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Introduction

I Many covariates in modern high-dimensional data sets create

challenges in computation and inference

I Machine learning (ML) methods is a way to reduce the dimension and

relax parametric assumptions

I Existing work with ML methods: average treatment effects, static models

of strategic interaction (Chernozhukov et al. (2017a), Chernozhukov

et al. (2017b))

I This talk: introduce ML methods for estimation of value function
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Motivating example: Rust (1987)+static heterogeneity

I Rust (1987)+bus characteristics:

per-period utility function u(s; a; ε) =

−R + ε(0), a = 0

−µ · s + ε(1), a = 1
I s is mileage, a ∈ {1, 0}, a = 0 is bus replacement
I future mileage st+1 depends on (xt , at ) where state xt = (st , characteristics)
I ε(0), ε(1) unobserved shock
I θ = (R, µ) structural parameter

I Goal: estimate and conduct inference about expected value function

EV (x)

I Main challenge: V (x) depends on

I transition density f (st+1|xt , at )

I conditional choice probability (CCP) p(a = 1|x)

that are high-dimensional objects

3 / 23



Motivating example: Rust (1987)+static heterogeneity

I Rust (1987)+bus characteristics:

per-period utility function u(s; a; ε) =

−R + ε(0), a = 0

−µ · s + ε(1), a = 1
I s is mileage, a ∈ {1, 0}, a = 0 is bus replacement
I future mileage st+1 depends on (xt , at ) where state xt = (st , characteristics)
I ε(0), ε(1) unobserved shock
I θ = (R, µ) structural parameter

I Goal: estimate and conduct inference about expected value function

EV (x)

I Main challenge: V (x) depends on

I transition density f (st+1|xt , at )

I conditional choice probability (CCP) p(a = 1|x)

that are high-dimensional objects

3 / 23



Main challenge: bias carries over from stage 1 to stage 2

I Need modern regularized methods to estimate transition density and

CCP

I Regularization bias converges slower than root-N

I Bias carries over from stage 1 to stage 2

I Biased value function estimator cannot be used for inference based on

standard asymptotic theory
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Main idea: orthogonality

I Adjust second-stage moment to make it insensitive with respect to

first-stage bias

I Previous work: adjustment relied on the closed-form expression of a

moment (Neyman (1959), Newey (1994), Chernozhukov et al. (2017a))

I Our contributions:

I Introduce implicit orthogonalization that does not require closed form
I Develop asymptotic theory for value function that allows for high-dimensional

state space
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Literature review

Two-stage models with orthogonality Neyman (1959), Newey (1994),

Robins and Rotnitzky (1995), Belloni et al. (2013), Belloni

et al. (2016), Chernozhukov et al. (2017a), Chernozhukov

et al. (2017b), Ichimura and Newey (2018)

DDC models Rust (1987), Aguirregabiria and Mira (2002), Aguirregabiria

and Mira (2007), Bajari et al. (2007), Bajari et al. (2010)
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Outline

I Value function: example of average welfare

I Value function: asymptotic theory for general case
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Example: intro and key facts

I Goal: conduct inference about EV (x) assuming agent plays optimally
I Subgoal: remove the impact of estimation of f (x ′|x , a) and p(x) on V (x ; p; f )

I Bellman equation:

V (x ; p; f ) = Eε max
a∈A

[
u(x , a) + ε(a) + βEx,a[V (x ′; p; f )|x , a]

]
,

where x (x ′) is the current (future) state

I Recursive property of the value function (e.g., Aguirregabiria and Mira

(2002)):

V (x ; p; f ) = Ũ(x ; p) + βEx′|x [V (x ′; p; f )|x ],

where Ũ(x ; p) is current ex-ante expected utility ,e.g.

Ũ(x ; p) = −R · p(0|x)− µ · s · p(1|x) + E[
∑

a∈A ε(a)p(a|x)|x ]

I Abstract away from computation of V (x ; p; f )
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Example: distribution of naive estimator

1st stage Estimate (f̂ (x ′|x , a))a∈A and p̂(x) (auxiliary sample)

2nd stage Compute 1
N

∑N
i=1 V (xi ; p̂; f̂ ) (main sample)

Bias of naive estimator in the literature:

(a) Double Machine Learning (DML),
Chernozhukov et al. (2017a)

(b) DML for Set-Identified Models, Semenova
(2018)
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Example: bias due to CCP

I True value f0(x ′|x , a) is known. Taylor expansion around p0:

E[V (x ; p)− V (x ; p0)] ≈ ∂pEV (x ; p0)[p(x)− p0(x)]

I Differentiate Bellman equation:

∂pV (x ; p0) = ∂pEε
[

max
a∈A

u(x , a) + ε(a) + βEx′ [V (x ′)|x , a]
]

= βEε∂p[V (x ′; p)|x , a∗(ε)],

where a∗(ε) is the optimal action given x , ε.

I ∂pV (x ; p0) solves a contraction map. Unique solution ∂pV (x ′; p0) = 0.

I Bias of CCP has no first-order effect on the bias of value function at any

state x
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Example: bias due to transition density

I True value p0(a|x) is known. Let f (x ′|x) :=
∑

a∈A f (x ′|x , a)p0(a|x).

f (x ′|x , γ) is a parametric submodel: f (x ′|x , γ0) = f (x ′|x)

E[V (x ; γ)− V (x ; γ0)] ≈ ∂γEV (x ; γ0)[γ − γ0]

I Recall the recursive property:

V (x ; p; γ) = Ũ(x ; p) + βEx′;γ [V (x ′; p; γ)|x ]

I Differentiate the recursive property

∂γV (x ; γ0) = β∂γ

∫
V (x ′; γ0)f (x ′|x ; γ0)dx ′ + βE∂γ [V (x ′; γ0)|x ]dx ′

I Assuming stationarity (x and x ′ have same marginal dist.):

∂γEV (x ; γ0) =
β

1− β

∫
V (x ′; γ0)f (x ′|x ; γ0)dx ′ =

β

1− βEV (x ′)S(x ′|x),

where S(x ′|x) =
∂γ f (x′|x ;γ)

f (x′|x ;γ) is conditional score

11 / 23



Example: bias due to transition density

I True value p0(a|x) is known. Let f (x ′|x) :=
∑

a∈A f (x ′|x , a)p0(a|x).

f (x ′|x , γ) is a parametric submodel: f (x ′|x , γ0) = f (x ′|x)

E[V (x ; γ)− V (x ; γ0)] ≈ ∂γEV (x ; γ0)[γ − γ0]

I Recall the recursive property:
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Example: orthogonal moment for average welfare

Recall the expression for the derivative:

∂γEV (x ; γ0) = β
1−βEV (x ′)S(x ′|x).

I Correction term β
1−β

(
V (x ′; f )− Ef [V (x ′; f )|x ]

)
I V (x ′; f )− Ef [V (x ′; f )|x ] mean zero residual
I β

1−β multiplier, known in case of average welfare!

I Orthogonal moment function for EV (x):

g(data; p; f ) := V (x ; f ) +
β

1− β
(
V (x ′; f )− Ef [V (x ′; f )|x ]

)
︸ ︷︷ ︸

correction(f )

,

where data = (x , a, x ′)

12 / 23



Example: robustness to misspecification of transition density

I Define ∆V (x ; p) = V (x ; p; f )− V (x ; p; f0). Recursive property implies:

Ef [V (x ′; p; f )|x ] =
1
β

(V (x ; p; f )− Ũ(x ; p))

Ef [V (x ′; p; f )|x ]− Ef0 [V (x ′; p; f0)|x ] =
1
β

∆V (x).

I Robustness to misspecification

E[g(x ; f )− g(x ; f0)] = E[∆V (x) +
β

1− β∆V (x ′)− 1
1− β∆V (x)]

=
β

1− βE[∆V (x ′)−∆V (x)] = 0.

I Special case of linearity implication:

I Recursive equation is linear in the density V (x ; p; f )⇒ robustness to any

order of the bias of f (x ′|x , a)
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Example: distribution of the estimator based on modified moment equation

1st stage Estimate (f̂ (x ′|x , a))a∈A and p̂(x) (auxiliary sample)

2nd stage Compute 1
N

∑N
i=1 g(datai ; p̂; f̂ ) (main sample)

(a) Double Machine Learning (DML), Chernozhukov
et al. (2017a)

(b) DML for Set-Identified Models, Semenova
(2018)
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Example: summary

Goal estimate the average welfare EV (x) in single-agent DDC model when

I state x is high-dimensional

I p(a|x) and f (x ′|x , a) are estimated by regularized methods (lasso, ridge,

boosting, etc.)

Steps

1. V (x ; p) is orthogonal with respect to CCP p(·) at each x

2. Derived correction term for the transition density f (x ′|x)

3. Orthogonal moment for EV (x) does not depend on f (x ′|x)

Notes

I Main equation of the talk

V (x ; p; γ) = Ũ(x ; p) + βEx′;γ [V (x ′; p; γ)|x ]
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Outline

I Example

I Asymptotic theory for general case
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General case: motivating examples

Goal is to estimate and provide confidence interval for Ew(x)V (x).

Examples:

I Truncated average welfare:

EV (x)1{q0.25≤V (x)≤q0.75}

and Ew(x)V (x) is the linear approximation of the functional above

I Average partial effect w.r.t x1 ⊂ x

E∂x1 V (x) = Ew(x)V (x),

where w(x) = − ∂x1 f (x1|x−1)

f (x1|x−1)
and f (x1|x−1) is the conditional density of x1

given x−1

I Counterfactual policy effect (Stock (1989)) from changing the distribution

of x to t(x):

E[V (t(x))− V (x)] = Ew(x)V (x),

where w(x) = ft (x)
fx (x)
− 1, ft (x), fx (x) are the marginal densities of t(x), x
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General case: comparison with average welfare

I CCP has no first-order effect on Ew(x)V (x).

I Correction for the transition density takes the form
correction = βλ(x)(V (x ′)− E[V (x ′)|x ]),

I residual V (x ′)− E[V (x ′)|x ] same as before
I multipler βλ(x) = β

∑∞
k=0 Eβk [w(x−k )|x ]

I Recap for w(x) = 1: λ(x) = β
1−β

I Double robustness requirement

‖λ̂(x)− λ(x)‖2,N‖f̂ (x ′|x)− f (x ′|x)‖2,N = o(N−1/2)
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General case: relaxing stationarity

I Stationarity: marginal distribution of (x , x ′′, . . . , xk , . . . ) and

(x t , x t+1, . . . , x t+k , . . . ) are the same. Example: mileage in Rust (1987)

I Without stationarity:

I data = (a, x)∞t=1
I correction α(data) = β

∑
k≥0 β

k(V (xk+1)− Ef [V (xk+1)|xk ]
)

I With stationarity:

I data = (x , a, x ′)
I correction α(data) = β 1

1−β
(
V (x ′)− Ef [V (x ′)|x ]

)
I Stationarity is strong; not applicable for suboptimal policies and Bajari

et al. (2007) type problems
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General case: weighted bootstrap

Goal is to provide confidence interval for Ew(x)V (x). Weighted bootstrap

statistic

σ̃b = 1
N

∑N
i=1 eig(datai , ξ̂i , θ̃

b)

I ξ̂ = {f̂ (x ′|x , a), λ̂(x), p̂(x), θ̂} is estimated on auxiliary sample

I (ei )
N
i=1 is Exp(1) i.i.d weights drawn independently from data
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General case: asymptotic results

Theorem 1. Asymptotic theory for the welfare estimator, known density

Suppose (f0(x ′|x , a))a∈A is known and ‖p̂ − p‖N,2 = o(N−1/4). Under mild

conditions,

√
N 1

N

∑N
i=1 V (datai ; p̂) ≈

√
N 1

N

∑N
i=1 V (datai ; p0) + oP(1)

Theorem 2. Asymptotic theory for the welfare estimator, general case

Suppose ‖p̂− p‖N,2 = o(N−1/4) and ‖λ̂− λ‖N,2‖f̂ (x ′|x)− f (x ′|x)‖N,2 = o(1).

√
N 1

N

∑N
i=1 g(datai ; ξ̂) ≈

√
N 1

N

∑N
i=1 g(datai ; ξ0) + oP(1),

where ξ = {p(x), f (x ′|x), λ(x)}

Notes

I std. case: directly assume bounded second-order derivatives

I this paper: derive asymptotic theory from the properties of linear integral

equations
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General case: summary

Goal estimate and conduct inference about Ew(x)V (x)

Key points I Ew(x)V (x) is orthogonal to CCP

I Correction term changes from β(V (x ′)− E[V (x ′)|x ] to

βλ(x)(V (x ′)− E[V (x ′)|x ]

I Robustness to any order misspecification turns into

double robustness

‖λ̂(x)− λ(x)‖2,N‖f̂ (x ′|x , a)− f (x ′|x , a)‖2,N = o(N−1/2)

in expectation

I Relaxed stationarity

Results I Derived sufficient conditions for asymptotic theory

I Provided weighted bootstrap procedure for inference
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Outline

I Value function: example of average welfare

I Value function: asymptotic theory for general case
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