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Introduction Model Main Result Companion Paper

Motivation and Outline

I Long-term principal-agent relationship where the environment
changes over time (random opportunities, demand shocks,...)

I Study the effect of fluctuations in the environment

I This paper: A stylized contacting problem:
I Unique optimal contract:

I Promotion based dynamics: Wage increases over time while
effort decreases over time

I Wage stickiness
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Model
I Principal-agent with infinite horizon; discount factor δ
I Every period:

I Nature draws available task i ∈ I = {1, . . . , I} with prob qi
I Agent observes i and exerts effort e ∈ [0,∞) on task
I Principal observes i , e and pays wage w ∈ [0,∞)

I Payoffs for (i , e,w):
I Principal: πi (e)− w
I Agent: g(w)− e
I π′

i (·), g ′(·) > 0 > π′′
i (·), g ′′(·) and satisfy πi (0) = g(0) = 0

I Additional assumptions:
I Tasks are ordered: π′

i+1(e) > π′
i (e) for all e

I Interior solutions: π′
I (0) > 1

g ′(0) , limw→∞
1

g ′(w) > lime→∞π
′
1(e)
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Contracts

I History at beginning of period t: ht = {is , es ,ws}s<t
I A contract specifies:

1. work(ht , it)→ [0,∞) – (Job description)
2. pay(ht , it , et)→ [0,∞) – (Compensation plan)

I Principal’s problem:
Choose a contract to maximize expected discounted value at
time zero subject to agent’s (dynamic) incentive constraints
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Auxiliary Problems

Constructing the Auxiliary Problems
I Auxiliary problem P(I)

1. First period: task I is available
2. Future: Tasks arrive as in the original problem
3. Principal is restricted to contracts of the form

I Vector of required efforts (e(I)
1 , ..., e(I)

I )
I Fixed periodic compensation w (I)

I Auxiliary problem P(I−1)

1. First period: task I − 1 is available
2. Future:

I Tasks arrive as in the original problem
I Interaction ends upon the first arrival of task I

3. Principal is restricted to contracts of the form
I (e(I−1)

1 , ..., e(I−1)
I−1 ), w (I−1)
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Auxiliary Problems

Constructing the Auxiliary Problems
I Auxiliary problem P(I)

1. First period: task I is available
2. Future: Tasks arrive as in the original problem
3. Principal is restricted to contracts of the form

I Vector of required efforts (e(I)
1 , ..., e(I)

I )
I Fixed periodic compensation w (I)

I Auxiliary problem P(i)

1. First period: task i is available
2. Future:

I Tasks arrive as in the original problem
I Interaction ends upon the first arrival of task j > i

3. Principal is restricted to contracts of the form
I (e(i)

1 , ..., e(i)
i ), w (i)
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Auxiliary Problems

Incentive Compatibility Constraints and Solution

I Let λi = 1−
∑

j>i qj

I The IC constraint when task j is available in P(i) is

ej ≤ g(w) +
∞∑

s=1
(λiδ)s

(
g(w)− 1

λi

∑
k≤i

qkek

)
,

I Each auxiliary problem is a convex optimization problem and
so it has a unique solution
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Auxiliary Problems

Properties of the Solution(s)
Lemma
The only binding constraint in the solution to P(i) is IC (i)

i .

Lemma
In the solution to P(i) π′j(e

(i)
j ) ≤ 1

g ′(w (i)) with equality if e(i)
j > 0.

Lemma
The sequence (w (1),w (2), . . . ,w (I)) is strictly increasing. (proof)

Corollary
Let j ≤ i .
1. For j > 1, e(i)

j ≥ e(i)
j−1, with a strict inequality if e(i)

j > 0, and
2. For i < I, e(i)

j ≥ e(i+1)
j , with a strict inequality if e(i)

j > 0.
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The Optimal Contract

Phase mechanism

I Define I (ht ; it) = max{is : s ≤ t}
I The Phase Mechanism is defined by:

work(ht , it) = e(I (ht ;it))
i

pay(ht , it , et) =
{

w (I (ht ;it)) if es = work(hs , is) for all s ≤ t
0 otherwise.

I In each period, contract is given by solution to P(I (ht ;it))

I Contract exhibits downward wage rigidity and upward effort
rigidity
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The Optimal Contract

Main Result

Proposition
Phase Mechanism is the (essentially) unique optimal contract.
I Comments:

I Concavity is what connects between periods
I Can be supported as a SGPE for some parameters
I Robustness: companion paper
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General contracting environment with symmetric info
I Dynamic contracting environment:

I Principal and agent interact over time
I Time is discrete, common discount factor
I Periodic game in t is drawn from f (ht)
I ht specifies past periodic games and actions
I Principal can commit to a long term strategy, agent cannot

I The environment accommodates
I “Incentivizing Randomly Arriving Tasks”
I Labor Contracts (Harris and Holmstrom 1982, Holmstrom

1983, Postal-Vinay and Robin 2002); Dynamic Risk Sharing
(Marcet and Marimon 1992, Kruger and Uhlig 2006); Foreign
Investment and Entrepreneur Financing (Thomas and Worrall
1994, Albuquerque and Hopenhayn 2004); Dynamic Project
Selection (Forand and Zapal 2018)

I Other potential models with seasonal demand, R&D
investments, long term projects etc.
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General contracting environment with symmetric info

I Principal and agent interact over time
I Time is discrete, common discount factor
I Periodic game in t is drawn from f (ht)
I ht specifies past periodic games and actions
I Principal can commit to a long term strategy, agent cannot

Results:
I Define a class of components – “convex separable activities”
I Tight condition guaranteeing that, as time goes by, these

components change only in the direction that favors the agent
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General contracting environment with symmetric info

I Principal and agent interact over time
I Time is discrete, common discount factor
I Periodic game in t is drawn from f (ht)
I ht specifies past periodic games and actions
I Principal can commit to a long term strategy, agent cannot

Implications:
I Generalize and unify downward wage rigidity results
I Establish a general upward effort rigidity result

I Monotonicity results in previous model are “detail free”
I New insights on foreign investment/entrepreneur financing
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Proofs

I If w (i+1) ≤ w (i) then e(i)
j ≤ e(i+1)

j

I Consider the continuation of P(i+1) when task i is available.
Until the arrival of a task l > i :
I The worker exerts weakly more effort than under the solution

of P(i)

I None of the IC constraints are binding
I Compensation of strictly less than w (i) can incentivize weakly

more effort than {e(i)
j } in auxiliary problem i .  

(return)
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