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Dynamic Treatment Allocation

▶ The treatment assignment problem:
▶ How do we assign individuals to treatment using observational data?

▶ Decision problem of maximizing population welfare
▶ Large literature on this in the ‘static’ setting
▶ Exploits similarity with classification

▶ This paper:
▶ Individuals arrive sequentially (e.g when unemployed)
▶ Planner has to assign individuals to treatment (e.g job training):
▶ Various planner constraints: Finite budget/capacity, borrowing,

queues...
▶ Turns out similar to optimal control/Reinforcement Learning
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Dynamics vs Statics: Two examples

▶ Borrowing constraints
▶ Assume rate of arrival of individuals and flow of funds is constant
▶ ‘Static’ rule (e.g Kitagawa-Tetnov ‘18): only depends on covariates
▶ However: Under a static rule budget follows a random walk!
▶ Eventually shatters any borrowing constraints
▶ Optimal rule: Change with budget ≡ optimal control of budget path

▶ Finite budget
▶ Planner starts with pot of money that is not replenished
▶ Training depletes budget and future benefits are discounted
▶ Existing methods not applicable even if we just want a ‘static rule’
▶ They need specification % of population to be treated
▶ But this is endogenous to policy!
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Other examples
▶ Finite budget and time

▶ Planner is given pot of money to be used up within a year

▶ Finite capacity
▶ E.g fixed number of caseworkers for home visits etc
▶ If capacity is full, people turned away (or waitlisted)
▶ People finish treatment at known rates which frees up capacity

▶ Queues
▶ Why? Time for treatment is longer than arrival rates
▶ Waiting is costly and not treating someone shortens wait times
▶ Current length of queue is a state variable

▶ Related: Multiple queues
▶ Some cases are more time-sensitive
▶ Can use two queues: shorter queue for riskier patients
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Preliminary remarks

▶ We focus on ‘offline’ learning

▶ Use historical/RCT data to estimate policy

▶ In infinite horizon, our algrorithm can be used fully online

▶ However we not have any claim on optimality

▶ Note: bandit algorithms are not applicable!

▶ Key assumption: Individuals do not respond strategically to policy

▶ Arrival rates are exogenous and unaffected by policy

▶ However results apply if we have model of policy response
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What we do: Overview

▶ Estimation of optimal policy rule in pre-specified class

▶ Ethical/computational/legal reasons (Kitagawa-Tetenov, 2018)

▶ Basic elements of our theory

▶ For each policy, write down a PDE for expected value fn (a la HJB)

▶ Using data, write down sample version of PDE for each policy

▶ Maximize over sample PDE solutions to estimate optimal policy

▶ Bound difference in solutions using PDE techniques
⇒ Regret bounds
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Overview (contd.)

▶ Computation

▶ Approximate PDE with (semi-discrete) dynamic program

▶ Solve using Reinforcement Learning (RL): Actor-Critic algorithm

▶ Solves for maximum within pre-specified policy classes

▶ Computationally fast due to parallelization

▶ Some results

▶
√

v/n rates for regret where v is complexity of policy class
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Setup

▶ State variable: s ≡ (x, z, t)
▶ x individual covariates
▶ z budget/institutional constraint
▶ t time

▶ Arrivals: Poisson point process with parameter λ(t)N
▶ Set λ(t0) = 1 as normalization
▶ N is scale parameter that will be taken to ∞

▶ Distribution of covariates: F
▶ Assumed fixed for this talk
▶ In paper: allowed to change with t
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Setup (contd.)

▶ Actions: a = 1 (Train) or a = 0 (Do not train)

▶ Choosing a results in utility Y(a)/N for social planner
▶ Utility scaled to a ‘per-person’ number

▶ Rewards: expected utility given covariate x

r(x, a) = E[Y(a)|x]

▶ Look at additive welfare criteria so normalize r(x, 0) = 0
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Setup (contd.)

▶ Law of motion for z:

z′ − z = Ga(s)/N, a ∈ {0, 1}

▶ Interpreting Ga(s): Flow rate of budget wrt mass m of individuals
▶ Here, m is defined by giving each individual 1/N weight
▶ If planner chooses a for mass δm of individuals, z changes by

δz ≈ Ga(s)δm

▶ Example: Denote
▶ σ(z, t): Rate of inflow of funds wrt time
▶ c(x, z, t): Cost of treatment per person
▶ b: Interest rate for borrowing/saving

Ga(s) = λ(t)−1{σ(z, t) + bz} − c(x, z, t)I(a = 1)
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Policy class

▶ Policy function: π(.|s) : s −→ [0, 1]

▶ Taken to be probabilistic

▶ We consider policy class {πθ : θ ∈ Θ}
▶ Can include various constraints on policies
▶ For theoretical results: θ can be anything

▶ In practice we use soft-max class

π
(σ)
θ (1|x, z) = exp(θ⊺f(x, z)/σ)

1 + exp(θ⊺f(x, z)/σ)

▶ σ is ‘temperature’: can be fixed or subsumed into θ

▶ E.g: σ → 0 gives linear-eligibility scores (Kitagawa & Tetenov, ‘18)
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Value functions

▶ Integrated value function: hθ(z, t)
▶ Expected welfare for social planner at z, t before observing x

▶ Define
r̄θ(z, t) := Ex∼F[r(x, 1)πθ(1|x, z, t)],

and
Ḡθ(z, t) := Ex∼F [G1(s)πθ(1|s) + G0(s)πθ(0|s)|z, t]

▶ r̄θ(z, t): expected flow (wrt mass of people) utility at state (z, t)
▶ Ḡθ(z, t): expected flow change to z at state (z, t)
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PDE for the integrated value function

βhθ(z, t)︸ ︷︷ ︸
return

− λ(t)̄rθ(z, t)︸ ︷︷ ︸
dividend: flow uƟlity wrt t

−λ(t)Ḡθ(z, t)∂zhθ(z, t)− ∂thθ(z, t)︸ ︷︷ ︸
total Ɵme derivaƟve of hθ

= 0

▶ Obtained in the limit N→∞
▶ In fact N = 1 also gives same PDE in infinite horzon setup

▶ PDE encapsulates ‘no arbitrage’
▶ Think of β as natural rate of interest and hθ(z, t) as valuation

▶ We need to specify boundary condition

▶ In general differentiable solution does not exist!
▶ Work with viscosity solutions (Crandall & Lions 83)
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Boundary conditions
▶ Dirichlet:

▶ Finite time horizon, finite budget or both

hθ(z, t) = 0 on Γ; Γ ≡ {(z, t) : z = 0 or t = T}

▶ Periodic:
▶ Infinite horizon setting with t periodic with period Tp

hθ(z, t) = hθ(z, t + Tp) ∀(z, t) ∈ R× [t0,∞)

▶ Generalized Neumann (Finite\Infinite horizon versions):
▶ Basic idea: behavior at boundary is different from interior
▶ Useful to model borrowing constraints

βhθ(z, t)− σ(z, t)∂zhθ(z, t)− ∂thθ(z, t) = 0, on {z} × [t0,T)

hθ(z,T)= 0, on (z,∞)× {T} OR
hθ(z, t)= hθ(z, t + Tp), ∀ (z, t) ∈ U
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Social planner objective

βhθ(z, t)− λ(t)̄rθ(z, t)− λ(t)Ḡθ(z, t)∂zhθ(z, t)− ∂thθ(z, t) = 0

▶ Class of PDEs: one for each policy

▶ We will think of λ(·) as a ‘forecast’ and condition on it

▶ Policy objective given λ(·):

θ∗ = argmax
θ∈Θ

W(θ); W(θ) := hθ(z0, t0)

▶ z0, t0: Initial budget and time

▶ More generally: planner has distribution over forecasts λ(t)
▶ Then: W(θ) =

∫
hθ(z0, t0;λ)dP(λ)
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The sample counterparts

▶ Denote Fn empirical distribution of RCT data
▶ Assume Fn → F

▶ Estimate r(x, a) using RCT data with a doubly robust estimate

▶ Define
r̂θ(z, t) = Ex∼Fn [̂r(x, 1)πθ(1|x, z, t)] ,

and

Ĝθ(z, t) := Ex∼Fn [G1(x, z, t)πθ(1|x, z, t) + G0(x, z, t)πθ(0|x, z, t)]
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Computation: Estimating the value function

▶ We can use sample counteparts and obtain sample PDE:

βĥθ(z, t)− λ(t)Ĝθ(z, t)∂zĥθ(z, t)− ∂tĥθ(z, t)− λ(t)̂rθ(z, t) = 0

▶ But solving this directly is too difficult

▶ Solution: approximate with a dynamic program instead

h̃θ(z, t) =
r̂θ(z, t)

bn
+En,θ

[
e−β(t′−t)h̃θ (z′, t′) |z, t

]
▶ Here: z′ = z − b−1

n Ga(s), bn(t′ − t) ∼ exp(λ(t))
▶ 1/bn : discrete change to mass of individuals (basically same as 1/N)
▶ Determines numerical error: same idea as step size in PDE solvers
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Reinforcement Learning

▶ We create simulations of dynamic environment, called Episodes
▶ Using estimated rewards r̂ and sampling individuals from Fn

▶ Just the environment for Reinforcement Learning
▶ Take action from current policy, observe r̂, move to next state
▶ Based on reward, update policy

▶ We use Actor-Critic algorithm
▶ Stochastic Gradient Descent (SGD) updates along ∇θh̃θ(z0, t0)
▶ Gradient requires an estimate of hθ(z, t) for current θ

▶ Parametrize h̃θ(z, t) = ν⊺ϕ(z, t) and use another SGD to update ν

▶ Key idea: update θ, ν simultaneously!
▶ Two timescale trick uses faster learning rate for ν More details
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Statistical and numerical properties
Probabilistic bounds on regret
Suppose that r̂ is a doubly robust estimate. Then under some regularity
conditions

W(θ∗)−W(θ̂) ≤ C
√

v
n + K

√
1

bn

uniformly over (λ(·),F)

Remarks:

▶ v is VC dimension of
Ga =

{
πθ(a|·, z, t)Ga(·, z, t) : (z, t) ∈ Ū , θ ∈ Θ

}
▶ Second term is numerical error from approximation
▶ Proof uses results from the theory of viscosity solutions
▶ For infinite horizon need β to be sufficiently large
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Application: JTPA study
▶ RCT data on training for unemployed adults

▶ n ≈ 9000, done over 2 years
▶ Outcomes: 30 month earnings - cost of treatment ($774)

▶ Finite budget and time: Can only treat 1600 people within a year
▶ Discount factor β = − log 0.9 or 0.9 over course of year

Another example: Finite budget

▶ Estimation of arrival rates:
▶ Cluster data into 4 groups (k-means)
▶ Estimate λ(t) using Poisson regression for each cluster

▶ Policy class (x : 1, age, education, prev. earnings)

π(a = 1|s) ∼ Logit(x,x·z)
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▶ Normalized relative to random policy (also roughly same as treating everyone)
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Relative parameter values
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Policy maps
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Conclusion

▶ Actor-Critic algorithm for learning constrained optimal policy

▶ Some other extensions that we include in paper
▶ Heterogenous non-compliance using IVs
▶ Continung to learn after coming online

▶ Ongoing work
▶ Online learning
▶ Dynamic treatment regimes
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The Actor-Critic algorithm

Policy Gradient Theorem

∇θh̃θ(z0, t0) = En,θ
[
e−β(t−t0)

{
r̂n(x, a) + βĥθ(z′, t′)− ĥθ(z, t)

}
∇θ lnπ(a|s; θ)

]

Functional Approximation:

∇θh̃θ(z0, t0) ≈ En,θ
[
e−β(t−t0) {̂rn(x, a) + βν⊺ϕz′,t′ − ν⊺ϕz,t}∇θ lnπ(a|s; θ)

]

Temporal-Difference (TD) Learning

ν∗θ = argmin
ν

En,θ

[∥∥∥h̃θ(z, t)− ν⊺ϕz,t

∥∥∥2] := Q̂(ν|θ)
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Stochastic Gradient Updates

∇θh̃θ(z0, t0) ≈ En,θ
[
e−β(t−t0) {̂rn(x, a) + βν⊺ϕz′,t′ − ν⊺ϕz,t}∇θ lnπ(a|s; θ)

]
∇νQ̂(ν|θ) ≈ En,θ [(̂rn(x, a) + βν⊺ϕz′,t′ − ν⊺ϕz,t)ϕz,t]

▶ Convert both to SGD updates (AC algorithm)

θ ←− θ + αθe−β(t−t0) (̂rn(x, a) + βν⊺ϕz′,t′ − ν⊺ϕz,t)∇θ lnπ(a|s; θ)
ν ←− ν + αν (̂rn(x, a) + βν⊺ϕz′,t′ − ν⊺ϕz,t)ϕz,t

▶ Updates are ‘online’
▶ Take a ∼ πθ and continually update while interacting with env.

▶ Updates to θ, ν done simultaneously at two timescales: αν ≫ αθ

▶ No need to wait for νθ to converge Return
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Convergence of Actor-Critic
Convergence of Actor-Critic algorithm
Suppose the learning rates satisfy

∑
k α

(k) →∞,
∑

k α
2(k) <∞, and

α
(k)
θ /α

(k)
ν → 0. Then under some regularity conditions

θ(k) → θc, ν(k) → νc,

where convergence is local. Furthermore given ϵ > 0 there exists M s.t∥∥∥θ̂ − θc

∥∥∥ ≤ ϵ whenever dim(ν) ≥ M.

Remarks:

▶ k is order of updates
▶ There is no statistical tradeoff for choosing dim(ν), ideally ν =∞

Return
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Application 2: Finite budget

▶ Finite budget: Can only treat 1600 people
▶ Discount factor β = − log 0.9 or 0.9 over course of year
▶ Note: there is no time constraint anymore

▶ Policy class (x : 1, age, education, prev. earnings)

π(a = 1|s) ∼ Logit(x,x· cos(2πt),x·z)
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Doubly Robust (preliminary)
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▶ # people considered: 145K ≈ 23 years
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Policy maps (DR)
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