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Abstract

We study a dynamic general equilibrium model with costly-to-short stocks and
heterogeneous beliefs. The model is solved in closed-form and shows that costly
short sales drive a wedge between the valuation of assets that promise identical cash
flows but are subject to different lending fees. The price of an asset is given by the
risk-adjusted present value of its future cash flows, which include both dividends
and an endogenous yield derived from lending fees. This pricing formula implies
that asset returns satisfy a modified capital asset pricing model which includes a
negative adjustment for lending fees and, thus, provides a theoretical foundation
for the recent findings on the role of lending fees as an explanatory variable of stock
returns. Empirical results are consistent with the theory proposed.
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1 Introduction

Despite the extensive literature on the impact of short sales constraints on stock returns
(see for example D’Avolio (2002), Diether et al. (2002a), Mitchell et al. (2002), Cohen
et al. (2007) and recently Drechsler and Dreschler (2016)) there are, surprisingly, very
few theoretical studies that analyze the role of costly short sales in the price formation
process, and the value or return differential associated with by the possibility of shorting
an asset. If the possibility of shorting a stock is valuable to investors in the market,
then these different trading rules are sufficient to drive a wedge between the risk–return
tradeoffs offered by the two investment vehicles despite the fact that they load on the
same risks and pay the same cash flows.1 Our paper develops a theoretical model to
study the determinants and magnitude of this wedge.

We consider a continuous-time Lucas exchange economy that includes a riskless asset,
and two risky assets that are a claim to a fraction (η, 1 − η) of the aggregate dividend
which is modeled as a diffusion process. The economy is populated by two groups of
investors who have homogenous logarithmic utility and heterogenous beliefs about the
growth rate of the economy. The first risky asset can be shorted at a cost and, while the
second asset cannot be shorted.

An investor who wants to short Stock 1 needs to borrow it from another investor
who is long, and pays in exchange an exogenously set fee per unit of time as long as the
position is maintained. Specifically, we assume that shorting one share of the Stock 1
incurs a flow cost given by φ ·Stock 1 where φ ≥ 0 is the lending fee. This setup captures
in a simple way the rebate rates that are the most common measure of short selling fees
(see for example Duffie et al. (2002)). To insure that investors behave competitively in
all markets, the lending fees received by the long investor are taken into account as part
of the return rather than as a separate source of income. This extra yield is determined
endogenously in equilibrium by introducing an additional clearing condition that accounts
for the aggregate positions on the short market. This approach is novel to the literature
and allows us to easily integrate costly short sales into the model.

If Stock 1 could be shorted at no cost (φ = 0), as is usually assumed in models
where short sales are allowed, then the short sale constraint on Stock 2 would have no
impact and, as a result, pricing would be linear in the sense that Stock 1 and Stock 2
would represent constant fractions η and 1− η of the market portfolio. By contrast, our

1These questions naturally arise in the context of various markets, such as ETFs and Mutual Funds,
Equity carve-outs and Siamese twin stocks.
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analysis will show that costly short sales drive a wedge between the valuation of the two
investment vehicles and thereby results in nonlinear pricing in the sense that the value of
Stock 1 represents a fraction of the market portfolio that varies across times and states
to reflect the impact of the frictions at play in the model.

The analysis of the equilibrium sheds light on the sources of nonlinear pricing and
reveals that short selling frictions may explain the dynamics of asset returns. Its main
implications are summarized as follows.

First, our results formalize the intuition in Cochrane (2002), Cherkes et al. (2013)
according to which the valuation of assets that can be shorted incorporates not only
the present value of its future dividends but also the present value of future cash flows
generated by lending fees.2 Importantly, the model allows to study the extent and
determinants of this price correction by deriving it from first principles within a general
equilibrium model.

Second, and related, the model provides a rational explanation for the mispricing ob-
served in certain stock carve-outs (see Lamont and Thaler (2003)), since price differentials
between freely traded stocks and those kept by the parent company can be interpreted
as stocks 1 and 2 respectively in our economy. Furthermore, if fees are sufficiently large,
the equilibrium is observationally equivalent to one with pure short-sale constraints and
we show both stocks prices correspond to their risk adjusted present value of dividends.
This result counters the overpricing hypothesis of Miller (1977) that states that because
short-sale constraints hold negative opinions off the market, making pessimists seat on
the sidelines, optimistic investors will end up holding overpriced assets.

Third, we develop an empirical analysis that leads to a number of results that support
the model predictions. First, the model provides a theoretical backdrop for the recent
empirical findings of Drechsler and Dreschler (2016) and Beneish et al. (2015) who
document that stocks with higher lending fees exhibit low average excess returns that
cannot be explained by common risk factors. In particular, Drechsler and Dreschler
(2016) argues that negative excess returns are compensation for the systematic risk borne
by the small fraction of investors who account for most of the shorting activity, and refer
to this finding as the shorting premium. This premium is proxied by a long-short portfolio
containing cheap minus expensive to short stocks (CME), which in conjuction with Fama-
French factors, would capture the short sellers wealth’s portfolio, and get pricing errors

2See also Atmaz and Basak (2019) and Muravyev et al. (2018) for similar applications of this idea
in the valuation of European options.
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in check. We offer an alternative explanation that exploits the long agent’s pricing kernel
from our model. Using a data sample similar to Drechsler and Dreschler (2016), we
adjusts costly to short stock returns by a term that can be identified from lending fees and
short interest and which stems directly from our equilibrium pricing equations. Adjusted
returns do not exhibit the mispricing reported in Drechsler and Dreschler (2016) in our
sample. We complement this result by testing the adjustment as a characteristic in the
cross section and find compelling evidence. Second, we develop an alternative measure for
predicting aggregate returns using a transform of the short interest measure, aggregated
across securities, developed by Rapach et al. (2016). Overall, the predictive power of our
measure, at the monthly horizon, seems to be on par with the best individual predictors
from the literature.

This paper relates to several branches of the literature. By integrating the market for
borrowing stocks into the price formation process, the proposed framework relates to a
handful of models with an explicit market for stock shorting. Lending fees are studied
in static models by Duffie (1996), Krishnamurthy (2002), and Blocher et al. (2012),
while Duffie et al. (2002) develop a dynamic model with a single stock in which search
costs and bargaining over loan fees generate a deterministic price process that includes
lending fees as a cash stream accrued to long agents. Vayanos and Weill (2008) extend
the search model of Duffie et al. (2002) to include two assets with different lending fees
and show that the resulting equilibrium produces price differentials between these assets
that are in line with the on-the-run premium. As in Duffie et al. (2002), prices are
deterministic. By contrast, we show that search frictions are not necessary to sustain
an equilibrium with positive loan fees when agents are risk averse and that shorting
activity is an important determinant of asset prices, return and volatility dynamics.
Recently, Nutz and Scheinkman (2019) propose a continuous-time model of trading with
heterogeneous beliefs, risk-neutral agents face quadratic costs-of-carry on positions. Their
model is inspired in Harrison and Kreps (1978), and features a single risky asset in partial
equilibrium as they assume the existence of a riskless technology in infinitely elastic
supply.

In a related contribution Basak and Croitoru (2000) use a model with a risky stock
in positive supply, a derivative in zero net-supply and costless short selling to show
that mispricing can arise between two securities that carry the same risk if all agents are
subject to a portfolio constraint that prevents them from exploiting the induced arbitrage
opportunity. Banerjee and Graveline (2014) recently obtained similar conclusions in
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a static CARA-Normal model with quasi-redundant assets and costly short sales. By
contrast, we propose to study the implications of costly shorting in a dynamic setting
where all risky assets are in positive supply. This allows us to identify not only expected
returns but also volatilities endogenously, and to relate the price deviation between assets
to measures of beliefs heterogeneity and the level of lending fees.

The case of pure short sales constraint is nested in our model and has been the focal
point of an extensive literature, see for example Miller (1977), Jarrow (1980), Nielsen
(1989) for earlier contributions, and Reed (2013) for a recent survey. In a related
contribution Gallmeyer and Hollifield (2008) show that the imposition of a short sale
constraint increases the equilibrium interest rate, and may either raise or lower asset
prices, depending on the assumed risk preferences. When all agents have homogenous
logarithmic preferences, they find that the stock price is not influenced by a short sale
constraint and volatility is flat. The equilibrium that we derive implies that this result no
longer holds when short sales are allowed but costly. In particular, we show that costly
short sales generate endogenous wealth transfers between agents, and that these transfers
result in nonlinear pricing. In our model prices are still represented by a risk-adjusted
present value formula of discounted cash flows, yet costly to short stocks are priced at a
premium because they earn additional endogenous cash flows generated by lending fees
accrued by long agents.

On the empirical side, and in addition to Drechsler and Dreschler (2016) and Beneish
et al. (2015), this paper relates to the numerous empirical studies that investigate the
effect of short selling frictions. Blocher and Whaley (2015) show that in order to enhance
their returns ETF managers tend to tilt their portfolios toward stocks with higher lending
fees. Similarly, the findings of Prado (2015) suggest that institutional investors buy
shares in response to an increase in lending fees and, thus, provides an indirect test of
the prediction of our model according to which stock prices reflect the expected future
income associated with the potential of lending the asset.

2 The model

2.1 Information and preference structure

Time is continuous and runs forever. Uncertainty is generated by a single Brownian
motion (B(1)

t )t≥0 and the aggregate dividend process evolves according to a geometric
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Brownian motion

det = µeetdt+ σeetdB
(1)
t

for some constants µe ∈ R, σe > 0. The economy is populated by two (groups of) agents
with dogmatic beliefs about the evolution of the dividend process.3 The information
available to agents is summarized by the filtration F = Fe generated by the aggregate
dividend process. As a result, the value of σe is common knowledge but not the value of
the growth rate µe and we assume that agents have different beliefs about this growth
rate. Specifically, we assume that Agent 1 believes that the growth rate is µe. Agent 2
believes that it is given by µe− µ̄ for some constant µ̄ ≥ 0, so that the aggregate dividend
evolves according to

det = (µe − µ̄)etdt+ σeetdB
(2)
t ,

where (B(2))t≥0 is a standard Brownian motion under Agent 2’s beliefs. The preferences
of Agent k = {1, 2} are represented by

U (k)(c) ≡ E(k)
[∫ ∞

0
e−ρt log(ct)dt

]
,

for some subjective discount rate ρ > 0 and E(k) denotes the expected value under Agent
k’s beliefs.

2.2 Securities

The financial market consists of three assets: a locally riskless bond in zero net supply
whose price satisfies

S0t = 1 +
∫ t

0
S0urudu,

Asset 1 in positive supply of one share which is the claim to a fraction η ∈ (0, 1] of the
aggregate dividend and follow dynamics given by

S1t +
∫ t

0
ηeudu = S10 +

∫ t

0
S1u

(
µ

(k)
1u du+ σ1udB

(k)
u

)
. (1)

3We use dogmatic beliefs to reduce the number of state variables. Our solution method can be
generalized to allow for time varying beliefs.
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Asset 2, also in positive supply, is the claim to the remainder fraction 1−η of the aggregate
dividend and has dynamics

S2t +
∫ t

0
(1− η)eudu = S20 +

∫ t

0
S2u

(
µ

(k)
2u du+ σ2udB

(k)
u

)
. (2)

The quantities
{
rt,
(
Si0, µ

(k)
it , σit

)}
for i = {1, 2} are determined in equilibrium.

2.3 Shorting frictions

We assume that shares of Asset 2 cannot be shorted, whereas shares of Asset 1 can
be shorted at a cost. These are the only frictions in the model and are in line with
institutional regularities observed in various markets (see e.g., ETF-mutual funds, equity
carve outs, siamese twin stocks). Both stocks are thus substitute assets from the vantage
point of a long-only investor.

An investor who wants to short asset 1 needs to borrow it from another investor who
is long, and pays in exchange a fee as long as the position is maintained. Specifically, we
assume that shorting one share of Asset 1 at date t ≥ 0 incurs a flow cost given by

φtS1tdt

where φt ≥ 0 is the lending fee rate and S1t is the price of Asset 1. This setup captures
in a simple way the rebate rates that are the most common measure of short selling fees.4

We assume that the fee is given by

φt = φσ1t

where σ1t is the endogenously determined return volatility of Asset 1 and φ is a constant.
This functional form allows us to easily control the amount of liquidity in the short market
by setting the level of the constant φ and capture in reduced form the empirical evidence
in Drechsler and Dreschler (2016) and Blocher and Whaley (2015) who show that lending
fees are proportional to the volatility of the asset being shorted.5

4The short-seller must leave collateral with the lender in order to borrow the shares, in turn, the
lender pays the short-seller the rebate rate on this collateral. The spread between the interest rate on
cash funds and the rebate rate is a direct cost to the short-seller, and is often referred to as the loan fee.

5Atmaz and Basak (2019) partial equilibrium model of costly-shorting applied to European options
analyzes a similar reduced-form.
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In order to model the shortselling interaction competitively, both type of agents take
as a given the fact that in order to short the stock they have to pay a shorting fee φt per
dollar of short and that when long they may receive lending fees at rate ϕtσ1t per dollar
of long. Lending fees that are received by the non short agent are taken into account
as part of the return rather than as a separate source of income. The rate ϕtσ1t is
determined endogenously in equilibrium by introducing an additional clearing condition
that accounts for the aggregate positions on the short market.

The dynamic budget constraint of Agent k = {1, 2} evolves according to6

dXkt =
(
rtXkt − ckt + ϕtσ1tπ

(k)
1t

+
− φσ1tπ

(k)
1t
−
)
dt

+ π
(k)
1t σ1t

(
dB

(k)
t + θ

(k)
1t dt

)
+ π

(k)
2t σ2t

(
dB

(k)
t + θ

(k)
2t dt

)

where Xkt is the wealth of Agent k, with Xk0 = 1
2(S10 + S20) > 0, ckt is the consumption

rate, π(k)
it is the amount invested in asset i = {1, 2}, the market price of risk θ(k)

it is defined
by

σitθ
(k)
it ≡ µ

(k)
it − rt (3)

for i = {1, 2}, and π+ ≡ max(0, π) and π− ≡ max(0,−π) denote the positive and negative
part, respectively. The respective market prices of risk under each agent’s beliefs are
related by the non-arbitrage condition

θ
(2)
it = θ

(1)
it −∆, i = {1, 2}.

where we have set ∆ ≡ µ̄/σe. We use the beliefs of Agent 1 as reference beliefs, so that
B ≡ B(1).

2.4 Definition of equilibrium

The concept of equilibrium that we use is similar to that of equilibrium of plans, prices
and expectations introduced by Radner (1972). An additional equation balances out the
short market for Asset 1 and identifies the yield ϕ:

6For other examples of budget constraints with non-linear terms see e.g., Cuoco and Cvitanić (1998)
and Cuoco and Liu (2000).
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Definition 1. An equilibrium is a pair of security price processes (S0t, S1t, S2t) and an
array {ckt, (π(k)

1t ; π(k)
2t )}2

k=1 of consumption plans and trading strategies such that:

1. Given (S0t, S1t, S2t) the consumption plan ckt maximizes U (k) over the feasible set
of Agent k and is financed by the trading strategy (π(k)

1t , π
(k)
2t ).

2. Markets clear:

2∑
k=1

ckt = et, Consumption market,

2∑
k=1

π
(k)
it = Sit, Stock i = {1, 2},

ϕt
2∑

k=1
π

(k)
1t

+
= φ

2∑
k=1

π
(k)
1t
−
, Short market Asset 1. (4)

The additional market clearing condition (4) is novel to the literature and allows us to
easily integrate costly short sales into the model. Similar to the notion of a central pot
used in models of equilibrium with transaction costs (see e.g., Buss and Dumas (2017))
this condition can be understood by imagining that all shares of Asset 1 are made available
for borrowing and that the proceeds from any short selling activity are equally split among
the agents who are long.

We consider equilibria where σi > 0, so that a positive shock to aggregate output
increases stock prices, and investors short Asset 1 when its expected return is low enough.
These conditions put a restriction on the parameters of the economy and we ensure they
hold in our numerical examples.

3 Optimality and equilibrium

3.1 Individual optimality

Relying on techniques developed for optimization problems with nonlinear wealth dynam-
ics7 we solve the individual optimization problem in closed form. A direct calculation
using the results of Cuoco and Cvitanić (1998) show that the model is arbitrage free if
and only if

max
{
θ

(k)
2t , θ

(k)
1t + ϕt

}
≤ θ

(k)
1t + φ. (5)

7See, e.g., models with large investor/price impact in Cuoco and Cvitanić (1998) and Cuoco and Liu
(2000).
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This condition is intuitive: the left hand side gives the maximal excess return that can
achieved by going long while the right hand side gives the excess return that can be
achieved by going short. The latter has to be larger because otherwise it would be
possible to generate a strictly positive riskless excess return by going simultaneously long
and short in the risky securities. Note also that, as a direct implication of no arbitrage
in (5), we have that the yield ϕt is bounded by the constant φ

ϕt ≤ φ.

Since the ranking of excess returns from long positions i.e. θ(k)
2t against θ(k)

1t + ϕt is the
same for all agents irrespective of their beliefs it must be the case that

θ
(k)
2t = θ

(k)
1t + ϕt, (6)

for otherwise no agent would ever agree to buy the asset with the lower market price of
risk and, as a result, markets would never clear. Using the above conjecture we have that
the optimal consumption is explicitly given by

ckt = ck0

eρtξkt
(7)

where the agent-specific state price density ξk evolves according to

dξkt = −ξkt
(
xktdB

(k)
t + rtdt

)
, ξk0 = 1, (8)

with

xkt = 1{Θkt⊆R+}
(
θ

(k)
1t + ϕt

)
+ 1{Θkt⊆R−}

(
θ

(k)
1t + φ

)

and Θkt ≡
[
θ

(k)
1t + ϕt, θ

(k)
1t + φ

]
. The next proposition summarizes the above result. The

optimal consumption policy is given by a constant marginal propensity to consume equal
to the discount rate, whereas portfolio positions can be characterized as one of three
types: Long on both stocks, Non participation on both stocks, and Short on Asset 1.

Proposition 1. Optimal consumption is given by

ckt = ρXkt.
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Let π̂(k)
i ≡ π

(k)
i /Xk. Optimal portfolio allocation is described by three regions as follows:

1. Long positions on both stocks

Lk ≡
{
θ

(k)
1t + ϕt ≥ 0

}
, π̂

(k)
1t σ1t + π̂

(k)
2t σ2t = θ

(k)
2t . (9)

2. Non Participation on both stocks

Nk ≡
{
−φ ≤ θ

(k)
1t ≤ 0, θ(k)

2t ≤ 0
}
, π̂

(k)
1t = 0, π̂(k)

2t = 0. (10)

3. Short position on Asset 1, Non participation on Asset 2,

Sk ≡
{
θ

(k)
1t ≤ −φ, θ

(k)
2t ≤ 0

}
, π̂

(k)
1t σ1t = θ

(k)
1t + φ, π̂

(k)
2t = 0. (11)

The optimal portfolio takes the form of a mean variance policy that reflects the
presence of agent specific beliefs and shorting costs. As agents behave competitively,
the yield ϕ enters the optimal allocation in (9) only through the no arbitrage condition
in (6). In region Lk, Agent k is indifferent between going long in either stock because
they provide the same return. They are perfect substitutes. This implies portfolios
are undetermined as any admissible pair (π̂(k)

1 , π̂
(k)
2 ) that satisfies (9) represent optimal

allocations. In region Nk, Agent k does not hold either stock, as net returns of holding a
long position on both stocks are negative, whereas shorting Asset 1 while paying the fee
is suboptimal, as −σ1tθ

(k)
1t − φt ≤ 0. In region Sk, Agent k goes short on Asset 1, as the

net return of the corresponding short position is positive −σ1tθ
(k)
1t − φt > 0.

3.2 State variables and trading regions

We derive the equilibrium in closed form in terms of aggregate consumption and an
endogenous state variable that tracks the consumption share of optimistic agents, s ≡
co/e ∈ (0, 1). It follows a diffusion process

dst = stm(st)dt+ stv(st)dBt,

where the pair (m, v) is determined in equilibrium.
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The price of the market portfolio is invariant to the frictions in the model and is given
explicitly by the usual logarithmic valuation of the aggregate dividend

X1t +X2t = S1t + S2t = et/ρ ≡ Pt,

where

X1t = stPt, X2t = (1− st)Pt. (12)

Agent 1 holds long positions in both risky assets in all states, i.e., L1 ≡ s ∈ (0, 1), so that
the state space is fully characterized by the three trading regions of Agent 2 described in
Proposition 1. The equilibrium dynamic budget constraints are given by

dX1t/X1t = (rt − ρ)dt+ θ
(1)
2t

(
dBt + θ

(1)
2t dt

)
, (13)

dX2t/X2t =


(rt − ρ)dt+ (θ(1)

2t −∆)
(
dBt + θ

(1)
2t dt

)
, L2,

(rt − ρ)dt, N2,

(rt − ρ)dt+
(
θ

(1)
1t −∆ + φ

) (
dBt + (θ(1)

1t + φ)dt
)
, S2,

(14)

An application of Itô’s lemma to (12) gives

dX1t/X1t = (µe +m(st) + σev(st)) dt+ (v(st) + σe) dBt, (15)

dX2t/X2t =
(
µe −

st(m(st) + v(st)σe)
1− st

)
dt+

(
σe −

stv(st)
1− st

)
dBt, (16)

Matching dynamics in (14) and (16) gives a system for (m, v, r, θ(1)
2 ) with a unique solution

as functions of (s, ϕ), as we detail next.

Proposition 2. The dynamics of the consumption share of Agent 1 are determined by

(m(s), v(s)) =



(v(s)2,∆(1− s)) , L2,

(v(s)2, σe(1− s)/s) , N2,

(v(s)(σe + s(φ− ϕ(s)) + v(s))− µ̄(1− s), (1− s) (∆− φ+ ϕ(s))) , S2.

(17)
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The interest rate and market price of risk are in turn given by

r(s) =



r̄(s) ≡ ρ+ µes+ (µe − µ̄)(1− s)− σ2
e , L2,

ρ+ µe − σ2
e

s
, N2,

r̄(s) + s(1− s) (φ− ϕ(s)) (∆− φ+ ϕ(s)) , S2,

(18)

and

θ
(1)
2 (s) =



θ̄(s) ≡ σe + ∆(1− s), L2,

σe
s
, N2,

θ̄(s)− (1− s) (φ− ϕ(s)) , S2.

(19)

We write ϕ(s) as the yield depends on the consumption share s in equilibrium. Eq. (17)
shows that the consumption share of Agent 1 is positively correlated with dividends,
as v(s) ≥ 0, therefore it tends to increase (decrease) following sequences of positive
(negative) cash flow shocks. The intuition for this result is clear, as Agent 1 benefits
from sequences of positive shocks due to his long-only strategy.

We use results in (17) and (19) to identify the equilibrium regions as follows. The
Long region follows from the inequality in (9) L2 ≡ {σe + ∆(1− s) ≥ ∆}, so that

L2 ≡ s ∈ (0, s∗] and s∗ ≡ σe
∆ . (20)

Note that the equilibrium will be unaffected by costly short sales if s∗ ≥ 1, an intuitive
property since a large s∗ corresponds to small heterogeneity in beliefs. Similarly, the Non
Participation region follows from (10), N2 ≡

{
σe
s
≥ ∆− φ

}
so that

N2 ≡ s ∈ [s∗, s∗∗], and s∗∗ ≡ σe
∆− φ. (21)

Intuitively, s∗∗/s∗ = ∆/(∆−φ) shrinks as the heterogeneity of beliefs increases and grows
as the fee increases. Finally, note from (21) that if φ < ∆ then s∗ < s∗∗, it follows from
(11) that the region over which the pessimistic agent holds a short position on Asset 1 is
non empty if and only if s∗∗ < 1,

S2 ≡ s ∈ [s∗∗, 1).
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Figure 1 displays the state space in an equilibrium with shorting. Note that the share η
plays no role on the determination of the boundaries across regions.

Figure 1: State space of consumption share s in an equilibrium with pessimistic
agents shorting Asset 1.

0 s∗ = σe
∆ s∗∗ = σe

∆−φ 1

L2
Unconstrained

N2
Non Participation

S2
Short

4 Analysis

4.1 Non linear pricing

We introduce q as the fraction in the market portfolio of Stock 1, so that

qt ≡ S1t/Pt. (22)

Definition 2. Pricing is nonlinear when the share of Stock 1 on the market portfolio is
different from the share of the aggregate dividend it pays out, i.e., q 6= η. It is priced at
a premium (discount) when qt > (<)η.

The next theorem establishes the main pricing result.

Theorem 1. Assume there is shorting in equilibrium. Stock prices are given by

S1t = ηEt

[∫ ∞
t

ξ1t,ueudu
]

+ Et

[∫ ∞
t

ξ1t,uϕuσ1uS1udu
]
, (23)

S2t = (1− η)Et
[∫ ∞
t

ξ1t,ueudu
]
, (24)

where ξ1t,u = ξ1u/ξ1t. Asset 1 (2) is priced at a premium (discount) since

η < qt ≤ 1.

The discounted marginal utility of the (long only) optimist prices both stocks, in the sense
that asset prices in (23) and (24) correspond to the risk-adjusted present value of future
cash flows. The novelty is that cash flows for the costly-to-short stock are endogenously
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determined. The shorting premium

S1t

η
− S2t

1− η = 1
η

Λt

with

Λt ≡ Et

[∫ ∞
t

ξ1t,uϕuσ1uS1udu
]

shows that costly shorting is the source of nonlinear pricing. The term Λt can be thought
of as the value of the convenience yield that accrues to long investors of Asset 1.8 It is
non zero only if shorting Asset 1 is not only allowed but costly. In our next result, we
highlight how heterogeneity in beliefs determines trading regions and thus the existence
of nonlinear pricing.

Proposition 3. The following bounds on ∆ determine the corresponding trading regimes:

∆ ≤ σe, Λt = 0, Long only activity (s∗ ≥ 1) (25)

∆ ∈ (σe, σe + φ], Λt = 0, No shortselling activity (s∗ < 1, s∗∗ ≥ 1) (26)

∆ > σe + φ, Λt > 0, Shortselling activity (s∗∗ < 1) (27)

The equilibrium in (25) is frictionless, that is, it is observationally equivalent to the
limiting case φ = 0, despite the fact Asset 2 cannot be sold short. The equilibrium in
(26) is the same as one where agents cannot short sell but non participation of would-be
short agents arises in an endogenous way.

Remark 1. As Λt = 0 in (26) and both prices correspond to the risk adjusted expected
present value of their dividends, our theory counters the overpricing hypothesis of Miller
(1977) that states that because short-sale constraints hold negative opinions off the market,
making pessimists seat on the sidelines, optimistic investors will end up holding overpriced
assets.9

Finally, from (27), a sizable difference in beliefs is critical in supporting an equilibrium
with shorting activity. In other words, (27) shows that the maximal fee that can be

8We use the term convenience yield as in Brennan (1991), Pindyck (1992), Cherian et al. (2004),
Cochrane (2002), in the sense of being a benefit due to holdings in an inventory.

9See Duffie et al. (2002) and Vayanos and Weill (2008) for a similar result but where prices are
deterministic.
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imposed while still generating some shorting activity is given by

φ ≡ ∆− σe.

Remark 2. The model provides a rational explanation for the mispricing observed in
certain stock carve-outs. A well-known example of such mispricing occurred after the spin-
off of Palm from 3Com. After the carve-out and IPO of 5% of Palm shares, the parent
company 3Com still owned the remaining 95% of Palm. The mispricing documented by
Lamont and Thaler (2003) came from the fact that extrapolating the market valuation of
the traded Palm shares to the remaining 95% of Palm resulted in a valuation that exceeded
the market valuation of 3Com. This exercise does not take into account the fact that while
the 5% of freely traded Palm shares could be lent to investors wanting to go short, the
shares held by the parent company 3Com could not. In other words, the freely traded
Palm shares are akin to Asset 1 so that their price should include a shorting premium
as in (23) while the remaining shares held by 3Com are akin to Asset 2 whose price only
reflects the present value of future dividends as in (24).

4.2 Computation of q

From the non-arbitrage condition in (5) and an application of Itô’s lemma in (22),
the sharing rule q is a function of the consumption share only s and solves the ODE

(
µe − r(s)− σ1(s)θ(1)

1 (s)
)
q(s) + s(m(s) +σev(s))q′(s) + 1

2s
2v(s)2q′′(s) + ηρ = 0. (28)

This ODE has an explicit solution in the Unconstrained and No Participation regions, as
we show next:

Proposition 4. The function q(s) for s ∈ (0, s∗∗] is given by

q(s) =


η + a(1− s)

1
2−

1
2

√
1+ 8ρ

∆2 s
1
2 + 1

2

√
1+ 8ρ

∆2 , L2,

η + b1(1− s)
1
2 + 1

2

√
1+ 8ρ

σ2
e + b2(1− s)

1
2−

1
2

√
1+ 8ρ

σ2
e , N2,

(29)

where (a, b1, b2) are constants detailed in the Appendix.

To solve for q over the region [s∗∗, 1) we proceed as follows. First, we compute the
compensation term ϕ as a function of σ1 and q. From the clearing condition in (4) and
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the equilibrium outcome for (θ(1)
1 , σ1), a linear equation for ϕ(s) obtains, so that

ϕ(s)
φ

=
(σ1(s)− σe) q(s)q′(s) − (1− s)σe

σ1(s)q(s) + (σ1(s)− σe) q(s)q′(s) − (1− s)σe
. (30)

Next, we solve for σ1 combining

σ1(s) = σe + q′(s)
q(s) sv(s) (31)

with (17) and (30), a result we describe in the next section, and use (29) to compute q(s∗)
and q′(s∗). At s∗, we have then two boundary conditions. The function q over [s∗∗, 1) and
the identification of constants (a, b1, b2) are then obtained by solving the ODE in (28)
shooting towards the terminal condition q(1) = η.

Figure 2 shows q increases with the liquidity of the asset as measured by the constant
φ (panel (a)) and decreases with the supply of the shortable asset η (panel (b)) and the
heterogeneity of beliefs among investors ∆ (panel (c)).

Insert Figure 2 here

Figure 3 shows the yield ϕtσ1t generated by the lending fees increases with both the
liquidity of the asset as measured by the constant φ (panel (a)) and the heterogeneity
of beliefs among investors ∆ (panel (c)) and decreases with the supply of the shortable
asset η (panel (b)).

Insert Figure 3 here

As the term ϕ appears in good times (high s) and disappears in bad times (low s), it is
related (negatively) to momentum and long term reversal.

4.3 Volatility

The fact that the ratio S1t/Pt = q(st) is time-varying implies that, in equilibrium, the two
risky assets have stochastic volatility despite the fact that, as result of the assumption of
logarithmic utility, the volatility of the market portfolio is constant and equal to that of
aggregate dividends.
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Combining our explicit formula for the equilibrium stock prices using the solution for
q, and the equilibrium dynamics of the consumption share in (31) leads to the following
characterization of σ1.

Proposition 5. The volatility of Asset 1 is a positive and continuous function of the
consumption share s given by

σ1(s) =



σe + ∆ q′(s)
q(s) s(1− s), L2,

σe + σe
q′(s)
q(s) (1− s), N2

σe + q′(s)
q(s)

(√
c1(s)2−4(1+q′(s))c2(s)−c1(s)

2(1+q′(s)) + (1− s)σe
)
, S2.

(32)

where (c1(s), c2(s)) are functions detailed in the Appendix.

The three-region structure that emerges in equilibrium goes in the right direction in
explaining clustering and persistence in volatility. The rich relation between trading
activity and changes in the price levels may help explain the complex empirical patterns
between them documented in Gallant et al. (1992).

Insert Figure 4 here

In the two extremes, i.e., when s = 0, 1, the market is dominated by one of the agents
and it approaches the volatility of the dividend process, σe. Costly-to-short assets
endogenously have higher levels of volatility in bad times and lower levels in good times.
As seen in panel (a) as φ increases, Asset 1’s volatility deviates further from σe. In other
words, using φ as a measure of liquidity, then the excess volatility generated by shorting
increases as liquidity decreases. Panel (b) shows that as η increases, the behavior of Asset
1 resembles the market portfolio and thus its volatility approaches σe. In other words,
the excess volatility generated by shorting dampens as supply increases. Finally, panel
(c) depicts as ∆ increases, the size of the Non Participation region decreases, increasing
shorting volume and stock volatility.
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5 Empirical analysis

5.1 Cross Section

The model provides a theoretical backdrop for the recent empirical findings of Drechsler
and Dreschler (2016) and Beneish et al. (2015) who document that stocks with higher
lending fees exhibit low average excess returns that cannot be explained by common
risk factors. In particular, Drechsler and Dreschler (2016) argues that negative excess
returns are a compensation for the systematic risk borne by the small fraction of investors
who account for most of the shorting activity, and refer to this finding as the shorting
premium. This premium is proxied by a long-short portfolio containing cheap minus
expensive to short stocks (CME), which in conjuction with Fama-French factors, would
capture the short sellers wealth’s portfolio, and hence, the proper SDF, and get pricing
errors in check.

We offer an alternative explanation which exploits the long agent’s pricing kernel. It
follows directly from (23) and (24) that the expected excess returns are given by

1
dt
Et

[
dSit + eitdt

Sit

]
− rt = σitθ

(1)
2t − 1{i=1}ϕtσ1t (33)

where eit is the dividend paid by asset i = {1, 2}. This relation shows that a one-factor
CAPM obtains in all states where there is no shorting activity. In states with shorting
activity the expected return of Asset 1 is adjusted down to account for the yield generated
by lending.

Data

Data on stock lending fees is from Markit Securities Finance (MSF). We match the MSF
data to the CRSP database to obtain returns data and obtain accounting information
by matching to Compustat. We retain only common stocks (share codes 10 and 11 in
the CRSP database). We limit our study to a subset of US equities. The data cover the
sample period from January 2004 to December 2014.

Insert Table 1 here

Table 1 reports equal-weighted averages of the monthly decile portfolio returns and
characteristics. Decile 1 contains the cheapest-to-short stocks while decile 10 contains the
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most expensive-to-short stocks. Our data sample captures features similar to Drechsler
and Dreschler (2016) (see Table 2) with fewer number of firms (270 per decile in our
sample versus 336 in theirs). In particular, we highlight that the mean fee per decile and
size (market cap) are very close, as well as measures of volatility and realized returns.

We reproduce the positive relationship of fees with realized volatility and the negative
relationship of fees with firm size and realized returns. In addition, fees are negatively
related with Institutional Ownership (IO), and positively related with the dispersion of
beliefs (DISP), the Short Interest ratio (SIR) and Utilization (Util).10

Results

For each portfolio decile i = 1, . . . , 10 we compute alphas from the empirical counterpart
to (33),

rit − rft + ϕ̂it = αi +
K∑
k=1

βikfkt + εit (34)

where ft = (mktt, smbt, hmlt, . . . ) are empirical risk factors and t = 1, . . . , T . From (4),
the term ϕ̂t = ϕtσ1t can be computed as

ϕ̂t = φσ1t
π

(2)
1t
−

S1t + π
(2)
1t
−

1/S1t

1/S1t
= φt

(
SIRt

1 + SIRt

)
(35)

where φt is the lending fee rate that applies to the asset and the variable SIRt is the
fraction of the existing shares of the asset currently on loan, i.e., the short interest ratio.
In our analysis below, we also use a second data proxy for ϕ̂t

ϕ̂t = φt

(
Utilt

1 + Utilt

)
(36)

where Utilt is a measure provided by Markit defined as the percentage of value of assets
on loan divided by the total lendable assets (inventory).

Insert Table 2 here

Table 2 shows the time series estimates for α for the ten portfolios grouped by fee
size. Note that Fama-French 3-factor (FF3) alphas fluctuate between −1 and 53 bps and

10Definitions are displayed at the bottom of the Table 1.
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average lending fees between 4.6 and 52 bps in deciles 1− 9 (see Table 1), whereas decil
10 is featured by a pair of fees and FF3 alpha given by (642,−32) bps. When alphas are
computed from the excess returns equation in (34), we apply the adjustments described
in (35) (Model 1) and (36) (Model 2) above. For Model (1), alphas decrease in (absolute)
size and become statistically insignificant in some decile portfolios. In particular, decile
10’s alpha, although still negative at −26 bps, is not statistically significant. For Model
(2), decile 10’s alpha estimate is 23 bps and not longer significant. What is reported
in Drechsler and Dreschler (2016) as returns in decile 10 exhibiting low average excess
returns that cannot be explained by common risk factors bears a new interpretation in
light of our model. This observation is reproduced in Panel (b) where we report Fama-
French 4-factor (FF3+mom) alphas.

We also report alphas for long-short portfolios, similar to the CME factor in Drechsler
and Dreschler (2016). The table reproduces that unadjusted returns for long-short
portfolios 1-10b generate significant FF3 and FF4 positive alphas. However, once excess
returns are adjusted as in (34), alphas are not longer statistically significant.

Next, we test the adjustment as a characteristic using Fama-MacBeth regressions. We
split the sample in two equal halves. In the first pass we run time series regressions
t = 1, . . . , T ′ for each portfolio i

rit − rft = ai +
K∑
k=1

βikfkt + εit

we get point estimates for βk, labeled β̂ik. In the second pass for each t = T ′, . . . , T we
compute cross-section estimates using

rit − rft = αit +
K∑
k=1

β̂ikλkt + γtϕ̂it

where ϕ̂it is the adjustment term, in (35) or (36), written as a characteristic. The
point estimates for risk premia (e.g. slope coefficients modeled as λk = E[fkt]) are then
computed as ᾱ = 1

T−T ′
∑T
t=T ′ α̂t, λ̄k = 1

T−T ′
∑T
t=T λ̂kt, and γ̄ = 1

T−T ′
∑T
t=T ′ γ̂t and t-stats

are time averages of the cross sectional statistics.

Insert Table 3 here
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Table 3 shows that the adjustment estimates are negative and statistically significant,
as the equation in (33) suggests. Further note that in panel (b), the magnitude of γ̄
estimate is closer to −1, as in (33).

5.2 Aggregate predictability

Rapach et al. (2016) show that a measure of short interest, aggregated across securities,
is the strongest predictor of the equity risk premium and its predicting ability stems
predominantly from a cash flow channel. Aggregate returns representation in our model,
given by

1
dt
Et

[
dPt + etdt

Pt

]
− rt = σeθ

(1)
2t − ϕtσ1t

S1t

Pt
, (37)

establishes the negative relationship between expected excess returns and the term ϕtσ1tq(st).
Notice that the later depends on an increasing function of short interest and is a measure
of market pessimism since it is higher when there is a higher mass of short sellers, matching
the results in Rapach et al. (2016).

Insert Table 4 here

Table 4 reports the ordinary least squares estimate of b and the R2 statistic for the
bivariate predictive regression

rt+1 = a+ bxt + et+1 for t = 1, . . . , T − 1

where rt is the S&P 500 log excess return for month t, and xt is the predictor variable in
the first column. At the monthly horizon, two of the Welch and Goyal (2008) predictors
display significant predictive ability at conventional levels: RVOL and LTY. SII also
exhibits significant predictive ability in the second column and importantly so does
VARPHI. The estimates for VARPHI has the expected sign (recall that we take the
negative of VARPHI). Because monthly returns inherently contain a large unpredictable
component, the R2 statistics will necessarily be small. Overall, the predictive power of
VARPHI at the monthly horizon seems to be on par with the best individual predictors
from the literature.
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The VARPHI–PC entry corresponds to a multiple predictive regression model that in-
cludes an intercept and four predictors: VARPHI and the first three principal components
extracted from the non-VARPHI variables. Principal components provide an effective way
for incorporating the information from a large number of economic variables in predictive
regression models for stock returns. Comparing the VARPHI and VARPHI–PC rows
of Table 4, shows that including the principal components in the predictive regression
has some effect on the predictive ability of VARPHI. The estimated slope coefficients for
VARPHI remain sizable when the principal components are included in the predictive
regression, and the partial R2 statistics indicate that VARPHI retains marginal predictive
power in the presence of the principal components.

6 Concluding remarks

We study a dynamic general equilibrium model with costly-to-short stocks and heteroge-
neous beliefs. The model is solved in closed-form and shows that costly short sales drive
a wedge between the valuation of assets that promise identical cash flows but are subject
to different lending fees. The price of an asset is given by the risk-adjusted present value
of its future cash flows, which include both dividends and an endogenous yield derived
from lending fees. This pricing formula implies that asset returns satisfy a modified
capital asset pricing model which includes a negative adjustment for lending fees and,
thus, provides a theoretical foundation for the recent findings of Drechsler and Dreschler
(2016) and Beneish et al. (2015) on the role of lending fees as an explanatory variable of
stock returns.

In particular, Drechsler and Dreschler (2016) argues that negative excess returns are
compensation for the systematic risk borne by the small fraction of investors who account
for most of the shorting activity, and refer to this finding as the shorting premium.
We offer an alternative explanation that exploits the long agent’s pricing kernel from
our model. Using a data sample similar to Drechsler and Dreschler (2016), we adjusts
costly to short stock returns by a term that can be identified from lending fees and
short interest and which stems directly from our equilibrium pricing equations. Adjusted
returns do not exhibit the mispricing reported in Drechsler and Dreschler (2016) in our
sample. We complement this result by testing the adjustment as a characteristic in the
cross section and find compelling evidence. We also develop an alternative measure for
predicting aggregate returns using a transform of the short interest measure, aggregated
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across securities, developed by Rapach et al. (2016). Overall, the predictive power of our
measure, at the monthly horizon, seems on par with the best individual predictors from
the literature.
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A Additional theory results
A.1 Portfolios and indeterminacy
Propositions 1 and 2 allow us to derive in closed-form the trading strategies employed in
equilibrium by each agent.

Proposition 6. Let φ < φ̄, so there is shorting in equilibrium. Optimal portfolios are given by

(
π

(1)
1 , π

(1)
2

)
=



(
q(s)P − π(2)

1 , σe
σ2(s)

(
1 + ∆

σe
(1− s)

)
sP − σ1(s)

σ2(s)

(
q(s)P − π(2)

1

))
, L2,

(q(s), 1− q(s))P, N2,(
1

σ1(s) (σe + (1− s) (∆− φ+ ϕ(s))) sP − σ2(s)
σ1(s)(1− q(s))P, (1− q(s))P

)
S2.

(
π

(2)
1 , π

(2)
2

)
=



(
π

(2)
1 , σe

σ2(s)

(
1− ∆

σe
s
)

(1− s)P − σ1(s)
σ2(s)π

(2)
1

)
, L2,

(0, 0) N2,(
1
σ1

(σe − s (∆− φ+ ϕ(s))) (1− s)P, 0
)
, S2.

π
(2)
0 =



(
1− σe

σ2

(
1− ∆

σe
s
))

(1− s)P + σ1(s)−σ2(s)
σ2(s) π

(2)
1 , L2,

(1− s)P N2,(
1− 1

σ1(s) (σe − s (∆− φ+ ϕ(s))) (1− s)
)
P, S2.

Combining eqs. (13) and (15), there is a negative relationship between the interest rate and the
market price of risk in L2 ∪N2,

r(s) = ρ+ µe − σeθ(1)
2 (s)

so that a high market price of risk induces Agent 1 to hold a levered position in stocks, while
at the same time a lower interest rate induces him to borrow. As s increases after a sequence
of good shocks, making Agent 2 poorer, the market price of risk from Agent 2’s point of view
becomes negative, prompting her to short Asset 1.

As it is suboptimal to short for the given level of lending fees, she stays out of equity
markets and fully invests in the money market account. Another way to think about this
portfolio movement is the following thought-experiment. For markets to clear when a short-sale
constraint is imposed, security prices must change to reduce the optimist’s stock demand. Two
changes can lead to a reduction in the optimist’s stock demand: the market price of risk can
drop, and the cost of borrowing at the riskless rate can rise. Both changes occur.

Agent 2’s wealth is decreasing in s despite the fact the interest rate rises, in other words,
increases in r are not enough to keep up with the growth of optimists in good times. As this
movement unfolds, the pessimistic agents reaches a point where the net returns of shorting the
stock are positive, so she enters the stock lending market by paying a fee.

Remark 3. Portfolio positions in all individual assets are completely determined in N2 ∪ S2
due to market clearing conditions, however, positions in all individual assets are undetermined
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in L2. Quantities are parametrized by the Agent 2’s position on Asset 1 π
(2)
1 and are only

constrained by equilibrium clearing conditions.

Remark 4. If φ ≥ φ̄, then there is no shorting premium and σi = σe, i = {1, 2}. Indeterminacy
in both risky assets remain, but unlike the model with costly shorting, the borrowing amount is
uniquely determined by π(2)

0 = ∆
σe
s(1− s)P and it is increasing in heterogeneity of beliefs ∆.

B Proofs
Proof of Proposition 1. Following Cuoco and Cvitanić (1998) and assuming the no arbitrage
condition in (5), the corresponding dual problem can be reduced to the quadratic optimization
problem given by

inf
x∈Θkt

|x|2 with Θkt ≡
[
θ

(k)
1t + ϕt, θ

(k)
1t + φ

]
.

Solving this problem gives

x∗kt = 1{Θt⊆R+}
(
θ

(k)
1t + ϕt

)
+ 1{Θkt⊆R−}

(
θ

(k)
1t + φ

)
and it follows that the optimal consumption is explicitly given by (7), optimal wealth is
determined by

Xkt = E
(k)
t

[∫ ∞
t

ξkt,ucutdu

]
= ckt/ρ

where the agent specific state price density evolves according to (8). Optimal portfolio allocation
is described in (9), (10) and (11). �

Proof of Proposition 2. Matching dynamics in (14) and (16) gives a system for (m, v, r, θ(1)
2 )

with a unique solution as functions of (s, ϕ) as detailed in (17). The interest rate in (18)
and market price of risk perceived by the optimist in (19) follow by using m(s) and v(s) and
completing the result using the fact that

r(s) = ρ+ µe +m(s)− v(s)(σe + v(s))− σ2
e ,

θ
(1)
2 (s) = σe + v(s)

�

Proof of Theorem 1. Let ξt = e−ρt
(
s0e0
stet

)
with

−dξt
ξt

= rtdt+ θ2tdBt

denote the marginal utility process of the optimist in equilibrium. By construction we have
that the processes

Mit = ξtSit +
∫ t

0
ξu
(
ηieu + 1{i=1}ϕuσ1uS1u

)
du, i ∈ {1, 2} (38)
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are local martingales under P. By Lemma 1 below we have that these processes are true
martingales. In particular, we have that

Mit = Et

[
ξTSiT +

∫ T

0
ξu
(
ηueu + 1{i=1}ϕuσ1uS1u

)
du

]

for all T > 0 and, therefore,

Mit = lim
T→∞

Et [ξTSiT ] + Et

[∫ ∞
0

ξu
(
ηieu + 1{i=1}ϕuσ1uS1u

)
du

]
by the monotone convergence theorem. To complete the proof it now remains to show that the
limit is equal to zero. Let λt = 1/st− 1. As shown in the proof of Lemma 1 below we have that

ξTSiT ≤ ξT (S1T + S2T ) = ξTPT = e−ρT
s0
sT
P0

= e−ρTP0

(1 + λT
1 + λ0

)
≤ e−ρTP0

(1 +NT

1 + λ0

)
for some P−martingale Nt with initial value λ0 and therefore

lim
T→∞

Et [ξTSiT ] ≤ lim
T→∞

e−ρTP0
1 + λ0

(1 + Et [NT ]) = lim
T→∞

e−ρTP0 = 0

where the last equality uses the assumption that ρ > 0. Since ξTSiT ≥ 0 this in turn implies
that the limit is zero and the proof is complete. The bound on q follows from the definition of
η,

η < qt ≡
ηS2t + (1− η)Λt
S2t + (1− η)Λt

≤ 1.

�

Lemma 1. The processes (Mit)2
i=1 defined by (38) are martingales under P.

Proof. Let T <∞ be fixed. By construction we have that

0 ≤Mit ≤Mt ≡M1t +M2t = ξt(et/ρ) +
∫ t

0
ξu (eu + ϕuσ1uS1u) du

and it is thus sufficient to show that the process Mt is a martingale under P over the time
interval [0, T ]. Since Sitσit ≥ 0 we have that

Sitσit ≤
2∑
j=1

Sjtσjt = Ptσe = (et/ρ)σe
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and combining this inequality with the definition of ξt and the fact that ϕt ≤ φ we deduce that
there are constants (C0(T ), C1(T )) such that

|Mt| ≤ ξt(et/ρ) +
∫ t

0
ξueu(1 + φσe/ρ)du

= s0P0

{
e−ρt(1 + λt) +

∫ t

0
e−ρs(1 + λs) (1 + φσe/ρ) ds

}
≤ C0(T ) + C1(T ) sup

τ∈[0,T ]

(
e−ρτλτ

)
(39)

for all t ∈ [0, T ] where the process λt is defined by λt ≡ 1/st − 1. Using the dynamics of the
consumption share process and applying Itô’s lemma shows that this process evolves according
to

dλt
λt

= −ψ(st, ϕt)dt− Ξ(st, ϕt)dBt

for some functions ψ,Ξ : [0, 1]× [0, φ]→ R such that ψ(s, ϕ) ≥ 0 and |Σ(s, ϕ)| ≤ ∆. Therefore,
Novikov’s condition implies that the process

Nt = e
∫ t

0 ψ(su,ϕu)duλt = exp
(
−
∫ t

0
Ξ(su, ϕu)dBu −

1
2

∫ t

0
|Ξ(su, ϕu)|2du

)
is a true martingale under P over [0, T ] and it now follows from Doob’s maximal inequality and
the definition of Nt that we have

E

∣∣∣∣∣ sup
τ∈[0,T ]

(
e−ρτλτ

)∣∣∣∣∣
1+ε

= E

∣∣∣∣∣ sup
τ∈[0,T ]

(
e−
∫ τ

0 (ρ+ψ(su,ϕu))duNτ

)∣∣∣∣∣
1+ε

≤ E
∣∣∣∣∣ sup
τ∈[0,T ]

Nτ

∣∣∣∣∣
1+ε

≤ CεE
[
N1+ε
T

]
for any ε > 0. Now, since |NtΞ(st, ϕt)| ≤ Nt∆ the mean comparison results of Hajek (1985)
shows that we have

E
[
N1+ε
T

]
≤ N1+ε

0 E

[
exp

(
−1

2∆2T + ∆BT
)1+ε

]
= e

ε
2 (1+ε)∆2Tλ1+ε

0

where the equality follows from basic properties of Brownian motion. This in turn implies
that the random variable on the right of (39) is P−integrable and the martingale property now
follows from the dominated convergence theorem. �

Proof of Proposition 3. Examining the bound definition for L2 in (20), we have that s∗ ≥
1 ⇔ ∆ ≤ σe, in which case L2 ≡ s ∈ (0, 1) and Λ = 0. Next, assume the Non Participation
region N2 defined in (21) extends all the way to s = 1. This outcome would be the result of the
net excess return of shorting Stock 1 being negative,

−σ1tθ
(2)
1t − φt ≤ 0. (40)

We look for the minimum value of φ so that (40) holds in [s∗, 1]. Note that if the state space
is determined by {L2,N2}, Λ = 0 and the sharing rule is q = η and the volatility of Stock 1 is

28



σ1 = σe. This back in (40) gives

−σ1tθ
(2)
1t − φt = −σ

2
e

st
+ ∆σe − φσe ≤ 0.

This is equivalent to

φ ≥ φ ≡ ∆− σe

�

Proof of Proposition 4. The ODE in (28) stems from the no arbitrage dynamics of the stock
and an application of Itô’s lemma to (22)

dS1t + ηet
S1t

= (rt + σ1tθ
(1)
1t )dt+ σ1tdBt

=
(
µe + ηρ

q(s) + q′(st)
q(st)

st(m(st) + σev(st)) + 1
2
q′′(st)
q(st)

s2
t v(st)2

)
dt+ σ1tdBt

so that

µe + ηρ

q(s) + q′(s)
q(s) s(m(s) + σev(s)) + 1

2
q′′(s)
q(s) s

2v(s)2 = r(s) + σ1(s)θ(1)
1 (s)

holds at all times. An application of Itô’s lemma to (22) and matching the dynamics in (1)
(and (2)) gives the volatility representation in (31). The ODE in s ∈ (0, s∗∗) is given by

ηρ− ρq(s) + 1
2∆2(1− s)2s2q′′(s) = 0, L2,

ηρ− ρq(s) + 1
2σ

2
e(1− s)2q′′(s) = 0, N2

The function q is available in closed form over the region (0, s∗∗].

q(s) =


η + a1(1− s)

1
2 (1+`)s

1
2 (1−`) + a2(1− s)

1
2 (1−`)s

1
2 (1+`), L2,

η + b1(1− s)
1
2 (1+r) + b2(1− s)

1
2 (1−r), N2,

with ` ≡
√

1 + 8ρ
∆2 ≤ r ≡

√
1 + 8ρ

σ2
e
, as ` ≤ r is equivalent to s∗ ≤ 1. Notice that since at s = 0,

|q(0)| <∞, we have that a1 = 0 and thus from Theorem 1,

a ≡ a2 > 0.

Explicit forms for {b1, b2} follow from the following conditions: lim↑s∗ q(s) = lim↓s∗ q(s), lim↑s∗ q′(s) =
lim↓s∗ q′(s),

b1(a) =− (a/2r)(1 + `− (1 + r)s∗)(1− s∗)−
1
2 (`+r)(s∗)−

1
2 (1−`),

b2(a) =(a/2r)(1 + `− (1− r)s∗)(1− s∗)−
1
2 (`−r)(s∗)−

1
2 (1−`),

Since 1 + `− (1− r)s∗ ≥ 1 + `− (1 + r)s∗ ≥ 0, it follows that

b1(a) < 0, b2(a) > 0.
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Proof of Proposition 6. Equilibrium portfolios follow from using the results in Proposition
1 and the equilibrium dynamics of wealth in eqs. (15) and (16) in conjunction with the market
prices of risk in (19). In L2 we have the following system of equations:


σ1 σ2 0 0
0 0 σ1 σ2
1 0 1 0
0 1 0 1


︸ ︷︷ ︸

A


π

(1)
1
π

(1)
2
π

(2)
1
π

(2)
2

 =


θ

(1)
2 X1(

θ
(1)
2 −∆

)
X2

S1
S2



There are infinitely many solutions as matrix A is singular. We choose π(2)
1 to parametrize the

solutions. A similar procedure follows in N2 and S2, yet solutions are unique. Borrowing is
determined by the market clearing condition π

(2)
0 = −π(1)

0 = X2 − π(2)
1 − π

(2)
2 . �

Proof of Proposition 5. The results in (17) and (29) in the volatility representation (31) give
an explicit form for σ1 in {L2,N2}. Since 1 + `− 2s ≥ 0 and given a ≥ 0, and

(1 + r)b1(a)(1− s)r + (1− r)b2(a) ≤ 0

holds, the derivative

q′(s) =


1
2a(1 + `− 2s)(1− s)−

1
2 (1+`)s−

1
2 (1−`), L2,

−1
2 ((1 + r)b1(a)(1− s)r + (1− r)b2(a)) (1− s)−

1
2 (1+r), N2,

is nonnegative and it follows that σ1(s) > σe in {L2,N2}. q is constructed under the conjecture
that σ1 > 0 and lims−>1 σ1 = σe. From the clearing condition of the short market and individual
optimality conditions, we have

ϕ(s)
(
σ1(s)q(s)−

(
θ

(1)
1 (s)−∆ + φ

)
(1− s)

)
+ φ

(
θ

(1)
1 (s)−∆ + φ

)
(1− s) = 0 (41)

In addition, from (6) and (17)

v(s) = (1− s) (∆− φ+ ϕ(s)) , (42)

θ
(1)
1 (s) = v(s) + σe − ϕ(s), (43)

so that

(σ1(s)− σe)
q(s)
q′(s) = (1− s)s (∆− φ+ ϕ(s)) (44)

Using (42) and (43) in (41), a linear equation for ϕ(s) obtains so that

ϕ(s) = φx(s)
σ1(s)q(s) + x(s) (45)

where

x(s) ≡ (σ1(s)− σe)
q(s)
q′(s) − (1− s)σe = (1− s) (s (∆− φ+ ϕ(s))− σe) . (46)
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Note that x(s) ≥ 0 in S2. Using (44) and (45), gives the following quadratic equation for x

(1 + q′(s))x2 + c1(s)x+ c2(s) = 0

with

c1(s) ≡ σe(q(s) + (1− s)q′(s))− (1− s)(∆s− σe)(1 + q′(s)) + φ(1− s)sq′(s),
c2(s) ≡ σe(1− s)(q(s) + (1− s)q′(s))(σe − s(∆− φ)).

The solution is given by

x(s) = −c1(s)±
√
c1(s)2 − 4(1 + q′(s))c2(s)
2(1 + q′(s)) ,

and thus there are two real roots (assuming the square root is well defined - note that it is
indeed the case at the limits s∗∗, 1). The expression in (32) follows by using the upper branch
in the definition of x in (46) and solving for σ1. The upper branch is selected as

lim
s↓s∗∗

σ1(s) = 1{−}

(
σe
(
q(s∗∗)(∆− φ)2 + ∆q′(s∗∗)(∆− σe − φ)

)
q(s∗∗)(1 + q′(s∗∗))(∆− φ)2

)

+ 1{+}
(

1 + q′(s∗∗)
q(s∗∗) (1− s∗∗)

)
σe.

lim
s↑1

σ1(s) = 1{−}
(

σe
1 + q′(s)

)
+ 1{+}σe.

�
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Table 1: Summary statistics for decile portfolios. Table reports mean (median)
quantities associated with fee deciles. The data cover the sample period from January
2004 to December 2014. As done in previous literature, we filter the data to exclude
assets with a stock price below $5 per share. There are 270 firms per decile.

Decile Fee (bps) Vol (%) IO (%) DISP (%) SIR (%) Util (%) MktCap ($bil) rit − rft (%)

1 (Cheap) 4.6 2.2 65.6 8.9 3.5 6.86 14.3 0.5
4.6 1.8 72.5 8.9 1.8 2.95 3.0 0.4

2 8.7 2.3 73.6 10.0 4.3 12.14 7.1 0.9
8.0 1.9 78.8 10.0 3.2 7.75 2.2 0.8

3 10.1 2.4 73.6 10.0 4.9 14.17 4.0 1.1
9.1 2.0 78.8 10.0 3.8 10.13 1.3 0.8

4 10.9 2.5 70.7 12.6 4.9 14.19 2.5 1.1
9.8 2.1 76.2 12.6 3.8 10.24 0.9 0.9

5 11.6 2.6 67.1 13.9 4.5 13.6 1.9 1.0
10.2 2.2 71.7 13.9 3.5 9.44 0.6 0.6

6 12.4 2.7 62.3 15.9 4.0 12.7 1.8 1.0
10.7 2.3 65.2 15.9 2.9 8.00 0.4 0.6

7 14.3 2.8 59.0 18.2 4.2 13.97 2.5 1.2
12.6 2.3 60.3 18.2 2.6 8.06 0.3 0.6

8 21.3 2.9 58.3 21.6 5.4 19.95 3.1 1.3
17.0 2.4 59.5 21.6 3.3 13.9 0.4 0.5

9 52.1 3.2 52.3 22.7 6.3 26.76 3.6 1.1
36.6 2.6 51.4 22.7 3.4 22.06 0.3 0.2

10 (Expensive) 642.7 3.9 41.7 31.1 9.7 50.05 1.8 0.6
284.3 3.2 35.3 31.1 6.2 55.8 0.2 -0.3

Notes:
Fee (bps/year): MSF reports the value-weighted average lending fee for each security over the past 1,
3, 7, and 30 days, where the value weight assigned to a loan fee is the dollar value of the outstanding
balance of the loan for that transaction divided by the total dollar value of outstanding balances for that
time period. In keeping with the literature, we analyze trading strategies that are rebalanced monthly,
and therefore use the 30-day value-weighted average fee as our measure of a stock’s shorting fee. If an
observation is missing the 30-day value-weighted average fee, we drop it from the sample.
Vol (%): Monthly volatility of the stock return is the sum of the squared daily stock returns over a
month (see French et al. (1987) and Schwert (1989)).
IO(%): Institutional ownership. Data on institutional holdings is from Thompson Reuters Financial.
DISP(%): Analyst earnings forecast dispersion (DISP) is the standard deviation of annual earnings-
per-share forecasts scaled by the absolute value of the average outstanding forecast (see Diether et al.
(2002b)). Analyst forecast data is from I/B/E/S.
SIR(%): Short interest ratio. The raw short interest numbers from Compustat are reported as the
number of shares that are held short in a given firm are divided by shares outstanding from CRSP.
Util(%): Utilization is a measure provided by Markit defined as the percentage of value of assets on loan
(from Beneficial Owners) divided by the total lendable assets (Inventory Value).
rit − rft: Monthly excess returns. rit is the return of portfolio i computed using equal weights. rf is the
risk free rate from Kenneth French’s website.

32



Table 2: Alphas for adjusted returns per decile portfolio and cheap-minus-expensive
(CME) portfolios. CME portfolios are constructed using long-short legs with deciles
1-10 and 1-10b. Decile 10b corresponds to the more expensive half of decile 10. t-
stats are computed using Newey-West standard errors with 12 lags. The No Adj
column runs (34) with no adjustment term. Model (1) and (2) columns apply (35)
and (36) to (34) respectively. ∗,∗∗,∗∗∗ indicate significance at the 10%, 5% and 1%
levels.

Factors decile α t-stat α t-stat α t-stat

(a)

No Adj Model (1) Model (2)

FF3 1 0.01 (0.14) 0.01 (0.14) 0.01 (0.21)
2 0.32∗∗∗ (3.35) 0.32∗∗∗ (3.36) 0.32∗∗∗ (3.42)
3 0.34∗∗∗ (6.31) 0.34∗∗∗ (6.31) 0.34∗∗∗ (6.43)
4 0.32∗∗∗ (3.47) 0.32∗∗∗ (3.47) 0.33∗∗∗ (3.56)
5 0.20 (1.52) 0.20 (1.52) 0.21 (1.59)
6 0.21∗ (1.75) 0.21∗ (1.75) 0.22∗ (1.83)
7 0.53∗∗∗ (3.25) 0.53∗∗∗ (3.25) 0.54∗∗∗ (3.32)
8 0.46∗∗ (2.37) 0.46∗∗ (2.37) 0.48∗∗ (2.46)
9 0.37 (1.47) 0.37 (1.48) 0.41∗ (1.65)
10 -0.32∗∗ (-1.96) -0.26 (-0.77) 0.23 (0.68)

Long/Short 1-10 0.51 (1.35) 0.46 (1.22) -0.21 (-0.64)
1-10b 0.84∗∗ (2.05) 0.75∗ (1.89) -0.23 (-0.62)

(b)

No Adj Model (1) Model (2)

FF3+mom 1 0.02 (0.40) 0.02 (0.41) 0.02 (0.47)
2 0.35∗∗∗ (4.15) 0.35∗∗∗ (4.16) 0.35∗∗∗ (4.22)
3 0.36∗∗∗ (6.89) 0.36∗∗∗ (6.89) 0.36∗∗∗ (6.98)
4 0.35∗∗∗ (5.21) 0.35∗∗∗ (5.22) 0.36∗∗∗ (5.32)
5 0.24∗∗ (2.34) 0.24∗∗ (2.35) 0.24∗∗ (2.43)
6 0.24∗∗ (2.08) 0.24∗∗ (2.08) 0.25∗∗ (2.16)
7 0.57∗∗∗ (4.51) 0.57∗∗∗ (4.52) 0.58∗∗∗ (4.61)
8 0.52∗∗∗ (4.12) 0.52∗∗∗ (4.13) 0.54∗∗∗ (4.28)
9 0.44∗∗ (2.40) 0.44∗∗ (2.41) 0.48∗∗ (2.68)
10 -0.20∗ (-1.94) -0.14 (-0.61) 0.35 (1.59)

Long/Short 1-10 0.42 (1.40) 0.37 (1.23) -0.31 (-1.21)
1-10b 0.77∗∗ (2.32) 0.68∗ (1.97) -0.30 (-0.95)

33



Table 3: Fama-MacBeth regressions, t-stats are reported in parenthesis. Panel (a)
applies (35). Panel (b) applies (36). Factors are drawn from Kenneth French’s data
library.

Model ᾱ γ̄ λ̄mkt λ̄hml λ̄smb λ̄mom

(a)

FF3 -0.42 -19.49∗∗ 1.74 2.63 0.42
(-0.27) (-1.97) (0.49) (0.62) (0.19)

FF3+mom -0.44 -19.60∗∗ 1.77 2.62 0.43 -2.41
(-0.28) (-2.05) (0.49) (0.66) (0.22) (-0.65)

(b)

FF3 -0.51 -1.59∗∗ 1.82 2.51 0.46
(-0.30) (-1.98) (0.51) (0.60) (0.21)

FF3+mom -0.49 -1.61∗∗ 1.79 2.52 0.46 -2.45
(-0.30) (-2.06) (0.50) (0.64) (0.23) (-0.66)

Notes: mkt = CRSP value-weighted market excess return; smb (hml) = small minus big size (high minus
low value) factor; mom = up minus down momentum factor, respectively. ∗,∗∗,∗∗∗ indicate significance
at the 10%, 5% and 1% levels, respectively.
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Table 4: Summary statistics and OLS estimates predictive regression.

Variable Mean Median Std dev b t-stat R2

DP -3.92 -3.95 0.16 0.16 (0.24) 0.16
DY -3.92 -3.94 0.16 0.38 (0.63) 0.85
EP -3.04 -2.90 0.47 -0.12 (-0.21) 0.08
DE -0.88 -1.09 0.59 0.14 (0.23) 0.11
RVOL (ann) 0.14 0.12 0.06 0.42 (1.13) 1.05
BM 0.31 0.32 0.05 0.38 (0.95) 0.86
NTIS -0.00 0.00 0.02 -0.82 (-1.37) 3.90
TBL (ann) 0.01 0.00 0.02 0.37 (1.30) 0.78
LTY (ann) 0.04 0.04 0.01 0.74∗∗ (2.47) 3.13
LTR 0.01 0.01 0.03 0.33 (0.84) 0.64
TMS (ann) 0.03 0.03 0.01 -0.01 (-0.03) 0.00
DFY (ann) 0.01 0.01 0.01 -0.33 (-0.48) 0.65
DFR 0.00 0.00 0.02 0.64 (0.87) 2.38
INFL 0.00 0.00 0.00 -0.49 (-0.99) 1.39
SII (-) 0.00 -0.19 1.00 0.99∗ (1.88) 2.84
VARPHI (-) 0.86 0.70 0.58 1.03∗ (1.76) 2.43
VARPHI(-)–PC – – – 3.09∗∗ (1.98) 4.57

Notes: The database contains 132 monthly observations from January 2004 to December 2014. Table 4
displays summary statistics for 14 predictor variables from Welch and Goyal (2008), the aggregate short
interest in Rapach et al. (2016), labeled SII, and ϕ̂q, labeled VARPHI, from (37). DP is the log dividend-
price ratio, DY is the log dividend yield, EP is the log earnings-price ratio, DE is the log dividend-payout
ratio, RVOL is the volatility of excess stock returns, BM is the book-to-market value ratio for the DJIA,
NTIS is net equity expansion, TBL is the interest rate on a three-month Treasury bill, LTY is the long-
term government bond yield, LTR is the return on long-term government bonds, TMS is the long-term
government bond yield minus the Treasury bill rate, DFY is the difference between Moody’s BAA- and
AAA-rated corporate bond yields, DFR is the long-term corporate bond return minus the long-term
government bond return, and INFL is inflation calculated from the CPI for all urban consumers.

Each predictor variable is standardized to have a standard deviation of one. Brackets below the b
estimates report heteroskedasticity- and autocorrelation-robust t-statistics for testing H0 : b = 0 against
HA : b > 0. ∗,∗∗,∗∗∗ indicate significance at the 10%, 5% and 1% levels, respectively.
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Figure 2: Comparative statics sharing rule q(s). Base parameters (ρ, µ̄, η, µe, σe) =
(.01, .008, .5, .02, .03)

(a)

(b)

(c)
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Figure 3: Comparative statics convenience yield ϕ(s)σ1(s). Base parameters
(ρ, µ̄, φ, µe, σe, η) = (.01, .008, .005, .02, .04, 0.5)

(a)

(b)

(c)
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Figure 4: Comparative statics for volatility of Stock 1. Base parameters
(ρ, µ̄, φ, µe, σe, η) = (.01, .008, .005, .02, .04, 0.5)

(a)

(b)

(c)
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