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Dynamic Treatment Allocation

» The treatment assignment problem:

» How do we assign individuals to treatment using observational data?

» Decision problem of maximizing population welfare
> Large literature on this in the ‘static’ setting

» Exploits similarity with classification

» This paper:
> Individuals arrive sequentially (e.g when unemployed)
> Planner has to assign individuals to treatment (e.g job training):

> Various planner constraints: Finite budget/capacity, borrowing,
queues...
> Turns out similar to optimal control/Reinforcement Learning



Dynamics vs Statics: Two examples

» Borrowing constraints
> Assume rate of arrival of individuals and flow of funds is constant
> ‘Static’ rule (e.g Kitagawa-Tetnov ‘18): only depends on covariates
> However: Under a static rule budget follows a random walk!
» Eventually shatters any borrowing constraints

> Optimal rule: Change with budget = optimal control of budget path

» Finite budget
> Planner starts with pot of money that is not replenished
> Training depletes budget and future benefits are discounted

» Existing methods not applicable even if we just want a 'static rule’

v

They need specification % of population to be treated

v

But this is endogenous to policy!



Other examples

» Finite budget and time

> Planner is given pot of money to be used up within a year

» Finite capacity
» E.g fixed number of caseworkers for home visits etc
> If capacity is full, people turned away (or waitlisted)
> People finish treatment at known rates which frees up capacity

» Queues
> Why? Time for treatment is longer than arrival rates

» Waiting is costly and not treating someone shortens wait times

» Current length of queue is a state variable

» Related: Multiple queues
» Some cases are more time-sensitive

» Can use two queues: shorter queue for riskier patients



Preliminary remarks

» We focus on ‘offline’ learning
> Use historical /RCT data to estimate policy
> In infinite horizon, our algrorithm can be used fully online
» However we not have any claim on optimality
> Note: bandit algorithms are not applicable!
» Key assumption: Individuals do not respond strategically to policy

> Arrival rates are exogenous and unaffected by policy

> However results apply if we have model of policy response



What we do: Overview

» Estimation of optimal policy rule in pre-specified class
» Ethical/computational/legal reasons (Kitagawa-Tetenov, 2018)
» Basic elements of our theory
> For each policy, write down a PDE for expected value fn (a la HIB)
» Using data, write down sample version of PDE for each policy
> Maximize over sample PDE solutions to estimate optimal policy

» Bound difference in solutions using PDE techniques
= Regret bounds



Overview (contd.)

» Computation
» Approximate PDE with (semi-discrete) dynamic program
> Solve using Reinforcement Learning (RL): Actor-Critic algorithm
> Solves for maximum within pre-specified policy classes
» Computationally fast due to parallelization
» Some results

> /v/n rates for regret where v is complexity of policy class



Setup

» State variable: s= (x,zt)
» x individual covariates
> z budget/institutional constraint
> ttime

» Arrivals: Poisson point process with parameter A(t)N
> Set A\(tp) = 1 as normalization

> N is scale parameter that will be taken to co

» Distribution of covariates: F

» Assumed fixed for this talk

> In paper: allowed to change with t



Setup (contd.)

> Actions: a =1 (Train) or a =0 (Do not train)

» Choosing a results in utility Y(a)/N for social planner

» Utility scaled to a ‘per-person’ number

» Rewards: expected utility given covariate x
r(x,a) = E[Y(a)|x]

> Look at additive welfare criteria so normalize r(x,0) =0



Setup (contd.)

» Law of motion for z:

Z —z=G,(s)/N, ae {0,1}

> Interpreting G,(s): Flow rate of budget wrt mass m of individuals
> Here, m is defined by giving each individual 1//NV weight

> If planner chooses a for mass 0 m of individuals, z changes by
0z~ Gy(s)om

» Example: Denote

> o(z,t): Rate of inflow of funds wrt time
> c(x,zt): Cost of treatment per person

> b: Interest rate for borrowing/saving

Ga(s) = M(t) {o(z,t) + bz} — c(x,z, t)(a=1)



Policy class

» Policy function: w(.|s) : s — [0, 1]

> Taken to be probabilistic

» We consider policy class {my : 0 € O}

» Can include various constraints on policies

> For theoretical results: 6 can be anything

> |In practice we use soft-max class

(o) _ exp(0Tf(x, 2) /o)
T (1x2) = I ST x, 2)/0)

> o is ‘temperature’: can be fixed or subsumed into 6

» E.g: 0 — 0 gives linear-eligibility scores (Kitagawa & Tetenov, ‘18)



Value functions

> Integrated value function: hy(z, t)

> Expected welfare for social planner at z, t before observing x

» Define
To(z,t) := Exur[r(x, D)o (1]x, 2, t)],

and

Go(z,t) :== Exur [Gi(s)ma(1]s) + Go(s)me(0]s)|z, ¢]

> T9(z,t): expected flow (wrt mass of people) utility at state (z, t)

> Gp(z, t): expected flow change to z at state (z, t)



PDE for the integrated value function

Bhe(z,t) —  ANt)fa(z,t)  — A(t)Ga(z, t)D,he(z, t) — Orha(z,t) =0
N—_—— N—_———

return dividend: flow utility wrt t total time derivative of hg

Obtained in the limit N — oo

v

> In fact N =1 also gives same PDE in infinite horzon setup

v

PDE encapsulates ‘no arbitrage’

> Think of 3 as natural rate of interest and hy(z, t) as valuation

> We need to specify boundary condition

v

In general differentiable solution does not exist!

» Work with viscosity solutions (Crandall & Lions 83)



Boundary conditions

» Dirichlet:
> Finite time horizon, finite budget or both
ho(z,t)=0onl; T'={(zt):z=00rt=T}
» Periodic:
> Infinite horizon setting with t periodic with period T,
ho(z,t) = ho(z,t+ T,) V(z,t) € R X [to, 00)

» Generalized Neumann (Finite\Infinite horizon versions):

> Basic idea: behavior at boundary is different from interior

> Useful to model borrowing constraints
Bho(z,t) — o(z,t)0;he(z, t) — Othe(z,t) =0, on{z} x [to, T)
he(z, T)=0, on(z,00) x{T} OR
ho(z, t)= ho(z,t+ T,), V (z,t) € U



Social planner objective

Bhg(z,t) — MN(t)Fa(z, t) — A(t) Go(z, t)D,ho(z, t) — Orho(z,t) =0

v

Class of PDEs: one for each policy

v

We will think of A(+) as a ‘forecast’ and condition on it

v

Policy objective given A(+):

0" = argmax W(0);  W(0) := hg(zo, to)
9c0

> 2z, to: Initial budget and time

v

More generally: planner has distribution over forecasts A(t)
» Then: W(0) = [ hs(z0, to; \)dP())



The sample counterparts

» Denote F, empirical distribution of RCT data

> Assume F, — F
» Estimate r(x, a) using RCT data with a doubly robust estimate

» Define
Fo(z,t) = Exwr, [H(x, D)o (1]x, 2, t)],

and

Go(z,t) := Exwr, [G1(X, 2, )Ta(1]X, 2, t) + Go(x, z, t)mg(0|x, z, t)]



Computation: Estimating the value function

» We can use sample counteparts and obtain sample PDE:

ﬂhg(Z, t) - )\(t) 6;9(27 t)azi'lg(Z, t) - ati"e(zv t) - )\(t);’g(z, t) =0
» But solving this directly is too difficult

» Solution: approximate with a dynamic program instead

T }9(25 t)

hg(Z7 t) = +En g e_ﬁ(tl_t)i‘l,g (i, lj) |Z, t

n
> Here: Z = z— b, ' Gy(5), ba(t — t) ~ exp(A(1))
> 1/b, : discrete change to mass of individuals (basically same as 1/N)

> Determines numerical error: same idea as step size in PDE solvers



Reinforcement Learning

» We create simulations of dynamic environment, called Episodes

> Using estimated rewards ¥ and sampling individuals from F,

» Just the environment for Reinforcement Learning

» Take action from current policy, observe ¥, move to next state

» Based on reward, update policy

» We use Actor-Critic algorithm
» Stochastic Gradient Descent (SGD) updates along Vg hg(zo, to)
> Gradient requires an estimate of hy(z, t) for current 6

Parametrize hy(z,t) = v7¢(z t) and use another SGD to update v
Key idea: update 0, v simultaneously!

v

v

> Two timescale trick uses faster learning rate for v



Statistical and numerical properties

Probabilistic bounds on regret

Suppose that ¥ is a doubly robust estimate. Then under some regularity

conditions

W(6*) — W(6) < C\/Z+ K\/an

uniformly over (A(-), F)

Remarks:

» vis VC dimension of -
Ga={mo(al ",z t)Ga(*,z,t): (z,t) €U, 0 € O}

» Second term is numerical error from approximation
> Proof uses results from the theory of viscosity solutions

» For infinite horizon need (5 to be sufficiently large



Application: JTPA study

» RCT data on training for unemployed adults

> n = 9000, done over 2 years

» Outcomes: 30 month earnings - cost of treatment ($774)

> Finite budget and time: Can only treat 1600 people within a year

» Discount factor 5 = —1og0.9 or 0.9 over course of year

» Estimation of arrival rates:

> Cluster data into 4 groups (k-means)
» Estimate A(t) using Poisson regression for each cluster

» Policy class (x : 1, age, education, prev. earnings)

m(a=1|s) ~ Logit(x,x-z)



Average cumulative episode reward achieved

Reward trajectory
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» Normalized relative to random policy (also roughly same as treating everyone)
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Policy maps
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Conclusion

» Actor-Critic algorithm for learning constrained optimal policy

» Some other extensions that we include in paper

> Heterogenous non-compliance using Vs

» Continung to learn after coming online

» Ongoing work
> Online learning

> Dynamic treatment regimes
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The Actor-Ciritic algorithm

Policy Gradient Theorem

Voho(zo, to) = Eng [e—ﬂ<f—fo> {;,,(x, a) + Bho(Z,t) — ho(z, t)} Vo Inm(als; e)]



The Actor-Ciritic algorithm

Policy Gradient Theorem

Voho(zo, to) = Eng {e—ﬂ<f—fo> {?,,(x, a) + Bhy(Z,t) — hy(z, t)} Vo ln(als; e)]

Functional Approximation:

VQ%@(Z(), to) = Eng [efﬁ(fffﬂ) {tw(x,@) + BvT ¢y v — VT ¢, ¢} Vo Inm(als; 0)}



The Actor-Ciritic algorithm

Policy Gradient Theorem

Voho(@, o) = Eng [ 7 {7(x ) + Bho(2.¢) ~ ho(z.1) } Vo Inm(als:0)]

Functional Approximation:

V@E@(Zo, to) = Eng [e_ﬁ(t_t(’) {tw(x,@) + BvT ¢y v — VT ¢, ¢} Vo Inm(als; 9)}

Temporal-Difference (TD) Learning

| = v

vy =argminE, g |:H/~79(Z, t) — VT



Stochastic Gradient Updates

Voho(zo,t0) = Enyg [e—5<f—fo> {Fa(x, @) + BTy v — VT ,1} Vo Inm(als; 0)
VVQ(VW) ~ Eno[(Fa(x, @) + BvTdy v — VT¢z,t) ¢z,t]

» Convert both to SGD updates (AC algorithm)

0 «— 0+ ape PE0) (7 (x, a) + BrTy v —VT¢,) Volnm(als; 0)
V— v+ Qy <}n(X7 a) + BVTsz’,t’ - VT¢z7t) ¢z,t

» Updates are ‘online’
> Take a ~ mg and continually update while interacting with env.

» Updates to 6, v done simultaneously at two timescales: «, > ay
> No need to wait for vy to converge



Convergence of Actor-Critic

Convergence of Actor-Critic algorithm

Suppose the learning rates satisfy >, a(¥ — oo, 3=, a?W < oo, and
a((,k)/aik) — 0. Then under some regularity conditions

00 =0, v =,
where convergence is local. Furthermore given € > 0 there exists M s.t

< ¢ wheneverdim(v) > M.

Héfoc

Remarks:

> kis order of updates

» There is no statistical tradeoff for choosing dim(v), ideally v = co



Application 2: Finite budget

» Finite budget: Can only treat 1600 people

» Discount factor 8 = —10g0.9 or 0.9 over course of year

> Note: there is no time constraint anymore

» Policy class (x : 1, age, education, prev. earnings)

m(a=1|s) ~ Logit(x,x- cos(27t),x-z)



Doubly Robust (preliminary)

Reward trajectory
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» # people considered: 145K = 23 years



Policy maps (DR
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