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Agriculture’s Resistance to Automation
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 “To make machines operate efficiently, one feature of 
mechanized production is the uniformity of operation in a 
field.   …   increases efficiency at the expense of being able 
to respond to crop growth variabilities often caused by 
inter- or intra-field soil type, fertility and moisture 
variance.” (Zhang 2018)

 In crop agriculture, transactions cost view of Allen & 
Lueck (2004). Seasonality & nature’s randomness give the 
family farmer agency cost advantage over a more industrial 
approach that more than offset very large scale economies 
from mechanization

 Is the bulwark breaking down?
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Sensors

Source: L. Sheppard
https://www.photonics.com/Articles/Infrared_Grain_Analyzer_Goes_with_the_Flow/a5253



Objectives
• This paper does two things
• Offers a Bayes risk function model of  decision-making 

under imperfect, but symmetric, information. Model  
explains product differentiation and preferences over 
factors. Can be used to characterize farm input level 
choices in presence of  sensor information

• Relate above analysis to two technological revolutions, 
biotech and IT tech (Gallardo & Sauer 2018; Zilberman 
2019), that are fundamentally altering agricultural 
production, food processing, retail & consumption
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Literature Review
• Literature on how automation-focused IT is affecting 

factor demand in the economy at large
• Traditional approach views automation as capital-

augmenting, increasing marginal value of  capital vs. 
labor so that competitive forces lead to replacing labor 
with augmented capital

• A shotgun approach: relates little about why automation 
has favoured skilled labor over unskilled

• Acemoglu & Restrepo (2018) take a more granular, 
realistic, perspective on factor use. They characterize a 
menu of  tasks each of  which can be completed by 
capital or labor but where the factors differ in 
comparative advantage
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This Presentation’s View
• We argue that capital’s comparative advantage on tasks 

has been in exploiting what may be labeled as 
uniformity, standard settings and consistency, or C

• Labor’s comparative advantage on tasks has been in 
discernment, or D, to accommodate inconsistencies, so 
a labor focus persisted in agricultural environments that 
did not yield to standardization

• But with advent of  IT, and especially sensing 
technologies, that comparative advantage is eroding, first 
in factory and now on farm
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Basic Symmetric Loss Model

• Two raw materials types, A and B, available for 
discernment (D), possible differentiation and subsequent 
transformation 

• Point of  discernment can be at harvest, a commodity 
intake point or during processing

• Capacity allocated to discernment can take 
– labor form, as in a worker charged with sorting, or
– capital form, as in a sensor-enabled machine
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Story: Pear Tomatoes
• Rasmussen 1968 and Webb & Bruce 1968. 

Redesigning Tomato for Mechanical 
Production

• California tomatoes for processing shifted 
from hand-picked to mechanically harvested 
during 1964-1970 

• First came i) variety, then ii) harvester, then 
iii) adaptation to promote uniform production
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Needed field conditions promoting consistent, 
uniform growth + easy harvest for all crop: 
field levelling, irrigation, transplanting



Story: Call it the Prior
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Source: Fresno State University
http://www.fresnostate.edu/jcast/cati/update/2013-winter/sodic-soils.html

Think Allen & Lueck transactions cost theory
Looking for information rich prior in Bayes’ sense



Story: Balancing Losses
• Harvester expensive to operate: 12 workers onboard to 

separate quality, ripe tomatoes from green/blemished 
fruit and dirt

• Two forms of  loss. Grade
– Leniently: materials harm product reputation or prove 

difficult to process
– Harshly: lose good fruit

• By mid 1970s, loss calculations changed. Most workers 
replaced by accurate color-reading sensors linked with 
air-blaster to discard flagged tomatoes (Huffman 2012)
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Commodity & Product Differentiation
• Investopedia writes that a commodity is 
“a basic good used in commerce that is interchangeable 
with other commodities of  the same type.  …  The quality 
of  a given commodity may differ slightly, but it is 
essentially uniform across producers.”

• But quality difference isn’t enough; one must 
(benefits) care about difference, and 
(costs) be able to measure it cheaply

Main thesis of  this work is that ability to detect 
differences cheaply is core determinant of  both 
commodity form and how agricultural automation has 
evolved
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Basic Model
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Fraction  of raw materials is type , rest type .
We refer to  as the  index. Raw materials become
more consistent in type as  value increases from 0.5 to 1.

[0.5,1] A B
x C

x

x∈

Two more parameters required to formalize model, 
one for info processing

When handling raw materials, capacity receives
1 of 2 signals about the materials,   { , }.
Lower case signals corresponding upper case true type

s a b∈
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Capacity differs along one dimension, namely by the
capacity unit’s  index, . If a capacity unit has 
discernment level  then fraction  of actual material
type  signals as type A, i.e., . 
This is

D z
z z

A s a=
 test sensitivity embedded in the resource

Probability signal is  given that type=  is
       ( | , )       where
        ( | ) = probability conditional on information .

A A
P a A z z
P I I

=
⋅

Basic Model, Cont’d

Restricting  (0.5,1] we also impose probability signal
is  given type=  to be 
     ( | , ) .

z
B B
P b B z z

∈

=



Figure 1. C-D Space
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Role of Incentives
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Assume types have same value and calculate expected
dollar loss from mis-classification; or assume a 
difference in value for types.
   Let ( , ) = expected loss from mis-classificationz xL

 Raw material owner seeks to minimize
over ( , ) expected loss from mis-classification, .
Premise 2 (P2).

( , )x z z xL

So seek low value for ( , ).z xL



Role of Incentives, Cont’d
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 Prices for types are common. Loss from
assuming Type  when really Type   that from assuming
Type  when really Type .

Premise 3A (P3A).
B A

A B
equals

A

A B

B

For blue, lose nothing
For red, lose  in each caseν



 if ta
Loss = 0 if ta

A
B

ν



Figure 2. Representing Signals & Losses
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Information Input Costs (Draft)

19

Materials with consistency   costs 
Parameter   indexes the state of  technology.

( ; ).rx x
C

θ
θ

Materials with discernment   costs 
Parameter   indexes the state of  technology.

( ; ).wz z
D

λ
λ

)
T

)
ot

(
al 

,
cost

( , ; , ( ;
 

) ; ) (
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C z x r x w z z xθ λ θ λ= + +L



Staple Discernment to Which Factor?
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y

Could have  potentially attached (stapled) at a
factor cost to either factor in the following manner:

( ; ) ( ; , , , ) min , ( ),

( ) increasing & convex. The ratios are
productivit

L K
L K L K

L K

w z w z e z

e z

D

ω ωλ ω ω λ λ
λ λ
 

→ =  
 

 indices attached to respective factors



Figure 5. Schema for Shocks to Marginal Costs of C & D,
as Inputs into Food Production/Processing

Genetic/breeding technologies
Logistics
Growth regulators
Field levelling
Institutions to enforce contractual commitments
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Software innovation
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Shock
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Loss Asymmetry
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Here we relax P3A to consider when magnitude
of loss from mis-categorizing differs by form of 
mis-categorization. Green tomatoes may adversely 
affect value of processed tomatoes by more than losing
a perfect processing tomato. Or reverse may be true

 Loss from assuming Type  when material
is Type  equals . Loss from assuming Type 
when material is Type  equals   where .

P
0

0

remise 3B.

A

B A B

B
A A

B
ν

ν ν ν
>

> ≤
For analytic convenience we specify .
Whenever   then the cost of mis-categorizing
Type  as Type  exceeds that of the converse error.

/ 0
1

A B

A B

τ ν ν
τ

= >
>



Figure 6. Regions where signals are accepted and 
rejected, when τ = 0.5
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Central point is
that there are two
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stretches half way
up z axis. The
other going all
the way
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Case I

Case II



Figure 11. Case II UEL marginal response to 
discernment at different consistency levels
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Slingshot Effect, (Apollo 13) see
https://www.youtube.com/watch?v=3Jb-titkmbU
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Object accelerates if entering a body's gravity field,
moon here, in same direction as body's orbit.
Gravity draws in and then centrifugal force slings out
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economics literature 
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analysis (Babcock et
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