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Motivation

Introduce and analyze a Bayesian measure of privacy loss.

Review of “ε-differential privacy” (Dwork et al. ’06, Pai-Roth ’13):

outcome does not reveal much about any individual’s private info.

P{x is chosen given t} ≤ exp(ε) · P{x is chosen given t′}

for all outcomes x and type profiles t and t′ differing in a single agent.

DP uses outsider’s perspective and is prior-free.

But to implement this, types have to be reported.

We might worry about the principal knowing too much.

Our approach: mechanism design under a privacy constraint that

limits how much information the principal can collect from the agents.
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Screening Environment

Focus on the single-agent screening model of Mussa-Rosen ’78.

A seller sells some quantity/quality q ≥ 0 to a buyer for payment p.

Buyer type θ ∈ [θ, θ] distributed as F with positive density.

Buyer utility q · θ − p.

Production cost
q2

2
; seller profit p− q2

2
.

Assume increasing and positive virtual values v(θ) := θ − 1− F (θ)

f(θ)
.

I positive ensures participation; can be relaxed

Mussa-Rosen showed that optimal mechanism perfectly separates types:

I type θ receives quantity v(θ)

I payment given by envelope theorem
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Privacy Measure

We depart by adding a (privacy) constraint to seller’s problem:

1 Seller has prior belief F about buyer type θ.

2 He offers general (potentially indirect) mechanism with message set M ,

allocation function q : M → R+ and payment function p : M → R.

3 Each buyer θ sends message m(θ) to maximize EU given q(·), p(·).

4 Observing message m, seller forms posterior belief F (θ | m) about θ.

5 Will put a constraint on how posterior changes relative to prior.



Constrained Problem

Privacy loss of a mechanism M defined as maximum (across messages)

KL-divergence between posterior and prior beliefs:

I(M) = max
m

D(F (· | m) || F ),

where D(P || Q) =

∫
log

(
dP

dQ

)
dP .

I results extend to general divergences

Maximize profit among mechanisms s.t. I(M) ≤ κ (exogenously given).



Interpretation

Paternalistic view: a regulator imposes a constraint of this form

to protect consumer privacy.

Participation constraint: each buyer type tolerates privacy loss

up to KL-distance of κ.

We use KL as a reduced-form measure of seller’s information gain.

I prior works Taylor (2004), Calzolari and Pavan (2006) model agents

who value privacy due to specific future interactions with principal

I our approach is applicable if future interactions are unknown

(“context-free”)
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Ex-post vs. Ex-ante

Above definition I(M) = max
m

D(F (· | m) || F ) considers worst-case

privacy loss across all messages (thus types).

Alternatively, may require average loss Em[D(F (· | m) || F )] ≤ κ.

I relates to rational inattention since average KL is equal to MI

Ex-post criterion is stricter and fits better with above interpretations.

But similar results hold for the ex-ante model (see paper)



Main Result

Theorem (Coarse Revelation)

Given 0 < κ <∞. There exists an optimal privacy-constrained mechanism M,

where the set of types [θ, θ] is partitioned into finitely many intervals,

and in equilibrium each type truthfully reports its interval.



Why Intervals?

Several papers (Bergemann et al. ’11, Kos ’12) derived optimality of intervals

by assuming an upper bound on number of messages.

We put upper bound on informational content of each message.

Proof of interval partition structure:

1 First remove “redundant” messages. If two messages lead to same

outcome, combine them into a single message.

=⇒ posterior belief is averaged, hence smaller privacy loss by convexity

2 Messages are ranked by the quantities they induce.

3 By single-cross property of buyer preference, types that choose a

particular quantity (and associated price) form an interval.

4 Distinct intervals can only intersect at the boundary.

5 Thus interval partition — this only uses convexity of privacy measure.

Extends also to multiple agents with one-dimensional types.
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Reformulation

Recall KL-divergence defined as D(P || Q) =

∫
log

(
dP

dQ

)
dP .

When P is given by Q conditional on an interval [θ1, θ2], we have

D(P || Q) = − log (Q([θ1, θ2])) .

Maximize profit among partitions s.t. each interval has mass ≥ e−κ.

Corollaries:

I For each κ, optimal mechanism exists (by compactness).

I 0 ≤ κ < log(2) =⇒ one interval, no screening

I log(2) ≤ κ < log(3) =⇒ two intervals

I Privacy constraint does not in general bind
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Uniform Case

Consider special case with uniform prior F .

Characterization

With uniform prior, for any log(n) ≤ κ < log(n+ 1), the optimal

privacy-constrained mechanism partitions [θ, θ] into n equally long intervals.

Proof:

1 Since κ < log(n+ 1), each interval has mass at least e−κ >
1

n+ 1
.

2 There can be at most n intervals.

3 Equal partition maximizes profit among all partitions of size n.
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Welfare Analysis

Comparative Statics w.r.t. κ

Profit from a κ-constrained optimal mechanism (weakly) increases in κ.

Buyer surplus is maximized with “full privacy” κ = 0, and

minimized with “no privacy” κ =∞.

If prior density f(θ) decreases, κ =∞ maximizes total welfare.
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Future Work

Further properties of optimal interval partition for general prior F :

I Is the optimal number of intervals increasing in κ?

I Is buyer surplus decreasing in κ?

Regulation: how to elicit seller’s prior and choose κ accordingly?

Multiple agents: how to aggregate privacy?



Thank You!


