;

c = J(�0)

�Z 1

0
�(a)e�ra�ds(a; �0)da+

�(1)

r + �+ �(1)
e�rA�ds(1; �0)

�
;

k = J(�0)

�Z 1

0
�(a)e�ra�ds(a; �0)da�

�(1)

r + �+ �(1)

�
1� e�rA�ds(1; �0)

��
:

Table 1 gives the baseline parameters.

� � � y b 
 r c k � �0 A

0:03 0:70 0:15 1 0:7 0:15 0:00 2:29 0:11 0:5 0:12 1:0

Table 1: Calibrated parameters

The elasticity of the matching function with respect to the total number of advertised jobs

v + p is � = 0:15. The corresponding elasticity of the job-�nding rate with respect to the

vacancy-to-unemployed ratio is d ln�=d ln(v=u) = 0:29. When v=u is replaced by (v + p)=u,

this elasticity is 0:37. Workers�bargaining power is 
 = 0:15. It is low because the elasticity

�0 = 0:026 is also small below �. This can be expected in the case without phantoms where

�0 = (1 � �)�=(�(�0) + �). The job-�lling rate �(�0) >> �, so that �0 is low. This implies

that the optimal 
 = �0=(� + �0) is also low. The cost of creating a new job is about twice

one-month value-added. The cost of renewing ads is 11% of one-month value added. This is

larger than the direct cost of ads, but seems in the correct order of magnitude once added wage

and utility costs of editing and managing these ads.

We now show some features of the decentralized allocation. Figure 1 compares the distribu-

tions of listings, vacancies and job-seekers by listing age. It highlights the bias of the job-seekers
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Figure 1: Distributions of listings and job-seekers by listing age

towards young listings. The distribution of vacancies (red crosses) re�ects the pattern of hirings,

which progressively deplete the stock of vacancies. The distribution of listings (discontinuous

blue line) is closer to uniform because half the listings survive job �lling and become phantoms.

The distribution of job-seekers (black line) is heavily distorted towards young listings because

workers fear the phantoms contaminating older listings. In the absence of phantoms, the three

distributions would coincide.

A way to quantify the bias towards young listings is to compute job queues at various listing

ages. The mean job queue between two dates, say a1 and a2, is (a2 � a1)�1
R a2
a1
�(a)�1da. In

the directed search allocation, Table 2 shows that the mean job queue is 6.58 job seekers per

listing for listings aged less than 24 hours. It falls to 4.51 for listings aged between 24 and 48

hours. The �rst week concentrates 68% of the job-seekers�e¤orts. These �gures are broadly in

line with evidence reported in Davis and Samaniego (2018).
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Density of job seekers Mean job queue

Day 1 0.21 6.58

Day 2 0.14 4.51

Day 3 0.10 3.35

Day 4 0.07 2.62

Week 1 0.68 0.96

Week 2 0.18 0.52

Week 3 0.09 0.57

Table 2: Mass of job seekers and job queues at various intervals of listing age

4.2 Phantom birth probability

We now examine some of the e¤ects of changes in the phantom birth probability, �. We consider

three scenarios: the standard one where � = 0:5, the pessimistic one where � = 0:75 and the

optimistic one where � = 0:25. Otherwise, we use the parameter values set in our baseline

calibration with two important exceptions. First, changing � deeply modi�es the competitive

search allocation. This translates into a di¤erent workers�bargaining power 
. Formally the

elasticity �0 is impacted by the new pattern of phantom birth and this also a¤ects the optimal


 = �0=(� + �0). Varying � while holding A �xed would, of course, imply a di¤erent value for

�0; but A = 1 would no longer be the optimal relisting age.

To take this into account, we adapt the solution method used for the baseline calibration.

For given �0, we numerically �nd the functions �ds and �ds and compute the associated optimal

renewal age A using equation (10). Then we update �0 to ensure that the free-entry condition

(9). Lastly we update 
 to �nd the competitive search allocation, i.e., 
 = 1� "0.

� = 0:25 � = 0:50 � = 0:75


 0:08 0:15 0:26

�0 2:77 0:12 0:01

A 1:49 1:000 2:35

u 0:036 0:056 0:112

Table 3: The three scenarios. The model is calibrated with � = 0:5. Then � is decreased to 0:25 or

increased to 0:75, all other parameters being the same but the bargaining power, which is set to its

optimal value 
 = 1� "0.

Table 3 shows the di¤erences between the three scenarios in terms of workers�bargaining

power, initial tightness, renewal age and unemployment rate. The picture is dominated by
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Figure 2: Tightness as a function of listing age and workers�bargaining power

changes in workers�bargaining power, which is halved in the optimistic scenario and doubled

in the pessimistic one. The reason is the elasticity �0 increases with the magnitude of obsolete

information. These di¤erences translate into similar di¤erences in unemployment rate, which

more than triple between the pessimistic and the optimistic scenarios.

Initial tightness strongly decreases with �, re�ecting the increase in workers� bargaining

power and the prevalence of phantoms at higher listing ages. The renewal age is ambiguously

impacted. On the one hand, job-seekers prefer younger vacancies when � is large and the rate

of �lling jobs declines more rapidly with a: On the other hand, workers�bargaining power is

higher and this tends to lengthen the renewal age. This reasoning explains why the renewal age

is longer both in the case where � = 0:25 and � = 0:75.

Figure 2 shows tightness as a function of listing age in the three scenarios. Initial tightness

decreases with �. Workers concentrate their search on young listings when � increases.Figure 3

shows the vacancy proportion as a function of listing age in the three scenarios. As expected,

this proportion decreases with �. The decline with age is very strong when � = 0:75. This is due

to the combination of having more phantoms associated to match formation and a spectacular

decrease in initial tightness due to the much higher workers�bargaining power. The latter e¤ect

implies that the job-�lling rate is impressively large in the beginning of the listing existence. In
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Figure 3: Vacancy proportion as a function of listing age and workers�bargaining power

tun, many phantoms are created.Figure 4 shows the density of listings by age decreases with �.

This naturally implies that job-seekers are more interested in recent listings in this case.Finally,

Figure 5 shows the ratio of the pdf of job-seekers to the pdf of listings by listing age. Figure

5 shows that job seekers very much focus on young listings when � = 0:5 and � = 1. As

� decreases, the distribution gets closer to the distribution of listings by age. Under random

search the two distrbution would coincide and the ratio would always be equal to one.

4.3 Constrained e¢ cient allocation

We turn to the case where the planner can optimally allocate the job-seekers to the di¤erent

cohorts of listings.

We use again the auxiliary variable � . We start with a guess on �0 and then numerically

integrate the following system of di¤erential equations:

_� = �(B���1 + �)� , (32)

�(0) = 1; (33)

�
_�

�
=

��(B���1 + �)(1� (1� �)�)
�� + (1� �)B��0 =(�B��0 + �)

(34)

�(0) = �0: (35)
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Figure 4: Density of listings by listing age
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Figure 5: Job-seeker to listing pdf ratio by listing age
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Figure 6: Tightness in the centralized vs decentralized allocations

We then �nd the associated renewal age using equation (equation de�ning the e¢ cient age) and

update �0 so that equation (equation replacing the free-entry condition) holds. In practice we

update �0 so as to maximize stationary consumption.


 A �0 u

decentralized 0:905 1:0 0:12 0:056

centralized 0:913 1:06 0:50 0:056

Table 4: Centralized vs decentralized allocations

Table 4 displays the key di¤erences between both allocations. Stationary aggregate con-

sumption, 
, is increased by 0.8%. This gain comes from lower costs of vacancy management.

The unemployment rate is the same in both allocations (slightly lower in the centralized one).

The table features two additional �ndings: the renewal age is larger by 6% in the centralized

case and initial tightness is four times larger.

Figure 6 con�rms that the planner has a lower preference for young listings than the job-

seekers have in the decentralized allocation. Tightness is initially larger in the centralized case
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Figure 7: Job-�nding rate by listing age in the centralized vs decentralized allocations

and becomes lower after a week. This pattern implies that workers search for jobs at older

listings. In turn this justi�es that the planner sets a longer renewal age.

Figure 7 shows the job-�nding rate by listing age. The equilibrum condition �(a) = �(0) for

all a � A is not satis�ed in the centralized allocation. Instead, workers who search for jobs at
low listing age have a higher chance of �nding one.

Figure shows the pattern of optimal wage by listing age. Here again, we warn the reader that

this pattern is not seen as realistic. Instead this is a theoretical exercise showing competitive

wage function decentralizing the e¢ cient allocation. The wage increases by 0.7% in one month.

This is needed to make the job-seekers accept lower job-�nding rates when they search for older

listings.

5 Appendix A

In this appendix, we consider the decentralization of the social planner solution when the planner

can choose �0 and A but is unable to direct worker search. In this case, we show that the social

planner allocation can be decentralized in competitive search equilibrium. Suppose �rms post

and commit to wages rather than engaging in Nash bargaining. Let U(w; �0) be the value of
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unemployment for a worker who sends his or her application to a �rm posting a wage of w with

initial labor market tightness �0: Let V (0;w; �0; A) be the value of a new listing with wage w;

tightness �0; and listing renewal age A: The competitive search equilibrium can be described as

the solution to

max
w;�0

U(w; �0) subject to V (0;w; �0; A) = c;

where A is given by equation (6).

The unemployment value is

U(w; �0) =
1

r

�
(r + �)b+m(�0)w

r + �+m(�0)

�
;

and, from equation (5), the value of a new listing is

V (0;w; �0; A) =

�
y � w
r + �

� R A
0 �(a)e

�raF (a)da� ke�rAF (A)
1� e�rAF (A)

:

Using the constraint gives�
y � w
r + �

�Z A

0
�(a)e�raF (a)da = c(1� e�rAF (A)) + ke�rAF (A):

Solving for w gives

w = y � (r + �)c(1� e
�rAF (A)) + ke�rAF (A)R A
0 �(a)e

�raF (a)da
� y � (r + �)�(�0; A)
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Substituting this into U(w; �0) gives

U(�0) =
1

r

�
(r + �)b+m(�0)[y � (r + �)�(�0; A)]

r + �+m(�0)

�
:

We can now maximize U(�0) to �nd the competitive search equilibrium. The necessary condition

for this problem can be written as

m0(�0)[y � b� (r + �)�(�0; A)]�m(�0)��0(�0; A)(r + �+m(�0)) = 0 (36)

To show that this is equivalent to the necessary condition in the social planner problem 1,

we let r go to 0: Now we have

�(�0; A) =
c(1� e�rAF (A)) + ke�rAF (A)R A

0 �(a)e
�raF (a)da

! c(1� F (A)) + kF (A)R A
0 �(a)F (a)da

= Z(�0; A);

and equation (36) becomes

m0(�0)[y � b� �Z(�0; A)]�m(�0)Z�0(�0; A)(�+m(�0)) = 0:

Multiplying through by
�0

m(�0)
gives

�0[y � b� �Z(�0; A)]� �0Z(�0; A)(�+m(�0)) = 0:

�0(y � b)� (�0 + �0)�Z(�0; A)]� �0Z(�0; A)m(�0) = 0:

Finally, dividing by �0 + �0 (and recalling that "0 = �0=(�0 + �0)) gives

"0(y � b)� �Z(�0; A) + (1� "0)Z(�0; A)m(�0) = 0:

This is equivalent to equation (14), i.e.,

Z(�0; A) =
"0(y � b)

�+ (1� "0)m(�0)
:

6 Appendix B

Proof of Proposition 3:
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Planners�problem in raw form.� The planner�s problem is the following

max
�(�)

�(y � b)
Z A

0
v(a)da� kv(A) (�)

subject to

_v = �(�(�) + �)v;

_p = �(�(�) + �)v;

v(0)� v(A) = n0;

p(0) = 0;

1�
Z A

0
[(v(a) + p(a))=�(a)]da+

Z A

0
v(a)da = n0=�:

There are two state variables v and p, and one control variable �.

We now prove the following result.

Theorem 1 In the e¢ cient allocation, the following properties hold:

(�s2 � s1)(1� �(�))�m(1; �) = 1; (37)

where the functions s1 : [0; A]! R and s2 : [0; A]! R are such that

_s1 = Z � 1� (1� �)�
(1� �)�� � �

(1� �(�))�m(1; �) ; (38)

_s2 = 1=�; (39)

where Z 2 R and s1(a) < �s2(a) � �s2(A) = 0 for all a 2 [0; A].

Planner�s problem in standard form.� To solve (�), we transform the integral constraint into
a di¤erential equation with associated boundary conditions. Let x(a) =

R a
0 f[v(s) + p(s)]=�(s)�

v(s)gds for all a 2 [0; A]. The planner�s problem is now:

max
�(�)

�
Z A

0
v(a)da(y � b)� kv(A) (�)

subject to

_v = �(�(�) + �)v;

_p = �(�(�) + �)v;

_x = (v + p)=� � v;

v(0)� v(A) = n0;

p(0) = 0

x(0) = 0;

x(A) = 1� n0=�:
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Solving.� Let H : R4 � R4 � R! R be the Hamiltonian such that:

H(y; �; �) = �v(y � b) + (��2 � �1)(�(�) + �)v + �3[(v + p)=� � v];

where �1 and �2 are the costates associated with the state variables v and p, and �3 is the

costate associated with the auxiliary variable x, z = (v; p; x) and � = (�1; �2; �3). We de�ne

�1(z(0); z(A)) = v(0)�v(A)�n0, �2(z(0); z(A)) = p(0), �3(z(0); z(A)) = x(0), �4(z(0); z(A)) =
x(A)� 1 + n0=�.

We now introduce the main result that we need, a standard theorem in optimal control

problems, which accounts for equality constraints on the state variables at the beginning and at

the end of possible ages. A version can be found in Theorem 11.1 in Hestenes (1966).

Theorem 2 (Maximum principle) Suppose ��(�) is optimal for the optimization problem (�)
and let z� be the corresponding trajectory of the state variables. Then there exists �� :

[0; A]! R3 and �� 2 R4 such that for all a 2 [0; A] :

A. Maximization principle

H(z�(a); ��(a); ��(a)) = max
��0

H(z�(a); ��(a); �) (40)

B. Adjoint equations

_��i = �
@H(z�(a); ��(a); ��(a))

@zi(a)
; i = 1; 2; 3 (41)

C. Transversality conditions

��i (0) =

4X
j=1

��j
@�j
@zi(0)

; i = 1; 2; 3; (42)

��1(A) = �
4X
j=1

��j
@�j
@v(A)

� k; (43)

��2(A)p(A) = 0; (44)

��3(A) = �
4X
j=1

��j
@�j
@x(A)

: (45)

The transversality conditions feature the Lagrange multiplier ��, which is associated with

the constraints �i(�) = 0, i = 1; :::; 4. The number of vacancies at termination age 0 directly

enters the planner�s objective, which explains the additive term in the transversality condition

associated to ��1(A). There are no constraints involving the initial or �nal number of phantoms.

The associated transversality condition is �2(A)p(A) = 0.
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Applying Theorem 2.� Hereafter we neglect the star � notation. We �rst focus on the adjoint

equations and transversality conditions. This gives

@H

@v
= �(y � b) + (��2 � �1)(�(�) + �) + �3(��1 � 1) = � _�1; (46)

@H

@p
= �3=� = � _�2; (47)

@H

@x
= 0 = � _�3; (48)

�1(0) = �1; (49)

�1(A) = �1 � k; (50)

�2(A)p(A) = 0; (51)

�3(0) = �3; (52)

�3(A) = ��4: (53)

It follows that �3(a) = ��4 for all a 2 [0; A].
We now turn to the maximization principle given in A above. Suppose that the �rst-order

condition is necessary. Then we have

@H

@�
= (��2 � �1)�0(�)v � �3

v + p

�2
= 0: (54)

Re-arranging terms, we obtain

�(��2 � �1)(1� �(�))�m(1; �) = �3 (55)

Taking the second derivative of the Hamiltonian gives

@2H

@�2
= (��2 � �1)�00(�)v + 2�3

v + p

�3

=
v + p

�3

�
(��2 � �1)

��00(�)

�0(�)

��0(�)

�(�)
��(�)� + 2�3

�
=

v + p

�3

�
�(��2 � �1)

��00(�)

�0(�)
(1� �(�))�m(1; �) + 2�3

�
:

Once evaluated at the proposed maximum, we have

@2H

@�2
= �3

v + p

�3

�
��00(�)

�0(�)
+ 2

�
: (56)

But ��00(�)=�0(�) = m��(1; �)=�
0(�)� 2 > �2. Thus the candidate solution satis�es the second-

order condition provided that �3 = ��4 < 0, which implies �4 > 0. By virtue of (55), this also
implies ��2 � �1 > 0 for all a 2 [0; A].
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Putting things together.� From (46) and (47), we obtain

_s1 = Z � 1

(1� �)�� +
1

�
� �

(1� �(�))�m(1; �) ; (57)

_s2 = 1=�; (58)

where s1 � �1=�4 and s2 � �2=�4 are the normalized costates and Z = (y � b)=�4 � 1 > �1.
Equation (58) combined with the boundary condition s2(A) = 0 implies that s2(a) < 0 for

all a < A. In turn, equation (55) implies that s1(a) < �s2(a) � 0 for all a 2 [0; A].
Proof of Proposition 3. (i) is an immediate implication of Theorem 1. We have s1(0) =

��1=�4 and s1(A) = ��1=�4�k=�4. Using the di¤erent boundary constraints together with equa-
tion (55), we obtain s1(A) =�[(1��(�(A)))�(A)m(1; �(A))]�1, s1(0) = �[(1��(�(A)))�(A)m(1; �(A))]�1

+(Z + 1)k=(y � b) and �s2(0) = [(1� �(�(0)))m(1; �(0))]�1 �[(1� �(�(A)))�(A)m(1; �(A))]�1

+(Z + 1)k=(y � b).
To �nd Z = B, we use the fact that the Hamiltonian stays constant over age. Then we

derive B from the equality H(z(0); �(0); �(0)) = H(z(A); �(A); �(A)).

(ii) Di¤erentiating equation (55) with respect to age, it comes

(� _s2 � _s1)(1� �)�m(1; �) +
"
� _�
1� � +

_�

�
+ �

_�

�

#
= 0: (59)

Using (57) and (58), we have � _s2 � _s1 = (� � 1)=� �B +[(1� �)��]�1 +�[(1� �)�m(1; �)]�1.
Therefore

� _�
1� � +

_�

�
+ �

_�

�
= B(1� �)�m(1; �)� m(1; �)

�
� �+ (1� �)(1� �)�m(1; �)

�
: (60)

Noting that _� = �0(�) _� and _�=� = �(m(1; �)=� + �)(1� (1� �)�), we �nally have�
�� ���0

1� �

� _�
�
= B(1� �)�m(1; �)� (1� �)�(�+ �)m(1; �)=�): (61)

(iii) We know _� < 0. We have (1 � �(�(0)))m(1; �(0)) = 1=(�s2(0) � s1(0)) > (1 �
�(�(A)))�(A)m(1; �(A)) = �1=s1(A). When �0(�) is su¢ ciently small, this implies that �(0) =
m(1; �(0)) > �(A) = �(A)m(1; �(A)).
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