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Motivation: Cost and consequences of economic crises

• Financial crises can have severe social, economic and political consequences

• Policy makers would like to minimise these costs or avoid them altogether

• Policy tools, e.g. macropru, could stabilise system if implemented early enough

• Timely and accurate prediction methods needed

• And, understanding of the underlying economic mechanisms

⇒ Our paper addresses these points using machine learning (ML) for financial crisis

prediction
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Preview of main results

• ML models outperform benchmark logit in out-of-sample prediction and

forecasting evaluations

• Shapley value framework enable well-defined inference (Joseph, 2019)

• Small number of factors explain majority of model output:

• Credit growth and flat/negative slope of the yield curve at low nominal rates

Story: search-for-yield in low-interest rate low-returns environment

• Global factors (also credit growth & slope)

Story: shared narrative in coupled economic/financial system

⇒ Global yield curve slope new indicator with greatest robustness across long

sample
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Related literature in financial crisis analysis

• General/historic: Minsky (1977); Kindleberger (1978); Bordo et al. (2001);

Laeven and Valencia (2008); Reinhart and Rogoff (2009); Cecchetti et al. (2009)

• Credit: Borio and Lowe (2002); Drehmann et al. (2011); Schularick and Taylor

(2012); Aikman et al. (2013)

• Yield curve (not too extensive): Babeckỳ et al. (2014); Joy et al. (2017);

Vermeulen et al. (2015)

• Global factors: Alessi and Detken (2011); Duca and Peltonen (2013);

Cesa-Bianchi et al. (2018)

• Machine learning: Ward (2017); Alessi and Detken (2018); Beutel et al. (2018)
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Machine Learning (ML) approach

• Statistical toolbox of non-linear & non-parametric models mostly originating

from computer science with a focus on prediction

• Today supervised learning: Universal approximators minimising an error function

of the form

Ex

[
||y − f̂ (θ)‖p

]
• Models we compare:

• logistic regression (benchmark)

• support vector machines (SVM)

• artificial neural networks

• tree models (decision tree, random forests & “extreme trees”)

• Shapley value and regression framework for statistical inference
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Pros & Cons of ML relative to econometric approach

Advantages

• Often higher accuracy

• Lower risk of misspecification

• Return richer information set

Disadvantages

• Higher model complexity (“black box

critique”)

• Less analytical guarantees, e.g. risk of

overfitting

• Often larger data requirement
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Jordà-Schularick-Taylor Macrohistory Database

Observations

• 17 developed countries, annual data between 1870

and 2016

• 92 crisis episodes

• 20+ potential indicators
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Jordà-Schularick-Taylor Macrohistory Database

Observations

• 17 developed countries, annual data between 1870

and 2016

• 92 crisis episodes

• 20+ potential indicators

Subset of variables we use

• Non-financial credit

• Rates, yield curve

• Debt service ratio

• Current account balance

• Stock Prices

• CPI

• Consumption

• Investment

• Broad money

• Public debt
7



Empirical approach

Baseline approach (extensive robustness checks):

• Target: Predict a crisis one and two years in advance (policy space)

• Transformation: 2-year ratio changes or growth rates (sustainability/stationarity)

• Global variables for credit & slope of the yield curve

• Cleaning: Exclude crisis and post-crisis period (5 years), world wars and

1933–1938

Modelling

• Bootstrapped & averaged models (bagging)

• Out-of-sample evaluation: Nested cross-validation & expanding window

forecasting
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Out-of-sample performance in the ROC space
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Linear baseline
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+ Decision trees
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+ Neural network

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False alarm rate

H
it 

ra
te

Logistic regression
Decision tree
Neural network

9



+ SVM
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+ Random forest
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The winner is: Extremely randomized trees
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Area under the curve (AUC) performance

Extreme trees 0.870

Random forest 0.855

SVM 0.832

Neural net 0.829

Logistic regression 0.822

Decision tree 0.759

100 replications of 5-fold cross-validation. Standard errors not shown but consistently below 0.002.

What’s the meaning of this differences?

⇒ Aiming at a 80% true positive rate, extreme trees reduce the number

of false positives by 41% (32%/367→ 19%/219) compared to the logistic regression.
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Prediction summary for all countries across time (extreme trees)
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Shapley values for variable importance

Game Theory Machine Learning

N Players Predictors

f̂ /ŷ Collective payoff Predicted value for one observation

S Coalition Predictors used for prediction

Source Shapley (1953) Strumbelj and Kononenko (2010)

Lundberg and Lee (2017)

Model Shapley decomposition:

φSk =
∑

S⊆N\k
|S|!(|N|−|S |−1)!

|N|! [f̂ (S ∪ {k} − f̂ (S)]

ΦS
(
f̂ (xik)

)
= φ0 +

∑m
k=1 φ

S
ik

Intuitive example 12



Model explanations using Shapley decompositions: high agreement
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Key indicators:

• Domestic credit (Schularick and

Taylor, 2012; Aikman et al.,

2013)

• Global credit (Alessi and Detken,

2011; Cesa-Bianchi et al., 2018)

• Domestic slope (Babeckỳ et al.,

2014; Joy et al., 2017)

• Global slope (new finding)
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Extreme trees model Shapley value decomposition
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Extreme trees model Shapley value decomposition

Italy
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Non-linearity of extreme trees for global credit
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• ML models identify strong

non-linearities

• Importantly, these are not known a

priori

• Directions of associations match those

in the linear model
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A closer look at the slope of the yield curve
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Logit slope interaction with high/low nominal

short-term rates.

• Flat or inverted yield curve slope

increases predicted crisis probability

substantially

• Low nominal short-term rates give

stronger interaction effect

⇒ Likely search-for-yield behaviour

• ML models learn nonlinearity and

interactions ‘endogenously’
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Shapley regression for econometric analysis (Joseph, 2019)

ŷ = P[ycrisis |x ] = Logit
(
φ0 + β̂S ΦS

ML(x)
)

(1)

The Shapley values ΦML(xk)S are interpreted as model-based transformations of

variable xk .

See also: bankunderground.co.uk/opening-the-machine-learning-black-box

18
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(Shapley) regression table for extreme trees

Shapley regression Logistic regression

Name Direction Share α-level p Coeff. α-level p

Global slope − 0.23 ∗∗∗ 0.000 -0.61 ∗∗∗ 0.000

Global credit + 0.18 ∗∗∗ 0.000 0.67 ∗∗∗ 0.000

Domestic slope − 0.11 ∗∗∗ 0.000 -0.58 ∗∗∗ 0.000

Domestic credit + 0.11 ∗∗∗ 0.000 0.43 ∗∗∗ 0.002

CPI − 0.07 ∗∗∗ 0.002 -0.24 0.160

Debt service ratio + 0.05 0.236 0.16 0.347

Consumption − 0.05 ∗∗ 0.029 -0.42 ∗∗∗ 0.003

Investment + 0.04 ∗∗∗ 0.005 0.32 ∗∗ 0.016

other variables public debt, money, stock prices∗∗, current account

Table 1: Left: Shapley regression. Direction from logistic regression, p-values against the null

hypothesis of neg. or zero regression coefficient (not shown). Right: Coefficients and p-values of a

logistic regression. Significance levels: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. 19



Wrap-up

Insights

• Machine learning models outperform

benchmark logistic regression in

out-of-sample financial crisis prediction

• Most important model drivers:

Credit growth & yield curve slope

(domestically & globally)

• ML models learn pronounced

nonlinearities and interactions

from the data

• Especially: global + domestic and

slope + low nominal interest rates

Potential policy take-aways

• Yield curve connects monetary

policy and financial stability

• System-wide leverage suggests

importance of macroprudential

tools, e.g. CyCB or LTV/I-ratios

• Global factors suggest importance

of international policy

coordination

20



The End: THX - Q & A
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Robustness checks (I)

Setup Crises Extreme Random Logit SVM Neural Decision

trees forest regression net tree

Baseline 93 0.84 0.83 0.80 0.79 0.79 0.73

Testing transformations

Growth rates only 93 0.78 0.77 0.74 0.71 0.72 0.68

Hamilton filter 87 0.82 0.83 0.79 0.78 0.80 0.75

* 87 0.84 0.83 0.80 0.77 0.78 0.76

Adding variables

Nominal rates 93 0.83 0.82 0.80 0.78 0.77 0.73

Real rates 93 0.82 0.82 0.80 0.78 0.79 0.75

Loans by sector 50 0.85 0.84 0.84 0.77 0.82 0.78

* 50 0.87 0.86 0.84 0.76 0.81 0.79

House prices 81 0.86 0.84 0.80 0.78 0.78 0.76

* 81 0.85 0.84 0.80 0.77 0.79 0.76



Robustness checks (II)

Setup Crises Extreme Random Logit SVM Neural Decision

trees forest regression net tree

Baseline 93 0.84 0.83 0.80 0.79 0.79 0.73

Changing the horizon

1 year 93 0.81 0.81 0.80 0.78 0.78 0.71

* 93 0.85 0.83 0.80 0.78 0.79 0.74

3 years 90 0.83 0.83 0.80 0.78 0.77 0.74

* 90 0.84 0.83 0.80 0.79 0.79 0.73

4 years 88 0.86 0.85 0.79 0.80 0.78 0.76

* 88 0.84 0.83 0.80 0.78 0.79 0.75

5 years 87 0.85 0.84 0.79 0.80 0.77 0.75

* 87 0.84 0.83 0.80 0.78 0.79 0.76

Predict one year before crisis

48 0.85 0.81 0.81 0.79 0.80 0.72



Detour: Shapley values in cooperative game theory

• How much does player A contribute a

collective payoff f obtained by a group

of n? (Shapley, 1953).

• Observe payoff of the group with and

without player A.

• Contribution depends on the other

players in the game.

• All possible coalitions S need to be

evaluated.

φA =
∑

S⊆n\A

|S |!(|n| − |S | − 1)!

|n|!
[f (S∪{A}−f (S)]

(2)

2|n|−1 coalitions are evaluated.

Computationally complex!



Intuitive example: stealing apples together

• Three siblings (strong [S], tall [T] &

smart [M]) set off to nick some apples

A (pay-off) from the neighbour’s tree

• For each sibling, sum over marginal

contribution to coalitions of one and

two

• So, the Shapley value of the strong

sibling is then:
Source: 6oxgangsavenueedinburgh

φS =
1

6
[A(S)−A(∅)]+

1

6
[A(T ,S)−A(T )]+

1

6
[A(M, S)−A(M)]+

1

3
[A(T ,M, S)−A(T ,M)]

(3)

http://6oxgangsavenueedinburgh.blogspot.com/2018/08/sunday-post-6-stealing-apples.html


Replacing global slope with US slope
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Change of Shapley values over time
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Change of Shapley values over time
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Change of Shapley values over time
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Change of Shapley values over time
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Neural net forecasting casting evaluation
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More interactions with domestic factors

Interaction Sign Share α-lvl p-values

Domestic slope x Domestic credit - 0.08 0.154

Domestic slope x Debt service ratio - 0.15 ∗ 0.051

Domestic slope x Investment - 0.11 ∗ 0.070

Domestic slope x Consumption + 0.17 ∗∗ 0.043

Domestic slope x CPI + 0.04 0.365

Domestic slope x Stock market + 0.09 0.109

Domestic credit x Debt service ratio + -0.13 0.070

Domestic credit x Investment + 0.21 ∗∗∗ 0.005

Domestic credit x Consumption - -0.20 0.005

Domestic credit x CPI + 0.17 ∗∗ 0.012

Domestic credit x Stock market + -0.17 0.009

Extreme trees interaction terms, α-level: ∗: 10%, ∗∗: 5%, ∗∗∗: 1%, n-obs: 1249.



Average slope correlations (15yr sliding window)
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Shapley interactions Effects: E.g. slope and credit
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Shapley interactions Effects: E.g. slope and credit
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Shapley interactions Effects: E.g. slope and credit
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Interaction with global factors important

Interaction Sign Share α-lvl p-values

Global slope x Global credit - 0.06 ∗∗∗ 0.002

Global slope x Domestic slope + 0.03 0.169

Global slope x Domestic credit - 0.07 ∗∗∗ 0.004

Global slope x Investment - 0.04 ∗∗∗ 0.000

Global slope x Consumption + 0.03 ∗ 0.058

Global slope x CPI + 0.04 ∗∗∗ 0.003

Global slope x Stock market - 0.03 0.185

Global credit x Domestic credit + 0.03 ∗ 0.083

Global credit x Domestic slope - 0.03 ∗∗ 0.027

Global credit x Investment + 0.02 ∗∗ 0.036

Global credit x CPI - 0.04 ∗∗∗ 0.001

Global credit x Consumption - 0.03 ∗∗∗ 0.002

Global credit x Stock market + 0.03 ∗∗ 0.014

Extreme trees interaction terms, α-level: ∗: 10%, ∗∗: 5%, ∗∗∗: 1%, n-obs: 1249.
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