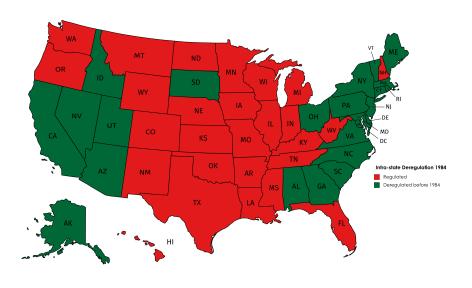
Credit Supply and Homeownership

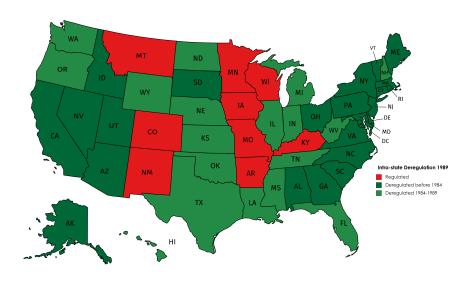
Zhenguo Lin ¹ Yingchun Liu ² Jia Xie ³

¹Florida International University

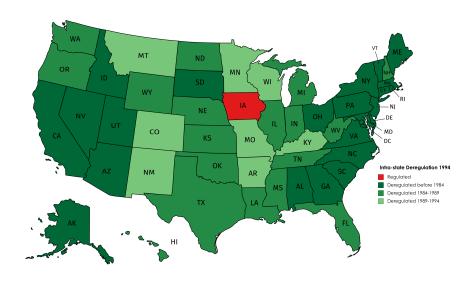
²University of North Texas

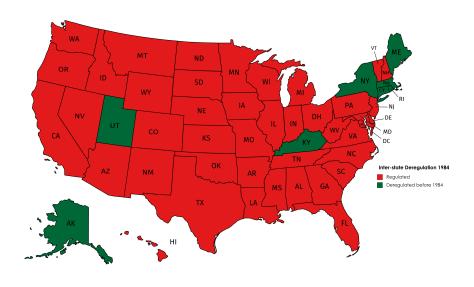

³California State University Fullerton

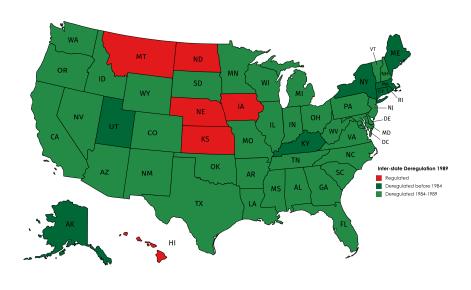
December 30, 2019

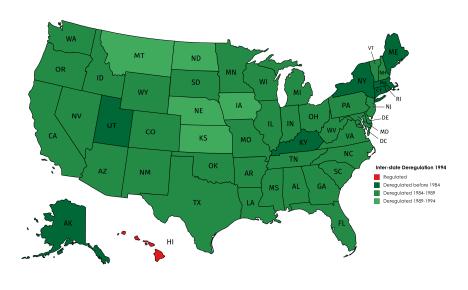

Banking Deregulation in the U.S. since 1970s

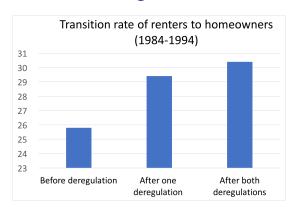
- Banking was highly regulated in the U.S. before 1970s
 - Geographic expansion of banks was restricted by laws, such as the 1927
 McFadden Act and the 1956 Banking Holding Company Act
- Banking restrictions were removed from 1970s to early 1990s, with two types of deregulations:
 - ▶ Intra-state deregulation permits branching within states via M&A
 - Inter-state deregulation allows banks to expand beyond state boundaries
- Banking deregulations happened at different times in different states
 - ► The cross-state and cross-time variation in the timing of deregulations provide a perfect laboratory to study how the deregulations affected the economy and household behaviours


Intra-State Banking Deregulations by States in 1984


Intra-State Banking Deregulations by States in 1989


Intra-State Banking Deregulations by States in 1994


Inter-State Banking Deregulations by States in 1984


Inter-State Banking Deregulations by States in 1989

Inter-State Banking Deregulations by States in 1994

The Motivation: Transition Rate of Renters to Home Owners also Increased during 1984-1994

- Transition rate is defined as the share/probability of renters becoming home owners in the next 5 years
- Is this a coincidence or causality?

Two Research Questions

- What is the impact of banking deregulations on the transition rate of renters to homeowners?
- What are the potential explanations of the impact?

Our paper is the first to study these two questions.

Our Approach

- Use the Panel Study of Income Dynamics (PSID) data
 - A panel data of household balance sheet information
- Follow a sample of renters over time, and separate them into two groups:
 - One group experienced banking deregulations
 - ▶ The other group did not
- We then estimate the difference between these two groups in their transition rates to homeowners
- The following estimation models are used:
 - ▶ Logit models: Pooled, random effect, fixed effect, Heckman copula
 - Probit models: Pooled, random effect, Heckman
 - Propensity score matching (PSM)

The Take-Away Findings

- Intra- and inter-state banking deregulations together can explain a 8.7 percentage-point (33%) increase in the transition rate from renters to homeowners
 - ▶ Inter-state banking deregulation has a larger impact
- Two potential explanations:
 - ➤ The income explanation: banking deregulations increase income for low-income households, making homes more affordable for them
 - ► The technology explanation: banking deregulations promote technology innovation, with which lenders can identify and offer credit to "high-risk" but creditworthy households

The Literature on Homeownership

For decades, home ownership has been an essential element of the American Dream. It has various individual and social benefits:

- A mechanism for family wealth creation (even during the recent housing crisis)
 - Herbert, McCue and Sanchez-Moyanno (2013)
- Improves children's education and success in later life
 - ► Green and White (1997); Haurin, Parcel and Haurin (2002); Harkness and Newman (2003)
- Improves political activity
 - Glaeser and DiPasquale (1998)
- Lowers crime rate
 - ► Alba, Logan and Bellair (1984); Glaeser and Sacerdote (1999)

The Literature on Homeownership

Due to its importance, there is an extensive literature on the determinants of homeownership:

- Household income and wealth
 - ▶ Gyourko et al. (1999); Charles and Hurst (2002); Hilber and Liu (2008)
- Race of household
 - Kain and Quigley (1972); Yinger (1995); and Munnell et al. (1996)
- Tax-shelter effect
 - Charles and Hurst (2002)
- Immigration
 - Coulson (1999)
- Credit Supply
 - This paper

The Literature on Banking Deregulation

There is also a large literature on the U.S. banking deregulation and its impact on the economy:

- Households income
 - ▶ Beck, Levine and Levkov (2010); Strahan (2002)
- Personal bankruptcy
 - Dick and Lehnert (2010)
- Market structure of non-financial sectors
 - Cetorelli and Strahan (2006)
- Entrepreneurship
 - Black and Strahan (2002)
- Corporate innovation
 - Amore, Schneider and Zaldokas (2013)

Paper Closest to This Study

- Vigdor (JPubE, 2006) examines the impact of credit supply on both home price and home ownership
 - He uses another instrument of credit supply—mortgage product innovations
 - ► He finds that mortgage innovations increased house prices rather than home ownership

The Agenda

- The Data
- The Empirical Model and Results
- The Conclusion

The Data

- The PSID (Panel Study of Income Dynamics)
 - A panel data of household balance sheet information
 - ▶ Started in 1968 with a sample of over 5,000 families in the U.S.
 - Annual from 1968-1997 and biannual after 1997
- Features of the PSID:
 - Household-level data (vs. state-level data used in the literature)
 - ▶ Panel data, so we can follow each household over time
 - Nationally representative
- Time-varying state-level variables from other data sources:
 - Median house price from the Federal Housing Finance Agency
 - Median household income from the Federal Reserve Bank of St. Louis
 - Unemployment rate from the Bureau of Labor Statistics

The Data

We use the 1984, 1989 and 1994 waves of the PSID data, for two reasons:

- U.S. banking deregulations mainly happened between 1970s to early 1990s
 - ▶ Before 1970s, banking deregulations were static
 - ▶ In 1994, banking deregulations culminated with the passage of the Riegle-Neal Interstate Banking and Branching Efficiency Act
- The household wealth information is only available in 1984, 1989 and 1994, and then biannually since 1999

The Data

- We focus on a sample of renters in 1984 and 1989, and classify them into two groups:
 - One group experienced banking deregulations in the next 5 years
 - ▶ The other group did not
- We then estimate the difference in the likelihood of becoming home owners in the next 5 years between these two groups of renters, controlling for the following factors:
 - State and year fixed effects
 - ► Time-varying state-level variables
 - Household characteristics
- We drop households who moved across states during the sample period, to eliminate the impact from change of states.
- The final data have 4,060 observations (renters).

Summary Statistics

	1.1	-1-1-	1.1.	.1.1.
	Intra-state			state
	deregu	lations	deregu	lations
	No	Yes	No	Yes
Share of renters				
becoming homeowners	26.3%	32.5%	27.0%	28.4%
in next 5 years				
Selected household characteristics				
# of children	0.62	0.65	0.58	0.70
Education (yrs)	12.28	11.92	12.42	11.88
Unemployed	0.06	0.08	0.05	0.08
Family income (\$1,000)	21.67	16.70	22.62	17.59
Wealth (\$1,000)	21.51	15.65	23.01	16.07
Time-varying state-level variables				
Median house price (\$1,000)	83.68	60.67	88.27	64.43
Median household income (\$1,000)	26.95	22.91	28.31	22.65
Unemployment rate (%)	6.03	7.72	5.51	7.75
Number of observations	3,224	836	2,212	1,848

The Pooled Logit Model

$$transfer_{i,t}^* = \alpha intra_{i,t} + \beta inter_{i,t} + \gamma' X_{i,t} + \epsilon_{i,t}$$
 (1)

$$transfer_{i,t} = \begin{cases} 1, & \text{if } Y_{i,t}^* > 0; \\ 0, & \text{otherwise.} \end{cases}$$
 (2)

- $transfer_{i,t}^*$ is a latent variable, and $transfer_{i,t}$ is the indicator variable of renter transferring to home owners in next 5 years
- intra_{i,t} is the indicator variable of intra-state deregulations in next 5 years. Similarly for inter_{i,t}
- X_{i,t} are the other controls including
 - State and year fixed effects
 - Time-varying state-level variables
 - ► Household age, race, gender, married, # of children, education, health status, unemployed, family income, wealth
- \bullet $\epsilon_{i,t}$ is the error term following a logistic distribution

Main Empirical Results

Dependent variable: Indicator variable of renters becoming home owners (Pooled Logit Model)

		(1)			(2)	
	Marg.		Sig.	Marg.		Sig.
	effect	Coef.	level	effect	Coef.	level
Intra-state	0.033	0.170	**	0.030	0.187	**
		(0.074)			(0.095)	
Inter-state	0.046	0.235	***	0.057	0.354	***
		(0.037)			(0.040)	
Other controls:						
State & year fixed eff.		Yes			Yes	
Time-varying state var.		Yes			Yes	
Hhld characteristics		No			Yes	

Implications of the Main Results

- Intra- and inter-state deregulations together explain a 33% increase in the transition rate from renters to homeowners
 - ▶ Impact of Intra-state deregulation is 3.0%
 - ▶ Impact of Inter-state deregulation is 5.7%
 - ▶ The unconditional transition rate from renters to owners is 26.5%
 - ► (3.0%+5.7%)/26.5%=33%
- The heterogeneous effects among households are important.
 Estimations using state-level data are potentially biased

Results on Other Controls Are Sensible

	Marg.	Coef.	Sig.		Marg.	Coef.	Sig.
	effect		level		effect		level
Age	0.007	0.046	**	Education			
		(0.023)					
Race				High school degree	0.024	0.152	
Black	-0.085	-0.528	**			(0.108)	
		(0.217)		College degree	0.060	0.373	***
Other	-0.086	-0.533	*			(0.096)	
		(0.297)		Log(family income)	0.031	0.193	***
Female	-0.102	-0.633	***			(0.055)	
		(0.148)		Quartile of wealth		` ,	
Married	0.061	0.378	***	2nd quartile	0.029	0.183	
		(0.107)				(0.134)	
# of children	0.018	0.113	**	3rd quartile	0.114	0.706	***
		(0.045)		•		(0.194)	
Unemployed	-0.110	-0.686	**	4th quartile	0.103	0.637	
		(0.285)				(0.438)	

Issue 1: Endogeneity of Banking Deregulation

Banking deregulation is an endogenous decision affected by state-level factors. However, our results are unlikely to be driven by the endogeneity, for three reasons:

- We have controlled for state fixed effects, i.e., all time-constant state-level factors
- We have controlled for some time-varying state factors
- Following Altonji et al. (2005, 2008), we can calculate the relative amount of selection on unobservables that is needed to explain the estimated coefficients by endogeneity
 - ▶ The amount is relative to selection on observables

Issue 1: Endogeneity of Deregulations-Altonji's method

We apply Altonji's method to intra and inter separately:

- For intra, selection on unobservables needs to be 1.4 times of selection on observables, which is unlikely
 - Coefficient of intra would be 0.133, if selection on unobservables is the same as selection on observables:

$$\frac{E(\epsilon|\mathit{Intra}=1) - E(\epsilon|\mathit{Intra}=0)}{\mathit{Var}(\epsilon)} = \frac{E(\gamma'X|\mathit{Intra}=1) - E(\gamma'X|\mathit{Intra}=0)}{\mathit{Var}(\gamma'X)}$$

- ▶ In reality, the estimated coefficient of *intra* is 0.187
- ▶ 0.187/0.133=1.4
- For inter, selection on unobservables needs to be 8.7 times of selection on observables, which is more unlikely the case
- Therefore, the impacts of *intra* and *inter* can not be explained by endogeneity

Issue 2: Unobservable Household Characteristics

$$transfer_{i,t}^* = \alpha intra_{i,t} + \beta inter_{i,t} + \gamma X_{i,t} + \frac{U_i}{l} + \epsilon_{i,t},$$
 (3)

- U_i includes all time-constant unobservable household characteristics
- We estimate (3) and (2) by random effect logit model and fixed effect logit model
- The other controls are the same as in the pooled logit model

	Random effect			Fixed effect			Pooled		
		logit			logit			logit	
	Marg.		Sig.	Marg		Sig.	Marg		Sig.
	eff.	Coef.	level	eff.	Coef.	level	eff.	Coef.	level
intra	0.047	0.374	***	0.036	0.355	***	0.030	0.187	**
		(0.046)			(0.039)			(0.095)	
inter	0.062	0.490	***	0.043	0.422	***	0.057	0.354	***
		(0.054)			(0.031)			(0.040)	

Issue 3: Sample Selection Bias

The subsample of renters may not be a random sample; renters are very different from home owners!

Comparative statistics for renters and homeowners

	Renters	Homeowners
Age	40.24	50.42
Race		
White	0.75	0.90
Black	0.23	0.08
Other	0.02	0.02
Female	0.42	0.19
Married	0.28	0.74
Unemployed	0.06	0.02
Family income (\$)	20,705	42,062
Number of observations	4,060	5,270

Issue 3: The Heckman Copula Model

$$renter_{i,t} = \begin{cases} 1, & \text{if } renter_{i,t}^* = \lambda' \, \tilde{X}_{i,t} + \xi_{i,t} > 0, \\ 0, & \text{if } renter_{i,t}^* = \lambda' \, \tilde{X}_{i,t} + \xi_{i,t} \leq 0, \end{cases}$$

$$transfer_{i,t} = \begin{cases} \alpha Intra_{i,t} + \beta Inter_{i,t} + \gamma' \, X_{i,t} + \epsilon_{i,t}, & \text{if } renter_{i,t} = 1, \\ ., & \text{if } renter_{i,t} = 0. \end{cases}$$

$$(5)$$

- renter_{i,t} is the indicator variable of renters
- Both $\xi_{i,t}$ and $\epsilon_{i,t}$ follow logistic distributions
- ullet Joint distribution of ξ and ϵ is determined by a Joe copula function
- We estimate (4) and (5) by the maximum likelihood method:

	Hed	kman cop	ula	Pooled logit			
	Marg. eff.	Coef.	Sig. level	Marg. eff.	Coef.	Sig. level	
intra	0.027	0.027	***	0.030	0.187	**	
		(0.005)			(0.095)		
inter	0.049	0.049	***	0.057	0.354	***	
		(0.006)			(0.040)		

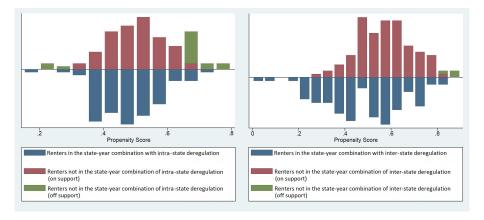
Issue 4: Model Misspecification I –The Probit Models

If $\epsilon_{i,t}$ follows a normal distribution (instead of logistic distribution), then Probit estimation models are more efficient

		Main		Unobse	rvable hhld	charac.	Samp	le selection	bias
		Pooled		R	andom effe	ct		Heckman	
		Probit			Probit			Probit	
	Marg.		Sig.	Marg.		Sig.	Marg.		Sig.
	effect	Coef.	level	effect	Coef.	level	effect	Coef.	level
Intra	0.029	0.104	**	0.048	0.222	***	0.031	0.086	***
		(0.049)			(0.027)			(0.015)	
Inter	0.059	0.214	***	0.062	0.291	***	0.067	0.186	***
		(0.022)			(0.032)			(0.018)	
ρ		, ,			· · ·			-0.676	***
								(0.037)	

Issue 4: Model Misspecification 2–Propensity Score Matching (PSM)

- The logit and probit models assume linear impacts of covariates on the latent variable. Bias is resulted if this assumption is violated. The PSM estimation does not rely this assumption
- The matching process is as follows:
 - ► For a given state, we match renters before deregulation (comparison group) to renters after deregulation (treatment group)
 - Match on the propensity score using the nearest-neighbor algorithm
 - ▶ Then we repeat this matching process for each state
- We report the Average Treatment effect on the Treated (ATT), which has a similar interpretation as the marginal effects


	F	PSM	Pooled logit				
	ATT	Sign. level	Marg. eff.	Coef.	Sign. level		
Intra	0.023	***	0.030	0.187	***		
	(0.003)			(0.095)			
Inter	0.049	***	0.057	0.354	***		
	(0.002)			(0.040)			

High Matching Quality

Identification of the PSM relies on the common support assumption:

• The distributions of the propensity scores for the treatment and the comparison groups overlap with each other

Our PSM estimation is well identified, as this assumption is likely satisfied:

Potential Explanations

We find evidence of two possible explanations:

- The income explanation: Banking deregulations increase household income, especially for low income households, making homes more affordable for them.
- The technology channel: Bank deregulations improve financial technology innovation, with which lenders can identify and offer credit to "higher-risk" but creditworthy households.

Testing the Income Channel

$$log(family\ income)_{i,t} = \alpha\ intra_{i,t} + \beta\ inter_{i,t} + \gamma'\ X_{i,t} + \epsilon_{i,t}$$

Dependent variable: log(family income)

	(1)		(2)		(3	,	(4))
	OL	S		Quantile Regressions			S	
			25th per	centile	50th per	centile	75th per	centile
	Coef.	Sig.	Coef.	Sig.	Coef.	Sig.	Coef.	Sig.
		level		level		level		level
Intra	0.025 (0.037)		N/A		N/A		N/A	
Inter	0.230 (0.010)	***	0.193 (0.064)	***	0.064 (0.049)		0.005 (0.029)	

Testing the Technology Channel

$$\begin{aligned} \textit{transfer}_{i,t}^* = & \alpha \ \textit{intra}_{i,t} + \beta \ \textit{inter}_{i,t} + \gamma \ \textit{X}_{i,t} \\ & + \lambda \ \textit{intra}_{i,t} * \ \textit{high_risk}_{i,t} + \mu \ \textit{inter}_{i,t} * \ \textit{high_risk}_{i,t} + \epsilon_{i,t}, \end{aligned}$$

where $high_risk = 1$ for renters with debt-to-income ratios>20%, and 0 otherwise.

	Marginal effects	Coef.	Sig. level
Lower-risk renters			
Intra-state	0.026	0.165	
		(0.116)	
Inter-state	0.053	0.333	***
		(0.074)	
Higher-risk renters			
Intra-state	0.054	0.337	***
		(0.069)	
Inter-state	0.111	0.696	***
		(0.066)	

The Take-Away Findings

- Banking deregulations can explain as high as a 8.7 percentage-point increase in the probability of renters becoming homeowners
 - ▶ That is a 33% increase
 - Our results are robust to
 - ★ Endogeneity of banking deregulations
 - ★ Unobservable household characteristics
 - Sample selection
 - ★ Functional mispecification
- We find evidence for two explanations: the income explanation and the technology explanation

Implications

- In June 2017, the S&P Case-Shiller home price index set a new record high, surpassing the previous high from July 2006.
 - ► Home owners enjoy an ongoing boost in wealth from home price appreciation
- However, the homeownership rate has been dropping from 69.2% in 2004 to 62.9% in 2016Q2—the same level of the mid-1960s
- In other words, home prices set a new record, but fewer home owners benefited
- Questions: What are the reasons for the recent drop of homeownership rate? How can we improve home ownership?

Implications (continued)

Our results suggest that

- Besides default, the worsening credit market conditions may have played roles in the drop of the homeownership rate
- Government policy aiming to increase credit supply will help to improve the homeownership rate
 - There is an on-going debate whether the Dodd-Frank Act should be dismantled
 - ▶ With the economy continuing to heal and the U.S. unemployment rate dropping to 3.5% in Nov 2019 the lowest level since Dec 1969, the deregulation will likely help more American families to fulfill their dreams.

THANK YOU!