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Abstract. In this article, I develop a novel identification result for estimating the effect of

an endogenous treatment using a proxy of an unobserved imperfect instrument. I show that

the potential outcomes distributions are partially identified for the compliers. Therefore,

I derive sharp bounds on the local average treatment effect. I write the identified set in

the form of conditional moments inequalities, which can be implemented using existing

inferential methods. I illustrate my methodology on the National Longitudinal Survey of

Youth 1979 to evaluate the returns to college attendance using tuition as a proxy of the

true cost of going to college. I find that the average return to college attendance for people

who attend college only because the cost is low is between 29% and 78%.
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1. Introduction

Ability and cost are the two main drivers of the college education decision. However,

these two variables are in general unobserved by the econometrician when estimating the

returns to college. Ability influences both wages and schooling, which makes education

endogenous. A potential instrument for college education would be its cost (which includes

the financial cost, the opportunity cost, as well as the psychological cost). However, high

ability individuals tend to go to high quality schools (signaling), which often have higher

cost. For this reason, the cost of college education would not be a valid instrument even if it

were observed by the econometrician. Because the actual costs of education are unknown,
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2 TREATMENT EFFECTS WITH MISMEASURED IMPERFECT IVS

researchers often resort to proxy variables such as tuition fees, distance to college, local

unemployment rate, local average earnings, etc, to instrument for education.

This paper proposes an identification result for estimating the returns to college when an

unobserved imperfect instrument like cost is replaced by its proxy (e.g., tuition). I show that

the local average treatment effect defined based on the unobserved imperfect instrument

is partially identified under some mild assumptions. Moreover, I partially identify the

potential outcome distributions for the compliers (e.g., people who go to college only because

the cost is low).

The intuition behind my identification result is the following. The treatment variable

college attendance and the unobserved binary cost variable1 partition the population into

four unobserved groups, commonly referred to as types: the always-takers, individuals who

attend college regardless of the cost level; the never-takers, people who will not attend college

regardless of the cost level; the compliers, those who attend college only because the cost

is low; and the defiers, individuals who attend college only because the cost is high (which

I assume away in the population for convenience). Under my identifying assumptions, the

identified distribution of the observed outcome variable conditional on the treatment and

the proxy is a mixture of the potential outcome distributions for the compliers and the

always-takers or never-takers, where mixture weights depend on the proxy variable while

the mixture components do not. Therefore, I use variations in the proxy variable to derive

sharp bounds on the mixture components, which are the distributions of interest.

I write the identified set in the form of conditional moment inequalities, which is more

conducive to inference. I apply my methodology on the National Longitudinal Survey of

Youth 1979 (NLSY79) data and find that the average return to college attendance for

individuals who attend college only because the cost is low is between 29% and 78%.

Related literature. Chalak (2017) discusses the interpretation of various estimands (Wald,

Instrumental variable: IV, local instrumental variable: LIV) when the true instrument is

valid, but mismeasured. In the current paper, the true instrument is invalid and mismea-

sured. This means that the estimands above will not have any clear causal interpretations.

Kédagni (2018) studies identification of treatment effects when the true instrument is ob-

served, but is invalid. He relies on the existence of a proxy of the true instrument to do

1The true cost of going to college may be continuous. However, I assume that the individuals make

the schooling decision based on their ability and whether the cost is low or high. Each agent has its own

subjective threshold above which she judges the cost high.
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TREATMENT EFFECTS WITH MISMEASURED IMPERFECT IVS 3

identification. This use of a proxy variable for identification purposes is not new in the

literature, see Lubotsky and Wittenberg (2006) and references therein. However, using a

proxy of an invalid unobserved instrumental variable to identify heterogeneous treatment

effects appears novel.

This paper relates to the work by Ura (2018), Lewbel (2007), Mahajan (2006), Kreider

et al. (2012) among others, as it allows for measurement errors in a variable. However,

here the measurement error is in the instrumental variable while the papers above allow for

measurement errors in the treatment variable. Like in Ura (2018), the measurement error

is nonclassical (i.e., it can depend on the true instrument) and differential (i.e., it can be

dependent on the outcome conditional on the true instrument). The paper uses results on

identification of finite mixture models by Henry, Kitamura, and Salanié (2014) to partially

identify parameters of interest. Even though, I derive bounds on the potential outcome

distributions for the compliers, I focus on the local average treatment effect introduced

by Imbens and Angrist (1994) and Angrist, Imbens, and Rubin (1996) in the empirical

illustration. This article also relates to Card (2001) as it proposes a way to do identification

with an invalid instrument like cost, an issue raised by the author.

The remainder of the paper is organized as follows. Section 2 presents the model and

the identifying assumptions. In Section 3, we provide the identification results. Section 4

shows some empirical evidence and Section 5 concludes. The proofs are presented in the

appendix.

2. Analytical Framework

Consider the following IV model{
Y = αD + U

D = δZ + V
(2.1)

where the vector (Y,D,Z) is the observed data, Y ∈ Y ⊂ R, D and Z are binary, and

(α,U, δ, V ) is a vector of latent variables. Since D and Z are binary, for the model to be

well-specified, we must have V ∈ {0, 1} and δ ∈ {−1, 0, 1}. Indeed, the support of (δ, V )

is {(0,1),(1,0),(0,0),(-1,1)}2. The standard LATE assumptions introduced by Imbens and

Angrist (1994) are:

2To see this, suppose Y = g(D, Ũ) and D = h(Z, Ṽ ). Since D and Z are binary, we can rewrite

Y = αD + U and D = δZ + V , where α = [g(1, Ũ) − g(0, Ũ)], U = g(0, Ũ), δ = [h(1, Ṽ ) − h(0, Ṽ )],

V = h(0, Ṽ ), and h(z, Ṽ ) ∈ {0, 1} for all z ∈ {0, 1}.
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4 TREATMENT EFFECTS WITH MISMEASURED IMPERFECT IVS

• Z |= (α,U, δ, V ) (full independence);

• δ ≥ 0, i.e., δ ∈ {0, 1} (monotonicity);

• E[δ] 6= 0 (non-zero effect of Z on D).

Under these assumptions, LATE ≡ E[α|δ = 1] is identified as

αIV ≡
Cov(Y,Z)

Cov(D,Z)
=

E[Y |Z = 1]− E[Y |Z = 0]

E[D|Z = 1]− E[D|Z = 0]
.

First, I relax full independence Z |= (α,U, δ, V ) to conditional independence Z |= (α,U)|(δ, V ).

The intuition is that if (δ, V ) were independent of (α,U), there would be no endogene-

ity issue in the model as long as Z is exogenous. In such a case, E[α] is identified by

E[Y |D = 1]−E[Y |D = 0]. Therefore, controlling for (δ, V ) would help deal with endogene-

ity in the model.

Suppose now that the econometrician does not observe Z, instead she observes a proxy

W that satisfies: (Z,W ) |= (α,U) | (δ, V ). As the instrument Z, its proxy W can be

dependent on the unobserved heterogeneity (α,U, δ, V ). This assumption helps partially

identify the same LATE = E[α|δ = 1]. All results derived in the paper hold conditionally

on covariates. To ease the exposition, I drop exogenous covariates from the model.

As illustration, let D be an indicator for college education, Y be log wage, Z be an

indicator for low college cost, and W be tuition fees (or an indicator for college proximity).

High ability individuals tend to go to high quality schools (signaling), which often have

higher cost (See Table 1 for the NLSY79 data). Therefore, Z would not be independent of

(α,U, δ, V ).

Table 1. Ability and tuition

tuition OLS

ability 0.1071∗∗

(0.0538)

n 1230

Standard errors (in parentheses)

** stands for 5% significant.

We are interested in learning some characteristics of the latent variable α. Denote Y1 =

α+ U and Y0 = U . I now state my main identifying assumptions.

Assumption 1 (Selection on unobservables). The vector (Z,W ) is independent of Yd given

the unobservables (δ, V ), i.e., (Z,W ) |= Yd | (δ, V ), for both d = 0 and d = 1.
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TREATMENT EFFECTS WITH MISMEASURED IMPERFECT IVS 5

Assumption 2 (Monotonicity). δ ≥ 0.

Assumption 1 states that the vector of the imperfect instruments (Z,W ) is independent

of the potential outcomes Yd given the first stage unobserved heterogeneity (δ, V ). It is

weaker than the assumption (Z,W ) |= (α,U) | (δ, V ) discussed above. Assumption 2 is the

standard monotonicity assumption that rules out the the element (−1, 1) from the support

of (δ, V ). It is used here for convenience. Relaxing this assumption will only increase the

dimensionality of the parameters to be identified.3

In the treatment effect literature, the unobserved heterogeneity (δ, V ) partition the pop-

ulation into four unobserved groups known as types or strata: the always-takers, the defiers,

the compliers and the never-takers. For example, in my framework, the always-takers are

Table 2. Subpopulations

Types δ V

Always-takers 0 1
Compliers 1 0
Defiers -1 1
Never-takers 0 0

people who would go to college regardless of the cost being low or high; the compliers are

individuals who attend college only because the cost is low; the never-takers are people who

will not go to college whether the cost is low or not; and the defiers are individuals who

attend college only because the cost is high.

3. Identification results

In this section, I provide a heuristic derivation of the main results in the paper. Formal

proofs are relegated to the appendix. I first write the distribution of the observed outcome

Y conditional on the treatment D = 1 and the proxy variable W = w as a mixture of

distributions of the potential outcome Y1 for the compliers group (δ = 1, V = 0) and

the always-takers group (δ = 0, V = 1), where only the mixture weights depend on w.

Therefore, I use variations in w to write the compliers and always-takers distributions of

Y1 as functions of two parameters that are partially identified. Furthermore, I show that

point-identification can be achieved under some tail conditions.

3See Appendix B for more details.
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6 TREATMENT EFFECTS WITH MISMEASURED IMPERFECT IVS

3.1. Partial identification. For y ∈ Y, we have

P(Y ≤ y|D = 1,W = w) = P(Y1 ≤ y|D = 1,W = w),

= P(Y1 ≤ y|D = 1, δ = 1, V = 0,W = w)P(δ = 1, V = 0|D = 1,W = w)

+P(Y1 ≤ y|D = 1, δ = 0, V = 1,W = w)P(δ = 0, V = 1|D = 1,W = w),

= P(Y1 ≤ y|Z = 1, δ = 1, V = 0,W = w)P(δ = 1, V = 0|D = 1,W = w)

+P(Y1 ≤ y|D = 1, δ = 0, V = 1,W = w)P(δ = 0, V = 1|D = 1,W = w),

where the second equality follows from the law of iterated expectations (LEI) and Assump-

tion 2, and the third holds because the following equality holds: {D = 1, δ = 1, V = 0} =

{Z = 1, δ = 1, V = 0}. Using Assumption 1 and this implication {δ = 0, V = 1} =⇒ {D =

1} (the always-takers take the treatment), we have

P(Y ≤ y|D = 1,W = w) = P(Y1 ≤ y|δ = 1, V = 0)P(δ = 1, V = 0|D = 1,W = w)

+P(Y1 ≤ y|δ = 0, V = 1)P(δ = 0, V = 1|D = 1,W = w).

The identified distribution P(Y ≤ y|D = 1,W = w) is a mixture of two distributions of

interest P(Y1 ≤ y|δ = 1, V = 0) and P(Y1 ≤ y|δ = 0, V = 1) with unknown weights functions

of w. Similarly, the identified distribution P(Y ≤ y|D = 0,W = w) is a mixture of two

distributions of interest P(Y0 ≤ y|δ = 1, V = 0) and P(Y0 ≤ y|δ = 0, V = 0) with unknown

weights functions of w.

P(Y ≤ y|D = 0,W = w) = P(Y0 ≤ y|δ = 1, V = 0)P(δ = 1, V = 0|D = 0,W = w)

+P(Y0 ≤ y|δ = 0, V = 0)P(δ = 0, V = 0|D = 0,W = w).

For the sake of clarity of exposition, I use some additional notation.

Notation 1. Denote αd(w) ≡ P(δ = 1, V = 0|D = d,W = w), F (y|d,w) ≡ P(Y ≤ y|D =

d,W = w), αd(A) ≡ P(δ = 1, V = 0|D = d,W ∈ A), F (y|d,A) ≡ P(Y ≤ y|D = d,W ∈ A),

Fd(y|1, 0) ≡ P(Yd ≤ y|δ = 1, V = 0), and Fd(y|0, d) ≡ P(Yd ≤ y|δ = 0, V = d).

We have the following two-component mixture models:

F (y|d,w) = Fd(y|1, 0)αd(w) + Fd(y|0, d)(1− αd(w)), (3.1)

for each d ∈ {0, 1}. Therefore, I follow the results of Henry, Kitamura, and Salanié (2014)

on identification of finite mixture models to show that the distributions Fd(y|1, 0) and

Fd(y|0, d) are identified up to two scalar parameters that are partially identified. Indeed,

I show that for some subsets Ad0 and Ad1 of W, the distributions Fd(y|0, d), Fd(y|1, 0), and
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TREATMENT EFFECTS WITH MISMEASURED IMPERFECT IVS 7

the probability weight αd(w) can be written as functions of two parameters θd and ηd as

follows:4

Fd(y|0, d) = F (y|d,Ad0)− ηd
[
F (y|d,Ad1)− F (y|d,Ad0)

]
,

Fd(y|1, 0) = F (y|d,Ad0) +
(
θd − ηd

) [
F (y|d,Ad1)− F (y|d,Ad0)

]
, (3.2)

αd(w) =
1

θd

(
ηd + Λd(w)

)
,

where

Λd(w) =
F (yd|d,w)− F (yd|d,Ad0)

F (yd|d,Ad1)− F (yd|d,Ad0)

for some yd ∈ Y. An implicit assumption behind this result is that there exist yd, Ad0 and

Ad1 such that F (yd|d,Ad1) 6= F (yd|d,Ad0).

Under a relevance assumption that I discuss below, if F (y|d,Ad1) = F (y|d,Ad0) for all

y, then the distributions Fd(y|1, 0) and Fd(y|0, d) are equal and point-identified. Indeed,

we have F (y|d,Ad1) − F (y|d,Ad0) = [αd(Ad1) − αd(Ad0)][Fd(y|1, 0) − Fd(0, d)]. Suppose that

αd(Ad1) 6= αd(Ad0). Then F (y|d,Ad1) = F (y|d,Ad0) implies Fd(y|1, 0) = Fd(y|0, d). By

plugging the latter equality in Equation (3.1), it follows that the distributions Fd(y|1, 0) and

Fd(y|0, d) are identified and are both equal to the distribution of the outcome conditional

on the treatment F (y|d).

Notice that I turn the problem to a parametric model, which is easier to deal with as it

reduces the dimensionality of the problem. The parameters ηd and θd are partially identified

using the monotonicity condition of a cumulative distribution function and the condition

on the probability weights as follows:

f(y|d,Ad0)− ηd
[
f(y|d,Ad1)− f(y|d,Ad0)

]
≥ 0,

f(y|d,Ad0) +
(
θd − ηd

) [
f(y|d,Ad1)− f(y|d,Ad0)

]
≥ 0, (3.3)

0 ≤ 1

θd

(
ηd + Λd(w)

)
≤ 1,

for all y and w, where f(y|d,A) denotes the density (or probability mass) function of Y

conditional on (D = d,W ∈ A).

Before I summarize the above discussion, let me state clearly one relevance assumption

that I use.

4See Appendix A.1 for more details.
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8 TREATMENT EFFECTS WITH MISMEASURED IMPERFECT IVS

Assumption 3 (Relevance). For each d ∈ {0, 1}, there exist two subsets Ad0 and Ad1 of W
such that αd(Ad0) 6= αd(Ad1).

Proposition 1. Under Assumptions 1, 2 and 3, the following holds.

(1) If F (yd|d,Ad1) 6= F (yd|d,Ad0) for some yd ∈ Y, then the distributions Fd(y|1, 0) and

Fd(y|0, d) are partially identified as described by Equations (3.2) and (3.3). The

identification region is sharp.

(2) If F (y|d,Ad1) = F (y|d,Ad0) for all y ∈ Y, then the distributions Fd(y|1, 0) and

Fd(y|0, d) are point-identified and are both equal to the conditional distribution F (y|d).

The proposition above shows that in general, the potential outcome distributions are not

point identified, but partially identified. However, in some extreme cases, they are point-

identified. As a corollary of this proposition, sharp bounds on the LATE can be obtained as

the interval defined by the minimum and the maximum of the difference of the expectations

of the potential outcomes distributions for compliers F1(y|1, 0) and F0(y|1, 0).

Denote by Ωd the (sharp) identified set for (θd, ηd) and by E[Fd(y|1, 0)] the expectation

of the distribution Fd(y|1, 0), d ∈ {0, 1}.

Corollary 1. Under Assumptions 1, 2 and 3, the following holds.

inf
(θ1,η1)∈Ω1

E[F1(y|1, 0)]− sup
(θ0,η0)∈Ω0

E[F0(y|1, 0)]

≤ E[α|δ = 1] ≤

sup
(θ1,η1)∈Ω1

E[F1(y|1, 0)]− inf
(θ0,η0)∈Ω0

E[F0(y|1, 0)].

These bounds are sharp.

The proof of Corollary 1 is straightforward since the distributions Fd(y|1, 0), d ∈ {0, 1},
are linear in the parameters θd and ηd, and the identified set Ωd is compact.

Similarly, we can obtain bounds for the local quantile treatment effect, the distributional

treatment effect, and many other parameters that are functions of the potential outcomes

distributions for compliers.

3.2. Point-identification under tail restrictions. In this subsection, I show that point-

identification of the potential outcome distributions for the compliers can be obtained under

the following assumption.
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Assumption 4 (Tail restrictions (TR)). limy↓y`
F0(y|1,0)
F0(y|0,0) = 0 and limy↑yu

1−F1(y|1,0)
1−F1(y|0,1) = 0,

where y` and yu are lower and upper bounds of the support Y, repectively.

The intuition behind this assumption is the following. Think of the always-takers as

the high return individuals, the never-takers as the low return ones, and the compliers

as the marginal individuals. The conditition limy↑yu
1−F1(y|1,0)
1−F1(y|0,1) = 0 states that among

people who attended college, the high earners among the always-takers earn an order of

magnitude higher than the high earners among the compliers. Similarly, The assumption

limy↓y`
F0(y|1,0)
F0(y|0,0) = 0 means that among people who did not attend college, the low earners

among the never-takers earn an order of magnitude less than the low earners among the

compliers. Jochmans, Henry, and Salanié (2017) also study nonparametric partial identi-

fication of finite mixtures with varying weights and fixed component distributions under

some tail restrictions.

Proposition 2. Under Assumptions 1, 2, 3 and 4, the distributions F1(y|1, 0) and F0(y|1, 0)

are point-identified as follows:

F0(y|1, 0) = F (y|0, A0
0) + 1

1−ζ0(A0
1,A

1
0)

[
F (y|0, A0

1)− F (y|0, A0
0)
]
,

F1(y|1, 0) = F (y|1, A1
0) + 1

1−π1(A1
1,A

1
0)

[
F (y|1, A1

1)− F (y|1, A1
0)
]
,

(3.4)

where

ζ0(A0
1, A

0
0) = lim

y↓y`
F (y|0, A0

1)

F (y|0, A0
0)
, and π1(A1

1, A
1
0) = lim

y↑yu
1− F (y|1, A1

1)

1− F (y|1, A1
0)
.

The result of this proposition combined with that of Proposition 1 can serve as a test

for Assumption 4. Indeed, under Assumptions 1, 2, 3 and 4, the bounds of Proposition 1

remain valid. Therefore, the point-identified distributions in Proposition 2 must lie within

those bounds. Otherwise, Assumption 4 is not compatible with the other three. From

Proposition 2, we obtain point-identification of the LATE.

In the next section, I illustrate how the bounds of Proposition 1 can be constructed in

practice using the NLSY79 data.

4. Empirical results: Returns to college

In this section, I use the methodology developed in this paper to evaluate the returns to

college attendance using tuition fees as a proxy for the cost of going to college. As discussed

in the introduction, the cost of college education comprises the financial cost, the opportu-

nity cost, the psychological cost (cost of effort), etc. High ability students usually tend to
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10 TREATMENT EFFECTS WITH MISMEASURED IMPERFECT IVS

attend high quality schools (signaling), which often have higher attendance cost.5 For this

reason, the educational cost, even if it were observed, would not be a good instrument for

schooling as it is not independent of ability. Card (2001) warns researchers against using

variables that are related to educational institutions like tuition fees or distance to college

as instruments for schooling.

For my analysis, I use the data of Heckman, Tobias, and Vytlacil (2001). The data

is a sample of 1,230 white males taken from the National Longitudinal Survey of Youth

1979. The outcome variable is the log weekly wage labelled “lwage”, the treatment variable

“college” is the indicator of whether the individual completed at least 13 years of education

or not. The proxy variable “tuit17” is the tuition fees at age 17. Table 3 shows the

descriptive statistics. In the data, 43% of the individuals completed 13 years of education.

The data also contains a measure of ability we use to show some evidence that tuition is

correlated with ability. Notice that Kédagni and Mourifié (2015) reject the independence

assumption between potential earnings and tuition fees.

Table 3. Summary Statistics

Total

Observations 1,230

lwage 2.4138 (0.5937)
college 0.4325 (0.4956)
tuit17 8.5686 (4.1277)
abil 1.7966 (2.1844)

Average and standard deviation (in the parentheses)

I rewrite inequalities in (3.3) in the form of conditional moment inequalities, which allows

me to use existing inference methods such as those of Chernozhukov, Lee, and Rosen (2013)

and Chernozhukov et al. (2015). One could alternatively use Andrews and Shi (2013) and

Andrews, Kim, and Shi (2016). See the appendix for the details of the implementation.

Table 4 displays the confidence regions for different parameters. The results show that

the 95% confidence for the LATE is between is between 0.2545 and 0.5753 log points, that

is, the average return to college for individuals who attend college only because the cost is

low is between 29% and 78%. This parameter may be relevant for policies which aim at

reducing the college attendance cost, as it shows that the return is positive and substantial

5Note however that high quality schools are more likely to provide scholarships to their students, which

can compensate their high cost. But, still the attendance cost for these schools remains high.
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TREATMENT EFFECTS WITH MISMEASURED IMPERFECT IVS 11

for people who are sensitive to the cost. Covariates can be included in the analysis, but the

Table 4. Confidence sets for parameters

Parameters Estimates 95% conf. LB 95% conf. UB

θ1 0.1 9.1

η1 0.5 50

θ0 0.1 9.1

η0 0.5 50
E[Y1|δ = 1] 2.5185 2.6822
E[Y0|δ = 1] 2.1069 2.2640
LATE ≡ E[α|δ = 1] 0.2545 0.5753
OLS 0.4039∗∗∗ 0.3408 0.4671

(0.0322)

Standard errors (in parentheses); *** stands for 1% significant;

conf.: confidence; LB: lower bound; UB: upper bound.

size of the data is not big enough to allow me to do so.

5. Conclusion

This paper develops a new identification result for evaluating the effect of an endogenous

treatment when the researcher observes a proxy of an imperfect instrumental variable. I

derive sharp bounds on the potential outcomes distributions for compliers and hence on

the local average treatment effect. I show that inference on the identified set can be done

using existing results on intersection bounds. I apply my methodology on the National

Longitudinal Survey of Youth 1979 and find that the average return to college attendance

for people who attend college only because the cost is low is between 29% and 78%.

My approach requires the treatment variable and the imperfect instrument to be discrete.

The next step of this research will be the extension of the methodology to continuous

treatments and instruments. This is left for future research.
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Appendix A. Proofs

A.1. Proof of Proposition 1. Validity of the bounds: Consider the mixture model

given by Equation (3.1)

F (y|d,w) = Fd(y|1, 0)αd(w) + Fd(y|0, d)(1− αd(w)). (A.1)

We have

F (y|d,Ad1)− F (y|d,Ad0) =
[
αd(Ad1)− αd(Ad0)

][
Fd(y|1, 0)− Fd(y|0, d)

]
. (A.2)

Therefore, under Assumption 3, we can write

F (y|1, 0) = Fd(y|0, d) +
1

αd(Ad1)− αd(Ad0)

[
F (y|d,Ad1)− F (y|d,Ad0)

]
,

which together with (A.1) imply

F (y|d,Ad0) = Fd(y|0, d) +
αd(Ad0)

αd(Ad1)− αd(Ad0)

[
F (y|d,Ad1)− F (y|d,Ad0)

]
.

Hence,

Fd(y|0, d) = F (y|d,Ad0)− ηd
[
F (y|d,Ad1)− F (y|d,Ad0)

]
, (A.3)

Fd(y|1, 0) = F (y|d,Ad0) + (θd − ηd)
[
F (y|d,Ad1)− F (y|d,Ad0)

]
, (A.4)

where θd = 1
αd(Ad

1)−αd(Ad
0)

and ηd =
αd(Ad

0)

αd(Ad
1)−αd(Ad

0)
. From there, it is straightforward that (2)

holds, i.e., if F (y|d,Ad1)−F (y|d,Ad0) for all y ∈ Y, then Fd(y|0, d) = Fd(y|1, 0) = F (y|d,Ad0).

Suppose now that there exists yd such that F (yd|d,Ad1)− F (yd|d,Ad0) 6= 0. Then

F (yd|d,w)− F (yd|d,Ad0)

F (yd|d,Ad1)− F (yd|d,Ad0)
=
αd(Ad1)− αd(Ad0)

αd(w)− αd(Ad0
= θdαd(w)− ηd ≡ Λd(w).

Therefore,

αd(w) =
1

θd

(
Λd(w) + ηd

)
, (A.5)

where

Λd(w) =
F (yd|d,w)− F (yd|d,Ad0)

F (yd|d,Ad1)− F (yd|d,Ad0)
.

For Equations (A.3) and (A.4) to represent cumulative distribution functions, θd and ηd

must satisfy the monotonicity condition of a distribution function, i.e.,

f(y|d,Ad0)− ηd
[
f(y|d,Ad1)− f(y|d,Ad0)

]
≥ 0, (A.6)

f(y|d,Ad0) +
(
θd − ηd

) [
f(y|d,Ad1)− f(y|d,Ad0)

]
≥ 0. (A.7)
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Also, for Equation (A.5) to represent a probability weight, θd and ηd must satisfy the

non-negativity condition and the condition that a probability is no greater than 1, i.e.,

0 ≤ 1

θd

(
ηd + Λd(w)

)
≤ 1. (A.8)

Thus, the bounds are valid. It remains to show that they are sharp.

Sharpness: Given the above constraints A.6, A.7 and A.8, we need to find for each

(θ0, θ1, η0, η1) a joint distribution on (Y0, Y1, δ, V, Z,W ) that generates a joint distribution

on the data (Y,D,W ) through the model (2.1) and satisfies Assumptions 1, 2 and 3. Define

Fd(y|1, 0), Fd(y|0, d)) and αd(w) as in (A.3), (A.4) and (A.5), respectively. I propose the

following conditional distribution for (δ, V, Z) given W = w

P(δ = 1, V = 0, Z = 1|w) ≡ α1(w)P(D = 1|W = w),

P(δ = 1, V = 0, Z = 0|w) ≡ α0(w)P(D = 0|W = w),

P(δ = 0, V = 1, Z = 0|w) ≡ 0.25(1− α1(w))P(D = 1|W = w),

P(δ = 0, V = 1, Z = 1|w) ≡ 0.75(1− α1(w))P(D = 1|W = w),

P(δ = 0, V = 0, Z = 1|w) ≡ 0.25(1− α0(w))P(D = 0|W = w),

P(δ = 0, V = 0, Z = 0|w) ≡ 0.75(1− α0(w))P(D = 0|W = w),

and the following joint distribution for (Y0, Y1, δ, V, Z) conditional on W = w

P(Y0 ≤ y0, Y1 ≤ y1, δ = 1, V = 0, Z = z|w) ≡ F0(y0|1, 0)F1(y1|1, 0)P(δ = 1, V = 0, Z = z|w),

P(Y0 ≤ y0, Y1 ≤ y1, δ = 0, V = 1, Z = z|w) ≡ F0(y0|0, 1)F1(y1|0, 1)P(δ = 0, V = 1, Z = z|w),

P(Y0 ≤ y0, Y1 ≤ y1, δ = 0, V = 0, Z = z|w) ≡ F0(y0|0, 0)F1(y1|0, 0)P(δ = 0, V = 0, Z = z|w).

Assumption 2 holds by construction. We can check that Assumption 1 holds. For instance,

P(Y1 ≤ y1|δ = 1, V = 0, Z = z,W = w) =
P(Y1 ≤ y1, δ = 1, V = 0, Z = z|W = w)

P(δ = 1, V = 0, Z = z|W = w)
,

=
limy0↑∞ P(Y0 ≤ y0, Y1 ≤ y1, δ = 1, V = 0, Z = z|W = w)

P(δ = 1, V = 0, Z = z|W = w)
,

=
F1(y1|δ = 1, V = 0)P(δ = 1, V = 0, Z = z|w)

P(δ = 1, V = 0, Z = z|w)
,

= F1(y1|δ = 1, V = 0).

The reasoning is similar for all other cases. This completes the proof.
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A.2. Inference. Consider the following conditions that θd and ηd need to satisfy:

f(y|d,Ad0)− ηd
[
f(y|d,Ad1)− f(y|d,Ad0)

]
≥ 0, (A.9)

f(y|d,Ad0) +
(
θd − ηd

) [
f(y|d,Ad1)− f(y|d,Ad0)

]
≥ 0, (A.10)

0 ≤ 1

θd

(
ηd + Λd(w)

)
≤ 1. (A.11)

By Bayes’ rule, we have

f(y|d,Ad` ) =
P(D = d,W ∈ Ad` |Y = y)f(y)

P(D = d,W ∈ Ad` )
, ` ∈ {0, 1},

where f(y) is the probability density function of Y . Thus, for all y such that f(y) > 0, we

can rewrite the first two inequalities (A.9) and (A.10) as

P(D = d,W ∈ Ad0|Y = y)

P(D = d,W ∈ Ad0)
−ηd

[P(D = d,W ∈ Ad1|Y = y)

P(D = d,W ∈ Ad1)
− P(D = d,W ∈ Ad0|Y = y)

P(D = d,W ∈ Ad0)

]
≥ 0,

P(D = d,W ∈ Ad0|Y = y)

P(D = d,W ∈ Ad0)
+(θd−ηd)

[P(D = d,W ∈ Ad1|Y = y)

P(D = d,W ∈ Ad1)
−P(D = d,W ∈ Ad0|Y = y)

P(D = d,W ∈ Ad0)

]
≥ 0,

which are respectively equivalent to

E
[
1{D = d,W ∈ Ad0}c1 − ηd(1{D = d,W ∈ Ad1}c0 − 1{D = d,W ∈ Ad0}c1)|Y = y

]
≥ 0,

E
[
1{D = d,W ∈ Ad0}c1+(θd−ηd)(1{D = d,W ∈ Ad1}c0−1{D = d,W ∈ Ad0}c1)|Y = y

]
≥ 0,

where c0 = P(D = d,W ∈ Ad0) and c1 = P(D = d,W ∈ Ad1).

By multiplying the last condition (A.11) by θdsign(θd), it can be written as{
sign(θd)

(
ηd + Λd(w)

)
≥ 0

sign(θd)
(
θd − ηd − Λd(w)

)
≥ 0

where sign(θd) = 1{θd > 0} − 1{θd < 0}, which can equivalently be rewritten as
E
[
sign(θd)

(
ηd + 1{Y ≤ yd}k1 − k2|D = d,W = w

) ]
≥ 0

E
[
sign(θd)

(
θd − ηd − 1{Y ≤ yd}k1 + k2|D = d,W = w

) ]
≥ 0

where k1 = 1
F (yd|d,Ad

1)−F (yd|d,Ad
0)

, and k2 =
F (yd|d,Ad

0)

F (yd|d,Ad
1)−F (yd|d,Ad

0)
.
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To summarize, we have the following conditional moment inequalities:

E
[
1{D = d,W ∈ Ad0}c1 − ηd(1{D = d,W ∈ Ad1}c0 − 1{D = d,W ∈ Ad0}c1)|Y = y

]
≥ 0,

E
[
1{D = d,W ∈ Ad0}c1 + (θd − ηd)(1{D = d,W ∈ Ad1}c0 − 1{D = d,W ∈ Ad0}c1)|Y = y

]
≥ 0,

E
[
sign(θd)

(
ηd + 1{Y ≤ yd}k1 − k2|D = d,W = w

) ]
≥ 0

E
[
sign(θd)

(
θd − ηd − 1{Y ≤ yd}k1 + k2|D = d,W = w

) ]
≥ 0.

Implementation. In my empirical illustration, Y=lwage, D=college, W=tuit17, and Z=indicator

of low cost (unobserved). I use the clrbound command of Chernozhukov et al. (2015) with

the local linear method. I set Ad1 = 1{W ≤ F−1
W (0.5)} and Ad0 = 1{W > F−1

W (0.5)} for each

d = 0 and d = 1, where F−1
W (α) is the α-th quantile of W . I replace c0, c1, k1, k2 by their

sample analogs. Mourifié and Wan (2017) showed the validity of this plug-in approach in

the intersection bounds context. Let

m(D,W ; θd, ηd|1, 0) = 1{D = d,W ∈ Ad0}c1−ηd(1{D = d,W ∈ Ad1}c0−1{D = d,W ∈ Ad0}c1.

I do a grid search of (θd, ηd) over [−M,M ] × [−L,L], where M and L are arbitrarily

large. After applying the clrbound command on the inequalities above, I keep the values

of (θd, ηd) for which the test is not rejected. For each such (θd, ηd), I obtain the estimate

m̂(y; θd, ηd|1, 0) of E[m(D,W ; θd, ηd|1, 0)|Y = y], its standard error ŝ(y; θd, ηd|1, 0) and the

critical value k0.95. From there, I get the estimate of the density fd(y; θd, ηd|1, 0):

f̂0.95
d (y; θd, ηd|1, 0) =

[
m̂(y; θd, ηd|1, 0) + k0.95ŝ(y; θd, ηd|1, 0)

]
f̂(y),

where f̂(y) = 1
nh

∑n
i=1K(y−Yih ), K(u) = 3

4
√

5
(1−1

5u
2)1

{
|u| ≤

√
5
}

, h = n−1/5
[
0.9 min(σY ,

Q3−Q1

1.349 )
]
,

σY , Q1, Q3 are empirical standard deviation, first and third quartiles of Y , respectively.

A.3. Proof of Proposition 2. I adapt the proof in Kédagni (2018) to the current setting.

Proof. Under Assumption 1, Equation (A.1) holds and we have for d = 1,

1− F (y|1, w) = α1(w) [1− F1(y|1, 0)] + (1− α1(w)) [1− F1(y|0, 1)] .

Under Assumption 3, at least one of the weights α1(A1
1) and α1(A1

0) is different from 1.

Assume without loss of generality that α1(A1
0) 6= 1. Then

lim
y↑yu

1− F (y|1, A1
1)

1− F (y|1, A1
0)

= lim
y↑yu

α1(A1
1)1−F1(y|1,0)

1−F1(y|0,1) + 1− α1(A1
1)

α1(A1
0)1−F1(y|1,0)

1−F1(y|0,1) + 1− α1(A1
0)

=
1− α1(A1

1)

1− α1(A1
0)
≡ π1(A1

1, A
1
0),

where the second equality holds under Assumption 4.
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Under Assumption 3, we have 1
1−π1(A1

1,A
1
0)

=
1−α1(A1

0)

α1(A1
1)−α1(A1

0)
. Then

1
1−π1(A1

1,A
1
0)

[
F (y|1, A1

1)− F (y|1, A1
0)
]

=
α1(A1

1)−α1(A1
0)

1−π1(A1
1,A

1
0)

[F1(y|1, 0)− F1(y|0, 1)] ,

= (1− α1(A1
0)) [F1(y|1, 0)− F1(y|0, 1)] ,

= F1(y|1, 0)− F (y|1, A1
0),

where the first equality follows from Equation (A.2), the second from the above equality,

and the last holds from (A.1). Thus,

F1(y|1, 0) = F (y|1, A1
0) +

1

1− π1(A1
1, A

1
0)

[
F (y|1, A1

1)− F (y|1, A1
0)
]
.

The reasoning is similar for F0(y|1, 0). This completes the proof. �

Appendix B. Relaxing Monotonicity

Under Assumption 1, we can write the identified distribution F (y|1, w) as a mixture of

the potential outcome distributions of Y1 for the compliers, the defiers and the always-takers

as follows:

F (y|1, w) = λ1
1(w)F1(y|1, 0) + λ1

2(w)F1(y| − 1, 1) + (1− λ1
1(w)− λ1

2(w))F1(y|0, 1). (B.1)

Similarly, we have

F (y|0, w) = λ0
1(w)F0(y|1, 0) + λ0

2(w)F0(y| − 1, 1) + (1− λ0
1(w)− λ0

2(w))F0(y|0, 1). (B.2)

Following the results of Henry, Kitamura, and Salanié (2014) on finite mixture models, we

can show under some relevance condition that the potential outcome distributions of Y1

and Y0 are partially identified for the compliers and the defiers, respectively. We can show

that each of these distributions is function of six parameters that are partially identified.

From there, we can obtain bounds on the local average / quantile treatment effects for the

compliers and the defiers. To the best of my knowledge, this result is new in the literature.

Below, I derive the results for Equation (B.1). Results for Equation (B.2) can be obtained

in a similar way. Equation (B.1) implies

F (y|1, w)− F (y|1, A1
0) = [λ1

1(w)− λ1
1(A1

0)][F1(y|1, 0)− F1(y|0, 1)]

+[λ1
2(w)− λ1

2(A1
0)][F1(y| − 1, 1)− F1(y|0, 1)],

= ψ(w)tm(y),
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where

ψ(w) ≡

[
λ1

1(w)− λ1
1(A1

0)

λ1
2(w)− λ1

2(A1
0)

]
, and m(y) ≡

[
F1(y|1, 0)− F1(y|0, 1)

F1(y| − 1, 1)− F1(y|0, 1)

]
.

I now state a relevance assumption similar to Assumption 3 in the main text.

Assumption 5. There exist three subsets A1
0, A

1
1, A

1
2 ⊂ W such that the matrix

Ψ ≡

[
λ1

1(A1
1)− λ1

1(A1
0) λ1

1(A1
2)− λ1

1(A1
0)

λ1
2(A1

1)− λ1
2(A1

0) λ1
2(A1

2)− λ1
2(A1

0)

]

is invertible, i.e., the determinant |Ψ| = [λ1
1(A1

1)− λ1
1(A1

0)] ∗ [λ1
2(A1

2)− λ1
2(A1

0)]− [λ1
1(A1

2)−
λ1

1(A1
0)] ∗ [λ1

2(A1
1)− λ1

2(A1
0)] 6= 0.

Denote h(y) ≡

[
F1(y|1, 0)− F1(y|0, 1)

F1(y| − 1, 1)− F1(y|0, 1)

]
. We have h(y) = Ψtm(y), which implies

under Assumption 5 that m(y) = (Ψt)−1h(y). By rewriting this last equality, we obtain:

F1(y|1, 0) = F1(y|0, 1) + γ1
1 [F (y|1, A1

1)− F (y|1, A1
0)]− γ1

3 [F (y|1, A1
2)− F (y|1, A1

0)],

F1(y| − 1, 1) = F1(y|0, 1)− γ1
2 [F (y|1, A1

1)− F (y|1, A1
0)] + γ1

4 [F (y|1, A1
2)− F (y|1, A1

0)],

where

γ1
1 =

λ1
2(A1

2)− λ1
2(A1

0)

|Ψ|
, γ1

2 =
λ1

1(A1
2)− λ1

1(A1
0)

|Ψ|
,

γ1
3 =

λ1
2(A1

1)− λ1
2(A1

0)

|Ψ|
, γ1

4 =
λ1

1(A1
1)− λ1

1(A1
0)

|Ψ|
.

From Equation (B.1), we have

F (y|1, A1
0) = ρ1

1F1(y|1, 0) + ρ1
2F1(y| − 1, 1) + (1− ρ1

1 − ρ1
2)F1(y|0, 1), (B.3)

where ρ1
1 = λ1

1(A1
0) and ρ1

2 = λ1
2(A1

0). I can therefore plug the expressions for F1(y|1, 0) and

F1(y| − 1, 1) in (B.3), and obtain

F (y|1, A1
0) = F1(y|1, 0) + (ρ1

1γ
1
1 − ρ1

2γ
1
2)[F (y|1, A1

1)− F (y|1, A0)]

+(ρ1
2γ

1
4 − ρ1

1γ
1
3)[F (y|1, A1

1)− F (y|1, A1
0)].

From this last equation, we have

F1(y|1, 0) = F (y|1, A1
0)− (ρ1

1γ
1
1 − ρ1

2γ
1
2)[F (y|1, A1

1)− F (y|1, A0)]

−(ρ1
2γ

1
4 − ρ1

1γ
1
3)[F (y|1, A1

2)− F (y|1, A1
0)]. (B.4)
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Thus,

F1(y|0, 1) = F (y|1, A1
0) + (γ1

1 − ρ1
1γ

1
1 + ρ1

2γ
1
2)[F (y|1, A1

1)− F (y|1, A0)]

−(γ1
3 − ρ1

1γ
1
3 + ρ1

2γ
1
4)[F (y|1, A1

2)− F (y|1, A1
0)]. (B.5)

F1(y| − 1, 1) = F (y|1, A1
0)− (γ1

2 + ρ1
1γ

1
1 − ρ1

2γ
1
2)[F (y|1, A1

1)− F (y|1, A0)]

+(γ1
4 − ρ1

2γ
1
4 + ρ1

1γ
1
3)[F (y|1, A1

2)− F (y|1, A1
0)]. (B.6)

I have just shown that the potential outcome distributions of Y1 are identified up to 6

scalar parameters. I now write the probability weights λ1
1(w) and λ1

2(w) as functions of

those parameters. From there, using the monotonicity condition for cumulative distribution

functions and the condition that probability weights lie between 0 and 1, I partially identify

those 6 parameters.

For y1
1, y

1
2 ∈ Y, we have[

F (y1
1|1, w)− F (y1

1|1, A1
0)

F (y1
2|1, w)− F (y1

2|1, A1
0)

]
=

[
F1(y1

1|1, 0)− F1(y1
1|0, 1) F1(y1

1| − 1, 1)− F1(y1
1|0, 1)

F1(y1
2|1, 0)− F1(y1

2|0, 1) F1(y1
2| − 1, 1)− F1(y1

2|0, 1)

]

∗

[
λ1

1(w)− ρ1
1

λ1
2(w)− ρ1

2

]

If the matrix

[
F1(y1

1|1, 0)− F1(y1
1|0, 1) F1(y1

1| − 1, 1)− F1(y1
1|0, 1)

F1(y1
2|1, 0)− F1(y1

2|0, 1) F1(y1
2| − 1, 1)− F1(y1

2|0, 1)

]
is invertible then we

can solve for λ1
1(w) and λ1

2(w). This condition holds if and only if Ψ and H are invertible,

where

H ≡

[
F (y1

1|1, A1
1)− F (y1

1|1, A1
0) F (y1

2|1, A1
1)− F (y1

2|1, A1
0)

F (y1
1|1, A1

2)− F (y1
2|1, A1

0) F (y1
2|1, A1

2)− F (y1
2|1, A1

0)

]
.

By adapting the proof of Proposition 1, we can show that the identified set for the 6

parameters is sharp.
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