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Motivating Example

Do capital requirements promote bank stability?

Capital regulation is a principle tool for promoting bank stability.

Take advantage of the discontinuity rule of the capital requirements
in the early 20th century U.S.

Dong, Lee & Gou (UCI) Continuous RD 01/2020 2 / 25



Minimum capital requirements graded according to town population in the
early 20th century.
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Focus on the first threshold: Min Capital Req. = $25,000 if Pop<3,000;
= $50,000 if Pop>3000.

Figure: Scatter plot (left) and RD mean plot (right) around the first threshold of
bank capital against town population
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Motivating Example

Capital changes occur at the bottom 30% of the distribution; no significant
change on average.

Figure: Quantile curves of bank capital below and above threshold (left) and
quantile changes (right) with 95% CIs.
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Motivation

Notice the treatment, bank capital, is continuous.

Tempted to apply the standard RD design (Hahn et al. 2001).

Issues: 1. interpretation; 2. identification threat ( little or no mean
changes); 3. policy relevance.
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Basic Idea

Let T be the treatment, R be the running variable and r0 be a known
policy threshold.

Write Ti = ai + biZi , where ai ≡ T0i , bi ≡ T1i − T0i , Zi = 1 (Ri ≥ r0),
T1i (T0i ) is potential treatment above (below) the threshold.

E.g., T0i : capital holdings right below the policy threshold;
T1i : capital holdings right above.

Quantiles of bi capture exogenous distributional changes in the
treatment T at r0, under proper conditions.
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Contributions

Provide new identification and inference theory for the class of RD designs
with a continuous treatment:

Identification relies on a distributional change in the first-stage,
including the mean change as a special case.

Can identify treatment effects at different treatment intensity.

When the interest is in average effects, provide robust identification
results:

identify a causal parameter under two alternative identifying
assumptions

incorporate the standard RD estimand as a special case.
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Contributions

Provide bias-corrected robust inference (Calonico, Cattaneo, and
Titiunik, 2014), along with AMSE optimal bandwidths (Imbens and
Kalyanaraman, 2012).

Apply the new estimators to estimate the impacts of bank capital,
even though there is no exogenous mean change in bank capital.
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Notation

Y is the outcome of interest; can be either discrete or continuous.

T is a continuous treatment;

R is the continuous running variable that partly determines the
treatment intensity.

Y = G (T ,R, ε), where ε is the vector of (un)observables affecting
outcome, and the dimension of ε is unrestricted.

T = q(R,U), where U embodies all relevant (un)observables
affecting treatment other than R.

WLG, rewrite T = q1(R,U1)Z + q0(R,U0) (1− Z ), where
Z = 1 (R ≥ r0).
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Identifying Assumptions

Define Tz ≡ qz (R,Uz ), z = 0, 1, so T = T1Z + T0(1− Z ).

Assumption 1 (Quantile representation) For z = 0, 1 and any r ∈ R,
the conditional distribution of Tz given R = r is continuous with a
strictly increasing CDF FTz |R (Tz , r), and qz (r , u) is strictly
monotonic in u.

Given Assumption 1, can let Uz ≡ FTz |R (Tz ,R) ∼ Unif (0, 1) and so
qz (R,Uz ) is the quantile function of Tz .
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Identifying Assumptions

Assumption 2 (Smoothness) qz (·, u), z = 0, 1, is a continuous function
for all u ∈ (0, 1). G (·, ·, ·) is a continuous function. fε|Uz ,R (e, u, r) for all
e ∈ E and u ∈ (0, 1) is continuous in r ∈ R.

Assumption 3 (Local treatment rank invariance or similarity)
1. U0 = U1, conditional on R = r0, or more generally
2. U0| (ε,R = r0) ∼ U1| (ε,R = r0).

3.1 requires that banks stay at the same rank of the capital
distribution, regardless of whether the town size is 2,999 or 3,000.

3.2 weakens 3.1 (see, e.g., Chernozhukov and Hansen, 2005, 2006).

They have testable implications.
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Control Variable and Reduced-form Effects

Lemma
Let U ≡ U1Z + U0 (1− Z ). Under Assumptions 1 - 3,
1) T ⊥ ε| (U,R), and
2) for any u ∈ (0, 1) and integrable function of Y , Γ (Y ),

lim
r→r+0

E [Γ (Y ) |U = u,R = r ]− lim
r→r−0

E [Γ (Y ) |U = u,R = r ]

=
∫
(Γ (G (q1(r0, u), r0, e))− Γ (G (q0(r0, u), r0, e))) dFε|U ,R (e, u, r0) .

The first part says U is a control variable. Cf. Imbens and Newey (2009).

The second part says that conditioning on the observed treatment rank U ,
any changes in outcome at the RD threshold are causal.
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Parameters of Interest

Parameter of interest 1: LATE at a given treatment quantile (Q-LATE ):

For any u ∈ U ,

τ (u) ≡ E

G (T1, r , e)− G (T0, r , e)T1 − T0︸ ︷︷ ︸
Individual causal effect

|U = u,R = r0


=

E [Y |U1 = u,R = r0]−E [Y |U0 = u,R = r0]
q1(r0, u)− q0(r0, u)

.

Useful since treatments effect may depend on treatment intensity.
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Parameters of Interest

Parameter of interest 2: weighted average of Q-LATEs (WQ-LATE):

π (w) ≡
∫
U

τ (u)w (u) du,

where w (u) ≥ 0 and
∫
U w (u) du = 1, i.e., w (u) is a properly defined

weighting function.

Can think of Q-LATE as a conditional LATE conditional on U = u,
while WQ-LATE as an unconditional LATE at r0.
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First-Stage Assumption

Identification of Q-LATE and WQ-LATE

Assumption 4 (First-stage): q1(r0, u) 6= q0(r0, u) for at least some
u ∈ (0, 1).

Assumption 4 requires that treatment distribution changes at R = r0.

e.g., the capital distribution changes at Pop=3,000.

The standard RD design requires mean changes
E [T1|R = r0] 6= E [T0|R = r0].
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Define q±(u) ≡ limr→r±0 q(r , u). Let m(t, r) = E [Y |T = t,R = r ], and
then define m±(u) ≡ limr→r±0 m(q

±(u), r).

Theorem (Identification)

Under Assumptions 1—4, for any u ∈ U , τ (u) is given by

τ (u) =
m+(u)−m−(u)
q+(u)− q−(u) . (1)

Further π (w) ≡
∫
U τ (u)w (u) du is identified for any known or estimable

weighting function w (u) such that w (u) ≥ 0 and
∫
U w (u) du = 1.
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Possible Weighting Functions

1. Equal weighting: wS (u) ≡ 1/
∫
U 1du.

2. The standard RD estimand can be expressed as a WQ-LATE using
quantile change weighting:

πRD =
∫
U

τ (u)wRD (u) du,

where wRD (u) ≡ ∆q(u)∫
U ∆q(u)u , and ∆q (u) ≡ q1(r0, u)− q0(r0, u).
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Standard RD estimand

Validity of the standard RD estimand πRD in general requires the
following monotonicity assumption.

Assumption 3’(Monotonicity): Pr (T1 (r0) ≥ T0 (r0)) = 1 or
Pr (T1 (r0) ≤ T0 (r0)) = 1.

Assumption 3’implies ∆q (u) ≥ 0 or ∆q (u) ≤ 0 for any u ∈ (0, 1)
and hence wRD (u) ≥ 0.
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Robust Identification for WQ-LATE

Theorem (Robust identification)

Let Assumptions 1, 2 and 4 hold. Then under either Assumption 3 or 3′,

π∗ =
∫
U

m+(u)−m−(u)
q+(u)− q−(u)

|∆q (u) |∫
U |∆q (u) |du

du (2)

identifies a weighted average effect of Y on T at R = r0.

π∗is valid under either monotonicity or rank similarity; useful as neither
assumption implies the other.

If monotonicity holds, π∗ = πRD ; otherwise if rank restriction holds,
π∗ =

∫
Uτ (u)w∗ (u) du for w∗ (u) ≡ |∆q(u)|∫

U |∆q(u)|du
is a WQ-LATE.

Either way, π∗ identifies a weighted average effect among those who
change treatment at r0.
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Empirical Analysis

How do banks respond to increased min capital requirements?

T = log(capital).

R = town population.

Y = log(assets), log(leverage), suspension (up to 24 years).

Covariates (X ) for validity check = bank age, black population (%),
farmland (%), log (manufacturing output per capita).
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Bias-corrected Estimates of Q-LATEs

Table 3 Effects of log(capital) on bank outcomes

Q-LATE Quantile Log(assets) Log(leverage) Suspension
0.10 0.987 (0.289)*** -0.013 (0.273) -0.019 (0.122)
0.12 1.003 (0.275)*** 0.003 (0.265) -0.034 (0.117)
0.14 1.017 (0.269)*** 0.017 (0.258) -0.036 (0.117)
0.16 0.991 (0.298)*** -0.009 (0.245) -0.038 (0.124)
0.18 0.942 (0.351)*** -0.058 (0.267) -0.091 (0.140)
0.20 0.946 (0.349)*** -0.054 (0.297) -0.092 (0.139)
0.22 0.948 (0.350)*** -0.052 (0.295) -0.093 (0.139)
0.24 0.950 (0.341)*** -0.050 (0.296) -0.108 (0.131)
0.26 0.916 (0.323)*** -0.084 (0.283) -0.112 (0.130)

WQ-LATE 0.968 (0.384)*** -0.032 (0.349) -0.073 (0.136)
Note: The first panel presents the bias-corrected estimates of Q-LATEs at equally spaced
quantiles; The last row presents the bias-corrected estimates of WQ-LATEs; hR = 1, 155
and hT = 0.435 for all estimation, which are the AMSE optimal bandwidths for the WQ-
LATE estimator; The AMSE optimal bandwidth for the Q-LATE estimator hR ranges from
1, 167.97 to 1, 570.61. h/b = 0.517; The trimming thresholds are determined by using a
preliminary bandwidth for R equal to 3/4hR = 866.25; Standard errors are in the parenthe-
ses; ***Significant at the 1% level, **Significant at the 5% level.
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Bias-corrected Estimates of Q-LATEs

A 1% increase in capital leads to an almost 1% increase in assets among
small banks (those targeted by policy)!

Leverage is not significantly lowered; long-run suspension rate is not affected.

Figure: Estimated Q-LATEs at different quantiles with 95% CIs
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Bias-corrected estimates of WQ-LATEs at different
bandwidths

Results are robust to different bandwidths

Figure: Estimated WQ-LATEs by different bandwidths
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Conclusion

Consider RD designs with a continuous treatment.

Robust identification and inference utilizing any changes in the
treatment distribution (mean changes are a special case).

Capital regulation focuses on small banks. The bottom of the capital
distribution shifts up at the policy threshold.

Identify what are likely to be the most policy relevant treatment
effects by focusing on where the true treatment changes are.

Banks at the bottom of the capital distribution respond in ways that
prevent the regulation from having intended effects!
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