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Introduction

o Failing to account for dependence leads to invalid inference
@ e.g. linear model
yi=xB+¢;

asymptotic variance of 3 depends on 15 > Elxixieiej]

2/11



Introduction

o Failing to account for dependence leads to invalid inference

@ e.g. linear model
yi=xB+ei

asymptotic variance of 3 depends on 1 > 2 Elxixieiej]

n

@ Group-based inference: Given clustering C = {Cg}g:1

Cluster Covariance Estimator (CCE)
Ibragimov and Mueller (2010, IM)
Canay, Romano, and Shaikh (2017, CRS)

e Focus on a few large groups (small G)
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Practical Issues

@ Choice of clustering often ad-hoc
Two tuning parameters

Number of groups G G partitions
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Practical Issues

@ Choice of clustering often ad-hoc
Two tuning parameters

Number of groups G G partitions

@ Goal: data-driven methods to make these choices

e Use Unsupervised Learning from ML to form partitions given G

e Use simulation to choose G based on inferential properties
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This paper

o Difficulty: Recovering the “true” clustering is hard
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This paper

o Difficulty: Recovering the “true” clustering is hard

o ldea: Find clusterings with good properties

{Restrictions on Dependence & Locations}

|
ML algorithm

v
[Clusterings with Good Properties}

A4

Valid Inference
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Proposed Inferential Methods

Generate {C(©)}&_, by k-medoids

A 4

Fit a parametric covariance model to scores

A 4

Select C* by simulated size & power

A 4

Perform cluster-based inference using C*
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Proposed Inferential Methods

Generate {C(©)}&_, by k-medoids

v IV simulation on Hy : 81 =0

Fit a parametric covariance model to scores Method Median MAD  Size  Power

White 0.006 0.21 0.31 0.90
A4 S-HAC 0.006 0.21 0.15 0.89
Select C* by simulated size & power Our method 0014 074 006 081

A 4

Perform cluster-based inference using C*
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Data:
HUZ Vg, (K d) oo {Restrictions on Dependence & Locations}

. X

. . . . . . . - . . . .. |

L] L] L] L] L] L] L] e o & *

L4 .
L] L] L] L] L] L] L] or bad ... ..
L[] L] L] L] L] L] L] R L] .. oo ° v
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Data:
HUZ Vg, (K d) oo {Restrictions on Dependence & Locations}
. X
] . . . . . . - . . . .. |
L] L] L] L] L] L] L] e o & *
L4 .
L] L] L] L] L] L] L] or bad o ® ..

Condition 1 (Mixing)

Dependence between Z; ,, and Z; ,, decays sufficiently fast for large d,(i,j) and Z; , have sufficient finite
moments
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Restrictions on Locations

Condition 2
@ (Ahlfors Regularity) 3C, 95, s.t. Vn > 1,x € Xp,r >0

|Bx, . (x)| ~ Cr’

@ (Approximate Convexity) Vx,y € X, and X € [0,1], 3z € X, s.t.

zrR A+ (1= X))y

Ahlfors Regularity:

* * | Bx,,r(x)] zﬂ'rz/h2
[ ] L] VU(
* * §=2, Cx1/H

7/11
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Condition 2

@ (Ahlfors Regularity) 3C, 95, s.t. Vn > 1,x € Xp,r >0

@ (Approximate Convexity) Vx,y € X, and X € [0,1], 3z € X, s.t.

|Bx,,r(x)| = cr®

zrR A+ (1= X))y

Ahlfors Regularity:

* * | Bx,,r(x)] %71'r2/h2
[ ] L] VU(
* * §=2, Cx1/H

Approximate Convexity:

z
d(x, z) . d(y, z)
X y
Ad(x, y) (1= N)d(x,y)
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Conditions on {C,},>1 with G groups

@ Group Balance: ‘
L . |C !
[iminf min u >0 v
n—oo CeCp, N

Clusterings with Good Properties

@ Small Boundaries: dr, — 0o s.t.

max [{x € C: d(x,X\C) < r,}| = o(n) v
CeCp
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Results on Clustering Algorithm

[Restrictions on Dependence & Locations}

ML algorithm
O Given k centers, assign each point to the v

closest center

k-medoids: iterate

{Clusterings with Good Properties}

@ Given k clusters, find the center that
minimizes sum of distances by swapping
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Results on Clustering Algorithm

[Restrictions on Dependence & Locations}

ML algorithm
O Given k centers, assign each point to the v

closest center

k-medoids: iterate

{Clusterings with Good Properties}

@ Given k clusters, find the center that
minimizes sum of distances by swapping

Proposition 1

Under Ahlfors Regularity & Approximate Convexity (Condition 2), k-medoids implies Group
Balance & Small Boundaries
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Main Results

Key (sufficient) requirements for IM & CRS:

Proposition 2

Under Mixing, Group Balance, and Small Boundaries,

-1
Jn,Cl Zi€C1 Z”ﬁ"
: —a N(0,l¢), with o2 c=Var|Y Z,

ieC

-1
Un,CG ZIECG Z’7"
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Main Results

Key (sufficient) requirements for IM & CRS:

Proposition 2

Under Mixing, Group Balance, and Small Boundaries,

-1
o—n,Cl Zi€C1 Ziv"
: —a N(0,l¢), with o2 c=Var|Y Z,

ieC

—1
Un,CG ZIECG Z’7"

Under Condition 1 and 2 (and regularity conditions), IM or CRS with a selected clustering has
asymptotically correct size:

sup  |Ep,[¢(C)] —al =0
ce{c@ye,,
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Conclusion

This paper:
e Conditions for well-behaved clustering algorithm
@ Formal conditions of valid inference with learned clustering

@ Choice of G and partition based on (heuristic) size-power tradeoff
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Conclusion

This paper:
e Conditions for well-behaved clustering algorithm
@ Formal conditions of valid inference with learned clustering

@ Choice of G and partition based on (heuristic) size-power tradeoff

A harder question:
@ So far d is assumed to be known

@ Would be interesting to know how d can be learned

Thanks!
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