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1. Introduction

Introduction
• Stochastic Dominance (SD): A popular ordering rule of

various distribution functions. Useful in
- Ranking portfolio investment strategies
- Comparing income distributions or poverty levels
- Distributional treatment effects
- Evaluation of forecasting models, etc.

• Attractive in that it does not require restrictive assump-
tions on the distributions of choice alternatives and pref-
erence structure of economic agents or policy makers
(Levy (2016), Whang (2019).
• Allowing for conditioning information in decision making

is essential in any applied context, which necessitates
the concept of conditional SD. On the other hand, there
is nowadays a plethora of available data for both decision
makers and econometricians.
• This paper develops a test of conditional SD with high-

dimensional covariates, allowing for dependent observa-
tions.

Hypotheses of Interests
• Let yt1 and yt2 denote the outcomes of interest to be com-

pared and let Ft−1 be the information set observed at
time t− 1.

• First order Stochastic Dominance (FSD):

H0 : Pr (yt1 ≤ y|Ft−1) ≤ Pr (yt2 ≤ y|Ft−1) ∀y a.s.

• Second order Stochastic Dominance (SSD):

H0 :

∫ y

−∞
Pr (yt1 ≤ z|Ft−1) dz ≤∫ y

−∞
Pr (yt2 ≤ z|Ft−1) dz ∀y a.s.

• In both cases, the alternative hypothesis is the negation
of H0.

• The dimensionality of Ft−1 can be large and the condi-
tional distributions of the outcome variables are unknown.

This Paper
•We propose (one-sided) Kolmogorov-Smirnov type tests

based on a semi-nonparametric location scale model for
the observed outcomes with unknown error distribution.
•We estimate the unknown location and scale functions by

the regularized least squares (with thresholding) and the
error distribution by the empirical distribution function of
the rescaled residuals.
•We establish the weak convergence of the rescaled resid-

ual empirical process by developing an exponential in-
equality and deviation bounds for the regularized estima-
tors with dependent data.
•We propose a smooth stationary bootstrap to compute

the p-values and show its asymptotic validity.
•We provide Monte Carlo simulation results and applica-

tions to investigate the home bias problem in the stock
market.

2. Model

Model
• For j = 1, 2, our approach builds on the following regres-

sion model:

ytj = gj (qt) + σj (qt) εtj, t = 1, . . . , n. (1)

– The innovation {εtj} is an iid sequence with the com-
mon distribution F j.

– The covariate {qt} is a k-dimensional vector of controls,
whose dimension can be large (as n gets large).

– We allow F j(·), gj(·), and σj(·) to be nonparametric.
– We assume that {εtj} and {qt} are mutually indepen-

dent, so that

F j (y|q) := Pr
(
ytj ≤ y|qt = q

)
= F j

(
y − gj (q)
σj (q)

)
.

– Then, the FSD hypothesis can be written as

H0 : F
1

(
y − g1 (q)
σ1 (q)

)
≤ F2

(
y − g2 (q)
σ2 (q)

)
for all (y, q) .

Sparsity Assumption
• The key assumption for the function g is that there exists

a vector

Xt :=
(
Xt1, . . . , Xtp

)ᵀ
:=
(
X1 (qt) , . . . , Xp (qt)

)ᵀ
= X (qt)

such that
g(qt) = β

ᵀ

0Xt + rgt, (2)

where β0 is sparse and rgt → 0 at a proper order as the
dimensionality of Xt expands.

• Analogously, we assume

σ (qt) = γ
ᵀ

0Xt + rσt, (3)

where γ0 is sparse and rσt → 0 as the dimension of Xt
grows.

Mean Regression
• Estimate β0 in (2) by the (weighted) LASSO: i.e., the `1-

penalized least squares with penality varying for each el-
ement in β:

β̂lasso := argmin
β

1

n

n∑
t=1

(
yt −X

ᵀ

tβ
)2

+ λ |Dβ|1 , (4)

where D is a diagonal weighting matrix and λ is a tuning
parameter.

•We introduce thresholding so that we can control the ran-
dom variation arising from the imperfect selection of the
smallish coefficients:

Ŝ =
{
j :
∣∣∣β̂lasso,j∣∣∣ > λthr

}
where the threshold λthr is strictly larger than λ. (cf.
SCAD (Fan and Li, 2001), adaptive LASSO (Zou, 2006)).

• After the selection, we re-estimate β by the OLS on the
selected. Then,

β̂Tasso := arg min
β:βj=0,j /∈Ŝ

n∑
t=1

(
yt −X

ᵀ

tβ
)2
,

which is equivalent to the OLS estimator β̂ from the linear
regression of yt on x̂t := X

t,Ŝ
.

• Then, we may set

ĝt = ĝ (qt) = X
ᵀ

t β̂Tasso = x̂
ᵀ

tβ̂.

Skedastic Regression
• Scale Normalization: Since σ determines the scale of the

error term et = σ (qt) εt, it is natural to impose a certain
scale normalization on the distribution of εt. We shall as-
sume E |εt| = 1, which is convenient for our asymptotic
theory.

• To estimate γ, note that the scale normalization is equiv-
alent to the condition that

E [|et| |qt] = σ (qt) ,

or
|et| = σ (qt) + ηt and E [ηt|qt] = 0.

• Since we do not directly observe et, we employ the resid-
ual êt = yt − x̂

ᵀ

tβ̂ and proceed as for the estimation of
β.

Feasible Skedastic Regression
• Estimate γ0 in (3) by the (weighted) LASSO:

γ̂lasso := argminγ∈Rp
1

n

n∑
t=1

(
|êt| −X

ᵀ

tγ
)2

+ µ |Qγ|1 ,

where Q is a diagonal weighting matrix and µ is a tuning
parameter.

•We then apply the OLS after thresholding. That is, let

Ŝγ =
{
j :
∣∣γ̂lasso,j∣∣ ≥ µthr

}
,

for some µthr.

• let ŵt = X
t,Ŝγ

and γ̂ denote the OLS estimate of |êt| on
ŵt. We may also define γ̂Tasso as the thresholded LASSO
estimate as for β̂Tasso. Then, we may set

σ̂t = σ̂ (qt) = X
ᵀ

t γ̂Tasso = ŵ
ᵀ

t γ̂.

3. Test Statistics

Test Statistics
When j = 1,2, the dataset is given by {yt1, yt2, qt}nt=1 and

the testing proceeds as follows.

1. For each j = 1,2, run the regression of ytj on Xt by the
thresholded LASSO to get Ŝj.

2. Let Ŝ = Ŝ1 ∪ Ŝ2 and define x̂t := X
t,Ŝ
, i.e. the collec-

tion of selected elements of Xt in at least one of the two
regressions, and x̂ (q) = X

Ŝ
(q).

3. Let β̂j denote the OLS estimate in the regression of ytj
on x̂t and define the residual êtj = ytj − x̂

ᵀ

tβ̂
j.

4. Likewise, for each j = 1,2, run the skedastic regression
of
∣∣êtj∣∣ on Xt and compute Ŝσ, ŵt, ŵ (q) , and γ̂j anal-

ogously to Ŝ, x̂t, x̂ (q) , and β̂j in the preceding steps,
respectively.

5. For each j = 1,2, construct the scaled residual ε̂tj =(
ytj − x̂

ᵀ

tβ̂
j
)
/σ̂

j
t , its empirical distribution function

F̂ j (τ ) =
1

n

n∑
t=1

1
{
ε̂tj ≤ τ

}
and

τ̂j (y, q) =
(
y − x̂ (q)

ᵀ
β̂j
)
/σ̂j (q) .

6. Construct the test statistic for the FSD hypothesis

Tn =
√
n sup
y,q

[
F̂1
(
τ̂1 (y, q)

)
− F̂2

(
τ̂2 (y, q)

)]
,

and, for the SSD hypothesis,

Un =
√
n sup
y,q

∫ y

−∞

[
F̂1
(
τ̂1 (u, q)

)
− F̂2

(
τ̂2 (u, q)

)]
du.

Asymptotic Distributions
• To characterize the asymptotic distributions, recall that
xt = Xt,S and wt = Xt,Sγ and define

D (y, q) = D (y, q) + f (τ (y, q))D1 − τ (y, q) f (τ (y, q))D2,

where τ (y, q) = (y − g (q)) /σ (q) , and D and D =
(D1, D2)

ᵀ are centered gaussian processes with covari-
ance kernels given by:
ED (y1, q1)D (y2, q2) = cov (1 {εt1 ≤ τ1} − 1 {εt2 ≤ τ1} ,

1{εt1 ≤ τ2} − 1 {εt2 ≤ τ2}
with τi = (yi − g (qi)) /σ (qi), i = 1, 2, and

EDD
ᵀ
= limn→∞E

[
x̃2t (εt1 − εt2)

2 , x̃t (εt1 − εt2) w̃t (|εt1| − |εt2|)
· w̃2

t (|εt1| − |εt2|)
2

]
ED (y1, q1)D = limn→∞E (1 {εt1 ≤ τ1} − 1 {εt2 ≤ τ1})

×
(

x̃t (εt1 − εt2)
w̃t (|εt1| − |εt2|)

)
,

with x̃t = µ
ᵀ

x

(
Extx

ᵀ

t

)−1
xt and w̃t = µ

ᵀ

w

(
Ewtw

ᵀ

t

)−1
wtσt.

•Consider the following class of hypotheses regarding the
data distribution:

g1 (q) = g (q) , g2 (q) = g (q) + δ1n (q)

σ1 (q) = σ (q) , σ2 (q) = σ (q) + δ2n (q)

F1 (τ ) = F (τ ) , F2 (τ ) = F (τ ) + δ3n (τ ) ,

such that
∫
τdF2 (τ ) =

∫
τdF1 (τ ) = 0 and

∫
|τ | dF2 (τ ) =∫

|τ | dF1 (τ ) = 1.
• The least favorable case (LFC) of the null hypothesis cor-

responds to δin = 0, for all i = 1, 2, 3.

•We derive the asymptotic distribution of the test statistics
under the drifting sequence of models

(δ1n (q) , δ2n (q) , δ3n (τ )) =
1√
n
(δ1 (q) , δ2 (q) , δ3 (τ )) , (5)

for all n, where δi is continuous and bounded for all i, q,
and τ .
• Let

B (y, q) = ∂F (τ )

∂τ

1

σ (q)
(δ1 (q) + τδ2 (q))− δ3 (τ ) .

and let P denote the collection of all the joint distributions
that satisfy Assumptions A-C.

Theorem 1 Suppose that Assumptions A, B and C hold.
Then, under (5)

Tn⇒ sup
y,q

[D (y, q) + B (y, q)] , (6)

Un⇒ sup
y,q

∫ y

−∞
[D (u, q) + B (u, q)] du. (7)

Boosting Power
•We propose to apply a screening principle, which is to

test certain implications of the null hypothesis with a
higher criticism. (cf.) Fan et al. (2015).
•One implication of the first order stochastic dominance of
y1t over y2t (conditional on qt = q) is the dominance of the
conditional means, i.e.,

E
(
Y 1
t |qt = q

)
≥ E

(
Y 2
t |qt = q

)
.

The negation of this implication implies the negation of
the null hypothesis.
•Using the conditional mean function ĝ (qt) = X>t β̂Tasso,

which is estimated to construct our main test statistic Tn,
we can screen this implication for a sequence of values
of Xt ∈ {x1, . . . , xJ} by statistics

tk = 1


x
ᵀ
k

(
β̂2 − β̂1

)
σ̂k

> c∗

 , k = 1, . . . , J,

for some scaling σ̂k and a critical value c∗.
• If tk = 1 for any k, we can stop and conclude that the null

is rejected. Otherwise, we resort to our test statistic Tn.
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• To justify this initial screening, the value c∗ needs to sat-
isfy the high criticism property that

Pr

 max
k∈{1,2,...,J}

x
ᵀ
k

(
β̂2 − β̂1

)
σ̂k

≤ c∗

 = 1− o (1)

under the null hypothesis.
• As for xk, we may consider xk = X (qk) for a grid of {gk} .
• Since

max
k

x
ᵀ
k

(
β̂2 − β̂1

)
σ̂k

≤ max
k

∣∣∣∣xkσ̂k
∣∣∣∣
1

∣∣∣(β̂2 − β̂1)∣∣∣
∞
,

we may utilize the deviation bounds for β̂j as in our
Lemma 3 and set c∗ = C (log log n) (log s) /

√
n

• For scaling, we suggest to set

σ̂2k = n
J∑
i=1

x2ki

 n∑
t=1

X2
ti

−2 n∑
t=1

X2
ti

(
x>k γ̂

)2
π/2,

which corresponds to the case where there is no corre-
lation among the Xti’s. These estimates are uniformly
bounded.

4. Bootstrap

• To compute the critical values, we suggest the smooth
stationary bootstrap, which combines the methods of
Politis and Romano (1994) and Neumeyer (2009) to take
care of the complexity of our test statistics due to the tem-
poral dependence and the highly nonlinear nature of the
statistics.
• Stationary Bootstrap
1. Let dt and it, t = 1, . . . , n, be random draws from

Bernoulli(πn) and Uniform{1, . . . , n} , respectively.
2. Let i∗1 = i1.
3. For t = 2, . . . , n, let

i∗t =
(
i∗t−1 + 1

)
(1− dt) + itdt

with the convention that i∗t−1 + 1 = 1 if i∗t−1 = n.

• Smooth Stationary Bootstrap of Zn = {v1, . . . , vn}:

v∗t = vi∗t + anηt,

where ηt ∼ G and an→ 0 as n→∞
Bootstrap Test Statistic

1. Fix constants an and πn within the interval (0, 1) and a
smooth distribution function G and generate

{
i∗t , ηt

}
as

described before.
2. For each j = 1,2, construct the bootstrap sample{

x∗t = x̂i∗t , w
∗
t = ŵi∗t

}
and{ε∗tj = ε̂i∗t ,j + anηt}, respectively,

and then compute

y∗tj = x∗
ᵀ

t β̂
j + w∗

ᵀ

t γ̂
j · ε∗tj, t = 1, . . . , n.

3. For each j = 1,2, obtain the OLS estimates β̂j∗ with the
bootstrap sample {x∗t , y∗tj}, i.e.,

β̂j∗ =

 n∑
t=1

x∗tx
∗ᵀ
t

−1 n∑
t=1

x∗ty
∗
tj,

and compute the bootstrap OLS residuals ê∗tj = y∗t −
x∗

ᵀ

t β̂
j∗, t = 1, . . . , n. Then, compute:

γ̂j∗ =

 n∑
t=1

w∗tw
∗ᵀ
t

−1 n∑
t=1

w∗t
∣∣∣ê∗tj∣∣∣ ,

ε̂∗tj = ê∗tj

(
w∗

ᵀ

t γ̂
j∗
)−1

,

j∗ (y, q) =
(
ŵ (q)

ᵀ
γ̂j∗
)−1 (

y − x̂ (q)
ᵀ
β̂j∗
)
.

4. Define the empirical distribution functions

F̂ j∗ (τ ) =
1

n

n∑
t=1

1
{
ε̂∗tj ≤ τ

}
; F j∗ (τ ) =

1

n

n∑
t=1

G

(
τ − ε̂tj
an

)
.

Then construct the bootstrap statistics

T ∗n =
√
n sup
y,q

[
F̂1∗

(
τ̂1∗ (y, q)

)
− F̂2∗

(
τ̂2∗ (y, q)

)
−
(
F1∗

(
τ̂1 (y, q)

)
− F2∗

(
τ̂2 (y, q)

))]
,

U∗n =
√
n sup
y,q

∫ y

−∞

[
F̂1∗

(
τ̂1∗ (y, q)

)
− F̂2∗

(
τ̂2∗ (y, q)

)
−
(
F1∗

(
τ̂1 (y, q)

)
− F2∗

(
τ̂2 (y, q)

))]
du.

Asymptotic Properties of the Test Statistics
Theorem 2 Suppose that Assumptions A-D hold. Let c∗α de-
note the bootstrap critical value of level α for Tn. Then, un-
der H0, we have

lim sup
n

Pr {Tn > c∗α} ≤ α

for any 0 < α < 1, while under H1,

Pr {Tn > c∗α} → 1

for any 0 < α < 1. The same holds true for Un.

5. Monte Carlo Simulations

Simulation Designs
• For j = 1 or j = 2, the true DGP is

y
j
t = βjq1,t + cv · (|q1,t| + 1) · εt

where cv = 0.3, εt is an i.i.d. normal with mean 0 and
E[|εt|] = 1. The explanatory variables qi,t are generated
by:

qi,t = a + bqi,t−1 + ei,t

where i = 1, 2, a = 0, b = 0.5, and t = 1, 2, · · ·n.

•We estimate the model based on Xt = X(q1,t, q2,t), which
are transformations (powers and interaction terms up to
polynomial order of 10) of q1,t, q2,t and are common for
j = 1,2 and some additional variables (described below).

• The parameters for LASSO is λ = cv′ ·
√

log p/n. The
threshold parameter is λthr = 2λ.

Size
•Additional Variables: We increase p by adding more

terms to Xt with three different ways.

1. Grow polynomial order of q1,t, q2,t constructing Xt.
2. Generate more q3,t, q4,t, . . . pairs and add them to Xt.
3. Add lagged q1,t, q2,t terms and its powers (up to 10).

• Tables 1-3: Rejection rates at the significance level of
α = 0.05 with the true parameter value of β1 = β2 = 1 out
of 1000 simulation iterations.

• Table 4: Rejection rates with with different values of
b = 0.3, 0.4, . . . , 0.9 to examine the effect of higher serial
correlation in qt.

Table 1: Rejection probability with higher polynomial orders

order 10 15 20 25 30 35 40
n \ p 65 135 230 350 495 665 860
100 0.077 0.062 0.065 0.073 0.068 0.082 0.084
200 0.075 0.048 0.060 0.055 0.048 0.060 0.047
300 0.055 0.043 0.048 0.053 0.058 0.045 0.051
400 0.052 0.056 0.055 0.041 0.047 0.051 0.044
500 0.048 0.051 0.047 0.045 0.051 0.039 0.046

Table 2: Rejection probability with additional q pairs

New Pairs 1 3 5 7 10 13 15
n \ p 130 260 390 520 715 910 1040
100 0.071 0.070 0.073 0.085 0.058 0.063 0.068
200 0.061 0.062 0.064 0.057 0.062 0.056 0.061
300 0.058 0.070 0.062 0.044 0.072 0.054 0.055
400 0.048 0.067 0.062 0.057 0.069 0.075 0.052
500 0.048 0.054 0.058 0.062 0.067 0.065 0.054

Table 3: Rejection probability with lagged q terms

Max lag 5 10 15 20 25 30 35 40
n \ p 165 265 365 465 565 665 765 865
100 0.072 0.072 0.082 0.095 0.088 0.070 0.079 0.078
200 0.064 0.075 0.071 0.070 0.067 0.045 0.067 0.070
300 0.048 0.074 0.082 0.091 0.077 0.060 0.084 0.070
400 0.070 0.073 0.068 0.068 0.071 0.072 0.062 0.070
500 0.063 0.071 0.078 0.070 0.086 0.087 0.075 0.067

Table 4: Rejection probability with different AR coefficients
b

n \ b 0.3 0.4 0.5 0.6 0.7 0.8 0.9
100 0.082 0.089 0.087 0.093 0.089 0.088 0.132
200 0.068 0.072 0.080 0.073 0.090 0.088 0.089
300 0.076 0.077 0.082 0.068 0.078 0.070 0.092
400 0.082 0.093 0.057 0.086 0.079 0.081 0.083
500 0.088 0.085 0.072 0.066 0.079 0.060 0.094

Power
•We fix Max Lag = 30 so that p = 665 and evaluate the

power performance of our test in three ways.

1. Table 5: Change β2 = 1.0, 1.1, . . . , 2.0.

2. Table 6: Shift y2 by adding α = 0.1, . . . , 1.0.

3. Table 7: Change the error distribution by letting ε2t fol-
low (Z2 − 1)/0.9680, i.e. chi-square with one degrees of
freedom normalized to mean 0 and the first absolute mo-
ment 1 and compare it with normal distribution with mean
0 and the first absolute moment 1.

Table 5: Rejection probability with β2 being 1.0, 1.1, · · · , 1.5

n \ β2 1.0 1.1 1.2 1.3 1.4 1.5
100 0.090 0.124 0.284 0.433 0.636 0.801
200 0.065 0.135 0.357 0.625 0.816 0.935
300 0.079 0.181 0.465 0.764 0.936 0.976
400 0.091 0.192 0.557 0.866 0.969 0.981
500 0.082 0.238 0.686 0.933 0.977 0.987

Table 6: Rejection probability after shifting y2 by α

n \ α 0.0 0.1 0.2 0.3 0.4 0.5
100 0.070 0.251 0.488 0.741 0.918 0.988
200 0.086 0.324 0.764 0.970 0.987 0.994
300 0.079 0.452 0.860 0.983 0.994 0.986
400 0.082 0.530 0.933 0.981 0.989 0.994
500 0.081 0.581 0.968 0.983 0.992 0.998

Table 7: Rejection probability of normal vs. chi-square error
distribution

n Rejection Prob.
100 0.043
200 0.094
300 0.182
400 0.327
500 0.417

6. Application

Home Bias Puzzle
•We apply our method to the comparison of US and Global

equity returns (Home Bias Puzzle).
• The home bias puzzle as been investigated by many

authors including Chan, Covrig & Ng (2005), French &
Poterba (1991), Lewis (1999)). Levy & Levy (2014) argue
that despite a significant reduction in implicit and explicit
transaction costs around the world, the US home bias in
stock and bond returns has not disappeared.
• The dataset comes from the Fama-French US and Global

risk premium daily series from 7 August 1992 to 30 June
2016 obtained from Kenneth French’s Data Library
•We test the dominance of the US series over the global

series with 674 conditioning variables detailed below in
Table 8.

Table 8: Description of the conditioning variables

Index Description
# 1-40 Lagged returns (max. lag = 20)

# 41-200 Powers of lags
# 201-600 Interactions
# 601-638 Momentum measures
# 639-657 Changes in trading volume
# 658-665 Relative strength Indices
# 666-669 Moving average oscillators
# 670-674 Day of the week dummy variables

Results
•We conduct a non-overlapping rolling window analysis of

size 500, roughly two years. We plot the series of p-
values reported from 12 windows.
• Throughout, λ is set to be

√
log(np)/n = 0.1595 and the

LASSO threshold constant is set to be 2.
• The result reveals that the null hypothesis suggesting the

conditional dominance of the US series over the global
series is rejected at the 5% level of significance, except
for the periods of 1992-1994, 2004-2006, and 2008-2012
where we do not have sufficient statistical evidence to
conclude so. It appears that those years have been
somewhat different relative to the rest of the sample.

Selection Process
• For the period from 07/08/2000 to 06/08/2002, we cal-

culate the sample correlations between the conditioning
variables and the US series, and rank them in descend-
ing order of the absolute value of the correlations.
• Table 9 reports the correlations of 7 “selected variables”

from the mean regression (cf. Figure 3 ); the result sug-
gests that the selected variables tends to be those with
high correlations in general, with 6 out of 7 variables listed
on top 9 out of 674.

Table 9: Correlations of the selected variables, an example

Variable Index Rank Correlation (abs.) Sign of the correlation
# 256 1 0.169272187 +
# 234 2 0.151388803 +
# 424 3 0.145195343 −
# 253 4 0.143038571 −
# 351 6 0.137275434 +
# 650 9 0.129063574 +

# 1 291 0.042979460 +
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