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Abstract
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cost for paying attention to noisy information and whose attention strategy, i.e., whether
or not she pays attention, can be a function of the underlying information. At the opti-
mum, consumers chose to be attentive when evidence accumulates far from their prior be-
liefs. The model provides an explanation for four puzzling empirical findings on consump-
tion and expectations. First, consumers’ attention depends on the information content.
Second, aggregate information rigidities vary over the business cycle. Third, consumers
only react to large anticipated shocks and neglect the impact of small ones. Fourth,
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1 Introduction

Theories of consumption play an important role in business cycle models and recently many
authors have proposed changes to the modeling of consumption in DSGE models. In Het-
erogeneous Agents New Keynesian (HANK) models, hand-to-mouth consumers, precautionary
savings, and heterogeneity of marginal propensities to consume shape the response of aggre-
gate consumption to shocks. In models with information frictions on the household side, slow
updating of beliefs over time generates hump-shaped responses of aggregate consumption to
shocks (Mankiw and Reis,2006; Maćkowiak and Wiederholt,2015; Carroll et al., forthcoming).

However, several empirical findings on consumption and expectations are not explained by
these models. First, consumers’ attention depends on the information content. Using informa-
tion experiments, Armantier et al. (2016), Abe and Ueno (2015) and Khaw et al. (2017) find
that individuals are more likely to incorporate new information when it contradicts their prior
beliefs. Second, information rigidities are not constant over time. Dräger and Lamla (2012)
and Coibion and Gorodnichenko (2015) find that information rigidities drop persistently in the
aftermath of a recession. Third, consumers only react to large anticipated shocks and neglect
the impact of small ones. Jappelli and Pistaferri (2010) term this mechanism the magnitude
hypothesis and empirical evidence in favor of the hypothesis is accumulating (Browning and
Collado, 2001; Scholnick, 2013; Kueng, 2018).1 Fourth, aggregate consumption dynamics vary
over the business cycle. Caballero (1995) finds that “in good times, consumers respond more
promptly to positive than to negative wealth shocks, while the opposite is true in bad times” and
Kumar and Jia (2019) report systematic decreases in consumption growth persistence during
recessions.

This paper proposes a model that can match these four empirical findings, while preserving
the aforementioned prediction of information friction models regarding the sluggish response
of aggregate consumption to shocks. In the model, there is a source which conveys noisy
information about shocks to one’s permanent income. Consumers face a fixed cost for paying
attention to this information and their attention strategy, i.e., whether or not an agent pays
attention, can be a function of the underlying information. Apart from this novel information
structure, the consumption-saving problem considered in the paper is left as transparent as
possible and coincides with Hall’s (1978) random walk model with quadratic utility. The model

1Each of these papers controlled for the presence of credit constraints and concluded that it cannot explain
the observed features of excess sensitivity. A priori, the magnitude hypothesis could arise as a consequence of
consumption adjustment costs. In these models, consumption adjusts sporadically based on a state-dependent
rule. Accordingly, Chetty and Szeidl (2016) demonstrate that in the presence of commitment costs, excess
sensitivity and smoothness vanish for large shocks. However, empirical studies on the magnitude hypothesis
have mainly focused on non-durable consumption goods, that is, those consumption goods which are the less
likely to exhibit commitment costs.
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predictions are thus isolated from other refinements of the textbook consumption theory.
The main difference to Reis (2006a) microfounded model of inattentive consumers is that

consumers can choose information-dependent attention strategies and do not necessarily access
perfect information when attentive. These two deviations from Reis (2006a) allow to match the
aforementioned empirical evidence that consumers do not update on a purely time-dependent
basis and, also, that expectations are heterogenous among attentive consumers (e.g. Armantier
et al. (2016)).

The main findings of the paper are as follows. First, consumers’ attention depends on
the information content. At the optimum, the consumer faces an inattention region where
she disregards new information and does not adjust her consumption plan. It is only when
evidence against her prior beliefs accumulates that the consumer is willing to pay attention to
new information releases and revises her consumption plan accordingly.

Second, information rigidities are time-varying. Consumers adopt an information-dependent
attention strategy. Therefore, and starting from the stationary cross-sectional distribution of
consumers, an aggregate income shock prompts more consumers to be attentive.2 Information
being noisy, the impact of an aggregate shock disseminates slowly in the economy and the
increase in the share of attentive consumers is persistent.

Third, the model predicts a positive correlation between the size of an income shock and
the marginal propensity to consume. It thus provides a rationale to explain the magnitude
hypothesis. The intuition is as follows. For a consumer who was last attentive one period ago, a
small permanent income shock (in absolute value) is unlikely to be significant enough to trigger
her attention. However, as the size of the shock gets larger, the shock becomes more likely
to trigger the consumer’s attention and to prompt her to revise her consumption path. More
generally, the expected marginal propensity to consume out of a shock to permanent income is
found to be both history-dependent and shock-dependent.

Fourth, aggregate consumption dynamics vary over the business cycle. The model predicts
that during economic busts (respectively booms) – that is periods when lagged consumption
growth was below (resp. above) its steady state level – a positive (resp. negative) shock
generally lowers the share of attentive consumers and generates a smoother response, while

2Consumers are ex-post heterogenous because of their idiosyncratic income shocks, information noises and
attention histories. To apprehend this multi-dimensional heterogeneity, I show that the cross-sectional distribu-
tion of consumers may be characterized by a function of the information that each consumer disregards when
being inattentive. Starting from the stationary cross-sectional distribution, an aggregate income shock shifts
the distribution of consumers and increases the average information that consumers would disregard by remain-
ing inattentive. Thereby, more consumers are willing to pay attention and the share of attentive consumers
increases.
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a negative (resp. positive) shock generates a sharper response. Moreover, the persistence of
aggregate consumption growth depends on the endogenously time-varying share of attentive
consumers. In normal times, information rigidities are near their steady state level and con-
sumption persistence relatively constant. However, during unusual times such as recessions,
information rigidities decrease a lot and so does aggregate consumption persistence.

In sum, the model provides an explanation to the aforementioned four facts indicating
that consumers’ attention depends on the information content, information rigidities are time-
varying, consumers only react to large anticipated shocks, and aggregate consumption dynamics
vary over the business cycle.

The consumption theory proposed in this paper also has some other attractive properties.
First, in models of consumption adjustment costs (Caballero, 1993, 1995; Chetty and Szeidl,
2016) household consumption is constant between adjustments and consumption adjustments
are large; while here consumption is not constant whilst the consumer is inattentive and the
consumption change that triggers attention is modest.3,4 Second, the model is tractable and
a simple iterative method makes it possible to track the evolution of the cross-sectional dis-
tribution of consumers. It therefore enables us to analyze multiple aspects of consumption
nonlinearities. Moreover, it offers a natural benchmark to asses the approximation loss from
relying on time-invariant information rigidities. In the absence of aggregate shocks, the cross-
sectional distribution of consumers is stationary and information rigidities constant. Predictions
from time-invariant information-rigidity models however become less accurate as the variance
of aggregate shocks increases relatively to that of idiosyncratic shocks. Finally, the model ac-
curately matches the persistence of aggregate consumption growth and provides an explicit
mapping between aggregate information frictions and consumption growth persistence.

This paper belongs to a growing literature analyzing the implications of consumers’ infor-
mation rigidities for consumption dynamics. This literature generally opposes two forms of
information rigidities: rational inattention and sticky expectations. Papers building on Sims
(2003) rational inattention generally consider linear-quadratic Gaussian frameworks (Luo, 2008;
Luo and Young, 2014) or assume ex-post Gaussian distributions of the true state and noise (Luo

3See Reis (2006a) or Carroll et al. (forthcoming) for a discussion of consumption adjustment cost models.
Unattractive predictions of these models are that (i) we do not observe adjustment costs for non-durable
consumption goods, (ii) consumption must be constant between adjustments and (iii) consumption adjustments
must be large in these models.

4I find that the consumption change that triggers attention is less than half the consumption change that
triggers an adjustment in Caballero (1995).
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et al., 2017).5 Sticky expectation models fall into one of two categories. The first corresponds to
the Calvo-like models in which agents have a constant probability to update their expectations,
e.g., Mankiw and Reis (2002), Carroll (2003) and Carroll et al. (forthcoming), and the second
category builds on microfounded model of sticky expectations (Gabaix and Laibson, 2001; Reis,
2006a,b) where agents update every nth period. Consequently, both rational inattention and
sticky expectations imply that information rigidities are constant over time. In comparison,
this paper proposes a model of rationally inattentive consumers that nests both forms of in-
formation rigidities as limiting cases (within a LQG framework) and that naturally generates
time-varying information rigidities. These variations in information rigidities are found to be
large and to hold important implications for consumption dynamics at both the household and
aggregate levels.

A few papers have already proposed mechanisms to generate time-varying aggregate in-
formation rigidities. Gorodnichenko (2008) and Woodford (2009) consider the price setting
problem of firms and respectively find that information externalities and inattention between
price reviews may result in time-varying information rigidities. Similarly, Cheremukhin and
Tutino (2016) highlight that time variations in firms’ exit rates and markups lead to counter-
cyclical information rigidities. These explanations are based on information rigidities on the
side of firms. Nimark (2014) and Larsen et al. (2019) argue that the media coverage of economic
events results in time-varying information rigidities. However, most of the uncertainty faced
by consumers is the consequence of idiosyncratic shocks, for which the media are unlikely to
be the main source of information. This paper thus adds to this literature by simultaneously
analyzing the joint dynamics of aggregate information rigidities and consumption. Doing so, it
provides a novel mechanism to generate time-varying information rigidities. This mechanism
is internal and does not arise as the consequence of an aggregate externality. It is thus more
likely to be transferable to other settings.

Finally, this paper relates to the large literature studying the consumption response to in-
come changes (see Jappelli and Pistaferri (2017)). In particular, it provides novel explanations
to some puzzling consumption nonlinearities previously identified in the data. These nonlinear-
ities are shown to be the consequence of household level adjustments in expectations. Hence,
the paper also relates to the large literature analyzing the implications of microeconomic adjust-
ments for aggregate dynamics, e.g., Caballero and Engel (2007), and Chetty and Szeidl (2016).6

5A notable exception is Tutino (2013) who numerically solves for the optimal discrete distribution of actions
when utility is CRRA. In comparison, the setup considered here is substantially different, the model is solved
analytically and the focus is on aggregate consumption.

6Similarly to Burstein (2006) where firms may choose a pricing plan at revision dates, I allow consumers
to choose a consumption plan when attentive. In both models, a plan can be contingent on the information
available at the adjustment date but cannot be contingent upon future realizations of economic shocks.
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The paper is organized as follows. The consumption problem is presented and solved in
Section 2. Section 3 further discusses consumers’ attention strategy and derives implications
for inattention lengths. Section 4 provides a quantitative application with an ARMA income
process. Sections 5 and 6 respectively derive implications for consumption dynamics at the
household and aggregate levels.

2 Optimization with costly information processing

2.1 The consumer problem

This section presents the consumer’s problem. Importantly, it discusses the information struc-
ture which is the main innovation of this paper and explains how it interacts with the consumer’s
problem.

I consider the problem of a rationally inattentive consumer with memory who lives for T
periods, consumes ct each period and whose utility u(ct) is quadratic.7 This agent discounts
future utility by the factor β ∈ (0, 1) and can borrow and lend freely at the gross interest rate
1 + r. At each period, she receives an exogenous stochastic income yt which follows from a
multivariate linear state space model with Gaussian white innovations. The consumer’s budget
constraint therefore writes at+1 = (1 + r)at− ct + yt where at are the consumer’s assets at time
t.

For ease of exposition, I follow the literature (e.g. Luo (2008)) and reformulate the con-
sumer’s problem in terms of permanent income st ≡ at + µt where µt ≡

∑T−1
k=t Et[(1 + r)(t−k)yk]

is the expected flow of actualized incomes. The period budget constraint may accordingly be
written in terms of permanent income and thus becomes st+1 = (1 + r)st − ct + ζt+1 with
ζt+1 = µt+1 − (1 + r)µt a Gaussian white noise with variance σ2

ζ .

Because of information frictions, the consumer cannot perfectly observe the economic state
st. Nevertheless, there exists a source that continuously conveys information about the evolution
of st. This information channel stands for instance for the news from newspapers, TV and
cheap talk agents get every day and that may potentially reflect an evolution of the economic
environment. At any moment, the consumer may either be attentive to this information – in

7The quadratic utility assumption allows to derive an analytical solution and is a widely used framework for
the study of rationally inattentive consumers (e.g. Sims (2003), Luo and Young (2014)).
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return for a fixed utility cost denoted λ – or remain inattentive and put this information aside
for a later use.

Formally, I follow the signal extraction literature (e.g. Luo and Young (2014) for a recent
application to consumer theory) and model the continuous information using an additive noisy
signal zt = st + ϑt where ϑt is an i.i.d. Gaussian white noise with variance σ2

ϑ at each period.
The smaller the variance of the noises σ2

ϑ is, the more informative these signals are. Moreover, I
define a latent information set, denoted It, that contains all signals since the beginning of time
and past actions of the consumer. These actions consist in her consumption choices (ck) and
whether she was attentive (τk = 1) or not (τk = 0) at each period k ∈ [0, 1, . . . , t− 1]. That is,
It is the σ-algebra defined as

It ≡
{
z0, τ0, c0, . . . , zt−1, τt−1, ct−1, zt} (1)

This information is not observable by the consumer and is used as a modeling tool. Con-
sequently, and in opposition to this latent information set, let It be the information set in
the hands of the consumer. It and It are generally different and they coincide only when the
consumer is constantly attentive to each new signal release. More specifically, we have

It ≡
{
z̄0, τ0, c0, . . . , z̄t−1, τt−1, ct−1, τt, z̄t} (2)

The consumer’s information set also contains past actions. However, it is not necessarily in-
cremented at each period by the signal zt as the consumer may rationally prefer not to pay
attention to the information channel. Instead, let z̄t be the novel information that the consumer
gets at period t. Then, by definition, we have that z̄t = ∅ is empty whenever the consumer
is inattentive (τt = 0). I do not impose a specific form for z̄t at periods when the consumer
is attentive. It could for example be a truncated sequence of signals or a filtration of these
signals. The only restriction I impose is that at any period t, the consumer’s information It
may be retrieve from the latent information set It. That is, σ({z̄k}tk=0) ⊆ σ({zk}tk=0) where
σ(.) denotes a σ-algebra. Following Molin and Hirche (2010), I will refer to this property as
the nestedness of the information structure. Intuitively, this condition implies that the signals
zt are the only source of information for the consumer. Moreover, the consumer may catch up
with any information she previously ignored.

The above-described consumer problem may be expressed as a discounted linear-quadratic
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Gaussian problem in the following form:

min
{ct,τt}T−1

t=0 ∈RT×{0,1}T
E0

(
T−1∑
t=0

βt
(
(ct − c̄)2 + λτt

)
+ βT qT s

2
T

∣∣∣∣∣
{
It, It

})
(3)

s.t. st+1 = (1 + r)st − (ct − c̄) + ζt+1

ct = ft(It); τt = gt(It)

s0|I0 ∼ N (s̄0, σ
2
s0)

s̄0 = a0 + µ0 + 1− (1 + r)−T
1− (1 + r)−1 c̄

Problem (3) states that the consumer maximizes her intertemporal utility given the afore-
mentioned period budget constraint and information structure. Her instantaneous utility is
quadratic u(c) = −(c− c̄)2 with c̄ ∈ R+ the bliss point. The control variables are consumption
ct and attention τt ∈ {0, 1} and λ is a fixed utility cost from being attentive. In the term
βT qT s

2
T , qT is an arbitrary large constant which is used to impose the standard terminal condi-

tion sT = 0 in expectation. In the last condition, I normalize the initial state s̄0 by substracting
an intertemporal consumption stream equal to c̄ at each period to s0.8 The period budget con-
straint is amended accordingly (hence the term (ct − c̄)). Finally, the third constraint imposes
that the initial uncertainty in the state variable is Gaussian.

Following from the information structure, the policies ft(.) and gt(.), which respectively
refer to the consumption and attention choices, are Borel-measurable functions with respect to
It and It. Hence, the consumption choice ct depends on the consumer’s information at period
t. Alternatively, I consider more sophisticated attention strategies. Here, the consumer bases
her attention strategy on the information contained in the latent information set It. That is,
the consumer has the opportunity to select the type of information she will be attentive to. A
real-life illustration of this strategy could for example to be attentive to economic news only
when they contain keywords e.g. crises, recession or low interest rate.

The above formulation encompasses some well-known models of inattentive consumers as
limiting cases. When the attention cost λ is nil, the consumer is always attentive to the Gaussian
signals. Hence, the consumer’s information set coincides with the latent information set and
problem (3) collapses to the textbook linear-quadratic Gaussian problem with incomplete state
information.

Closer in spirit is the sticky information model of Reis (2006a). He also considers the problem
8This novel state variable represents the consumer net wealth given that she will consume c̄ at each period.

Therefore, the period budget constraint is amended to account for the deviation between actual consumption
ct and the consumption bliss point c̄.
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of a rationally inattentive consumer who must pay a fixed cost to observe information. In his
model, the consumer perfectly observes the state variable st when she is attentive. Transposed
to problem (3), it implies that the signals are noiseless zt = st. Further, he restricts the
attention strategies to depend only on the consumer’s information. Using the above notation,
he focuses on solutions in the form τt = gt(It). In particular, this assumption implies that
the consumer’s attention strategy must be independent of the economic conditions between
information updates. As a result, Reis (2006a) finds that the optimal updating behavior is
purely time-dependent.9

2.2 Consumption and Information

This section highlights important intermediary results. In particular, it characterizes the opti-
mal consumption policy and treatment of signals.

Problems related to (3) have recently been studied in engineering. The closest paper is
Molin and Hirche (2010) who study an undiscounted discrete-time LQG setup with a similar
information structure. In particular, they show that the certainty equivalence holds in their
setup (Lemma 2, Molin and Hirche (2010)). Appendix A.1 shows that the introduction of
discounting does not affect this conclusion. Consequently, the consumption policy function
coincides with the one we would have obtained under full-information rational expectations
and is recalled in Lemma 1.

Lemma 1 (Certainty equivalence). The optimal consumption is

ct = LtE[st|It] + c̄ ∀t ∈ 0, . . . , T − 1 (4)

where Lt ≡ (1 + r)βpt+1/(1 + βpt+1) and pt follows from iterating on the backward Riccati
equation pt = (1 + r)2βpt+1/(1 + βpt+1) with terminal condition pT = qT .

Proof. See Appendix A.1.

Because the certainty equivalence holds here, the consumption function is not affected by
the information structure. We therefore retrieve the well-established conclusions that the con-
sumption function is linear and there are no precautionary savings when the consumer’s utility
is quadratic. More specifically, the consumption deviation from the bliss-point c̄ depends on

9Reis (2006a) also develops a behavioral extension for extreme events where it is assumed that the latter are
fully observable and instantaneously internalized by consumers. By construction, problem (3) directly accounts
for these extreme events and allows to study their implications within a fully microfounded framework.
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the discount rate β, the interest rate r, the terminal condition qT and the perceived permanent
income given the information that has been processed at period t. The constant Lt measures
the change in consumption following a marginal increase in expected permanent income.

Equation (4) in Lemma 1 states that the consumption choice depends on the expected per-
manent income given the consumer’s information set It. Characterizing the latter expectation
E[st|It] is not trivial. It first requires to determine the optimal estimator E[st|It] with respect
to the latent information set It. Following common practice in the literature (e.g. Sims (2003),
Luo et al. (2017) and Maćkowiak et al. (2018)), I assume that the initial uncertainty surround-
ing the state variable σ2

s0 is at its steady state value. Consequently, E[st|It] is the linear least
squares estimator given by the Kalman filter in Lemma 2.

Lemma 2 (Latent Kalman filter). The optimal estimate of st given the latent information set
is

E[st|It] = (1 + r)E[st−1|It−1]− ct−1 + c̄+K(zt − (1 + r)E[st−1|It−1] + ct−1 − c̄) (5)

where K is the steady state Kalman gain defined in Appendix A.2

Proof. See Appendix A.2.

Now that we have identified E[st|It] in Lemma 2, we can characterize E[st|It]. When
the consumer is attentive (τt = 1), she may access the information contained in It to form
an updated estimate E[st|It, τt = 1]. Therefore, E[st|It, τt = 1] = E[st|It] since the latter
estimator is optimal given It and the nestedness property of the information structure implies
that there is no other source of information.

Deriving the optimal estimator E[st|It, τt = 0] at non-updating periods (τt = 0) is more
complex because it depends on the attention strategy of the consumer. To illustrate this
dependance, realize that E[st|It, τt = 0] = E

[
E[st|It]

∣∣∣It, τt = 0
]
. Then, using equation (5) we

have

E[st|It, τt = 0]︸ ︷︷ ︸
estimate when inattentive

= E[st|It−1]︸ ︷︷ ︸
update

+E
[
(1 + r)et−1 +K(zt − E[st|It−1])

∣∣∣∣It, τt = 0
]

︸ ︷︷ ︸
corrective term accounting for inattention

(6)

where

et ≡ E[st|It]− E[st|It] (7)
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is the perceived forecast error given the information in It. The last term in the right-hand
side of equation (6) represents a correction that the consumer may be willing to integrate in
her consumption path when she decides to remain inattentive. Intuitively, if the choice to be
attentive results from the occurence of a predetermined event, then being inattentive indicates
that this event did not occur. For example, suppose that the consumer is extremely loss averse
and willing to be attentive to permanent income drops only. Implicitly, this attention strat-
egy would imply that no permanent income drops occur when she is inattentive. She would
therefore infer that, on average, her permanent income is higher than what would be implied
by a mechanical update E[st|It−1] = (1 + r)E[st−1|It−1] − ct + c̄ at periods when she is not
attentive. Consequently, she would revise her estimate E[st|It, τt = 0] upward and, following
from Lemma 1, increase her consumption during these periods.10

Appendix A.3 shows that the corrective term accounting for inattention in equation (6) is
nil at the optimum. We can therefore characterize the optimal permanent income estimate of
the consumer in Lemma 3.

Lemma 3 (Perceived permanent income). The optimal estimate of st given the consumer’s
information set is

E[st|It] =
 E[st|It] if τt = 1

(1 + r)E[st−1|It−1]− ct−1 + c̄ if τt = 0

Proof. See Appendix A.3 .

Lemmas 1-3 together characterize the consumption behavior of the consumer. At times when
she is attentive, she chooses the consumption path which maximizes her expected intertemporal
utility. The dynamics of this path is similar to the one she would have selected in the absence
of information frictions. Therefore and unsurprisingly, it depends on the interest rate r, the
discounting factor β, time t and the horizon T . Then, at times when she is inattentive, she
does not revise her consumption path and behaves as if no shock to permanent income occurred
since the period she was last attentive. However, at times when she is attentive, she catches up
with the information she previously ignored, revises her permanent income estimate and selects
a novel consumption path.

10This mechanism, referred to as negative information, is central to event-based state estimation (see the
book of Shi et al. (2016)). It may hold implications for consumption dynamics when one relaxes the assumption
of Gaussian shocks to permanent income and/or quadratic utility. Extrapolating from Molin and Hirche (2010),
it might result in a predetermined adjustment in consumption that would depend on time and the duration of
inattention. See Nimark (2014) for an application of negative information in macroeconomics.
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2.3 Attention strategy

This section focuses on the consumer’s attention strategy. Building on the previous results, it
demonstrates that the complex task of identifying the optimal attention strategy directly from
the full consumer’s problem (3) collapses to a much simpler discrete choice control problem
that can be solved using standard dynamic programming tools.

The perceived forecast error et defined in equation (7) measures the expected permanent
income discrepancy between the latent information – i.e. the information the consumer would
access if attentive – and the consumer’s information when she remains inattentive. Using
Lemmas 2 and 3, this error follows a Markov process given by

et+1 = (1− τt)(1 + r)et +K
(
zt+1 − E[st+1|It]

)
(8)

That is, the error is incremented at each period by the innovation from the latent Kalman filter
and previous errors are augmented by the gross interest rate 1 + r whilst the consumer remains
inattentive. Because et depends only on the signals, consumption and attention choices, it
is observable given the latent information It. Moreover, Appendix A.4 indicates that et is a
sufficient statistics to apprehend the consumer’s disutility from being inattentive at time t. As a
result, the difficult task of characterizing the optimal attention policy in problem (3) collapses
to the much simpler task of computing the solution to the following discrete choice optimal
control problem with perfect state observation et.

Lemma 4 (Attention problem). The optimal attention strategy of the consumer is the solution
to the following Bellman equation

Jt(et) = min
τt∈{0,1}

(1− τt)L2
t (1 + βpt+1)e2

t + τtλ+ βE[Jt+1(et+1)|It] (9)

s.t. et+1 = (1− τt)(1 + r)et +K
(
zt+1 − (1 + r)E[st|It] + ct − c̄

)
Proof. See Appendix A.4 .

The loss function in equation (9) represents the expected intertemporal utility costs associ-
ated to the attention choice once we account for Lemmas 1-3. When the consumer is inattentive
(τt = 0), her consumption choice is suboptimal given It. In terms of intertemporal utility, this
translates into an instantaneous misoptimization cost L2

t (1 + βpt+1)e2
t and a discounted future

misoptimization cost βE[Jt+1(et+1)|It]. When the consumer is attentive today (τt = 1), she ob-
serves the perceived forecast error et (Lemma 3) and adjusts her consumption plan accordingly
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(Lemma 1). Therefore, the consumer does not suffer from the aforementioned misoptimization
costs but must pay a utility cost λ to be attentive.

The problem in Lemma 4 is standard and can be solved using a DP algorithm. More
specifically, the following Proposition holds.

Proposition 1 (Attention strategy). The optimal attention policy gt(et) is symmetric and such
that gt(et) = 1 ⇐⇒ |et| ≥ πt and 0 otherwise. The threshold πt ∈ R+ follows from Lemma 4
and solves ∀t ∈ {0, . . . , T − 1}

λ+ βE[Jt+1(et+1)|It, et = 0] = L2
t (1 + βpt+1)π2

t + βE[Jt+1(et+1)|It, et = πt] (10)

Proof. See Appendix A.4.

There is therefore a symetric inattention region, such that |et| < πt, where the consumer
disregards new information and adopts a wait-and-see consumption strategy. Sporadically, the
absolute value of the perceived forecast error gets larger than the threshold πt. The occurence
of this event triggers the consumer’s attention.

2.4 Stationary policies

As a final step in characterizing the model solution, I consider the infinite horizon limit of prob-
lem (3). Appendix A.5 demonstrates that when the horizon T is infinite, problem (3) converges
to stationary policies f(.) and g(.). These stationary policies are reported in Proposition 2.

Proposition 2. When the horizon is infinite, the policy functions converges to stationary
policies f(.) and g(.). Consequently, and assuming it exists, the consumption function is

ct = β(1 + r)2 − 1
β(1 + r) E[st|It] + c̄ (11)

and the consumer updates the information set It, that is τt = 1, whenever |et| ≥ π where
et ≡ E[st|It]− E[st|It, τt = 0] and

π =

√
β(1 + r)

(
λ+ β(E[J(et+1)|It, et = 0]− E[J(et+1)|It, et = π])

β(1 + r)2 − 1 (12)

J(.) is the functional fixed-point solution to the infinite horizon reformulation of the Bellman
equation (9).

Proof. See Appendix A.5.
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The stationary consumption policy (11) is standard and we retrieve the well-known result
that the consumption path is constant over time when β−1 = (1 + r). Further, the inattention
region becomes time-independent as well when the horizon tends to infinity.

Unless stated otherwise, I consider the infinite horizon formulation in the rest of the paper
to avoid the unnecessary burden of indexing each variable with a time t index. Extending the
results to the finite horizon formulation can nevertheless be easily done using Proposition 1.

3 Consumer’s inattention

Following from Proposition 1, there exists an inattention region that depends on the discrepancy
between the consumer’s information and the latent information stemming from the continuous
signals. This section further analyses how this inattention region affects the joint dynamics of
the latent perceived forecast error and consumers’ attention. It then derives implications for
the distribution of inattention lengths.

3.1 Attention dynamics

The consumer’s attention dynamics is driven by the latent perceived forecast error et whose law
of motion is given in equation (8). Further noticing that zt+1−E[st+1|It] is the latent Kalman
filter innovation, this law of motion equivalently writes et+1 = (1 − τt)(1 + r)et + ωt+1 where
ωt+1 is a Gaussian white noise with variance σ2

ω = K2(p+ + σ2
η). Consequently, the perceived

forecast error follows an AR(1) process with a reseting at 0 when the consumer is attentive
(τt = 1).

Figure 1 illustrates the joint dynamics of the perceived forecast error and attention. Start-
ing from a period 0 when the consumer was attentive, the perceived forecast error smoothly
incorporates the continuous information arising from the Gaussian signals. This evolution is
represented by the grey line on the graph. As long as the latent forecast error remains in the
inattention region, the consumer does not observe it. However, when it exceeds the lower (−π)
or upper (π) threshold, the consumer becomes attentive and observes et. In the illustration
from Figure 1, this event occurs at the fifth period and is pictured with the black dot in the
upper attention region. Because the consumer observes et when being attentive, she catches
up with the latent information and the dynamics of the perceived forecast error restarts from
zero.

The attention dynamics depicted in Figure 1 is coherent with the observation that con-
sumers sometimes rationally prefer to ignore new information. Using a controlled information
experiment, Armantier et al. (2016) investigates how US consumers’ inflation expectation are
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Figure 1: Inattention region

Note: An illustration of the joint dynamics of the latent perceived forecast error (et) and attention. The
grey line represents the evolution of the latent perceived forecast error over time. The latter is unknown to
the consumer. The only information available to her corresponds to black lines (i.e. the threshold π) and
the black dot in the upper attention region. The threshold π follows from the infinite horizon problem whose
solution is time-invariant and reported in proposition 2.

affected by the provision of novel information. They show that while the provision of informa-
tion – about the average inflation forecast in the Survey of Professional Forecasters – increases
the probability that a consumer is attentive to this information, the probability to remain inat-
tentive to it remains large (42% in their study). Further, they find a nonlinear relation between
the perception gap – namely the difference between a consumer’s prior and the information she
is provided with (i.e. the latent Kalman filter innovation in the framework of this paper) – and
consumers’ average revision, thus suggesting that consumers are more likely to be attentive to
the information they are provided with when it contradicts their prior. Abe and Ueno (2015)
run a similar information experiment on Japanese consumers and reach similar conclusions.
Moreover, they provide direct evidence of an inattention region with respect to the perception
gap.

3.2 Inattention lengths

How long will a consumer remain inattentive? A consumer’s inattention duration is stochas-
tic. Answering this question therefore requires to derive the distribution of inattention lengths.
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This is the purpose of this section. It shows that this distribution is the solution to a first
passage problem. It then provides a method to characterize this distribution and an easily
implementable approximation procedure.

The attention dynamics discussed in Section 3.1 may be apprehended as resulting from a first
time passage problem (with reseting).11 That is, how long will it take for the latent perceived
forecast error et to reach one of the attention regions? Formally, let lt ≡ sup{i : τi = 1, i ≤ t} be
the most recent period when the consumer was attentive and the first passage time be defined
as d ≡ inf{i : τlt−1+i = 1, i ∈ N}. The associated probability density function is thus

q(k) ≡ P (d = k) = P (τlt+k = 1| ∩k−1
i=1 τlt+i = 0) ∀k ∈ N (13)

where q(k) is the probability that a consumer remains inattentive for k consecutive periods.
Following from Jaskowski and van Dijk (2016), a first passage time always exists here as P (d =
∞) = 0 at the limit. Similarly, a finite average inattention length d̄t ≡

∑T−1−t
i=1 iqi,t+i exists as

well.
It is well-known that directly computing the probabilities q(k) is difficult. Therefore, I use

the relation between these probabilities and the hazard rates, denoted Λ(k), which are easier
to compute. By definition, we have that

Λ(k) ≡ 1−
∫
Ξ
f(e|k)de ∀k ∈ N (14)

where Ξ ≡ [−π, π] and f(e|k) is the distribution of the latent perceived forecast error et given
that the consumer was inattentive for k consecutive periods. Equation (14) thus states that the
hazard rate Λ(k) is equal to the probability that the latent perceived forecast does not belong
to the inattention region after k periods of inattention.

In Section 3.1 we have seen that the latent perceived forecast error follows an AR(1) process
with a reseting at 0 when the consumer is attentive. Therefore, we have from Bayes law

f(e|k) ∝
∫
Ξ
far(e|ē)f(ē|k − 1)dē ∀k ∈ N (15)

where far(e|ē) = 1
σω
φ
(
e−(1+r)ē

σω

)
and the initial condition f(e|0) = δ(e) with δ(.) the dirac

11There are, at least, two complementary views to analyze the stochasticity of the attention behavior. One
may either consider tracking the evolution of et and analyze an update as a situation such that |et| ≥ π. In
this case, it is best to apprehend the updating as resulting from a first time passage problem (in discrete time)
with reseting. On the other hand, one may only value the time dimension without regard for the specifics of the
dynamics of et. In this case, one may use tools from survival analysis. In the rest of the paper, I will rely on
tools from both approaches depending on which is the most convenient. See Aalen et al. (2001) for a discussion.
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distribution. Equation (15) illustrates how the uncertainty from not using the extra information
acquired through the latent information set It evolves whilst the consumer is inattentive. On
the one hand, if the consumer was not attentive at the previous period, she did not observe
et−1. Consequently, she did not adjust her consumption path accordingly and the uncertainty
surrounding her current permanent income increases mechanically by a factor indexed on the
gross interest rate (1 + r). This mechanical increase in uncertainty is captured through far(e|ē)
in equation (15). On the other hand, she knows that being inattentive at the previous period
implies that τt−1 = g(et−1) was equal to zero. Since, at the optimum, she chooses a triggering
law such that g(et) = 1 ⇐⇒ |et| ≥ π and zero otherwise, she knows that et−1 belonged
to Ξ. Hence, this negative information leads to truncate the integration of the distribution
f(ē|k − 1)dē in equation (15).

In order to provide quantitative predictions, it is necessary to compute the distribution
f(e|k) from equation (15). The latter distribution is not standard and explicitly iterating on
equation (15) may lead to large numerical errors (Shi et al., 2016). I therefore rely on the
approximation procedure presented in Lemma 5 which provides closed-form approximations.
This approximation relies on a truncation of histories, a procedure which is well-suited for
realistic calibrations of the problem under consideration. Indeed, the average inattentiveness
length being generally of a few periods, the share of consumers who will encounter a long
duration without being attentive should be small. Therefore, a good approximation method
here should be close to exact for small k. As is highlighted in Lemma 5, the proposed method
is exact when k is equal to one or two periods.

Lemma 5. For k = 1, we have

f(e|1) = 1
σω
φ
( e

σω

)
and for k = 2,

f(e|2) ∝ φ

(
e√

1 + (1 + r)2σω

)[
Φ
(
π − (1+r)

1+(1+r)2 e
σω√

1+(1+r)2

)
− Φ

(
−
π + (1+r)

1+(1+r)2 e
σω√

1+(1+r)2

)]

For higher k ∈ {3, 4, . . . ,∞}, the distribution f(e|k) is approximated by truncating the histories
and we have

fapp(e|k) ∝ φ

(
e√

z(k)σω

)[
Φ
(
π − (1+r)u(k)e

z(k)√
u(k)
z(k)σω

)
− Φ

(
−
π + (1+r)u(k)e

z(k)√
u(k)
z(k)σω

)]

where z(k) = ∑k−1
i=0 (1 + r)2i and u(k) = ∑k−2

i=0 (1 + r)2i.

Proof. See Appendix A.9.
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In conclusion, the distribution of inattention lengths is driven by three parameters: the
interest rate r which captures the propagation of past errors over time, the triggering threshold
π which characterizes the shape of the inattention region and the variance σ2

ω reproducing the
volatility of the perceived forecast error.

4 Application to ARMA Income

This section calibrates the model parameters with an ARMA(1,1) income change process and
derives quantitative implications for optimal inattentiveness.

4.1 Income process and calibration

The setup introduced in Section 2 requires that the income process follows from a multivariate
linear state space model with Gaussian white innovations.12 Following Friedman (1957), and
more recently Reis (2006a) and Luo (2008), I assume that income is the sum of two independent
components yPt and yTt . The first component is the permanent part of income and follows a
random walk with variance σ2

P . It captures permanent variations in income that may arise for
instance from changes in employment status, experience, education or severe health shocks. The
second component is transitory income and follows an AR(1) with parameter ρ and variance
σ2
T . Shocks to transitory income have a temporary effect on income and the larger ρ is the less

persistent their effects are. These transitory shocks may represent for instance fluctuations in
overtime labor supply, bonuses, lottery prizes and bequests. MaCurdy (1982) finds that such
income process fits the US data well.

Following the methodology presented in Section 2, I reformulate this income process in
terms of permanent income st. Shocks to permanent income are thus equal to

ζt = 1 + r

r
εPt + 1 + r

1 + r − ρ
εTt (16)

where εPt is the shock to the permanent part of income and εPt the shock to the transitory
part. In the following, I directly focus on the impact of shocks to permanent income. It allows
me to characterize the impact of income shocks independently of their type. Equation (16)
nevertheless permits to retrieve the impact of each shock separately.

12It is worth mentioning that these linear state space models are unable to capture important nonlinearities
in the income process that have recently been identified (Meghir and Pistaferri, 2011; Arellano et al., 2017).
Examining how these nonlinearities interact with consumers’ inattention and, ultimately, consumption dynamics
is left for future work.
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The income process is calibrated following Pischke (1995) and such that σP = $45, ȳ =
$6, 926, ρ = 0.487, σT = $1, 962 and r = 0.015. The time period is a quarter and the obser-
vational unit a household. The discount rate is β = 0.99. Regarding the updating behavior,
estimates at the macro-level indicate that individuals update once a year on average (Carroll,
2003; Mankiw et al., 2003; Reis, 2006a). I set the attention cost λ accordingly.

The remaining parameter σ2
ϑ stands for the signal informativeness. Everything else being

equal, σ2
ϑ determines the latent Kalman filter gain from Lemma 2 and hence the rate at which

income shocks are incorporated. I therefore calibrate σ2
ϑ to match the impulse-response function

of US consumption estimated in Reis (2006a). He finds that about 40% of the consumption
response to an income shock arises on impact. Given the steady state dynamics of the model,
this implies that the latent Kalman filter gain is equal to 55%.

4.2 Optimal inattentiveness

Table 1 reports the threshold π normalized by the permanent income standard deviation. At the
benchmark calibration, households update whenever their perceived forecast error et is larger
than 1.40 σζ . Using the approximation procedure from Lemma 5 it implies that consumers
update their expectations once a year on average.

Table 1: Optimal inattentiveness

Benchmark Impact of a 5% decrease
r β ρ σT σP λ σϑ

π̄ 1.40 1.45 0.82 1.43 1.43 1.42 1.37 1.40
d̄ 4.00 4.19 2.25 4.09 4.10 4.07 3.90 4.01

Note: Optimal normalized threshold π̄ = π/σζ and implied average duration between up-
dates d̄ in quarters. The first column is for the benchmark calibration. Subsequent columns
evaluate the impact of decreasing one of the parameters by 10% while keeping others con-
stant.

In order to asses the sensitivity of consumers’ optimal inattentiveness to the model parame-
ters, Table 1 also displays the implied change in the normalized threshold and average duration
between updates when one parameter decreases by 5% while others remain at the benchmark
calibration. The information provided in Table 1 could thus be used to compute the updating
threshold and average duration elasticities with respect to each of these parameters.13 The up-
dating threshold and average duration are decreasing in the interest rate r, the persistence of
transitory shocks ρ, the standard deviation of permanent and transitory shocks (resp. σP and

13For example, the elasticity of the average duration with respect to the interest rate r is − 4.19−4
0.05×4 = −0.95.

These elasticities are only valid to locally asses the impact of a five percent decrease in the parameter values.

18



σT ). These results are not surprising as an increase in any of the latter parameters ultimately
rises the ex ante standard deviation of permanent income, thus making the consumer willing
to be relatively more attentive to changes in permanent income. The updating threshold and
average duration increase with the discount rate β. This is because an individual smoothes
consumption less when she values tomorrow less. Therefore, the share of permanent income
that she consumes (i.e. the variable L in Lemma 1) increases and so does the instantaneous
cost of misoptimization. Trivially, the threshold and average inattentiveness length increase
when the attention cost λ increases. Finally, the attention behavior is relatively unaffected by
the signal informativeness σϑ. This is because, as we saw, the consumer relies on a Kalman
filter to smoothly incorporate new information from the noisy signals. Consequently, when
these signals are noisier, the consumer’s optimal strategy is essentially to adjust her estimator
with respect to It from Lemma 2 in order to smooth these signals even more.

Figure 2 reports the hazard rates for the benchmark calibration. As can be seen, they
increase with the inattention length. In particular, the probability that a consumer updates
after only one quarter is small, less than 17%. These probabilities, conditionally on not updating
in between, then smoothly converge to a value of 29% as time passes.

The literature offers different models of sticky expectations that lead to incompatible pre-
dictions regarding agents’ inattention. The first generation of sticky information models (e.g.
Mankiw and Reis (2002), Carroll (2003) and recently Carroll et al. (2020)) assumes that agents
have a constant probability to update their expectations, independently of their attention his-
tory. I label these models as Calvo sticky expectations models in analogy to the Calvo price
setting model (Calvo, 1983). As is reported in Figure 2 these models imply that the hazard
rates are constant and equal to 25% when the average inattention length is of a year. Following
these initiatives, Reis (2006a) develops a microfounded model of sticky expectations and reach
the opposite conclusion that the updating behavior depends exclusively on the attention his-
tory. That is, assuming away any form of ex ante heterogeneity, each consumer should update
her expectations each year (for the average inattention length to be of a year). In Reis’ [2006a]
model the attention strategy is therefore purely time-dependent and the associated hazard rates
– reported in Figure 2 as well – are systematically nil excepted at the fourth quarter where
it is equal to 1. The model considered in this paper follows Reis’ [2006a] attempt to provide
microfoundations to sticky expectations. By allowing for more general attention strategies, it
generates an information-dependent attention14 with increasing hazard rates. In this regard, it

14In analogy to the pricing literature, one may be willing to label the present model as one of state-dependent
attention. I nevertheless believe that this terminology might be misleading as the state of interest to the
consumer here is permanent income st. However, when the information source is imperfect, this state is
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Figure 2: Inattention in sticky expectation models

Note: The figure reports the hazard rates for different models of sticky expectations. For the information-
dependent model considered in this paper, the distributions is computed for the benchmark calibration and
relies on the approximation procedure from Lemma 5. The Calvo model assumes that there is a constant
probability to update at each period. It corresponds to the sticky expectation model in e.g. Mankiw and Reis
(2002), Carroll (2003) and Carroll et al. (2020). The time-dependent model assumes that consumers update
on a purely time dependent basis. It corresponds to the sticky expectation model in e.g. Reis (2006a). For
the latter, the vertical line indicates that the hazard rate jumps from zero to one, and return back to zero
afterward. All models are calibrated so that the average inattention length is equal to a year.

is more flexible as it allows the probability that a consumer becomes attentive to evolve with
her inattention history but does not impose that inattention histories are the sole determinant
of attention.

4.3 Welfare cost

Appendix A.7 decomposes the overall welfare cost from costly information processing. It may
be apprehended as the sum of three independent terms: the utility cost from paying λ at
each update (updating cost), the misoptimization cost from being inattentive to signals (latent
information cost), and the misoptimization cost from observing noisy signals instead of perfect
information (noisy information cost).

Table 2 reports these welfare costs for different values of the coefficient of relative risk
aversion (CRRA) under the benchmark calibration. The costs induced by costly information
processing are small. When the CRRA is equal to one, the overall welfare cost represents 0.04%

never observable and the consumer bases her attention behavior according to the information content of the
information she will observe (i.e. the latent perceived forecast error et).
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Table 2: Welfare Cost

Coeff. of relative risk aversion 1 2 4 10
Bliss point c̄ $13, 852 $10, 389 $8, 658 $7, 619
Overall welfare cost (% consumption) 0.04% 0.07% 0.12% 0.29%

Welfare decomposition ($/quarter) 1.28 2.57 5.13 12.83
Updating cost 0.70 1.40 2.81 7.02

Latent information cost 0.41 0.81 1.62 4.05
Noisy information cost 0.18 0.35 0.71 1.76

Consumption change to update 2.92% 2.32% 2.10% 1.99%

Note: The welfare cost refers to misoptimization cost induced by costly information processing (equation ??). The
coefficient of relative risk aversion is equal to µ/(c̄−µ). The consumption change to update measures the threshold change
in perceived consumption that will prompt the consumer to internalize new information at period 0. These results were
obtained under the benchmark calibration for the infinite horizon problem.

of a household consumption (at period 0). That is, less than $1.3 per quarter. These costs
remain negligible even when one considers extremely risk averse consumers. When the CRRA
is 10, the welfare cost increases to only 0.29% of consumption. Decomposing the welfare cost,
we find that more than half of it is attributable to the fixed utility cost λ that the consumer
pays when attentive. When the CRRA is equal to one (resp. 10), the monetary equivalent from
paying λ when being attentive is ¢70 (resp. $7.02) per quarter. Given that she will update
once a year on average, the monetary equivalent for λ is $2.1 (resp. $21.06).

Consumption models with fixed costs of adjustment (e.g. Caballero (1995) and Chetty and
Szeidl (2016)) predict that we should observe (i) large consumption jumps and (ii) long lasting
periods when a household consumption remains constant.15 The model presented in this paper
does not share these unappealing predictions. First, the predicted consumption jumps are
modest. Given the model calibration, the consumption change which prompts the consumer to
update (L× π) is relatively small, equal to $133. When normalized by period 0 consumption,
the last row in Table 2 reports an order of magnitude of a few percentage points. In contrast
Caballero (1995) estimates that in order to capture the stickiness of US aggregate consumption
data, the implied jump in an adjustment consumption model would be of almost 6% – namely
twice as large than what we find here. Second, and as is further discussed in the subsequent
section, consumption is not constant here whilst the consumer is inattentive. Intuitively, this is
because the consumer is inattentive around a consumption path and not a consumption level.

15See Reis (2006a) and Carroll et al. (2020) for a critical discussion.
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5 Households’ consumption dynamics

This section analyses the consumption change following a shock to permanent income at the
household level. It shows that while consumption changes are partially predictable, they are not
serially correlated. Moreover, the expected marginal propensity to consume out of an income
shock depends on the perceived forecast error and the permanent income shock.

5.1 Consumption changes

At the micro level, consumption changes are conditional on the updating behavior. When
inattentive, the consumer follows a committed consumption path. As such, the consumption
change solely reflects the trend in this consumption path and consumption growth is constant.
More specifically, we have from equation (1) that

∆ct+1|(τt+1 = 0) = (r − L)ct (17)

As a consequence, consumption growth at non-updating periods is predetermined and orthog-
onal to permanent income shocks and information noises. However, at updating periods the
consumer updates her information set and the consumption change

∆ct+1|(τt+1 = 1) = Let+1 + ∆ct+1|(τt+1 = 0) (18)

is a Borel-measurable function with associated σ-statistics It+1. As such, the change in con-
sumption at updating periods depends on the complete history {{ζi}t+1

i=1, {ϑi}t+1
i=1} and is there-

fore partially forecastable using past information about income shocks. In comparison, the
sticky expectation models of Carroll (2003) and Reis (2006a) predict that, in an otherwise
similar setup, a household consumption growth would be unpredictable using information prior
to her last update at time lt. Furthermore, the following proposition about serial correlation
holds

Proposition 3. Consumption growth is not serially correlated at the household level.

Proof. Equations (8), (17) and (18) together imply that ∆ct is orthogonal to et when τt = 0
and that et+1 is orthogonal to et when τt = 1 so that et+1 is also independent from ∆ct in that
case.

Many studies have tested wether household level consumption growth is serially correlated.
The recent meta-analysis of Havranek et al. (2017) considers 190 estimates from these studies
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on micro data and reports a median (resp. mean) estimate of 0.0 (resp. 0.1). These findings
are in line with Proposition 3. They are however hardly reconcilable with the use of con-
sumption habits as a mechanism to generate smoothness in aggregate consumption dynamics:
"If habits are a true structural characteristic of people’s utility functions, we should see their
effects in microeconomic data as well as macroeconomic aggregates. But empirical studies us-
ing household-level data strongly reject the existence of habits of the magnitude necessary to
explain aggregate consumption dynamics." (Carroll et al., 2020)

5.2 Asymmetry and magnitude

Now, consider a translation in the distribution of permanent income shocks at time t+ 1 such
that ζt+1 ∼ N (ζ̄ , σ2

ζ ). Let MPC(e, ζ̄) ≡ ∂E[ct+1|e = et]/∂ζ̄ be the expected instantaneous
marginal propensity to consume for a consumer whose latent perceived forecast error is et.
Then,

MPC(et, ζ̄) = L(1 + r)
[
∂q1(et + νζ̄)

∂ζ̄
(et + νζ̄) + νq1(et + νζ̄)

]
(19)

where ν = K/(1 + r) and q1(x) = 1 + Φ(−(π + (1 + r)x)/σω) − Φ((π − (1 + r)x)/σω) is the
probability to update in one period given an initial latent forecast error x. Equation (19)
underlines the two margins affecting the expected consumption response to an income change.
On the one hand, and taking the probability to update as given, the consumer will internalize
a proportion K of the shock when updating. Accordingly, the expected marginal propensity to
consume increases by LK times the probability of an update. On the other hand, the shock ζ̄
also affects the consumer’s probability to update. The latter probability is q1(et + νζ̄) where
the term ν is used to account for the fact that the consumer will only internalize a fraction
K of the shock on average and to express the impact of the shock on the probability from a
change in the initial condition at period t.

Equation (19) further reveals that the expected marginal propensity to consume is both
history- and shock-dependent. To highlight the mechanisms behind these two dependences,
first realize that the function q1(x) is symmetric around its minimum at 0, attains its maximum
1 at ±∞ and is monotonically decreasing on [−∞, 0] and monotonically increasing on [0,∞].
As a consequence, the marginal change in the probability to update at the next period given a
history leading to et and a shock ζ̄ is positive if and only if et + νζ̄ ≥ 0 and negative otherwise.
When the latter term is positive, the consumer is more likely to internalize the impact of the
income shock and its expected marginal propensity to consume out of this income news is
larger. More specifically, equation (19) implies the following behavior
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Proposition 4. The one-period ahead expected marginal propensity to consume out of an in-
come shock is such that

• MPC(et, ζ̄) increases with respect to |et + νζ̄|.

• Given that et belongs to Ξt, there always exists a finite and large enough income shock κ
such that

MPC(et,κ) > MPC(et, 0) and MPC(et,−κ) > MPC(et, 0) ∀et ∈ Ξt

• Let ζ̄ > 0, then

MPC(et, ζ̄) = MPC(et,−ζ̄) ⇐⇒ et = 0

MPC(et, ζ̄) > MPC(et,−ζ̄) ⇐⇒ et > 0

According to the magnitude hypothesis, the consumption response to an income shock de-
pends on its size. Such relation is expected to hold here as is apparent from the first two bullets
in Proposition 4. The literature review in Section 1 mentions studies providing evidence to sup-
port the magnitude hypothesis. A few authors postulated that rational inattention may offer
an explanation since the costs from not smoothing consumption increase with the size of the
shock. For example, Hsieh (2003) states that "households will not bother to change their con-
sumption paths when the computational costs involved are large relative to the utility gains". A
similar argument is made in Browning and Collado (2001): households "do not bother to adjust
optimally to small income changes since the utility cost [...] is small". The consumption model
developed in this paper offers a microfounded framework confirming this guess. Accordingly,
the magnitude hypothesis arises as a consequence of the joint dynamics of information rigidities
and consumption. Large income shocks are more likely to prompt consumers to revise their
expectations and, consequently, to adjust their consumption path to account for this shock.
It it is worth mentioning that this conclusion holds independently of the sign of the income
shock and therefore differs from any explanation based on the presence of credit constraints or
risk aversion.16 Proposition 4 however reveals that the size of an income shock is not a suffi-
cient statistics to apprehend the magnitude hypothesis because other perceived income shocks
since the last update matter as well. Alternatively saying, the consumption response to an

16Following an income decline, a credit constraint does not affect the marginal propensity to consume. See
Jappelli and Pistaferri (2010) for a discussion. Regarding risk aversion, Tutino (2013) shows that the consump-
tion response to negative income shocks is higher in a framework with a CRRA utility and inattention à la Sims
(2003).
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income shock is both history (through et) and shock-dependent (through ζ̄). One shall there-
fore simultaneously account for both dependences to derive implications for the consumption
response.

The first and last bullets in Proposition 4 indicate that the consumption response to an
income shock is asymmetric with respect to the sign of the shock. This asymmetry results from
two complementary forces, the history-dependence and the shock-dependence. The consump-
tion model predicts that the expected marginal propensity to consume at the household level
is large for positive shocks when the perceived change in permanent income that has not been
internalized yet is positive (and large) and for negative shocks when the perceived change in
permanent income that has not been internalized yet is negative (and large in absolute value).
On the other hand, the expected MPC decreases after a positive shock when the perceived
change in permanent income that has not been internalized yet is negative (and large in ab-
solute value) and after a negative shock when the perceived change in permanent income that
has not been internalized yet is positive (and large). These asymmetries, which cannot be
explained by standard extensions of the permanent income model, such as credit constraints
or habits, have been identified by Caballero (1995) using data on US aggregate consumption.
Up to the best of my knowledge, no study has analyzed the potential asymmetric reaction to
negative and positive shocks during periods of income increases and declines at the household
level.

Finally, equation (19) also indicates that the expected marginal propensity to consume out of
an income shock is bounded by the rate at which the estimator with respect to It incorporates
new information. It is easily seen from computing limζ̄ 7→±∞MPC(et, ζ̄) = L(1 + r)K where
0 < K < 1 is the Kalman gain from equation (5).

6 Aggregate consumption dynamics

This section focuses on the implications for aggregate consumption. It shows that costly infor-
mation processing generates impulse response functions for consumption which depend on both
the state of the economy and the size of the shock. Moreover, aggregate consumption growth
is found to be highly persistent at the steady state. This persistence however depends on the
endogenously time-varying share of attentive consumers.

6.1 Cross-sectional distribution

To asses the aggregate dynamics of the economy, I assume it is composed of a unit mass
continuum of infinitely-lived consumers who are ex ante identical and whose problem is given
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by (3). For simplicity, I further assume that the discount rate is equal to β = (1 + r)−1 in
the following. Because they have different idiosyncratic shocks, signals and updating histories,
households differ in terms of their latent perceived forecast error. Analyzing the aggregate
dynamics of information frictions and consumption therefore requires to keep track of the
distribution of households. To this end, let at(e) denote the cross-sectional distribution of
consumers at the end of period t and before the resetting. The share of updating consumers in
the economy at period t is therefore λt ≡

∫
e/∈Ξ at(e)de. In the absence of aggregate shocks, the

cross-sectional distribution dynamics is

at(e) ∝
1
σω

[ ∫
ẽ∈Ξ

φ

(
e− (1 + r)ẽ

σω

)
at−1(ẽ)dẽ︸ ︷︷ ︸

Non updaters at t−1

+φ

(
e

σω

)∫
ẽ /∈Ξ

at−1(ẽ)dẽ︸ ︷︷ ︸
Updaters at t−1

]
(20)

The dynamics of the cross-sectional distribution directly follows from the dynamics of the
latent perceive forecast error in equation (8). Proposition 5 characterizes the steady state
cross-sectional distribution in the absence of aggregate shocks.

Proposition 5. Equation (20) admits a stationary distribution

a?(e) =
∞∑
k=1

λ?(k)f ?(e|k) (21)

where

λ?(k) = λ?(1)S?(k − 1) ∀k ≥ 2 (22)

and λ?(1) = 1/∑∞k=0 S
?(k) with S?(k) the unconditional survival function and λ?(k) the steady-

state share of consumers whose last update was k periods ago.

Proof. Appendix A.6.

I now introduce aggregate shocks in the economy and make the following assumption.

Assumption 1. Shocks to permanent income ζt are the sum of an aggregate shock χt common
to each consumer and an independent idiosyncratic shock ιi,t. Both shocks are i.i.d. Gaussians
with zero mean and respective variance σ2

χ and σ2
ι .

Under assumption 1, the consumption and triggering policies from Proposition 2 are un-
affected. As a result, the only impact of aggregate shocks is to continuously and persistently
translate the cross-sectional distribution of consumers. Indeed, when a shock occurs, it is only
observable through the noisy information channel It and is therefore gradually perceived by
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consumers. Therefore, an aggregate shock does not only disturb the cross-sectional distribution
when it occurs, but does so persistently. Given that consumers rely on a latent Kalman filter
to incorporate new information (Lemma 2), the translation in the cross-sectional distribution
at period t is given by a weighted sum of past aggregate income shocks {χ̄i}ti=1

St =
t−1∑
s=0

υsχ̄t−s (23)

where

υs = K(1 + r)s(1−K)s (24)

is the share of the aggregate shock – augmented by its returns – that is internalized on average
at period t+ s. Accounting for this new state variable, it is possible to derive the impact of an
aggregate shock on consumption dynamics for any history of aggregate shocks.

Proposition 6. The dynamics of the economy in the presence of aggregate shocks is charac-
terized by the following system of dynamic equations

at+1(e) ∝ 1
σω

[ ∫
ẽ∈Ξ

φ

(
e− St+1 − (1 + r)ẽ

σω

)
at(ẽ)dẽ+

∫
ẽ /∈Ξ

φ

(
e− St+1

σω

)
at(ẽ)dẽ

]
(25)

St+1 = (1−K)(1 + r)St +Kχ̄t+1 (26)

along with initial conditions a0(e) and S0 =
∫
R ea0(e)de.

Proposition 6 indicates that St follows a markovian process. In general, the dynamics of
St is stationary since r should be small in comparison to K. This state variable characterizes
the business cycle in this economy: a positive St coincides with an expansionary cycle while a
negative St results in a contraction.

6.2 Consumption dynamics at the steady state

To illustrate the dynamics of the economy starting from the steady-state cross-sectional dis-
tribution, I first analyze a one time only aggregate shock. Formally, consider a shift χ̄ in the
distribution χt ∼ N (χ̄, σ2

χ) at time t. Because the economy is initially at its steady-state and
there is a one time only aggregate shock, Proposition 6 implies that the impact of the aggregate
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shock on the cross-sectional distribution follows from iterating on

at+s(e)|χ̄ ∝
1
σω

[ ∫
ẽ∈Ξ

φ

(
e− υsχ̄− (1 + r)ẽ

σω

)
at−1+s(ẽ)dẽ+ φ

(
e− υsχ̄
σω

)∫
ẽ /∈Ξ

at−1+s(ẽ)dẽ
]
(27)

which has for initial condition at−1(e) = a?(e) so that St−1 = 0. Therefore, the impact of an
aggregate shock is first to shift the cross-sectional distribution of consumers. The stationary
distribution a?(e) being symmetric, unimodal and centered around zero, an aggregate shock
increases the share of agents who update and the magnitude of the average consumption change
of those who would have updated in the absence of the shock.17

Not everyone will update (a.s.) after the aggregate shock. Hence, the cross-sectional distri-
bution at the next period must account for the impact of the initial shock for those who have
not updated (whence the term

∫
ẽ∈Ξ φ

(
e−(1+r)ẽ

σω

)
at−1+s(ẽ)dẽ in the right-hand side of equation

(27)). Moreover, because information is imperfect, the cross-section of consumers continues
to be translated at each period in order to account for new pieces of information regarding
the initial shock after it occurred. This new information depends on the rate at which agents
rely on their signals zt to form E[st|It]. Consequently, the cross-sectional distribution is trans-
lated a second time at period t + 1 by a factor υ1χ̄. As time passes, υs tends to zero and the
cross-sectional distribution is not disturbed anymore. It then smoothly converges back to the
stationary distribution a?(e) as consumers update to account for their idiosyncratic shocks.

Aggregating equations (17) and (18) over consumers when β = (1 + r)−1, the impulse
response function (IRF) following an aggregate shock is thus

∆Ct+s|χ=χ̄ −∆Ct+s|χ=0 = L
∫
e/∈Ξ

e (at+s(e)|χ̄− a?(e)) de (28)

Equation (28) highlights the dependence between consumption and information rigidities dy-
namics. Indeed, (at+s(e)|χ̄− a?(e)) stands for the change in the perceived forecast error distri-
bution stemming from the aggregate shock. It thus captures the change in the share of updating
consumers – as well as the change in their average e.

Figure 3 plots the impulse response function for different aggregate shocks. As is apparent
from the top panel, aggregate information rigidities and consumption dynamics are shock-
dependent. When the shock size is small, it barely affects the updating behavior which remains
at its steady state dynamics. The shock is then smoothly accounted for by consumers as they
update to internalize the impact of idiosyncratic shocks. However, when the shock is large, the

17In the state-dependent pricing literature, these responses are respectively labeled the extensive and intensive
margins (Caballero and Engel (2007)).
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Figure 3: IRF at the steady state

Note: The figure reports the impulse response function of aggregate consumption (top panel) and shares of updates (middle panel)
for different values of aggregate income shocks. The small shock is a one dollar shock, the medium is a one standard deviation σζ
shock and the large shock a two standard deviations shock. The bottom panel plots the evolution of the cross-sectional distribution
of consumers following the medium shock. The large plain line is the steady-state distribution.

share of agents updating jumps on impact and persistently remains above its steady state level.
As a consequence, the short run response of aggregate consumption is much sharper following
a large shock. Irrespectively of the size of the initial shock, the normalized IRFs then converge
as consumers update to internalize the impact of idiosyncratic shocks.18 Figure 3 also reports
the dynamics at the limit when χ̄ 7→ ∞. After such shock, the share of updaters jumps to
100%. The instantaneous normalized response is thus equal19 to 1 − (1 − K)(1 + r). At the

18Note that the long run impact of the shocks are not identical because income news that haven’t been
processed grow at a constant rate r. See Luo (2008) for a related discussion. However, the normalized IRF
being defined as the response at time t+ s divided by the long run response, it must converge to one.

19When (1−K)(1+r) < 1. This value is computed as follows. The long run response is K/(1−(1−K)(1+r)),
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second period, the new piece of information prompts each consumer to update again a.s. and
the normalized response is equal to (υ0 + υ1)(1− (1−K)(1 + r))/K.

6.3 Consumption dynamics during booms and busts

The previous section studies the consumption dynamics assuming the economy was initially
at its steady state and concludes that it depends only on the size of the aggregate shock.
However, and similarly to what we found at the household level, aggregate consumption dy-
namics is both history-dependent and shock-dependent. The present section thus considers the
role of previous aggregate shocks for consumption dynamics. Importantly, it shows that the
dynamics of aggregate consumption depends on the state of the economy when the shock occurs.

The situation studied in section 6.2 was such that a0(e) was equal to a?(e). The mean
of the latter being nil, we had S0 = 0. It was thus a special case of proposition 6. The
impulse response function follows from equation (28) where the counterfactual distribution is
now at+s(e)|χ̄t = 0, that is the cross-sectional distribution in the absence of aggregate shock at
time t. Figure 4 reports the implied impulse response functions when the economy is initially
either in a booming period (S0 > 0) or in a busting period (S0 < 0). The implied dynamics
are fundamentally different. During a boom (resp. bust), a positive (resp. negative) aggregate
shock increases the share of updates and consumers rapidly revise their consumption plan
accordingly. In this case, the consumption response is brisker when the shock size is larger.
However, a positive (resp. negative) shock may have an ambiguous effect on the updating
behavior during recessions (resp. expansions). If the size of the shock is small relatively to
|S0|, then the share of updates decreases after the shock and consumption dynamics are more
sluggish. However, and similarly to proposition 4, there always exists a large enough income
shock such that consumers update more and consumption dynamics are abrupter. This latter
observation may easily be understood by realizing that the impact of an infinitely large shock
(computed in section 6.2) is independent of the initial state of the economy.

Caballero (1995) finds that US aggregate consumption dynamics display asymmetries during
booms and busts as those described above: “in good times, consumers respond more promptly
to positive than to negative wealth shocks, while the opposite is true in bad times”. Similarly,
Ocal and Osborn (2000) recently concluded that the dynamics of aggregate consumption in the
UK depends on the the state of the economy and the sign of the shock.

and the response on impact is v0 = K as everyone update. The normalized response being the ratio of the
latter over the former, it is equal to 1− (1−K)(1 + r).
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Figure 4: IRF During Booms and Busts

Note: The figure reports the impulse response functions of aggregate consumption (left panels) and the shares of updates (right
panels) following a one and two standard deviations positive permanent income shocks and a one and two standard deviations
negative shocks when the economy is initially in a boom (top panels) or a bust (bottom panels).

6.4 Implications for the persistence of aggregate consumption

[Methodology to be written]
The persistence of consumption growth depends on the endogenously time-varying share of

attentive consumers. Figure 5 displays the predicted mapping between consumption persistence
and consumers’ information rigidities. In normal times, information rigidities are near their
steady state level and consumption persistence relatively constant. However, during unusual
times such as recessions, information rigidities decrease a lot and so does aggregate consumption
persistence.

These findings are in line with Kumar and Jia (2019) who report systematic decreases in
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Figure 5: Aggregate consumption persistence and attention

Note: Model predictions for the relation between consumption persistence and information frictions. Aggregate consumption
change is approximatively equal to ∆Ct = γt∆Ct−1 + βXt where γt is a measure of the time-varying persistence of consumption
growth and Xt a set of controls discussed in Section 6. The black line relates the evolution of the estimated time-varying persistence
γt to the observed share of inattentive consumers from simulating the model over 200,000 periods. The grey area is the distribution
of the share of inattentive consumers. The steady state persistence is the persistence when the share of attentive consumers is at
its steady state level (i.e. 75%) and the time-variant estimate is obtained from an OLS estimation when the persistence is assumed
to be constant. The model is calibrated at the household level (see Section 4).

consumption growth persistence during recessionary periods. An innovation of this paper is
to illustrate how these drops in aggregate consumption persistence are fundamentally related
to Dräger and Lamla (2012) and Coibion and Gorodnichenko (2015) findings that information
rigidities decrease during these periods. Furthermore and as is depicted in Figure 5, time-
invariant estimates reported in the literature will generally underestimate the steady state
persistence of consumption.

7 Conclusions

This paper proposes a novel model to explain the state-dependence of information rigidities.
Consumers must pay a fixed cost to observe noisy signals on the state of the economy. They
face an inattention region where they temporarily ignore new signal releases and do not update
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their expectations. Accounting for the interaction between variations in information rigidities
and consumption choices allows to reproduce non-linear features of consumption dyhnamics
that have been observed in the data.

This paper stresses potentially important and novel policy implications that would be inter-
esting to investigate. At the aggregate level, the dynamics of consumption is governed by the
dynamics of information rigidities. As a consequence, households tend to pay more attention
to negative income shocks than to positive income shocks during recessions. Although there is
no explicit fiscal or monetary authorities in the present model, this result may hold significant
consequences for stabilization policies. By leaning against the wind, these policies may reduce
households’ incentive to update their expectations. As a result, feeble policy interventions aim-
ing to stabilize consumption may in fact increase the persistence of consumption growth in the
aftermath of a recession, and thereby turn out to be even more destabilizing. It would therefore
be interesting to enrich the model with fiscal and monetary authorities in future work. Such
work would be useful in any attempt to understand the interaction between economic policies,
information frictions, and macroeconomic outcomes.
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A Appendix

A.1 Proof of Lemma 1

We have

βT qT s
2
T = p0s

2
0 +

T−1∑
t=0

(
βt+1pt+1s

2
t+1 − βtpts2

t

)
(29)

since pT = qT . Moreover,

pt+1s
2
t+1 = ((1 + r)st − ut + ζt+1)2pt+1 (30)

where ut ≡ ct − c̄. Further noticing from the definition of Lt and the Riccati equation for pt
presented on page 8 that pt+1(1 + r)stut = 1+βpt+1

β
Ltstut and pt+1u

2
t = 1+βpt+1

β
u2
t − 1

β
u2
t , it holds

E[βt+1pt+1s
2
t+1|I0] = E

[
βt(ut − Ltst)2(1 + βpt+1) + βt+1pt+1ζ

2
t+1

+βt+1(1 + r)2pt+1s
2
t − βt(1 + βpt+1)L2

t s
2
t − βtu2

t

∣∣∣∣I0

]
(31)

because ζt+1 is independent with respect to ut and st. Moreover,

βtpts
2
t = βt(1 + r)Lts2

t (32)

37



so that equation (29) writes in expectation

E[βT qT s2
T |I0] = E

[
p0s

2
0 +

T−1∑
t=0

βt(ut − Ltst)2(1 + βpt+1) + βt+1pt+1ζ
2
t+1 − βtu2

t

∣∣∣∣I0

]
(33)

Consequently, the objective function V0 ≡ E
[∑T−1

t=0 β
t
(
u2
t + λτt

)
+ βT qT s

2
T

∣∣∣∣I0

]
is

V0 = E
[
p0s

2
0 +

T−1∑
t=0

βtλτt + βt+1pt+1ζ
2
t+1 + βt(ut − Ltst)2(1 + βpt+1)

∣∣∣∣I0

]
(34)

Therefore, guessing that the triggering choices τt are independent of the control law – a
guess that will hold – it is optimal to set ut = LtE[st|It] (Q.E.D. Lemma 1).

A.2 Proof of Lemma 2

Using this result, the last term in equation (34) writes βtL2
t (E[st|It] − st)2(1 + βpt+1) where

st − E[st|It] = st − E[st|It] + et and et ≡ E[st|It]− E[st|It]. Thus,

E[(st − E[st|It])2|I0] = E[(st − E[st|It])2|I0] + E[e2
t |I0] (35)

as the estimation error from E[st|It] is independent from et. Hence,

V0 = E
[
p0s

2
0 +

T−1∑
t=0

βtλτt + βt+1pt+1ζ
2
t+1 + βtL2

t

(
(st − E[st|It])2 + e2

t

)
(1 + βpt+1)

∣∣∣∣I0

]
(36)

Thanks to the additivity of the above equation, we can now characterize the optimal estimator
E[st|It]. Make the educated guess that it is a Kalman filter which admits a steady state
variance. Then, the steady state posterior variance solves the algebraic Riccati equation p+ =
(1 + r)2

(
p+− p2

+/(p+ + σ2
ϑ)−1

)
+ σ2

ζ . The Kalman gain is K = p+(p+ + σ2
η)−1 and the posterior

steady state variance is p− = (1−K)p+.
We focus on situations such that the initial uncertainty surrounding the state variable is

initially at its steady state value. That is, we impose σ2
s0 = p−. Then, E[(st−E[st|It])2|I0] = p−

is at its steady state. Therefore, the optimal estimator must minimize this steady state variance
given the linear law of motion for st. By definition, this estimator is the Kalman filter, thus
confirming our guess when it admits a steady state variance (Q.E.D. Lemma 2).
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A.3 Proof of Lemma 3

The corrective term in equation (6) is a predetermined bias that depends on the information
in the hands of the consumer when inattentive (It, τt = 0). It therefore depends on time t,
the inattention length and the triggering law gt(.) (see Lemma 4 in Molin and Hirche (2010)).
Let lt ≡ sup{k : τk = 1, k ≤ t} be the most recent period when the consumer was attentive.
Equation (6) then writes

E[st|It, τt = 0] = E[st|It−1] + α(t, lt) (37)

where α(t, lt) ≡ E
[
(1 + r)et−1 +K(zt−E[st|It−1])

∣∣∣It, τt = 0
]
. Using the definition for et in (7)

we have

et+1 = (1− τt)(1 + r)et − α(t, lt) +K
(
zt+1 − (1 + r)E[st|It] + ct − c̄

)
(38)

Moreover, note that only the second and fourth terms in (36) depend on the triggering law
gt(.). Hence, the triggering law solves the following problem

min
g.(.),α(.)

E
[ T−1∑
t=0

βtλτt + βtL2
t e

2
t (1 + βpt+1)

∣∣∣∣I0

]
(39)

s.t. et+1 = (1− τt)(1 + r)et − α(t, lt) + ωt+1

where ωt+1 ≡ K
(
zt+1− (1 + r)E[st|It] + ct− c̄

)
is the innovation from the latent Kalman filter

and is an i.i.d Gaussian white noise with variance σ2
ω = k2(p̄+ + σ2

η). The difficulty in solving
problem (39) is that α(.) depends on g.(.) and vice versa.

Molin and Hirche (2012) develop an iterative algorithm to solve a similar problem when
β = 1. They show that when the distributions of e0 and {ωt} are symmetric and unimodal,
α(.) = 0 is a globally asymptotically stable fixed-point of the algorithm (Theorem 5, Molin and
Hirche (2012)). The Online Appendix A.8 shows that this theorem still holds for (39). (Q.E.D.
Lemma 3)
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A.4 Optimal Triggering Rule

Note that only the second and fourth terms in (36) depend on the triggering law g(.). Hence,
the updating behavior solves the following problem

min
{τt}T−1

t=0 ∈{0,1}T
E
[ T−1∑
t=0

βtλτt + βtL2
t e

2
t (1 + βpt+1)

∣∣∣∣I0

]
(40)

along with a transitory dynamics for et+1. Following from Lemma 3, the law of motion for et+1

is at the optimum

et+1 = (1− τt)(1 + r)et +K
(
zt+1 − (1 + r)E[st|It] + ct − c̄

)
(41)

Problem (40) along with the law of motion (41) is a standard optimal control problem with
perfect state observation et and could therefore be solved using a DP algorithm.

From problem (40) the choice to update depends on the state variable et ≡ E[st|It]−E[st|It].
Let the cost associated to the terminal condition qT be arbitrarily large. Then, at period T −1,
the consumer updates almost surely as limqT 7→∞ L

2
T−1(1 + βqT ) =∞. Therefore, gT−1(eT−1) =

1 ⇐⇒ |eT−1| > 0. Let π+
t and π−t denote the thresholds such that the consumer updates at

period t if and only if et ≤ π−t or et ≥ π+
t . Then, π+

T−1 = −π−T−1 = 0 and the triggering law is
indeed symmetric at period T − 1. Writing problem (40) in its Bellman form, we have

Jt(et) = min
τt∈{0,1}

L2
t (1 + βpt+1)e2

t + τtλ+ βE[Jt+1(et+1)|It] (42)

s.t. et+1 = (1− τt)(1 + r)et +K
(
zt+1 − (1 + r)E[st|It] + ct − c̄

)
We thus have E[JT−1(eT−1)|IT−2] = λ and the consumer updates if and only if

|eT−2| ≥
1

LT−2

√
λ

1 + βpT−1
(43)

Again, the thresholds are symmetric−π−T−2 = π+
T−2. This symmetry arises because JT−1(eT−1) =

JT−1(−eT−1) is symmetric, the expectation is taken over an unimodal and symmetric distribu-
tion so that E[JT−1(eT−1)|IT−2, et] = E[JT−1(eT−1)|IT−2,−et] and L2

t (1+βpt+1)e2
t is symmetric

as well. Therefore, iterating backward and using the same argument, Jt(et) = Jt(−et) ∀t ∈
{0, . . . , T −1} so that −π−t = π+

t ∀t ∈ {0, . . . , T −1} thus confirming the guess that the optimal
triggering law gt(et) is symmetric. Moreover, at any time t ∈ {0, . . . , T − 1}, πt ∈ R+ solves

λ+ βE[Jt+1(et+1)|It, et = 0] = L2
t (1 + βpt+1)π2

t + βE[Jt+1(et+1)|It, et = πt] (44)
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(Q.E.D. Lemma 4 and Proposition 1)

A.5 Stationary Policies

I now demonstrate that the triggering law converges to a stationary policy when T tends to
∞. The first step is to show that pt converges to a stationary solution. To this end, consider
the following infinite horizon deterministic linear quadratic control problem:

min
{ct}∞t=0

∞∑
t=0

βt(ct − c̄)2 (45)

s.t. xt+1 = (1 + r)xt − ct + c̄

where β ∈ (0, 1). Assuming it exists,20 it is well-known that the stationary control law is
L̄ = (1 + r) βp̄

1+βp̄ where p̄ is the solution to algebraic Ricatti equation

p̄ = (1 + r)2 βp̄

1 + βp̄
(46)

that is, p̄ = β(1+r)2−1
β

.21 Thanks to the certainty equivalence of the orignal problem, the
consumption policy (4) admits a stationary solution L = (1 + r) βp̄

1+βp̄ = β(1+r)2−1
β(1+r) . As a result,

L2
t (1 + βpt+1) converges to [β(1+r)2−1]2

β(1+r) so that the reward function in the Bellman equation (9)
is stationary. The latent Kalman filter being at its steady state, zt+1 − E[st+1|It] follows a
gaussian distribution with mean zero and variance p+ + σ2

η which is time-invariante. Hence,
problem (9) is an infinite horizon discrete time Markov decision problem where the reward,
transition, constraint and shock distribution are independent of time. As such, the problem is
stationary and the Bellman equation takes the form of a functional fixed-point equation

J(et) = min
τt∈{0,1}

(
β(1 + r)2 − 1

)2

β(1 + r) e2
t + τtλ+ βE[J(et+1)|It] (47)

s.t. et+1 = (1− τt)et + k
(
zt+1 − (1 + r)E[st+1|It] + ct − c̄

)
We thus have τt = g(et) where g(et) = 1 ⇐⇒ |et| ≥ π and 0 otherwise. π solves

λ+ βE[J(et+1)|It, et = 0] =

(
β(1 + r)2 − 1

)2

β(1 + r) π2 + βE[J(et+1)|It, et = π] (48)

20See Ljungqvist and Sargent (2004) section 5.4.1 for a discussion on stability. Section 5.2.2 characterizes the
solution to the problem under consideration.

21These results also follow directly from Lemma 1 since the certainty equivalence holds.
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and J(.) is the stationary value function from (47).

A.6 Cross-sectional Stationary Distribution

Take the limit when T 7→ ∞ and let λt(k) be the share of consumers who did not update for
k ∈ {1, 2, . . . ,∞} periods. Then,

at(e) =
∞∑
k=2

λt−1(k − 1)(1− Λt(k − 1))ft(e|k) + ft(e|1)
( ∞∑
k=1

λt−1(k)Λt(k)
)

(49)

The stationary distribution being time independent, the λ?(k) must solve

λ?(1) =
∞∑
k=1

λ?(k)Λ?(k) (50)

λ?(k) = λ?(k − 1)(1− Λ?(k − 1)) ∀k ≥ 2 (51)

1 =
∞∑
k=1

λ?(k) (52)

where Λ?(k) = 1 −
∫
Ξ f(e|k)de and Ξ is the time invariant non-updating set following from

corollary 1 and f(e|k) the corresponding time invariant22 distribution obtained from iterating
on equation (15). Iterating backward, equation (51) writes

λ?(k) = λ?(1)
k−1∏
i=1

(1− Λ?(i)) ∀k ≥ 2 (53)

Noting that S?(k − 1) = ∏k−1
i=1 (1 − Λ?(i)) where S?(k) is the time invariante survival function

and S?(0) = 1, we may introduce this expression in (52) to get

λ?(1) = 1∑∞
k=1 S

?(k − 1) (54)

Further noticing that equation (50) holds independently of λ?(1) because q?k ≡ S(k − 1)Λ?(k)
and ∑∞k=1 q

?
k = 1, equations (54), (53) and (15) fully characterize the stationary cross-sectional

distribution

a?(e) =
∞∑
k=1

λ?(k)f ?(e|k) (55)

22It is straightforward to see that the latter distribution is time invariant when the non-updating set is time
invariante.
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As a weighted sum of unimodal and symmetric distributions centered around zero, the station-
ary cross-sectional distribution of consumers is itself symmetric, unimodal and centered around
zero. In the simulations, the (evenly discretized) stationary distribution is first computed using
lemma 5 as a first guess and then iterated on a few times following (20) to achieve convergence.

A.7 Welfare Decomposition

Taking the infinite horizon version of equation (36), the value function at period 0 writes

V0 = E
[
ps2

0 + p

1− βσ
2
ζ + L2(1 + βp)

1− β p− +
∞∑
t=0

βt
(
L2(1 + βp)e2

t + λτt

)∣∣∣∣I0

]
(56)

The above expression provides a straightforward decomposition of the welfare costs from im-
perfect information. The first term stands for the expected value function of a consumer facing
a deterministic linear quadratic control problem. Taking the first two terms leads to the value
function of a consumer facing a stochastic control problem with perfect state observation – that
is the standard permanent income model with full-information rational expectation. The third
term measures the welfare cost from the noisy state observation. Finally, the remaining sum
stands for the cost of processing information.

Equation (56) is conditional on I0 and therefore imposes that period 0 is an updating period.
To avoid such restriction and consider an initial period that does not rely on the specifics of
the consumer behavior, I instead compute the expected value function unconditionally on the
updating behavior at period 0. Let E[V0(e0)] be this expected value function. Further, assume
that the consumer has initially already lived for a long time. Accordingly, the pdf associated
to e0 is given by the cross-sectional stationary distribution a?(.) from Proposition 5. Now,
realize that et = e0 if e0 ∈ Ξ and zero otherwise. Consequently, the relevant distribution for
et is the transformation of a?(.) which accounts for the resetting at zero when e is outside
the boundaries. Given that

∫
ea?(e)de = 0 and denoting σ2

a =
∫
Ξ e

2a?(e)de, we find that
Ea?(.)[e2

t ] = σ2
a is time invariante. Furthermore, let λ̄? ≡

∫
/∈Ξ a

?(e)de be the share of updates at
the stationary distribution. Then, λ∑∞t=1 β

tEa?(.)[τt] = λλ̄?

1−β . Therefore,

Ea?(.)[V0(e0)] = p(s̄2
0 + p−) + p

1− βσ
2
ζ + L2(1 + βp)

1− β (p− + σ2
a) + λλ̄?

1− β (57)

Following Cochrane (1989), I use a money metric to measure the welfare cost of deviating
from the full information rational expectation solution. Dividing the expected welfare loss
marginal utility of consumption and converting it to quarterly rates, we get a welfare cost
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converted in dollars per period:

WC = r(1− β)−1

2(c̄− µ)(1 + r)

[ [β(1 + r)2 − 1]2
β(1 + r) (p− + σ2

a) + λλ̄?
]

(58)
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A.8 On the optimality of α(.) = 0 (Not for publication)

In this appendix, I show that Theorem 5 in Molin and Hirche (2012) applies to the problem con-
sidered in Appendix A.3. The theorem is meant to derive the optimal design of event-triggered
estimation for first-order linear stochastic systems with an identical information structure. The
general requirements for the theorem are that the distributions of the initial state e0 and {wt}
are symmetric and unimodal. This is the case in our setup since these distributions are Gaus-
sian. The difference from their problem is with regard to the objective function. They consider
the sum of square errors, whereas we are interested in a weighted and discounted sum of these
errors here.

In the following, I recast the problem in Appendix A.3 using the notation used in their
proof.23 Let

êt ≡ E[st|It]− E[st|It, τt = 0] + α(t, lt) (59)

Accordingly, problem (39) can be written as

min
g.(.),α(.)

E
[ T−1∑
t=0

βt
(
(1− τt)Γt(êt − α(t, lt))2 + λτt

)∣∣∣∣I0

]
(60)

s.t. êt+1 = (1− τt)(1 + r)êt + ωt+1

where Γt ≡ Lt(1 + βpt+1). Moreover, let

ŷt = êt
Rt
, t = 0, . . . , N − 1

%t,lt = α(t, lt)
Rt

, t = 0, . . . , N − 1, lt = 0, . . . , t

where R ≡ (1 + r). Given this transformation, the running cost is

ĉ%tt (ŷt, lt, τt) = βt
(
(1− τt)R2tΓt(ŷt − %t,lt)2 + λτt

)
(61)

The optimization problem for Molin and Hirche (2012) iterative procedure is thus given by

min
ĝ,%

Ĵ (62)

23The original proof of Theorem 5 in Molin and Hirche (2012) can be found here:
https://arxiv.org/pdf/1203.4980.pdf .
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with

Ĵ(ĝ, %) = Eĝ

[
N−1∑
t=0

ĉ%tt (ŷt, lt, τt)
]

(63)

where the subscript ĝ emphases that the expectation is taken with respect to the triggering pol-
icy. The proof in Molin and Hirche (2012) requires that, for a fixed vector %i of all combinaisons
%t,lt , the following symmetry and monotonicity properties hold for the running cost:

ĉ
%it
t (%it,lt + ∆, lt, τ) = ĉ

%it
t (%it,lt −∆, lt, τ) (64)

∀∆ ∈ R, lt ∈ {0, . . . , t− 1}, τ ∈ {0, 1}

and

0 ≤ ∆1 ≤ ∆2 =⇒ ĉ
%it
t (%it,lt + ∆1, lt, τ) ≤ ĉ

%it
t (%it,lt + ∆2, lt, τ) (65)

∀lt ∈ {0, . . . , t− 1}, τ ∈ {0, 1}

It is straightforward to see that these properties hold here given (61). As a result, the subsequent
results in the proof in Molin and Hirche (2012) are valid and their Theorem 5 applies.

A.9 Approximating the distribution ft(e|k, et−k) (Not for publica-
tion)

To avoid confusion in the following, let the realization et−k = a and recall that σ2
ω = k2(p̄+ +σ2

η)
where k and p+ are respectively the gain and the one period ahead error variance at the Kalman
filter steady state. Define ft(e|0, a) = δ(e− a). Then from iterating on (15), we have for k=1:

ft(e|1, a) = 1
σω
φ

(
e− (1 + r)a

σω

)
(66)

When k = 2,

ft(e|2, a) ∝
∫
Ξt−1

1
σ2
ω

φ
(e− (1 + r)ē

σω

)
φ
( ē− (1 + r)a

σω

)
dē (67)

∝
∫
Ξt−1

1
2πσ2

ω

exp
{
− e2 − 2(1 + r)ēe+ (1 + r)2ē2 + ē2 − 2(1 + r)ēa+ (1 + r)2a2

2σ2
ω

}
dē
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Focusing on the numerator in the exponential and using the shortcut notation R = 1 + r

(1 +R2)
[
ē2 − 2R

1 +R2 ē(e+ a) + R2

1 +R2 a
2 + 1

1 +R2 e
2
]

= (1 +R2)
[
ē2 − 2R

1 +R2 ē(e+ a) +
(

R

1 +R2

)2
(e+ a)2 + R2

1 +R2 a
2 + 1

1 +R2 e
2 −

(
R

1 +R2

)2
(e+ a)2

]
= (1 +R2)

(
ē− R

1 +R2 (e+ a)
)2

+ (1 +R2)
[

R2

1 +R2 a
2 + 1

1 +R2 e
2 −

(
R

1 +R2

)2
(e+ a)2

]
Where

R2

1 +R2 a
2 + 1

1 +R2 e
2 −

(
R

1 +R2

)2
(e+ a)2

= R2

1 +R2 a
2 + 1

1 +R2 e
2 −

(
R

1 +R2

)2
(e2 + a2 + 2ea)

= 1
(1 +R2)2 e

2 − 2
(

R

1 +R2

)2
ea+

(
R2

1 +R2

)2
a2 +

[
R2

1 +R2 −
(

R

1 +R2

)2
−
(

R2

1 +R2

)2]
a2

=
(

1
1 +R2 e−

R2

1 +R2 a

)2

Therefore, (67) writes

ft(e|2, a) ∝
∫
Ξt−1

1
2πσ2

ω

exp
{
− (1 +R2)

2σ2
ω

[(
ē− R

1 +R2 (e+ a)
)2

+
(

1
1 +R2 e−

R2

1 +R2 a

)2]}
dē

∝
∫
Ξt−1

√
1 +R2
√

2πσω
exp

{
−

(ē− R
1+R2 (e+ a))2

2 σ2
ω

1+R2

}
1√

2π
√

1 +R2σω
exp

{
− (e−R2a)2

2(1 +R2)σ2
ω

}
dē

∝
∫
Ξt−1

√
1 +R2

σω
φ

(
ē− R

1+R2 (e+ a)
σω√
1+R2

)
1√

1 +R2σω
φ

(
e−R2a√

1 + (1 + r)2σω

)
dē

∝ 1√
1 +R2σω

[
Φ
(
πt−1 − R

1+R2 (e+ a)
σω√
1+R2

)
− Φ

(
−
πt−1 + R

1+R2 (e+ a)
σω√
1+R2

)]
φ

(
e−R2a√
1 +R2σω

)
(68)

When k = 3,

ft(e|3, a) ∝
∫
Ξt−1

1
σω
φ

(
e−Rē
σω

)
ft−1(ē|2, a)dē

∝
∫
Ξt−1

1√
1 +R2σ2

ω

φ

(
e−Rē
σω

)
φ

(
ē−R2a√
1 +R2σω

)[
Φ
(
πt−2 − R

1+R2 (ē+ a)
σω√
1+R2

)
− Φ

(
−
πt−2 + R

1+R2 (ē+ a)
σω√
1+R2

)]
dē

Again, I develop and reduce the product of the two gaussian pdfs. To do so, I first focus on
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the numerator within the exponential.

1 +R2

1 +R2 +R4

[(
e−Rē

)2 +
(
ē−R2a√

1 +R2

)2]
= ē2 − 2 (1 +R2)R

1 +R2 +R4 ēe+ 1 +R2

1 +R2 +R4 e
2 − 2 R2

1 +R2 +R4 aē+ R4

1 +R2 +R4 a
2

=
(
ē− (1 +R2)Re+R2a

1 +R2 +R4

)2
+ 1 +R2

1 +R2 +R4 e
2 + R4

1 +R2 +R4 a
2 −

(
(1 +R2)Re+R2a

1 +R2 +R4

)2

Where

1 +R2

1 +R2 +R4 e
2 −

(
(1 +R2)Re+R2a

1 +R2 +R4

)2

= (1 +R2)(1 +R2 +R4)− (1 +R)2R2

(1 +R2 +R4)2 e2 − 2 (1 +R2)R3

(1 +R2 +R4)2 ea−
(

R2

1 +R2 +R4

)2
a2

=
( √

1 +R2

1 +R2 +R4

)2
e2 − 2 (1 +R2)R3

(1 +R2 +R4)2 ea+
( √

1 +R2R3

1 +R2 +R4

)2
a2 −

(
R2

1 +R2 +R4

)2
a2 −

( √
1 +R2R3

1 +R2 +R4

)2
a2

= 1 +R2

(1 +R2 +R4)2 (e2 −R3a)2 − R4(1 +R2 +R4)
(1 +R2 +R4)2 a2

so that

(
e−Rē

)2 +
(
ē−R2a√

1 +R2

)2
= 1 +R2 +R4

1 +R2

(
ē− (1 +R2)Re+R2a

1 +R2 +R4

)2
+ (e2 −R3a)2

1 +R2 +R4

Introducing back this expression in (69), I obtain

ft(e|3, a) ∝ 1√
1 +R2σ2

ω

φ

(
e−R3a√

1 +R2 +R4σω

)
× (69)

∫
Ξt−1

φ

(
ē− R(1+R2)e+R2a

1+R2+R4√
1+R2

1+R2+R4σω

)[
Φ
(
πt−2 − R

1+R2 (ē+ a)
σω√
1+R2

)
− Φ

(
−
πt−2 + R

1+R2 (ē+ a)
σω√
1+R2

)]
dē

The above expression may not be expressed in other terms to simplify the computation for
k = 4. As a consequence, the computational cost from conditioning on past histories grows
exponentially and will likely generate large approximation error when k increases. Therefore,
I approximate the above expression by not accounting for the impact of histories before t− 1.
The approximated distribution is thus

fapp
t (e|3) ∝ 1√

1 +R2σ2
ω

φ

(
e−R3a√

1 +R2 +R4σω

)∫
Ξt−1

φ

(
ē− R(1+R2)e+R2a

1+R2+R4√
1+R2

1+R2+R4σω

)
dē

∝ 1√
1 +R2 +R4σω

φ

(
e−R3a√

1 +R2 +R4σω

)[
Φ
(
πt−1 − R(1+R2)e+R2a

1+R2+R4√
1+R2

1+R2+R4σω

)
− Φ

(
−
πt−1 + R(1+R2)e+R2a

1+R2+R4√
1+R2

1+R2+R4σω

)]
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For k = 4,

fapp
t (e|4) ∝

∫
Ξt−1

1√
1 +R2 +R4σ2

ω

φ

(
e−Rē
σω

)
φ

(
ē−R3a√

1 +R2 +R4σω

)
dē

∝ 1√
1 +R2 +R4σ2

ω

φ

(
e−R4a√

1 +R2 +R4 +R6σω

)∫
Ξt−1

φ

(
ē− R(1+R2+R4)e+R3a

1+R2+R4+R6√
1+R2+R4

1+R2+R4+R6σω

)
dē

∝ 1√
1 +R2 +R4 +R6σω

φ

(
e−R4a√

1 +R2 +R4 +R6σω

)
[
Φ
(
πt−1 − R(1+R2+R4)e+R3a

1+R2+R4+R6√
1+R2+R4

1+R2+R4+R6σω

)
− Φ

(
−
πt−1 + R(1+R2+R4)e+R3a

1+R2+R4+R6√
1+R2+R4

1+R2+R4+R6σω

)]

Using forward iteration, it holds

fapp
t (e|k) ∝ 1√

z(k)σω
φ

(
e−Rka√
z(k)σω

)[
Φ
(
πt−1 − Ru(k)e+Rk−1a

z(k)√
u(k)
z(k)σω

)
− Φ

(
−
πt−1 + Ru(k)e+Rk−1a

z(k)√
u(k)
z(k)σω

)]
∀k ∈ {3, . . . , T − t} (70)

where z(k) = ∑k−1
i=0 (1 + r)2i and u(k) = ∑k−2

i=0 (1 + r)2i.
The Online Appendix discusses the implications to the proposed approximation procedure. It
shows that the main drawback of this procedure is to potentially over estimate the hazard rates
for large k by an order of magnitude of about one to two percentage points. The impact on the
survival function and distribution of updates is however negligible as the proportion of agents
who encounters a large k is small.
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