#### Prepared for: AFA Ph.D. Student Poster Session

#### Competition, Non-Patented Innovation, and Firm Value

**Presented by:** Scott B. Guernsey (University of Cambridge)

**Job Market Paper** 







Primary research questions:

How does competition affect corporate innovation?

What are its ramifications for firm value?

## **Motivation** (1/3)

- Prior research has studied these questions
  - Commonly using <u>empirical proxies of competition</u>: HHI, market share, Lerner index
  - (e.g., Sundaram et al., 1996; Blundell et al., 1999; Aghion et al., 2005; Gu, 2016)
- But has found mixed results...
- More alarming, the results tend to be proxy-dependent
  - (see Cohen, 2010, for a review)
- For instance, Blundell et al. (*RES*, 1999) **find** that:
  - Market share (concentration) is positively (negatively) associated with corporate innovation, and that a
  - Positive correlation between innovation and <u>value</u> is stronger for firms with higher market shares
- In contrast, Gu (*JFE*, 2016) sorts portfolios on R&D and market concentration:
  - And finds that R&D-<u>intensive</u> firms in <u>less</u> concentrated industries earn <u>higher</u> expected returns

## **Motivation** (2/3)

- Two key empirical obstacles render the **identification** challenging:
- (1) Causality could run in the reverse direction
  - Concentrated industries may be a natural consequence of past innovation by successful firms
    - "Success breeding success"
- (2) Economic conditions and other exogenous factors could also
  - <u>Simultaneously codetermine</u> competition, innovation, and firm value

## **Motivation** (3/3)

- Adding to the difficulty of identification
  - Theory gives <u>ambiguous</u> predictions on competition's <u>effect</u> on innovation and value
    - (e.g., see Aghion et al., 2001, 2015; Gilbert, 2006; Cohen, 2010)
- Schumpeterian growth theory (e.g., Gilbert and Newberry, 1982; Aghion and Howitt, 1992; Caballero and Jaffe, 1993):
  - More competition <u>reduces</u> the flow of rents to innovators
    - Thereby reducing their incentives to innovate and grow
- Arrow's "replacement effect" (e.g., Arrow, 1962; Aghion and Howitt, 1992):
  - Dominant incumbent does <u>not</u> innovate since this partially displaces rents it <u>already earns</u>
  - Whereas in a competitive industry, firms have <u>more</u> potential to realize the <u>full return</u> from innovation
- "Inverted-U":
  - Aghion et al. (2005) assume innovation occurs <u>step-by-step</u>
  - Such that industries are either "neck-in-neck" or "unleveled"
    - Competition encourages neck-in-neck firms to innovate to "escape from competition"
    - Competition discourages innovation by laggard firms in unleveled sectors
      - Since it <u>reduces</u> any short-run incremental profit from catching the leader

# "Inverted-U" (Aghion et al., 2005)



#### Main contribution:

- I test these conflicting predictions by shifting the focus from
  - Endogenous proxies of competition to a tandem of arguably exogenous events
    - That directly influence the intensity of product market competition
- The events:
  - State legislatures' passage of <u>anti-plug molding laws</u> that reduce competition
  - <u>U.S. Supreme Court</u> decision to overturn the laws **which reinstates competition**

#### Preview of the main findings:

- I find that firms experiencing a reduction in competition in their product markets:
  - Show increasing investment spending: e.g., R&D, CAPEX, Intangible Capital, Advertising
  - And become more profitable (Gross Profit, Operating Margin) and valuable (Q and Stock Returns)
- And after the laws are struck down
  - The increases in investments spending, profitability, and value dissipate
- Consistent with Schumpeterian growth theory
  - More intense competition <u>disincentivizes</u> value-enhancing corporate innovation

## **Anti-plug molding laws (APMLs)**

- APMLs were adopted in a staggered fashion by 12 states over the period 1978 to 1987
- And they decrease product market competition by **prohibiting** competitors from:
  - Using an "unscrupulous" form of reverse engineering (RE) to make an identical but competing product
- Quick digression:
- Forward engineering: Idea  $\Rightarrow$  Drawing  $\Rightarrow$  Model  $\Rightarrow$  Mold  $\Rightarrow$  Product
- Reverse engineering (RE): Product  $\Rightarrow$  Idea  $\Rightarrow$  Drawing  $\Rightarrow$  Model  $\Rightarrow$  Mold  $\Rightarrow$  Product
- The "unscrupulous" form of RE prohibited by APMLs:
- Direct molet g process E: Product ⇒ Idea → Drawing → Model ⇒ Mold ⇒ Product
  - Provides muls with a competitive cost advantage
    - Allows them to manufacture <u>duplicate</u> items
    - Ind at a small friction of the originator's total production costs



# Jurisdictional scope

- The history of court cases related to APMLs suggests the relevant jurisdiction is:
  - The state where the <u>plaintiff</u> maintains its <u>principal</u> place of business
    - (e.g., Althauser, 1989; Carstens, 1990; Heald, 1990)
  - Which is typically interpreted as the plaintiff's <u>state of headquarters</u>
    - (e.g., Ribstein and Kobayashi, 1996; Almeling et al., 2010)
- For example, the most important court decision pertaining to APMLs
  - Was a dispute between two boat manufacturers that were headquartered in <u>different states</u>
    - The plaintiff was headquartered in **Florida** and the defendant in **Tennessee**
    - The case went through Florida's lower courts before finally making it all the way to its **Supreme Court** 
      - And eventually to the U.S. Supreme Court More on this court case soon!
- : APMLs decrease competition for firms headquartered in the enacting state
  - Both from competitors within and outside of the adopting state

## Table 1

| Panel A: The month and year of APML adoption |                                  |                    |                  |  |  |  |
|----------------------------------------------|----------------------------------|--------------------|------------------|--|--|--|
| State                                        | Statute                          | Month/Year Adopted | Covered Products |  |  |  |
| California                                   | CAL. BUS. & PROF. CODE § 17300   | 10/1978            | All items        |  |  |  |
| Florida                                      | FLA. STAT. § 559.94              | 05/1983            | Boat hulls       |  |  |  |
| Indiana                                      | IND. CODE §§ 24-4-8-1            | 08/1987            | Boat hulls       |  |  |  |
| Kansas                                       | KAN. STAT. ANN. § 50-802         | 07/1984            | Boat hulls       |  |  |  |
| Louisiana                                    | LA. REV. STAT. ANN. § 51: 462.1  | 07/1985            | Boat hulls       |  |  |  |
| Maryland                                     | MD. COM. LAW CODE ANN. § 11-1001 | 04/1986            | Boat hulls       |  |  |  |
| Michigan                                     | MICH. COMP. LAWS §§ 445.621      | 03/1983            | All items        |  |  |  |
| Mississippi                                  | MISS. CODE ANN. § 59-21-41       | 03/1985            | Boat hulls       |  |  |  |
| Missouri                                     | MO. REV. STAT. § 306.900         | 04/1986            | Boat hulls       |  |  |  |
| North Carolina                               | N.C. GEN. STAT. §§ 75A-27        | 07/1985            | Boat hulls       |  |  |  |
| Tennessee                                    | TENN. CODE ANN. § 47-50-111      | 07/1983            | All items        |  |  |  |
| Wisconsin                                    | WIS. STAT. ANN. § 134.34         | 06/1983            | Boat hulls       |  |  |  |

- Three states adopt APMLs that protect "All items" (all manufacturing items that are "moldable")
  - 445 (3,530) protected firms (firm-years)
- The other nine are specific to "Boat hulls" (and their component parts)
  - 249 (2,169) manufacturers <u>are</u> headquartered in these states
  - But only 3 firms (and 24 firm-years) are boat-manufacturers
- I focus on the All-APMLs, and use the Boat-APMLs as a placebo

## **Table 2: Describing industries with "Moldable Products"**

| Two-digit SIC | Description                                                                    | "Moldable Products" |
|---------------|--------------------------------------------------------------------------------|---------------------|
| codes         |                                                                                | industry            |
| 20            | Food and Kindred Products                                                      | No                  |
| 21            | Tobacco Products                                                               | No                  |
| 22            | Textile Mill Products                                                          | No                  |
| 23            | Apparel and other Finished Products Made from Fabrics and<br>Similar Materials | No                  |
| 24            | Lumber and Wood Products, except Furniture                                     | Yes                 |
| 25            | Furniture and Fixtures                                                         | Yes                 |
| 26            | Paper and Allied Products                                                      | No                  |
| 27            | Printing, Publishing, and Allied Industries                                    | No                  |
| 28            | Chemicals and Allied Products                                                  | No                  |
| 29            | Petroleum Refining and Related Industries                                      | No                  |
| 30            | Rubber and Miscellaneous Plastics Products                                     | Yes                 |
| 31            | Leather and Leather Products                                                   | Yes                 |
| 32            | Stone, Clay, Glass, and Concrete Products                                      | Yes                 |
| 33            | Primary Metal Industries                                                       | No                  |
| 34            | Fabricated Metal Products, except Machinery and                                | Yes                 |
|               | Transportation Equipment                                                       |                     |
| 35            | Industrial and Commercial Machinery and Computer                               | Yes                 |
|               | Equipment                                                                      |                     |
| 36            | Electronic and other Electrical Equipment and                                  | Yes                 |
|               | Components, except Computer Equipment                                          |                     |
| 37            | Transportation Equipment                                                       | Yes                 |
| 38            | Measuring, Analyzing, and Controlling Instruments;                             | Yes                 |
|               | Photographic, Medical and Optical Goods; Watches and                           |                     |
|               | Clocks                                                                         |                     |
| 39            | Miscellaneous Manufacturing Industries                                         | Yes                 |

## Are APMLs constitutional?

#### Sample periods:

- 1975 to 1988
- 1975 to 1992

#### **State APM Statutes**

- 12 state adoptions
  - 1978 1987
    - 3 states "All Item"
    - 9 states "Boat Hulls"



#### **State Court Cases**

- Bonito v. Thunder Craft
  - 1987: Invalidates FL's law



- Interpart v. Imos Italia
  - 1985: Validates CA's law



#### **U.S. Supreme Court**

- Grants certiorari to Bonito
  - 1989: Invalidates all laws



## Are APML adoptions plausibly exogenous?

Following a similar approach as in Acharya et al. (2014)

| Sample period: 1975 – 1988                           |                                                               |                        |                   |   |
|------------------------------------------------------|---------------------------------------------------------------|------------------------|-------------------|---|
| Dependent variables:                                 | $AllAPML_{[t]}$                                               | $BoatAPML_{[t]}$       |                   |   |
| $Ln(GDPPC)_{[t-1]}$                                  | 0.006<br>(0.014)                                              |                        | -0.007<br>(0.076) |   |
| $Est.Entry_{[t-1]}$                                  | 0.002<br>(0.004)                                              | Ruling out confounders | 0.003<br>(0.012)  |   |
| $R\&D\ Credit_{[t-1]}$                               | -0.002<br>(0.004)                                             |                        | 0.058<br>(0.062)  |   |
| $SY\Delta Ln(1 + Patent)_{[t-1]}$                    | -0.027<br>(0.047)                                             | Ruling out reverse     | 0.008<br>(0.273)  |   |
| $SY\Delta Tobin's Q_{[t-1]}$                         | 0.004<br>(0.005)                                              | causality              | 0.001<br>(0.012)  |   |
| Other predictors: GDP Growth, Der<br>Secrets laws, V | nocrat, Ln(Population), Unei<br>Vrongful Discharge laws, SY I | • •                    |                   | ) |
| Year FE                                              | Yes                                                           |                        | Yes               |   |
| State FE                                             | Yes                                                           |                        | Yes               |   |
| Observations                                         | 417                                                           |                        | 414               |   |
| Adjusted R <sup>2</sup>                              | 0.067                                                         |                        | 0.098             |   |

## Are APML adoptions relevant for competition?

| Sample period:          | 1975 – 1988                               |                                      |  |  |
|-------------------------|-------------------------------------------|--------------------------------------|--|--|
| Dependent variables:    | $State	ext{-}Industry\ HHI_{[t]}$         | $State	ext{-}Industry\ Lerner_{[t]}$ |  |  |
| $All\ APML_{[t]}$       | 0.068***                                  | 0.035*                               |  |  |
|                         | (0.019)                                   | (0.018)                              |  |  |
| $Boat\ APML_{[t]}$      | -0.004                                    | 0.021                                |  |  |
|                         | (0.016)                                   | (0.016)                              |  |  |
| $Ln(GDPPC)_{[t]}$       | 0.154*                                    | -0.069                               |  |  |
|                         | (0.079)                                   | (0.064)                              |  |  |
| $Democrat_{[t]}$        | -0.063*                                   | -0.023                               |  |  |
|                         | (0.032)                                   | (0.034)                              |  |  |
| $IDD_{\lceil t \rceil}$ | 0.069**                                   | 0.029*                               |  |  |
|                         | (0.033)                                   | (0.014)                              |  |  |
| Other controls: GDP Gro | wth, Antitakeover laws, UTSA, R&D Tax Cre | edits, Wrongful Discharge laws       |  |  |
| Year FE                 | Yes                                       | Yes                                  |  |  |
| State FE                | Yes                                       | Yes                                  |  |  |
| Observations            | 3,060                                     | 3,055                                |  |  |
| Adjusted R <sup>2</sup> | 0.336                                     | 0.147                                |  |  |

## Is the Supreme Court decision plausibly exogenous?

No anticipatory effect

Following the approach in Serfling (2016)

**Classic four-factor model** 

| Sample firms: |  | All Al              | $PML_{[t]}$         | Boat A            | $PML_{[t]}$       |
|---------------|--|---------------------|---------------------|-------------------|-------------------|
| CAR Window:   |  | EW Index            | VW Index            | EW Index          | VW Index          |
| [-21, -4]     |  | -1.29%<br>(-1.38)   | -0.88%<br>(-0.75)   | -0.03%<br>(0.11)  | 0.34%<br>(0.56)   |
| [-2, +2]      |  | -0.65%**<br>(-2.05) | -0.57%*<br>(-1.81)  | -0.05%<br>(-0.30) | -0.00%<br>(-0.13) |
| [-0, +0]      |  | -0.52%**<br>(-2.35) | -0.49%**<br>(-2.14) | 0.37%<br>(1.23)   | 0.39%<br>(1.32)   |
| [-0, +2]      |  | -0.50%**<br>(-2.04) | -0.48%*<br>(-1.89)  | -0.27%<br>(-0.65) | -0.30%<br>(-0.61) |
| Observations  |  | 346                 | 346                 | 192               | 192               |

A surprise to capital markets

No effect on nonboat manufacturers

## The identification strategy

The empirical approach – staggered difference-in-differences (DD):

$$y_{ijs(t+n)} = \beta_1 All \ APML_{st} + \beta_2 Boat \ APML_{st} + \gamma_i + \lambda_{jt} + \alpha' \mathbf{X}_{ijst} + \varepsilon_{ijst}$$

- where  $\gamma$  is for firm, and  $\lambda$  is for industry-by-year fixed effects
- and **X** represents a vector of other law, state-level, and firm-level controls
- Compares outcomes of firms headquartered in APML states to firms headquartered elsewhere and:
  - Operating in the <u>same</u> industry
- Industry-by-year FEs help control for M&A activity and regional economic conditions
  - Merger waves strongly clustered by industry (e.g., Mitchell and Mulherin, 1996; Harford, 2005)
  - Industries tend to cluster by geography (e.g., Ellison and Glaeser, 1997, 1999; Ellison et al., 2010)
- Identification strategy is further enriched by the U.S. Supreme Court decision to overturn the APMLs (DDD):

$$y_{ijs(t+n)} = \beta_1 All \ APML_{st} + \beta_2 Boat \ APML_{st} + \beta_3 Post88_t \times All \ APML_{st} + \beta_4 Post88_t \times Boat \ APML_{st} + \gamma_i + \lambda_{jt} + \alpha' \mathbf{X}_{ijst} + \varepsilon_{ijst}$$

### Do APMLs provide a partial substitute to patents?

| Sample period:                        |                          | 1975 – 1992                   |                               |
|---------------------------------------|--------------------------|-------------------------------|-------------------------------|
| Dependent variables:                  | $Ln(1 + Patent)_{[t+2]}$ | $Ln(1 + CW \ Patent)_{[t+2]}$ | $Ln(1 + SM \ Patent)_{[t+2]}$ |
| $All\ APML_{[t]}$                     | -0.009***                | -0.045*                       | -0.054***                     |
|                                       | (0.003)                  | (0.025)                       | (0.015)                       |
| $Post88_{[t]} \times All\ APML_{[t]}$ | 0.036***                 | 0.108**                       | 0.084*                        |
|                                       | (0.009)                  | (0.050)                       | (0.042)                       |
| $Boat\ APML_{[t]}$                    | 0.005                    | 0.016                         | -0.013                        |
|                                       | (0.010)                  | (0.050)                       | (0.031)                       |
| $Post88_{[t]} \times Boat APML_{[t]}$ | 0.011                    | 0.070                         | 0.031                         |
|                                       | (0.012)                  | (0.069)                       | (0.041)                       |

Control Variables: Antitakeover laws, trade secrets laws, R&D credits, wrongful discharge laws; Ln(GDPPC), GDP Growth, Democrat; Ln(Assets), Ln(Age), Debt, OCF, HHI, SG, Loss, FLIQ, R&D/Sales, CAPX/Assets

| Firm FE                 | Yes    | Yes    | Yes    |
|-------------------------|--------|--------|--------|
| Industry × Year FE      | Yes    | Yes    | Yes    |
| Observations            | 17,600 | 17,600 | 17,600 |
| Adjusted R <sup>2</sup> | 0.908  | 0.828  | 0.912  |

## Do APMLs alter investment spending?

| Sample period: 1975 – 1992            |                      |                       |                       |                                                                                    |
|---------------------------------------|----------------------|-----------------------|-----------------------|------------------------------------------------------------------------------------|
| Dependent variables:                  | $R\&D/Sales_{[t+1]}$ | $CAPX/Assets_{[t+1]}$ | $Advertising_{[t+1]}$ | $\begin{array}{c} \textit{Organizational} \\ \textit{Capital}_{[t+1]} \end{array}$ |
| $All\ APML_{[t]}$                     | 0.003*<br>(0.001)    | 0.006***<br>(0.001)   | 0.011***<br>(0.002)   | 0.001***<br>(0.000)                                                                |
| $Post88_{[t]} \times All\ APML_{[t]}$ | 0.006<br>(0.005)     | 0.000<br>(0.003)      | -0.010*<br>(0.005)    | -0.002***<br>(-0.000)                                                              |
| $Boat\ APML_{[t]}$                    | 0.000<br>(0.002)     | -0.001<br>(0.003)     | -0.003<br>(0.006)     | -0.001<br>(0.001)                                                                  |
| $Post88_{[t]} \times Boat APML_{[t]}$ | -0.001<br>(0.003)    | 0.002<br>(0.003)      | -0.009<br>(0.008)     | -0.001<br>(0.001)                                                                  |
| Control Variables                     | Yes                  | Yes                   | Yes                   | Yes                                                                                |
| Firm FE                               | Yes                  | Yes                   | Yes                   | Yes                                                                                |
| Industry × Year FE                    | Yes                  | Yes                   | Yes                   | Yes                                                                                |
| Observations                          | 17,476               | 17,476                | 17,476                | 17,476                                                                             |
| Adjusted R <sup>2</sup>               | 0.794                | 0.445                 | 0.811                 | 0.817                                                                              |

## Are APML-firms more profitable (i.e., earn rents)?

| Sample period:                          | 1975 – 1992            |                            |                     |                    |  |
|-----------------------------------------|------------------------|----------------------------|---------------------|--------------------|--|
| Dependent variables:                    | $Gross Profit_{[t+1]}$ | Operating $Margin_{[t+1]}$ | $ROE_{[t+1]}$       | $Loss_{[t+1]}$     |  |
| $All\ APML_{[t]}$                       | 0.010***<br>(0.004)    | 0.014***<br>(0.004)        | 0.017***<br>(0.005) | -0.022*<br>(0.012) |  |
| $Post88_{[t]} \times All\ APML_{[t]}$   | -0.003<br>(0.005)      | -0.000<br>(0.011)          | -0.025**<br>(0.012) | 0.008<br>(0.016)   |  |
| $Boat\ APML_{[t]}$                      | -0.003<br>(0.004)      | 0.002<br>(0.005)           | -0.003<br>(0.023)   | 0.001<br>(0.027)   |  |
| $Post88_{[t]} \times Boat \ APML_{[t]}$ | -0.001<br>(0.006)      | -0.007<br>(0.013)          | 0.010<br>(0.041)    | -0.013<br>(0.041)  |  |
| Control Variables                       | Yes                    | Yes                        | Yes                 | Yes                |  |
| Firm FE                                 | Yes                    | Yes                        | Yes                 | Yes                |  |
| Industry × Year FE                      | Yes                    | Yes                        | Yes                 | Yes                |  |
| Observations                            | 14,149                 | 14,148                     | 17,560              | 17,531             |  |
| Adjusted R <sup>2</sup>                 | 0.752                  | 0.699                      | 0.226               | 0.288              |  |

## Do APMLs improve firm value?

| Sample period:                        |                     | 1975 – 1992           |                     |
|---------------------------------------|---------------------|-----------------------|---------------------|
| Dependent variables:                  | $Q_{[t]}$           | $Stock\ Return_{[t]}$ | Total $Q_{[t]}$     |
| $All\ APML_{[t]}$                     | 0.074***<br>(0.015) | 0.064*<br>(0.033)     | 0.055***<br>(0.018) |
| $Post88_{[t]} \times All\ APML_{[t]}$ | -0.072<br>(0.064)   | -0.026<br>(0.019)     | -0.087<br>(0.106)   |
| $Boat\ APML_{[t]}$                    | 0.036<br>(0.040)    | 0.026<br>(0.035)      | -0.011<br>(0.054)   |
| $Post88_{[t]} \times Boat APML_{[t]}$ | -0.021<br>(0.035)   | -0.044<br>(0.029)     | -0.028<br>(0.051    |
| Control Variables                     | Yes                 | Yes                   | Yes                 |
| Firm FE                               | Yes                 | Yes                   | Yes                 |
| Industry × Year FE                    | Yes                 | Yes                   | Yes                 |
| Observations                          | 17,600              | 12,411                | 17,577              |
| Adjusted R <sup>2</sup>               | 0.683               | 0.007                 | 0.637               |

### **Robustness checks**

- Parallel trends:
- Expand the sample to include all manufacturing firms (SIC codes: 2000-3999)
  - I.e., not just firms in the industries I identified as having moldable products (<u>Table 2</u>)
  - Results continue to <u>hold</u> (but as expected are <u>less</u> significant due to the added noise)
- Exclude firms from Boat-APML states
  - Results continue to hold

- Next
- Heterogeneous value effects...
  - Patenting vs. Non-patenting firms (e.g., Kultti et al., 2006, 2007)
  - Firms with greater innate innovative ability (e.g., Knott, 2008; Cohen et al., 2013)

#### Do APMLs differentially affect patenting vs. non-patenting firms?

| Sample period:                                                                                                                          | 1975 -                        | - 1988               |                      |                     |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------|----------------------|---------------------|
| Dependent variable:                                                                                                                     | $Tobin's\ oldsymbol{Q}_{[t]}$ |                      |                      |                     |
| $All\ APML_{[t]}$                                                                                                                       | 0.127***<br>(0.012)           | 0.134***<br>(0.013)  | 0.139***<br>(0.013)  | -0.048<br>(0.06)    |
| $All\ APML_{[t]} \times Ln(1 + Patent)_{[t-1]}$                                                                                         | -0.207***<br>(0.036)          |                      |                      |                     |
| $All\ APML_{[t]} \times Ln(1 + CW\ Patent)_{[t-1]}$                                                                                     |                               | -0.035***<br>(0.006) |                      |                     |
| $All\ APML_{[t]} \times Ln(1 + SM\ Patent)_{[t-1]}$                                                                                     |                               |                      | -0.061***<br>(0.009) |                     |
| $All\ APML_{[t]} \times Patentless\ R\&D_{[t-1]}$                                                                                       |                               |                      |                      | 0.128***<br>(0.049) |
| Interacted and Control Variables                                                                                                        | Yes                           | Yes                  | Yes                  | Yes                 |
| Firm FE and Industry × Year FE                                                                                                          | Yes                           | Yes                  | Yes                  | Yes                 |
| Observations                                                                                                                            | 13,139                        | 13,139               | 13,139               | 9,909               |
| Adjusted R <sup>2</sup>                                                                                                                 | 0.705                         | 0.705                | 0.706                | 0.713               |
| Patent Activity mean                                                                                                                    | 0.182                         | 1.179                | 0.682                | 0.866               |
| Test for joint significance:                                                                                                            |                               |                      |                      |                     |
| $ \begin{bmatrix} All \ APML_{[t]} \times Patent \ Activity_{[t-1]} \end{bmatrix} + \\ \begin{bmatrix} All \ APML_{[t]} \end{bmatrix} $ | 0.089***<br>(0.011)           | 0.092***<br>(0.011)  | 0.097***<br>(0.012)  | 0.080***<br>(0.021) |

#### Do APMLs differentially affect firms with greater innovative ability?

| Sample period:                                                  | 1975                | <b>- 1988</b>       | 1975 -               | - 1992              |
|-----------------------------------------------------------------|---------------------|---------------------|----------------------|---------------------|
| Dependent variable:                                             |                     | Tobin               | $s Q_{[t]}$          |                     |
| $All\ APML_{[t]} \times RQ_{[t-1]}$ Knott (2008)                | 0.364***<br>(0.091) |                     | 0.269**<br>(0.115)   |                     |
| $All\ APML_{[t]} \times RQ\ High_{[t-1]}$                       |                     | 0.054***<br>(0.019) |                      | 0.128***<br>(0.026) |
| $All\ APML_{[t]} \times RQ\ Low_{[t-1]}$                        |                     | 0.018<br>(0.013)    |                      | 0.031<br>(0.026)    |
| $Post88_{[t]} \times All \ APML_{[t]} \times RQ_{[t-1]}$        |                     |                     | -2.285***<br>(0.472) |                     |
| $Post88_{[t]} \times All \ APML_{[t]} \times RQ \ High_{[t-1]}$ |                     |                     |                      | -0.210**<br>(0.084) |
| $Post88_{[t]} \times All \ APML_{[t]} \times RQ \ Low_{[t-1]}$  |                     |                     |                      | 0.099<br>(0.112)    |
| $All\ APML_{[t]}$                                               | -0.056**<br>(0.024) | -0.029<br>(0.022)   | -0.064**<br>(0.028)  | -0.090**<br>(0.039) |
| Interacted and Control Variables                                | Yes                 | Yes                 | Yes                  | Yes                 |
| Firm FE and Industry × Year FE                                  | Yes                 | Yes                 | Yes                  | Yes                 |
| Observations                                                    | 6,546               | 6,546               | 8,619                | 8,619               |
| Adjusted R <sup>2</sup>                                         | 0.665               | 0.665               | 0.653                | 0.653               |

#### Heterogenous abnormal returns on the Supreme Court's decision day

| Dependent variable:     | 1-Day Risk-Adjusted Excess Announcement Return $_{[t]}$ |                   |                      |                     |                   |  |
|-------------------------|---------------------------------------------------------|-------------------|----------------------|---------------------|-------------------|--|
| Sample cut:             | N/A                                                     | Patent High = 1   | Patent High = 0      | RQ High = 1         | RQ High = 0       |  |
| $All\ APML_{[t]}$       | -0.365**<br>(0.137)                                     | -0.049<br>(0.160) | -0.630***<br>(0.160) | -0.339**<br>(0.157) | -0.065<br>(0.171) |  |
| $Boat\ APML_{[t]}$      | 0.206<br>(0.200)                                        | 0.346<br>(0.249)  | 0.109<br>(0.234)     | -0.121<br>(0.388)   | 0.075<br>(0.250)  |  |
| Industry FE             | Yes                                                     | Yes               | Yes                  | Yes                 | Yes               |  |
| Observations            | 1,299                                                   | 528               | 771                  | 223                 | 475               |  |
| Adjusted R <sup>2</sup> | 0.007                                                   | 0.001             | 0.010                | 0.008               | 0.001             |  |

Following the approach in Cohen and Wang (2013)

# Challenges to identification

#### Limited states problem?

- May be that <u>omitted variables</u> that correlate with passage of laws and the outcomes
- Spuriously drive the main results by influencing post-treatment trends in
  - Patent activity, investment spending, profitability and Tobin's Q
- Two features of my empirical framework help address this concern
  - (1) I am able to exploit the Boat-APML states as a <u>placebo</u>
    - Since most firms HQ'd in these states are **non-boat-manufacturers**, they are **not** affected by their states' laws
    - Consistent with All-APMLs being the actual cause, estimates on Boat APML are always insignificant
  - (2) Identification is <u>further enriched</u> by the U.S. Supreme Court's invalidation of the laws
    - Provides a counter-effect to the APMLs
    - Thus, a scenario where omitted variables correlate with the laws' adoptions and the outcomes in one direction
    - And the Supreme Court's ruling and the outcomes in the other direction seems unlikely

#### Within state confounders?

- Address this concern using a unique feature of the experiments: The laws only apply to firms with moldable products
- Placebo test on firms in non-moldable products industries: Controls for within state sources of confounding variation

## Ruling out within state confounders

| Sample:                               | Firms operating in "non-moldable products" industries |                      |                         |                    |  |
|---------------------------------------|-------------------------------------------------------|----------------------|-------------------------|--------------------|--|
| Sample period:                        |                                                       | 1975                 |                         |                    |  |
| Dependent variables:                  | $Ln(1 + Patent)_{[t+2]}$                              | $R\&D/Sales_{[t+1]}$ | $Gross\ Profit_{[t+1]}$ | $Tobin's\ Q_{[t]}$ |  |
| $All\ APML_{[t]}$                     | -0.002<br>(0.005)                                     | 0.001<br>(0.001)     | -0.004<br>(0.009)       | 0.007<br>(0.054)   |  |
| $Post88_{[t]} \times All\ APML_{[t]}$ | -0.003<br>(0.003)                                     | -0.000<br>(0.001)    | -0.012<br>(0.009)       | -0.004<br>(0.055)  |  |
| Boat $APML_{[t]}$                     | -0.007<br>(0.005)                                     | 0.001<br>(0.001)     | -0.002<br>(0.009)       | 0.038<br>(0.045)   |  |
| $Post88_{[t]} \times Boat APML_{[t]}$ | -0.004<br>(0.005)                                     | 0.000<br>(0.001)     | 0.010<br>(0.013)        | -0.048<br>(0.030)  |  |
| Control Variables                     | Yes                                                   | Yes                  | Yes                     | Yes                |  |
| Firm FE                               | Yes                                                   | Yes                  | Yes                     | Yes                |  |
| Industry × Year FE                    | Yes                                                   | Yes                  | Yes                     | Yes                |  |
| Observations                          | 25,023                                                | 25,023               | 22,073                  | 25,023             |  |
| Adjusted R <sup>2</sup>               | 0.945                                                 | 0.881                | 0.684                   | 0.703              |  |

### **Conclusion**

# Thank you!

### What do APMLs shock?

- I assume that APMLs shock product market competition by
  - Increasing <u>imitation costs</u> for competitors, and thus,
  - Decreasing the <u>competitive cost advantage</u> of being able to plug mold a duplicate, competing product
- A potential concern is that:
  - The laws <u>also</u> shock innovation (simultaneity), or that
  - The laws <u>directly</u> shock innovation, and changes in competition come after (spurious relationship)
- To support my assumption and address this potential concern I rely on three sources of evidence
  - Anecdotal <u>evidence from judges</u>
  - <u>Theoretical</u> predictions
  - And <u>other empirical studies</u> that employ shocks to competition via IP protection

# Anecdotal evidence from judges

- Bonito Boats v. Thunder Craft Boats, 515 So.2d 220 at 222:
  - "When an article is introduced into the public domain, only a patent can eliminate the inherent risk of competition and then but for a limited time."
- Bonito Boats v. Thunder Craft Boats, 489 U.S. at 160:
  - "The competitive reality of reverse engineering may act as a spur to the inventor, creating an incentive to develop inventions that meet the rigorous requirements of patentability."



# Theoretical predictions

- This is consistent with the ambiguous predictions from prior theoretical work
- Schumpeterian growth theory argument:
- Stronger intellectual property (IP) protection and higher imitation costs may increase
  - The expected <u>duration</u> of rents to successful innovators and thereby <u>increase their incentives</u> to innovate and grow
    - (e.g., Dasgupta and Stiglitz, 1980; Davidson and Segerstrom, 1998)
- But,
- Arrow's "replacement" effect argument:
- Suggests that in equilibrium the dominant incumbent does not innovate because of
  - Strengthened IP protection and higher imitation costs since this would displace the rents it already earns
    - (e.g., Arrow, 1962; Aghion and Howitt, 1992)

# Evidence from other empirical studies

Guernsey, John, and Litov (R&R at JFQA, 2019)

#### Panel A: UTSA indicator

| Dependent variables:    | $Ln(Patent)_{[t+1]}$ | $Ln(CW\ Patent)_{[t+1]}$ | $Ln(SM\ Patent)_{[t+1]}$ |
|-------------------------|----------------------|--------------------------|--------------------------|
| Variables:              | (1)                  | (2)                      | (3)                      |
| $UTSA_{[t]}$            | -0.009***            | -0.064***                | -0.061**                 |
|                         | (-2.92)              | (-3.17)                  | (-2.39)                  |
| $IDD_{[t]}$             | -0.000               | -0.000                   | 0.010                    |
| [4]                     | (-0.03)              | (-0.03)                  | (0.44)                   |
| Control variables       | Yes                  | Yes                      | Yes                      |
| Firm FE                 | Yes                  | Yes                      | Yes                      |
| Industry × Year FE      | Yes                  | Yes                      | Yes                      |
| Region × Year FE        | Yes                  | Yes                      | Yes                      |
| Observations            | 107,795              | 107,795                  | 107,795                  |
| Adjusted R <sup>2</sup> | 0.842                | 0.785                    | 0.830                    |

Change in IP protection (IDD/APML)



Changes competition (Yes/Yes)



May or may not change innovation incentives (No/Yes)

# Other working papers

#### Shadow Pills, Actual Pill Policy, and Firm Value

- with Martijn Cremers, Lubo Litov, and Simone Sepe
- Analyzes how the right to adopt a poison pill affects actual pill usage and firm value
  - R&R at RFS

#### Keeping Secrets from Creditors: The Uniform Trade Secrets Act and Financial Leverage

- with Kose John and Lubo Litov
- Examines how an increase in intangibility in the form of trade secrets impacts financing decisions
  - R&R at JFQA

#### Stakeholder Orientation and Firm Value

- with Martijn Cremers and Simone Sepe
- Investigates the effect of enhanced director discretion to consider stakeholders on <u>firm value</u>
  - Submitting to a top-3 finance journal soon