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Abstract

We develop a dynamic multi-consumption good, production-based general equilibrium model with an

oligopolistic sector to examine the e¤ects of market power on product and asset markets. Equilibrium

investment and production strategically moderate e¤ects of aggregate and sectoral shocks on collusive

product price with attendant e¤ects on industry equity risk-premium and Sharpe ratio. The model

is calibrated with U.S. aggregate and manufacturing industry data. The oligopoly model provides a
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1 Introduction

The effects of product market power on asset markets draws increasing interest. In particular,

oligopolies are ubiquitous, and the strategic interaction of oligopolistic firms with attendant effects

on production capacity and product prices are considered by long-standing theoretical and empirical

literatures.1 In this paper, we argue that the interaction of aggregate and industry production

shocks with dynamic strategic behavior of oligopolistic firms can help explain observed product

and asset markets phenomena, including some existing empirical puzzles. We examine the effects

of oligopolistic collusion on firm-level capital investment and industry product and asset prices in a

dynamic production-based, multi-consumption good general equilibrium model with an oligopolistic

sector. Fitting the model to U.S. aggregate and manufacturing industry data, we find support for

the model’s predictions on the relation of industry market structure with the volatilities of capital

investment, output, and equity returns, as well as the cyclical behavior of markups. In addition,

because of higher equilibrium volatility of the multi—good consumption bundle, the model fits asset

markets related variables– such as the industry equity risk premium (ERP), Sharpe ratio, and

volatility of returns– better than comparable single-good equilibrium models.

We develop an infinite-horizon, two-sector general equilibrium model in an economy with two

consumption goods. One of the goods is “produced”in a large competitive sector through an ex-

ogenous Markov process (similar to Lucas (1978)). The second good is produced by an oligopolistic

sector using capital and materials with a decreasing returns to scale technology. The competitive

good can be used for consumption or utilized for productive inputs by the oligopolistic sector, which

is also exposed to sector-specific Markov productivity shocks. The empirical distinction between

aggregate and sectoral shocks is emphasized by the real business cycle literature (Long and Plosser

(1987), Foerster et al. (2011)).

The representative consumer has time separable expected utility of the constant elasticity of

substitution (CES) form (Dixit and Stiglitz (1977)). We assume time-additive expected utility to

help identify the effects of extending the classical model (Mehra and Prescott (1985)) to include

imperfect competition in a multi-consumption good setting. We analyze symmetric subgame perfect

equilibrium (SPE) oligopolistic paths with simultaneous clearing of product and asset markets. As

1Observations on strategic interaction among oligopolistic firms occur at least as far back as Adam Smith (1776).
While the early literature (Cournot (1838)) analyzed static intreactions, the literature in the past few decades focuses
on tacit collusion in dynamic oligopolies. Friedman (1983), Bresnahan (1989), Feuerstein (2005), and Green et al.
(2013) provide useful surveys of these literatures.
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in the dynamic oligopoly literature (Abreu (1986), Rotemberg and Saloner (1986)), industry firms

implicitly collude through credibly threatening to punish deviations. We fit the model to production

and asset returns data from 456 U.S. manufacturing industries in the NBER-CES database (for

1958-2011) and with the corresponding U.S. aggregate data. To account for heterogeneous industry

concentrations in the data, the model is analyzed separately– both theoretically and empirically–

for highly and moderately concentrated industries. Based on our theoretical analysis, we simulate

dynamic monopoly and dynamic Cournot equilibrium paths for 31 highly concentrated and 425

moderately concentrated industries, respectively. We derive quantitative implications of the model

using both log-linear techniques and global solutions that take into account the nonlinearities of

the model. To clarify the implications of product market power, these computations are compared

with those derived from a benchmark competitive industry.2 Both solution approaches generate

qualitatively similar conclusions.

We find– theoretically and empirically– that the volatilities of capital investment, material

inputs, and industry ERP are negatively related to product market power. Intuitively, oligopolistic

firms strategically adapt investment and material input demand in response to aggregate or sectoral

shocks to moderate their effects on the general equilibrium industry price. Thus, product market

power tends to “smooth out”the effects of aggregate and industry shocks on optimal investment,

material inputs, and hence dividend payouts compared with competitive firms in identical settings.

Consequently, the volatility of industry ERP is also ceteris paribus negatively related to market

power. In contrast, the effect of competition on expected ERP– and hence the Sharpe ratio–

is theoretically ambiguous because of the indeterminate relation of the stochastic discount factor

(SDF) with industry returns. However, our empirical analysis indicates a positive relation of

expected ERP and competition, consistent with the literature (Hou and Robinson (2006)). In

light of the positive effect of competition on the volatility of ERP, we thus find that competition

significantly degrades the industry Sharpe ratio.

As is well known, the canonical equilibrium single-good asset pricing model leads to several

empirical puzzles under the “classical” assumptions of time-additive power utility and Markov

2 In our theoretical model the extent of subgame perfect collusion is determined by industry concentration. But,
from an empirical perspective, one can not generally view moderately concentrated industries as more “competitive”
than highly concentrated industries. Since these are very different industries, they face different consumer preferences
and utilize different production functions. The conceptually valid analysis of the effects of product market power
is, therefore, a comparison of equilibrium oligopoly outcomes with those in the benchmark perfectly competitive
industry, with the same production and consumer preference parameterization.
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output shocks, principally because the observed volatility of per capita consumption (and hence

the volatility of the SDF) in the U.S. is too low (e.g., Campbell (2000)). However, in our multi-

good model, the variability of the SDF is determined by the volatility of the (CES) consumption

bundle. While computing this volatility empirically for multiple goods is generally challenging– for

example, data on per capita consumption on individual products is relatively sparse– we exploit

the equilibrium condition in our model that relates the optimal consumption bundle to the real

income of the CI (that is, aggregate income divided by the price index). Our calibrated equilibrium

computations indicate that the volatility of the consumption bundle, and hence the volatility of

SDF and its covariance with asset returns, is significantly higher compared with the benchmark

standard consumption CAPM. Consequently, the industry ERP and its volatility, as well as the

maximal Sharpe ratios (Hansen and Jagannathan (1991)) are higher– while the equilibrium riskfree

rate (Weil (1989)) is lower– than the benchmark model.3 Moreover, oligopolistic collusion impacts

aggregate asset market outcomes because equilibrium consumption is affected by the production

and dividend payouts in the oligopolistic sector.

Standing outside the specific assumptions of the model, the more general point made by our

study is the empirical importance of consumer preference parameters related to product variety,

such as the intra-period elasticity of substitution (ES) amongst consumption goods and oligopolistic

collusion on asset market outcomes. The empirical heterogeneity of ERP at the industry level is well

known (Fama and French (1997)) and presumably reflects differences in market structure across

industries. Our framework distinguishes between aggregate and industry equity returns and helps

clarify the relation of industry competition to asset market outcomes.

Meanwhile, in the product market space, the model fits reasonably well the volatilities of invest-

ment, material inputs, and output in the data. The cyclical properties of equilibrium investment

and material inputs (with respect to aggregate and industry shocks) are also qualitatively consis-

tent with the data. In particular, the model generates procylical investment and material input

use with respect to aggregate and sectoral productivity shocks. Because of decreasing returns to

scale, short-run marginal costs are procyclical in our model. In a competitive setting, this would

result in countercyclical price-marginal cost (or markup) ratios (Bils (1987)). Meanwhile, in their

analysis of price-collusion in oligopolistic supergames, Rotemberg and Saloner (1986) argue that

subgame perfect collusion requires countercyclical markups because the gains from defection are

3The role of heterogeneous consumption goods in helping explain the equity premium puzzle is also noted in the
literature in a different setting (Ait-Sahalia et al. (2004)).
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higher in booms. But due to persistent shocks and endogenous investment, gains from defection

are not necessarily procylical in our model. Our theoretical framework implies, however, that the

procyclicalty of markups is negatively related to industry competition. Consistent with this pre-

diction, the empirical analysis finds countercyclical markups in highly concentrated oligopolies, but

procyclical markups in moderately concentrated industries. These results shed light on the mixed

empirical results in the literature with respect to the cyclicality of markups (Nekarda and Ramey

(2010)).

Overall, the oligopoly model is generally a better fit than the competitive benchmark industry

in both the product market space– where the latter generates excessive investment volatility and

counterfactual time-invariant markup ratios– and the asset markets space– in terms of industry

Sharpe ratios. In sum, modeling industry market structures in multi-good general equilibrium

models may help explain important product and asset markets phenomena.

Our study is related to, but distinct from, several strands of the literature. For example, the

macroeconomic literature develops dynamic equilibrium models to examine the effects of indus-

try level imperfect competition on transmitting the effects of aggregate shocks on real variables

(Rotemberg and Woodford (1992)). In a related vein, the ‘New Keynesian’literature incorporates

imperfect competition and frictions (such as nominal rigidities) to analyze the effects of monetary

policy (Gali (2008)). This literature largely abstracts from equilibrium asset pricing implications,

however. And papers on price collusion in repeated oligopoly (Abreu (1986), Rotemberg and Sa-

loner (1986)) do not consider dynamic investment and asset pricing. Meanwhile, Opp et al. (2014)

examine price-cost markups in a general equilibrium model but do not focus on asset pricing mo-

ments.

Our paper is also linked to the growing recent finance literature that examines the relation

of product market competition and equity returns. One strand of this literature analyzes general

equilibrium models with product market power modeled through monopolistic competition to help

explain priced risk factors in the cross-section (Carlson et al. (2004), Van Binsbergen (2016), Dou

et al. (2019), Barrot et al. (2019), Loualiche (2019)). Garlappi and Song (2017) show that flexible

capital utilization and market power in monopolistically competitive industries with persistent

technological growth and recursive preferences can help explain the observed market ERP. There

is also a recent literature that examines the relation of Cournot competition with expected returns

(Bustamante and Donangelo (2017), Corhay et al. (2020)). But, to our knowledge, the empirical
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links between endogenous market power through sustainable oligopolistic collusion and the volatility

of returns and Sharpe ratios in dynamic general equilibrium settings highlighted in our analysis are

novel. Our framework also differs from the literature in highlighting the theoretically ambiguous

relation of industry competition with expected industry ERP and Sharpe ratios.

In the rest of the paper, Sections 2 through 4 describe the model and characterize equilibrium

investment, production, and pricing paths. Section 5 specifies the methodology for numerical

computations of equilibrium paths. Section 6 describes the data and empirical measures. Sections

7 and 8 present the empirical results, and Section 9 concludes.4

2 The Model

2.1 Firms and Industry Structure

There are two sectors in the economy, specializing in the production of non-storable goods x and

y.5 For simplicity, output in sector x is modeled as an exogenous stochastic process {Xt}∞t=0 that

is sold competitively. This good also serves as the numeraire and its price (px) is normalized to

unity each period. It is convenient to consider a representative firm that sells Xt at unit price each

period. Finally, good x can be either consumed or used to facilitate production in the other sector

that is described next.

The second sector is an oligopoly with N firms (labeled i = 1, ..., N), who produce an identical

good y. All firms utilize an identical production technology that stochastically converts their

beginning-of-the-period capital (Kit) and material input chosen during the period (Hit) to output

Yit through the production function

F (Kit, Hit, θt) = θt(Kit)
ψK (Hit)

ψH , i = 1, ...N. (1)

Here, θt represents the stochastically evolving industry-wide productivity level and 0 < ψK < 1,

0 < ψH < 1 are the output elasticities of capital and material inputs, respectively; that is, there

are decreasing returns to scale with respect to each productive input. The industry output at t is

given by Ỹt =
∑N

i=1 Yit. Firms use x for their material input. For notational ease, let x be directly

converted to material input so that Hit also represents the total material cost at t.

4Proofs and computational details are collected in an Appendix.
5We will identify these as sectors x and y, respectively, and use capital letters to denote their outputs.
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To introduce general equilibrium effects of sectoral investment in a tractable way, we assume

that production in sector y uses x for investment. There is a cost of converting x to investment,

however. Letting Iit denote the investment by firm i at t, the investment cost function is6

A(Iit,Kit) = Iit + 0.5υ

(
Iit
Kit

)2

Kit. (2)

Conditional on Iit, the firms capital accumulation process is given by

Kit+1 = (1− δ)Kit + Iit,Ki0 = K̄i0, (3)

where δ is the per-period depreciation rate (that is common for all firms in the sector) and the

initial capital stocks are pre-specified.

The output in sectors x and y evolve according to correlated and persistent lognormal processes

logXt = ρx logXt−1 + εxt ; log θt = ρθ log θt−1 + εθt , (4)

where, for j ∈ {X, θ}, 0 ≤ ρj ≤ 1 are the autocorrelation parameters and, εjt are conditionally

bivariate normal mean zero variables with the variance-covariance matrix Λ = [λij ].

All firms in the model are unlevered and publicly owned, with their equity being traded in

frictionless security markets. The number of shares outstanding at the beginning of t is denoted

by Qxt and Q
y
it, i = 1, ...N. Because the net revenue of sector x at t is Xt, its dividend payout is

Dx
t = Xt. Given the “Lucas tree”structure of this sector, we fix the number of outstanding shares

to unity (that is, Qxt ≡ 1). Meanwhile, the dividends of firms in sector y are

Dy
it = pyt Yit −Hit −A(Iit,Kit), i = 1, ..., N. (5)

Dividends can be negative, financed by equity issuance. In the absence of taxes and transactions

costs, negative dividends are equivalent to the market value of new equity share issuance. Thus, if

Dy
it < 0, then Dy

it = Syit(Q
y
it+1 −Q

y
it) is the implied cash inflow from new equity issuance.

6This investment cost function can also be interpreted in terms of capital adjustment costs (see Abel and Eberly
(1994)). Here, the quadratic parameterization conforms to strictly convex adjustment costs (Summers (1981), Cooper
and Haltiwanger (1996)) and is useful for interior optima used in the numerical simulations.
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2.2 Consumers

There is a continuum of identical consumers in the economy. The representative consumer-investor

(CI) maximizes expected discounted time-additive utility of random consumption streams of the

two goods subject to period-by-period budget constraints. The CI also has access every period

to a (one-period) risk-free security (f) that pays a unit of the numeraire good next period. The

mass of risk-free securities is also fixed at unity. The profile of securities outstanding at t is thus

Qt = (Qxt , Q
y
1, .., Q

y
N , Q

f
t ).

Thus, in each t, the CI chooses the consumption vector ct = (cxt , c
y
t ) taking as given prod-

uct prices pt = (1, pyt ). The portfolio of asset holdings at the beginning of the period is qt =

(qxt , q
y
1 , .., q

y
N , q

f
t ). Along with consumption, the CI simultaneously chooses the new asset holdings

qt+1, taking as given the corresponding asset prices St = (Sxt , S
y
1 , .., S

y
N , S

f
t ). For simplicity, there is

no other endowment or labor income. Hence, the CI is subject to a wealth constraint determined by

the dividend payouts Dt = (Xt, D
y
1 , .., D

y
N , 1). More precisely, let Zt be the wealth net of new asset

purchases during the period– that is, the consumers disposable income available for consumption.

Then, the CI’s optimization problem is

maxE0

[ ∞∑
t=0

βt
C1−γ
t − 1

1− γ

]
, γ ≥ 0, β < 1, (6)

s.t., pt · ct ≤ qt · (Dt + St)− qt+1 · St ≡ Zt, ct ≥ 0. (7)

In (6), γ determines the representative CI’s degree of risk aversion; β is the subjective discount

factor; and Ct ≡ C(ct) is an aggregated consumption index with constant elasticity of substitution

(CES) between the consumption of the two goods:

C(ct) =
[
(1− φ)(cxt )(σ−1)/σ + φ(cyt )

(σ−1)/σ
]σ/(σ−1)

. (8)

Here, σ > 1 is the ES and 0 < φ < 1 is a pre-specified consumption weight for good y. Because

preferences are strictly increasing, the budget constraint (7) will be binding in any optimum and

hence Zt also represents the total consumption expenditure at t. It follows from (7) that, as long

as the asset markets clear, the disposable income is Zt = Dx
t +

∑N
i=1D

y
it + 1.

The optimal consumption demand functions (superscripted by ‘*’) for the optimization problem
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(6)-(7) are multiplicatively separable in Zt and pt (see Appendix A)

cj∗t (pt, Zt) =
Zt
Pt

[
Ptφ

j

pjt

]σ
, j = x, y, (9)

where pxt = 1, φx ≡ (1− φ), φy ≡ φ, and Pt ≡ P (pt) is the aggregate price index

P (pt) =
[
(1− φ)σ + (φ)σ(pyt )

1−σ]1/(1−σ)
. (10)

At the optimum, the aggregate real consumption C∗t ≡ C(c∗t ) = Zt
Pt
, which is the real income.

2.3 Asset Markets

The equilibrium asset price vector can be derived from the representative CI’s optimal portfolio

condition (see Appendix A), namely,

St = Et

[
β

(
Pt
Pt+1

)(
C∗t+1

C∗t

)−γ
(Dt+1 + St+1)

]
. (11)

As is standard, the pricing kernel (or the SDF) for future equity payoffs is defined in terms of the

intertemporal marginal rate of substitution of real consumption (IMRS). Since Ct = Zt
Pt
, the SDF is

given byMt+1 ≡ β
(
Zt+1
Zt

)−γ (
Pt+1
Pt

)γ−1
. Equation (11) thus becomes St = Et [Mt+1(Dt+1 + St+1)] .

In terms of the gross returns Rjt+1 = (Dj
t+1 + Sjt+1)/Sjt (with R

f
t+1 = 1/Sft ), the asset market

equilibrium condition can be written in the standard form as 1 = Et [Mt+1Rt+1] , where 1 is the

four-dimensional unit column vector and Rt = (Rxt , R
y
1, .., R

y
N , R

f
t )′.

2.4 Information and Timing Assumptions

At the beginning of t, the aggregate and sectoral shocks (Xt, θt) are realized and are commonly

observable by all agents. Firms then simultaneously choose their actions: prices pyt = (py1t, .., p
y
Nt),

investments It = (I1t, .., INt), and material inputsHt = (H1t, ..,HNt). These actions will be denoted

by µyt = (pyt , It,Ht).

Conditional on observed history, (Xt, θt), and current actions by firms µ
y
t , the CI determines

its consumption and portfolio choices according to (6)-(7) based on anticipated dividends. Since all

firms produce an identical good, the lowest-price firm sells as much of the quantity demanded (see

(9)) at its quoted price that is allowed by its production capacity F (θt,Kit, Hit). The firm with the
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next higher price then sells as much as it can at its quoted price and so forth.7 Firms’actions, along

with the quantities sold, then determine their dividends according to (5). At the end of the period,

the actions of all agents become commonly observable. In particular, the prices and quantities sold

by each firm, along with the new capital stock distribution (given by (3)) are commonly observable.

The asset markets variables, namely, dividends, security prices, and any new equity issuances are

also observable. At each t, the history ωt is the profile of all actions up to the end of t − 1 and is

common knowledge.

3 Subgame Perfect Equilibrium Paths

3.1 Equilibrium Definition

The model specified above defines a multi-stage game with perfectly observed actions (Fudenberg

and Tirole (1991)). The information set at beginning of each t is the history of prior moves and the

current realization of the shocks, denoted by the state Γt = (ωt, Xt, θt). Under our informational

assumptions, each Γt defines a subgame. A subgame perfect equilibrium (SPE) specifies state-

contingent strategies for each firm µy∗it (Γt) that maximize the present discounted value of real

dividends (
Dyit
Pt
, ...). In general, there will not exist complete contingent markets in this model; hence,

the discount rate is given by the representative consumer’s marginal utility of real consumption

(Brock (1982), Horvath (2000)). Thus, in every subgame Γτ , τ ≥ 0, firm i chooses µyiτ to maximize

the conditional present value of real dividends given by

Eτ

[ ∞∑
t=τ

βt−τ
(
Zt
Pt

)−γ (pyitYit −Hit −A(Iit,Kit)

Pt

)
Γτ

]
, s.t., (1)—(3). (12)

As is typical in the oligopoly literature, we will focus on symmetric equilibrium paths where all

firms adopt the same strategies, that is, µy∗it (Γt) = µy∗t (Γt). It follows from (1)-(3) that all firms also

have symmetric capital stocks investments Kt and output Yt and hence the industry capacity and

output are K̃t = NKt and Ỹt = NYt, respectively. The dividends per firm are also symmetric and

the industry dividends are D̃y
t = NDy

t . Furthermore, we will assume realistically that the effects of

actions by firms in sector y on the aggregate consumption C and the aggregate price index P are of

order small. This implies that firms take the pricing kernel (M) as a given, which is a reasonable

7These rules of demand allocation are intuitive and consistent with those adopted by the oligopolistic supergame
literature (Abreu (1986), Rotemberg and Saloner (1986)).
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assumption. This convention also allows one to treat Xt as a proxy for aggregate output, which

will be useful for the empirical interpretation of the results.

Conditional on the state and actions (Γt, µ
y∗
t ), the CI can perfectly anticipate the equilibrium

industry dividends D̃∗yt and hence the disposable income Z∗t .
8 The CI then chooses the consumption

and asset demand vectors (c∗t ,q
∗
t+1) to solve the constrained optimization problem (6)-(7) such

that the product and asset price vectors (p∗t ,S
∗
t ) clear both the asset and product markets, that is

q∗t+1 = Qt+1 and

cx∗t (p∗t , Z
∗
t ) +N [A(I∗t ,Kt) +H∗t )] = Xt, (13)

cy∗t (1, py∗t , Z
∗
t ) = Ỹt. (14)

A time-profile of firms’strategies
{
µy∗t
}∞
t=0

and CI’s consumption and portfolio policies {c∗t ,q∗t }
∞
t=0

is an SPE if and only if for every Γt (1) they satisfy the conditions annunciated above and (2) if

no firm i can gain from deviating from µy∗t to an alternative (p̂yit, Ĥit, Îit) and choosing µ
y∗
t+1(Γt+1)

thereafter. The latter requirement is the well known “one-stage-deviation principle”of checking for

subgame perfection (Fudenberg and Tirole, page 109).9 Using the Bellman representation of (12),

it follows that along the symmetric SPE path, firm value can be recursively computed as

V ∗t (Γt) =

(
Zt
Pt

)−γ ( 1

Pt

)
[py∗t F (Kt, H

∗
t , θt)− (H∗t +A(I∗t ,Kt)] + βEt

[
V ∗t+1(Γ∗t+1)

]
, (15)

where Γ∗t+1 = ((ωt, µy∗t ),K∗t+1, Xt+1, θt+1) and K∗t+1 = (1 − δ)Kt + I∗t . Because quantities sold

by firms are determined by the demand function (9)), there are consistency constraints on firms’

actions. In particular, firms may choose prices and investment and the optimal input demand will

then be determined by the output sold (since (θt,Kit) are pre-determined). Alternatively, firms

may choose quantities and choose their inputs and investment and the equilibrium industry price

py∗t will be determined by (13)-(14).

8Note that there is no uncertainty within any period on firms’outputs, investments, and input choices conditional
on (Γt, µ

y∗
t ).

9Although this principle applies generally only to finite games, we can show that it also holds for our infinite-horizon
game because of discounting and continuity of agents’payoffs in the limit.
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3.2 Benchmark Competitive Equilibrium

Prior to the analysis of oligopolistic equilibria, it is useful to set up a benchmark where sector

y is competitive, which facilitates intuition on the effect of product market power. Along the

competitive equilibrium path, all firms take prices as given and equate them to marginal cost. For

notational ease, we will write η ≡ φ/(1− φ), the partial derivatives of the investment cost function

as AI(I,K) ≡ 1 + υ(I/K), AK(I,K) ≡ −0.5υ(I/K)2, and the net market supply of good x as

Wt ≡ Xt − N [A(It,Kt) + Ht]. We will denote the (symmetric) competitive equilibrium strategies

by µ̆yt = (p̆yt , H̆t, Ĭt), with Y̆t = F (Kt, H̆t, θt) and K̆t+1 = (1− δ)Kt + Ĭt.

Proposition 1 Along a symmetric competitive equilibrium path, for any Γt, µ̆
y
t is characterized by

p̆yt =

(
W̆t

NY̆t

)1/σ

η = [FH(Kt, H̆t, θt)]
−1, (16)

AI(Ĭt,Kt) = Et
[
M̆t+1

(
p̆yt+1FK(K̆t+1, H̆t+1, θt+1)−AK(Ĭt+1, K̆t+1) +

(1− δ)AI(Ĭt+1, K̆t+1)
)]
. (17)

And the asset market equilibrium satisfies (11).

Equation (16) reflects the competitive equilibrium pricing condition where prices clear markets

in both sectors and industry price equals the marginal cost. In a general equilibrium, the relative

price of y (in terms of the numeraire), py, should be decreasing with the supply of y relative to that

of x. And the sensitivity of py to this relative supply should be increasing (in algebraic terms) with

the ES. Furthermore, ceteris paribus, py should be positively related to the weight of good y in the

consumer’s utility function, φ. These properties are satisfied by the equilibrium price function in

the left hand side (LHS) of (16) since the net supply of goods y and x are NY̆t and W̆t, respectively.

Furthermore, η is increasing with the consumer’s utility weight of y, namely, φ. Meanwhile, the

right hand side (RHS) of (16) represents the marginal cost since in our model the only variable input

in any period is H. Hence, standard cost minimization implies that the marginal cost is the inverse

of the marginal productivity of material inputs. Finally, (17) is the Euler condition with respect

to investment that trades of current marginal cost of investment– represented by the LHS– with

the discounted expected marginal value of current investment. We now turn to characterization of

SPE paths when sector y is an oligopoly.
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4 Equilibrium Characterization

Kreps and Scheinkman (1983) show that in the two stage game, with capacity choices chosen in

first stage and price competition in the second stage, there is a unique pure strategy symmetric

equilibrium with identical capacity choices in the first stage and identical prices in the second

stage. Of course, in an infinite horizon model there is a possibility of multiple non-stationary

equilibria. Indeed, the folk theorem of dynamic oligopoly (Friedman (1971), Fudenberg and Maskin

(1986)) implies that various levels of collusion are possible for suffi ciently high discount factors of

shareholders through subgame perfect threats of “punishment phases” of low prices. In general,

the discounted expected profits of firms along the equilibrium path are positively related to profit

losses that can be credibly inflicted in “off equilibrium path” punishment phases. The optimal

(or extremal) SPE achieves the maximum discounted expected utility along the equilibrium path

through this mechanism (Abreu (1986), Rotemberg and Woodford (1992)).

But it is also well known that enforceable collusion is negatively related to the number of

firms in the industry (Friedman (1971), Rotemberg and Saloner (1986)). Hence, for the purposes

of empirical analysis, it is useful to distinguish between highly concentrated oligopolies– where

a small number of firms account for the preponderant share of the industry output– and the

remaining oligopolies, which for expositional convenience will be labeled as moderately concentrated

oligopolies. This distinction allows us to focus on empirically identified monopoly and quantity-

setting (or Cournot) SPE outcome paths for the two market structures.

4.1 Highly Concentrated Oligopolies

As we mentioned above, the optimal SPE path in the oligopolistic market structure will be enforced

by maximal punishment “off-equilibrium” paths following deviation by any firm. Clearly, the

maximal punishment path can not involve negative profits. We now establish that in every subgame

(Γt), a symmetric strategy where all firms do average cost pricing that clears both sectoral markets

with zero investment is a SPE.

Lemma 1 In any subgame Γτ (τ ≥ 0), the symmetric action profile {µy′t = (p
¯
y
t ,H¯ t

,I
¯ t

)}t≥τ with

12



I
¯ t

= 0 and (p
¯
y
t ,H¯ t

) determined by

ηXt = N [H
¯ t

+ (F (Kt,H¯ t
, θt))

1−σ(H
¯ t

)σ], (18)

p
¯
y
t

=

(
Xt −NH¯ t

NF (Kt,H¯ t
, θt)

) 1
σ

η, (19)

is a SPE.

By construction, µy′t implies that all firms have zero cash flows in t because revenues just cover

input costs by construction. Note that no firm gains from deviation either in terms of prices and/or

input and investment choices. If a firm raises only its price, it makes negative profits. But if the

firm unilaterally cuts its price, it can only serve the additional market share by increasing inputs.

But this additional cost cannot be recovered because marginal input costs are increasing due to

decreasing returns to scale (see Abbink and Brandts (2008)).

With the credibility of zero firm value for all τ ≥ t+ 1 following a defection from a prescribed

strategy in hand, we can focus on collusive SPE paths in highly concentrated oligopolies where

the (state-contingent) optimal monopoly policies are followed. Now, it is well known that in the

static monopoly model, the price and quantity choice solutions are identical. The following result

establishes that this is true as well in our dynamic general equilibrium setting. We will denote by

µ̃y∗t,p the strategy whereby the monopolist chooses (p̃y∗t , Ĩ
∗
t ) to solve (12) and then H̃∗t is determined

by inverting the production function based on the equilibrium product demand cy∗t (p̃∗t , Z
∗
t ) (where

p̃∗t = (1, p̃y∗t ). Analogously, µ̃y∗t,H denotes the strategy whereby the monopolist chooses (H̃∗t , Ĩ
∗
t ) and

p̃y∗t is then determined by (13)-(14).

Lemma 2 For each t, and any Γt, µ̃
y∗
t,p and µ̃

y∗
t,H result in the same firm value V ∗t (Γt).

Using Lemma 1 and 2, we now characterize the symmetric optimal SPE that enforces the

monopoly (or “collusive”) outcome when the number of firms is suffi ciently small.10

Proposition 2 For any t and given any state Γt, the optimal policies of a monopolist µ̃
y∗
t,H(Γt)

with a capital stock K̃t are determined by the following set of conditions

10 In the following, we recall the notation η ≡ φ/(1− φ), AI(I,K) ≡ 1 + υ(I/K), AK(I,K) ≡ −0.5υ(I/K)2.
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p̃y∗t =

[
Xt − [A(Ĩ∗t , K̃t) + H̃∗t ]

F (K̃t, H̃∗t , θt)

]1/σ

η, (20)

σ + (p̃y∗t )1−σησ

(σ − 1)
= p̃y∗t FH(K̃t, H̃

∗
t , θt), (21)

−∂D̃
y∗
t

∂It
= Et

[
M∗t+1

(
∂D̃y∗

t+1

∂Kt+1
− (1− δ)

∂D̃y∗
t+1

∂It+1

)]
(22)

where D̃y∗
t = p̃y∗t F (K̃t, H̃

∗
t , θt)− [A(Ĩ∗t , K̃t) + H̃∗t ] and

∂D̃y∗
t

∂It
= −AI(Ĩ∗t , K̃t)

[
1 +

(p̃y∗t )1−σησ

σ

]
, (23)

∂D̃y∗
t

∂Kt
= p̃y∗t FK(K̃t, H̃

∗
t , θt)

(
σ − 1

σ

)
−AK(Ĩ∗t , K̃t). (24)

Because of the joint market clearing requirement (see (13)-(14)), the general equilibrium price

(20) has the same form as the competitive price function (16). However, Equations (21)-(24) reflect

the impact of product market power on firms’input and investment choices. Specifically, (21) is the

optimal input choice of a monopolist that incorporates the marginal effect of increased output (due

to higher input choice) on the price. Compared with the optimal input condition in the competitive

market (see (16)), we see the deviation from marginal-cost “pricing” since the price-to-marginal

cost ratio (pmcr)– that is, pytFH(Kt, Ht, θt)– in (21) deviates significantly from 1.

Similarly, (22) is the Euler condition for optimal investment in monopoly that takes into ac-

count its effect on the price. In particular, at the margin, investment has two effects on dividends,

Dy
t . The LHS is the marginal cost of current investment, which is specified in (23). There is a

direct marginal cost, given by the first term, because of the one-to-one reduction in the dividend

for a given increase in investment costs. This is familiar from the existing literature (Love (2003)).

But, because of market power, the monopoly investment policy recognizes the negative effect of its

investment on price, given by the second term in (23).11 Meanwhile, the RHS of (22) represents the

discounted expected marginal value of current investment in a monopoly. The first term represents

the discounted expected marginal effect of higher capital on dividends next period, which is recur-

11We note that this investment Euler condition modifies the corresponding optimality condition in the competitive
benchmark (see (17)) to incorporate the price effect of investment due to market power. In particular, the left hand

side of this condition is equivalent to AI(Ĩ∗t , K̃t)
[
1 +

(p̃
y∗
t )1−σησ

σ

]
, which reflects both the direct investment marginal

cost and indirect marginal cost from the effect on product price.
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sively given by (24). Since
(
σ−1
σ

)
< 1, a comparison with (17) indicates that market power ceteris

paribus reduces future gain from investment because of its negative impact on next period’s price

(through the marginal productivity of capital). Hence, optimal investment is lower with imperfect

competition, other things being equal, and this difference reaches the maximum along the collusive

policy. The second and third terms in (22) are qualitatively similar to that in (17).

Propositions 1 and 2 suggest that product market power will also affect the second moments of

equilibrium investment and material input choice. Along the collusive equilibrium path, oligopolis-

tic firms strategically incorporate the effects of investment and input use on prices, which tends

to “smooth out”the effects of aggregate and industry shocks on optimal factor demands, as men-

tioned already. We now show that the collusive policies in Proposition 2 can be implemented as a

symmetric SPE for suffi ciently high industry concentration.

Proposition 3 There exists N̄ such that if the number of firms N ≤ N̄ , then along the optimal

symmetric SPE, at every Γt, each firm chooses actions µ̄y∗t (Γt) = (p̄y∗t , H̄
∗
t , Ī
∗
t ), which have the

following relation to the optimal monopoly policies actions specified in Proposition 2: p̄y∗t = p̃y∗t ,

H̄∗t =

(
N

ψK−1
ψH

)
H̃∗t , Ī

∗
t = N−1Ĩ∗t . Furthermore, if at any t, any firm deviates from µ̄y∗t (Γt), then

all firms play µy′τ (Γτ ), τ ≥ t+ 1.

With the symmetric firm-level investment and input choices specified in Proposition 3, the

industry output at each Γt is the optimal monopoly output Ỹ ∗t = F (K̃t, H̃
∗
t , θt), and the industry

capital stock next period K̃t+1 = K̃t(1 − δ) + Ĩ∗t is also the optimal choice by a monopolist. But

for
{
µ̄y∗t
}∞
t=0

to be an SPE, it must be true that for each t and any Γt, no firm should strictly

benefit from deviating. While the details are provided in the Appendix, it is useful to present the

basic argument here. Because µ̄y∗t (Γt) generates the maximal or monopoly profits at t, the optimal

deviation strategy is to charge a price p̄y∗t − ε for some ε arbitrarily small, serve the entire market

by using the requisite inputs. Since the capital stock of each firm is Kt, the inputs required to

produce the equilibrium market output Ỹ ∗t are (using a straightforward inversion of the production

function)

H̄
′
t(Ỹ

∗
t ; (Kt, θt)) =

(
Ỹ ∗t

θt(Kt)ψK

) 1
ψH

. (25)

Because it is common knowledge that deviation will be followed by zero economic profits in

the future, optimal deviation requires investment to be set to zero. Thus, the current payoffs (or

dividends) from the optimal deviation strategy are no greater than D̄y′

t = p̄y∗t Ỹ
∗
t − H̄ ′t. Therefore,
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no firm gains from deviation if

(
Zt
Pt

)−γ ( 1

Pt

)
D̄y′

t ≤ V̄ ∗t (Γt), (26)

where the RHS of (26) represents the value loss from punishment following the deviation. Clearly,

(26) holds strictly when N = 1. But D̄y′

t can be shown to be increasing in N and hence there exists

some N(Γt) such that deviations are not optimal for N ≤ N(Γt). The statement of the Proposition

then follows by defining N̄ as the infimum of N(Γt) over the space of feasible states. Conversely,

the collusive path is not a SPE for all states if N is exceeds N̄ . We will identify this case with

moderately concentrated oligopolies, and consider it next.

4.2 Moderately Concentrated Oligopolies

For empirical testing, we need a focal SPE path for low concentration oligopolies that can be

checked against deviations. A natural candidate is a symmetric dynamic Cournot-type equilibrium

path where firms optimally choose their material inputs and investment, taking as given the input

and investment choices of rival firms. Our next result specifies this SPE path.

Proposition 4 There exists N∗ > N̄ such that if the number of firms N̄ < N ≤ N∗, then along

the optimal symmetric SPE, at each Γt, all firms in the industry choose actions µ
y∗
t = (py∗t , H

∗
t , I
∗
t )

determined by the following set of conditions.

py∗t =

(
W ∗t
NY ∗t

)1/σ

η, (27)

Nσ + (py∗t )1−σησ

(Nσ − 1)
= py∗t FH(Kt, H

∗
t , θt), (28)

−∂D
y∗
t

∂It
= Et

[
M∗t+1

(
∂Dy∗

t+1

∂Kt+1
− (1− δ)

∂Dy∗
t+1

∂It+1

)]
, (29)

where Dy∗
t = py∗t F (Kt, H

∗
t , θt)− (H∗t +A(I∗t ,Kt)) and

∂Dy∗
t

∂It
= −AI(I∗t ,Kt)

[
1 +

(py∗t )1−σησ

Nσ

]
, (30)

∂Dy∗
t

∂Kt
= py∗t FK(Kt, H

∗
t , θt)

(Nσ − 1)

Nσ
−AK(I∗t ,Kt). (31)

Finally, if at any t, any firm deviates from µy∗t (Γt), then all firms utilize µ
y′
τ (Γτ ), τ ≥ t+ 1.
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Since the monopoly outcome is also characterized through the optimal quantity choice problem,

the Cournot equilibrium path bears functional similarity to the collusive equilibrium path char-

acterized in Proposition 3. Intuitively, the strategic price effect of input and investment choices

should moderate with multiple firms and this is evident in (28)-(31). Indeed, the strategic effect

dissipates asymptotically to zero as the number of firms gets unboundedly large.

4.3 Procyclical and Countercyclical Markup Ratios

We examine cyclical properties of equilibrium price-cost markup in the oligopolistic equilibria de-

scribed above because this issue attracts much attention in the literature. It follows from (21) or

(28) that in equilibrium pmcrt is positively related to (p̄y∗t )1−σ (or (py∗t )1−σ).12 Since σ > 1, pmcrt

and pyt have an opposite sign in terms of their cyclical properties. More precisely, we can show that

∂pmcrt
∂Xt

∝W ∗t FH(Kt, H
∗
t , θt)− Yt

[
1−N ∂(A(I∗t ,Kt) +H∗t )

∂Xt

]
. (32)

Since the first term in (32) is positive, markups are procyclical if the industry investment and

input demands are suffi ciently sensitive to the aggregate shock, that is, if the term in the square

parenthesis is negative.

More generally, marginal productivity of inputs will be countercyclical if optimal input demand

is procyclical, which is the empirical observation. Hence, the markup ratio will be countercylical

if the industry factor investment and input demands are relatively insensitive to the aggregate

shocks. And, as we noted above, along the collusive equilibrium path investment and input demand

will be relatively insensitive to aggregate shocks because of the strategic price effect. Hence, the

prediction from our model is that countercyclical markups will be more likely in highly concentrated

oligopolies. Conversely, markup ratios are more likely to be procyclical in moderately concentrated

industries.

4.4 Asset Returns

As mentioned already, the SDF in this model is more complex compared with the benchmark

consumption CAPM (CCAPM) because it involves the growth rate of the optimal consumption

bundle C(c∗t ), which in equilibrium equals the product of the growth of aggregate income Zt+1
Zt

12Because the collusive and Cournot equilibrium paths have a similar functional structure, it is notationally con-
venient to genericall represent the equilibrium with the superscript “∗.”
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(raised to the power −γ) and the growth of the aggregate price index Pt+1
Pt

(raised to the power

(γ − 1)). As seen in (10) and Proposition 3, these quantities are affected by both the aggregate

shock (Xt) and the industry shock (θt), along with the ES (σ), the production function parameters,

and the market structure (N). We now examine the implications of the model on the equity risk

premia and the maximal Sharpe ratio.

5 Equilibrium Computations

Even though X and θ are conditionally lognormal, the dividend Dy∗ and the pricing kernel M∗ are

not lognormal in equilibrium. Note that (from (27))

Dy∗
t = N−1/ση (W ∗t )1/σ [F (K∗t , H

∗
t , θt)]

−1/σ −H∗t −A(I∗t ,Kt), (33)

which is generally not lognormally distributed (conditional on Γt). It follows that CI’s income Z∗

and the aggregate price index P ∗ are also not conditionally lognormal, and hence neither is the

(pricing kernel)M∗. This complicates substantially the analysis of the equilibrium. For tractability,

we follow first the standard approach (Woodford (1986)) and analyze the equilibrium by computing

its log-linearized approximation around the steady state where (i) the production in sector x and the

technology levels in sector y are non-stochastic with Xt = E[X](≡ X̄) and θt = E[θ] (≡ θ̄) (for each

t) and (ii) the equilibrium quantities in sector y are time-invariant. The details of the computation

procedure outlined below are given in Appendix B, and the existence and characterization of the

steady state (for the collusive and Cournot equilibria) are given in Appendix C. Subsequently, we

also check the robustness of our results by computing global solutions using projection methods.

5.1 Real Variables

Note that for any time index τ , we can write the firm’s investment Iτ as the first-order forward

equation in capital stocks,

Iτ = Kτ+1 − (1− δ)Kτ . (34)

Hence, by replacing It, It+1 with the appropriate forward equation we can represent the system

of equilibrium conditions in Propositions 2 or 4 in terms of the vector of costate and state vari-

ables Ωt = (Kt+2,Kt+1,Kt, Ht+1, Ht, Xt+1, Xt, θt+1, θt). For example, the equilibrium investment
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condition (29) in Proposition 4 can be written in terms of Ωt as Et[ΦI(Ωt)] = 0 where

ΦI(Ωt) ≡ −Z−γt P γ−1
t

∂Dy
t

∂It
+ β

[
Z−γt+1P

γ−1
t+1

(
∂Dy

t+1

∂Kt+1
− (1− δ)

∂Dy
t+1

∂It+1

)]
, (35)

(and It+1 = Kt+2 − (1 − δ)Kt+1 etc.). Similarly the optimality condition for material inputs (28)

can be written Et[ΦH(Ωt)] = 0 where

ΦH(Ωt) ≡ −
(

1 +
(pyt )

1−σησ

Nσ

)
+ pytψHθt+1(Kt+1)ψK (Ht+1)ψH−1

[
1− 1

Nσ

]
.

And (35) and (36) use

pyt (Ωt) =

(
Xt −N(A(It,Kt), Ht)

Nθt(Kt)ψK (Ht)ψH

)1/σ

η. (36)

One then solves for the equilibrium policies by using (36) and log-linearizing ΦI(Ωt), ΦH(Ωt)

around their steady state values of Ω (denoted Ω̄) with a first-order Taylor Series expansion. Using

the standard notation, the log deviation around the steady state quantity for any variable wt is

denoted by ŵt ≡ ln(wtw̄ ) ' wt−w̄
w̄ (for small deviations), and the log-deviation form of Ω will be

labeled Ω̂.13 Then let πt = [K̂t+1 Ĥt]. The solution to the log-linearized version of the model takes

the form

πt = Uπt−1 + UXX̂t + Uθθ̂t, (37)

where the square matrix U = [vjs], j = K,H, s = 1, 2, and the vectors UX , Uθ (with elements ujX

and ujθ, j = K,H) are determined by the solution to log-linearized versions of the Euler conditions.

5.2 Asset Returns

Denoting the logarithms of variables by small letters, the equilibrium asset return condition 1 =

Et [Mt+1Rt+1] can be written as

1 = Et
[
exp

(
mt+1 + rjt+1

)]
, j ∈ {x, y, f}. (38)

13We adopt the usual notation in the real business cycle literature for steady state variables (for example, K̄) for
expositional convenience. The discussion will be explicit in distinguishing this from the notation for the collusive
equilibrium path ((for example, K̄∗).
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In this model, the log of the pricing kernel is

mt+1 = −γgz,t+1 + (γ − 1)gp,t+1, (39)

where gz,t+1 and gp,t+1 are the log changes in the aggregate income and the price index, respectively,

between t and t + 1. As mentioned already, mt+1 and equity returns r
j
t+1 (j = x, y) are not

generally conditionally joint normal. Since mt+1 and r
j
t+1 are also functions of Ωt, we take the

first-order Taylor series approximation around their steady state values. Because log-linearized

approximations of the pricing kernel and the equity returns will be derived around the steady state

general equilibrium in the real economy and, hence, will also be functions of Ωt. Nevertheless, the

resultant approximations are joint normal and hence the expected ERP in the two sectors (x and

y) can be computed in the standard fashion.

In the steady state, M̄ = β. Hence, log-linearization of the pricing kernel gives mt+1 ' log β +

m̂t+1, for

m̂t+1 = a · Ω̂t + ωmxε
X
t+1 + ωmθε

θ
t+1, (40)

where the coeffi cient vector a is determined by taking the first-order Taylor approximation of

mt+1(Ωt+1) around the steady state Ω̄. Note that the coeffi cient for the shocks ωm = (ωmX , ωmθ)

are time-invariant because shocks to the logXt and log θt process are additive (see (4)) with a

stationary variance-covariance matrix Λ. In fact, we can use the equilibrium solution (37) to express

a ·Ω̂t in (40) in terms of the log-deviation form of the state variable vector Γ̂t = (K̂t, X̂t, θ̂t), namely,

ã·Γ̂t(see Appendix B). Thenmt+1 is conditionally normal with the mean (log β+ã·Γ̂t) and variance

ωmΛωm. It follows immediately that the equilibrium risk-free rate is

rft+1 = −(log β + ã · Γ̂t)−
ωmΛωm

2
. (41)

To calculate the equilibrium equity returns, we utilize the standard log-linearization of re-

turns in the literature (Campbell and Shiller (1988)). In the situation at hand, the steady state

dividend-price ratio for equities (in both sectors) is D̄
j

S̄j
= 1−β

β and log-linearization yields the return

approximation (see Appendix B)

rjt+1 ' −[β log β + (1− β) log (1− β)] + βξjt+1 − ξ
j
t + gjd,t+1, (42)
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where gjd,t+1 ≡ d
j
t+1−d

j
t is the log growth rate of dividends between t and t+1 and ξjt is the log stock

price-dividend ratio (that is, log(S̄jt /D̄
j
t )) at t of equity j = x, y. But here– unlike Campbell and

Shiller (1988)– the evolution of the log price-dividend ratio and dividend growth is determined in

general equilibrium. As noted above, the equilibrium dividends in sector y (Dy∗) will not generally

be conditionally lognormal,14 but ĝjd,t+1 will be a function of the costate and state variables. Hence,

log-linearization yields

ĝjd,t+1 ' b·Γ̂t + ωydxε
X
t+1 + ωymθε

θ
t+1, (43)

and it follows from (38) that log-linearization of ξjt takes the form ξ̂
j

t ' e
j
0 + ej ·Γ̂t. The coeffi cients

of ĝjd,t+1 and ξ̂
j

t are computed through the equilibrium condition (38). Inserting these relationships

in (42) yields

rjt+1 = vj0 − νj · Γ̂t + ωjrxε
x
t+1 + ωjrθε

θ
t+1, j = x, y, (44)

With these linearized relationships in hand, mt+1 and r
j
t+1 are jointly normal, conditional on

Γ̂t. Hence, using the properties of exponential functions of joint normal variables, we obtain in the

usual fashion (for j = x, y) :

Et[rjt+1 − r
f
t+1] = −Covt(mt+1, r

j
t+1)−

Var(rjt+1)

2
. (45)

Note that Covt(mt+1, r
j
t+1) = ωmΛωjr

2 and
Var(rjt+1)

2 = −ω
j
rΛω

j
r

2 (where ωjr = (ωjrx, ω
j
rθ) and ωm =

(ωmX , ωmθ)) are time-invariant, conditional on Γ̂t, Hence, the unconditional ERP are time-invariant

and analogously the conditional volatility of the ERP and the Sharpe Ratio are also time-invariant.

The time-invariance of the conditional ERP and the Sharpe Ratio arises here because of stationary

oligopolistic policies along the equilibrium path (see Propositions 2 and 4) and the assumption

of additive output shocks (in sector x) and technology shocks (in sector y) with time-invariant

moments.

In a log-linear framework, with the joint (conditional) log-normality of mt and r
j
t , one can com-

pare the equilibrium equity premia and Sharpe ratios in this model with the standard single good

asset pricing models that have been extensively studied with similar distributional assumptions.

This analysis will also be useful in clarifying the relation of industry competition with the mean and

volatility of the ERP. In the standard way, by using (39) in (45) we can also write the equilibrium

14Of course, dxt = logXt, and is conditionally normal.
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equity premium as

Et[rjt+1 − r
f
t+1] = γCovt(gz,t+1, r

j
t+1)− (γ − 1)Covt(gp,t+1, r

j
t+1)−

Var(rjt+1)

2
, j = x, y. (46)

Equation (46) indicates that the risk premium is positively related to the covariance of the asset

return with log change in aggregate income Z, and negatively related (for γ > 1) to the covariance

of asset return with the log change in the aggregate price index P. In terms of empirical magnitudes,

gz,t+1 will be largely driven by shocks to the aggregate output (x), which is similar to single good

models. Nevertheless, the percentage change in industry dividends gyd,t+1 will affect gz,t+1 (as long as

the industry is not infinitesimal compared with the aggregate output). Since industry productivity

shocks have a first order impact on gyd,t+1, it follows that the θt process will also influence the first

term. Turning to the second term, from the definition of P (see (10)), gp,t+1 is determined by log

changes in the industry price, which is driven by shocks to both aggregate output and industry

productivity, along with industry concentration.

We can also derive the Hansen-Jagannathan (1991) upper bound on the Sharpe ratios for assets

in the model. Using the fact that Rf = 1/E[m] is close to 1, we have

SRmax =

√
Var(m)

E[m]
∝
√
γ2Var(gz) + (γ − 1)2Var(gp)− 2γ(γ − 1)Cov(gz, gp). (47)

Hence, the maximal Sharpe ratio depends on the variance of (non-linear functions of) log changes

in X and θ and the covariance between them. In comparison, the maximal Sharpe ratio in the

CCAPM is approximately γVol(gC). As is well known, the low variability in per capita consumption

growth in the data restricts SRmax to be quite low for the reasonable range of risk aversion. But

as we mentioned already, in our multi-good model SRmax is based on the volatility of the (CES)

consumption bundle and, in equilibrium, this volatility is driven by the volatilities of aggregate

income and, industry productivity, mediated by the industry market structure. This equilibrium

relation will be very useful in our empirical analysis below. In sum, (47) clarifies conceptually the

difference in the maximal Sharpe ratio between our model and the CCAPM even when assuming

time-additive power expected utility.

We can summarize the model’s theoretical predictions on effects of industry competition on asset

returns as follows. Based on the strategic smoothing of optimal investment and output, and hence

equity payouts, along oligopolistic equilibrium paths noted in Propositions 2 and 4, it follows from
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(42)-(44) that Var(ry) is positively related to industry competition. From Equation (46), ceteris

paribus, this channel will lead to a negative relation of expected ERP and industry competition.

However, the net effects of industry competition on the first two terms in (46)– that represent the

interaction of imperfect competition with the SDF– are ambiguous. Thus, the overall relation of

competition with expected ERP (and hence industry Sharpe ratio) is ambiguous in our model.

6 Empirical Tests

We analyze the model empirically through calibrated, numerical simulations of the log-linearized

approximation of the equilibrium. Subsequently, we compute global solutions for robustness.

6.1 Empirical Measures and Data

For empirical tests of the model, we need industry data on capital, investment, material inputs,

sales, and productivity. We take these data from the NBER-CES manufacturing database. The

latest data available are for 1958-2011 (annually). We empirically identify highly concentrated

industries as those where more than seventy percent of the output is generated by the largest four

firms. The data on the proportion of industry output accounted for by the largest four and eight

firms are available through the US Census Bureau– at the six-digit NAICS level– for 1997, 2002,

and 2007. Hence, we have to hold concentration at the 1997 levels for years prior to 1997. To

maintain a uniform classification of industries for the entire sample period, we use the industry

concentration data from 1997.15

We have a total of 473 unique six-digit industries. We require 20 firms in a given industry,

which drops the number of industries to 456. Of these, 31 industries (6.8% of the total) satisfy

our definition of highly concentrated oligopolies– that is, where the top 4 firms generate more than

70% of the output. Table 1 provides the industry codes and names of these oligopolistic industries.

This procedure identifies moderately concentrated industries as the remaining group of 425 unique

industries (out of the total admissible sample of 456 industries). We then measure the output

of the two industry groups– say, Yh for highly concentrated industries and Ym for moderately

concentrated industries– as the sum of value of shipments of component industries, obtained from

15Changing the industry identification in 2002 and 2007 leads to significant in-sample data “discontinuities” and
therefore muddles inference. Namely, are the time-variations in results due to changes in the competitive environment
of the oligopolistic sector or are they due to changes in the composition of the sector?.
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the NBER-CES database. In a similar fashion, for both industry groups, we obtain the time-series

of investments (I), material costs (H), capital (K), and total 4-factor productivity (θ) from the

database.16

Consistent with our theoretical framework, for each concentration group, we measure the output

(X) of the non-oligopolistic “aggregate”sector (x) as the difference between the aggregate output of

all sectors obtained from the US Bureau of Economic Affairs (BEA) and the output of the group.17

This procedure thus results in two time series for X, namely, Xh = (Aggregate output −Yh) and

Xm = (Aggregate output −Ym). For all of these quantities, the data also provides information

about the relevant price deflator in 1997 dollars. We use these deflators to convert the values in

real terms.

To compute the financial variables of the model, we use annual CRSP value-weighted returns

and the annual risk-free rate obtained from Kenneth French’s website (the inflation data to derive

the real rate is obtained from the US Bureau of Labor Statistics). We compute the sectoral financial

variables as follows. We first map the 1997 NAICS codes to 1987 Standard Industry Classification

(SIC) codes. We then use four-digit SIC codes to compute the portfolio returns. Following the

standard procedure in the literature, we compute the value-weighted index monthly returns of all

firms in all industries classified as oligopolies. Using these returns, we obtain the annualized ERP,

annualized equity premium volatility, and the Sharpe ratio for the oligopolistic sector (y). In a

similar fashion, we obtain the financial variables for the aggregate sector (x) using the annual

CRSP value-weighted index returns as the proxy.

6.2 Parameterization

Using the data described above, we compute the log-linearized version of the model (described in

Section 5 and Appendix B) by calibrating the parameters separately for the moderately and highly

concentration industry groups. We now describe the calibration procedures for the product and

asset markets related variables.

16The four factors are capital, production worker hours, non-prduction worker hours, and material inputs.
17To be consistent with the definition of sector x in our model,we use the aggregate output in all sectors rather

than the Gross Domestic Product (GDP).
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6.2.1 Product Market Variables

For each concentration industry group, the estimates from the logarithmic regression (based on the

production function (1)) provide the values for the production parameters ψK and ψH :

lnY = ψK lnK + ψH lnH + ln θ + ε. (48)

The elements of the variance-covariance matrix of the shocks Xt and θt are obtained from the

data.18 The values for the autocorrelation coeffi cients ρj , j = X, θ are also estimated from the data

using the first-order autocorrelations.

It is well known that because different types of capital– equipment, structures, and intellectual

property– depreciate at different rates, estimating the empirical depreciation rates is challenging.

The literature notes that depreciation rates have been trending upwards because of the increased use

of computer equipment and software since this lowers the useful life of capital stock (Oliner (1989)).

Moreover, the depreciation rates on such equipment themselves have been rising. For example,

Gomme and Rupert (2007) mention that the annual depreciation rates of computer equipment

have risen from 15% in 1960-1980 to 40% in 1990s. And they give estimates for depreciation rates

of software in the range of 50%. Meanwhile, Epstein and Denny (1980) estimate the depreciation

rate of physical capital (in the first part of our sample-period) to be about 13%. We use an annual

depreciation rate of 25%. Untabulated results show that the results are quite robust to variations in

the value of depreciation rate parameter (δ). Meanwhile, there is a wide range of estimates available

in the literature regarding the capital investment (or adjustment) cost parameter υ. Using US plant

level data, Cooper and Haltiwanger (2006) report υ of around 10% when estimating a strictly convex

adjustment cost function, as used in our model. Hence, we use υ = 0.1 for our simulations.

To calibrate the equilibrium markup ratio pmcr, we turn to the long-standing empirical litera-

ture that estimates markups in manufacturing industries.19 Domowitz et al. (1988) estimate pmcr

for 19 manufacturing industries, with the range being 1.3 to 1.7 for 17 of these industries (the

estimates for the other two are larger). Morrison (1993) estimates the markup ratio to be between

1.2 and 1.4 for 16 out 18 manufacturing industries. Meanwhile, De Loecker et al. (2018) provide

18The covariance between percent variability in X and θ for both industry groups is very low in the data and is
hence set to zero in the simulations.
19 In theory, we could estimate pmcr by multiplying the coeffi cient ψH from (48) with the average ratio of revenues

to material costs input costs (see De Leocker et al. (2018)). But the empirical literature on markups uses data at the
firm level on prices and costs in addition to detailed productivity data (Hall (2018)). Hence, we calibrate the markup
ratio based on the literature.
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evidence of rising markup ratios over time and present estimates of 2.3 for the 90th percentile in

manufacturing industries during 1980-2016. On the other hand, Hall (2018) puts an upper bound

of 1.5 on markup ratios (with the average in manufacturing being 1.4). Similar to Rotemberg and

Woodford (1992), we adopt a conservative approach to the selection of the markup ratios to show

the significant influence of product market power on real and financial variables. Specifically, for

the highly concentrated group we use a markup ratio of 1.5, while for the moderately concentrated

group we use the ratio 1.2.

6.2.2 Consumer Preferences Parameters

We set the discount rate β as (1.03)−1 = 0.97, which implies a three percent annual discount, which

is consistent with the literature (Horvath (1999)). The ES σ and the consumption weight of the

oligopolistic sector φ are parameters of unobservable utility function of the representative consumer

and are, therefore, calibrated internally by matching the target pmcr values discussed above. There

is still no consensus on the appropriate parameterization of the risk aversion coeffi cient γ. The

literature (Mehra and Prescott (1985), Bansal and Yaron (2004)) considers a reasonable upper

bound on RRA to be about 10. We take γ = 10 for our calculations, which facilitates comparison

with some of the existing literature. But for sensitivity analysis, we also analyze the model for

γ = 7.5.

7 Results

Table 2 summarizes the parameters utilized in our analysis.20 For the reasons mentioned earlier,

we compare the equilibrium oligopoly outcomes with those in the benchmark perfectly competitive

industry.21 We present results for moderately concentrated industries first because they serve as a

useful comparison benchmark for the collusive outcomes in the highly concentrated industries.

20The first two moments of the aggregate output (X̄) are different between the two industry groups because, as
mentioned above, the theoretically consistent notion of X in our analysis is the net aggregate output. Meanwhile,
the first two moments of sectoral productivity (θ) are slightly different, but the autocorrelation estimated coeffi cient
ρθ here is significantly higher than in the case of the moderately concentrated industries.
21For computing the benchmark industry competitive outcomes, we retain the parameterization used for the

oligopolistic industry but force firms to follow the competitive equilibrium policies of Proposition 1 in the steady
state and along the simulation path. It turns out that the number of competitive firms does not materially affect
the second moments of product market variables, and the ERP and its volatility– variables that are the focus of our
analysis. The competitive benchmark results reported below are based on 15 firms.
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7.1 Moderately Concentrated Industries

We compute the equilibrium on an annual frequency (to match the data). The following results

are based on 5000 replications of the equilibrium paths of a 54 year model economy (1958-2011).

7.1.1 Product Market Variables

Table 3 shows the equilibrium computations for product market variables for the dynamic Cournot

analysis when N = 15.22 The volatility of annual log changes in X in the data (when sector y is

represented by moderately concentrated manufacturing industries) is 3.12%, which is slightly lower

than the calibration given in recent macroeconomic models (He and Krishnamurthy (2019)).23 As

seen in Table 2, the volatility of the aggregate output and industry productivity shocks in the

simulations are close to the data. The mean pmcr (in Column 2) matches the target markup ratios

of 1.2, while the endogenous pmcr of the competitive benchmark is fixed at 1.

Because the model does not have a growth component in productivity and computations are in

terms of deviation from the steady state, we report the second moments of the control variables.

We focus attention first on the baseline risk aversion of 10. The investment, material input and

output volatilities along the oligopolistic equilibrium path are a reasonable fit with the data. But

compared to the oligopolistic equilibrium path, all three variables are significantly more volatile in

the competitive benchmark, especially investment. This is consistent with the intuition from the

model that the strategic price effects of market power on optimal input and investment demands

will smooth out the effects of aggregate output and industry productivity shocks. Overall, with

respect to volatilities of endogenous real variables, the fit of the oligopolistic model is better than

the competitive benchmark.

Consistent with the data, the model generates pro-cyclical investment and material input de-

mands with respect to aggregate output and industry productivity. And the correlation of log

changes in investment with the percent changes net aggregate output (X) matches the data quite

closely. However, the model significantly overstates the correlation of log changes in investment

with respect to log changes in sectoral productivity shocks. But the corresponding correlation

with respect to percent changes in material inputs is a better match with the data compared with

22The steady state values of capital stock (K̄) and material inputs (H̄) are computed from the steady state
optimality conditions (see Appendix C), and based on the parameterization in Table 2 the collusive path is not a
SPE in the stady state if the number of firms is 15.
23 In He and Krishnamurthy (2019), the simulated volatility of annual output growth is 3.6%.
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the competitive benchmark. Meanwhile, using the De Loecker et al. (2018) measure of pmcr,

the markup ratio is procyclical in our sample of moderately concentrated industries, which is also

consistent with our theoretical framework (as noted in Section 4.3), but is much lower than in the

data.24

Finally, lower risk aversion (γ = 7.5) does not have significant effects on the product market

variables. But risk aversion will significantly affect the asset market variables that we discuss next.

7.1.2 Asset Markets Variables

In Table 4, we present the equilibrium computations with respect to the asset markets variables. As

above, we focus discussion first to the baseline value of risk aversion (that is, γ = 10). Consistent

with the theoretical prediction, the volatility of excess returns in oligopoly is significantly lower

compared to the competitive benchmark. This supports the strategic smoothing effect of prod-

uct market power noted in the foregoing analysis. And while the effect of industry competition

on expected ERP is theoretically ambiguous, the results indicate a positive relationship between

competition and expected returns.

We also note that the unconditional expected ERP generated by the model for oligopoly

(2.7%)– and a fortiori for the competitive benchmark (4%)– is lower than the data but signifi-

cantly higher than the market ERP. Indeed, the expected ERP from the parameterization at hand

is relatively high compared to benchmark consumption CAPM models with similar “classical”as-

sumptions on power utility, Markov shocks, and absence of security market frictions.25 In a related

vein, both the industry and market Sharpe ratios are also higher than benchmark models with

time-additive power expected utility (Lettau and Uhlig (2002)). We also note that the uncondi-

tional volatility of the industry ERP is 11.4%, which is much closer to the data compared with

benchmark single-good models (as indicated by volatility of the market excess returns), and this is

related to the excess return volatility puzzle (Shiller (1981)).

The economic mechanism underlying the relatively high industry ERP, Sharpe ratios, and return

volatility (seen in Table 4) is indicated in Section 5.2. In the multi-good model at hand, the volatility

24Nekarda and Ramey (2010) also report procyclical markup ratios. We will return to this issue after examining
the results for highly concentrated industries in the next section.
25As a benchmark, Jermann (1998) reports an aggregate ERP of 0.7% without habit formation, but including

capital adjustment costs (as is also the case in our model). As another benchmark, Bansal and Yaron (2004) obtain
an (aggregate) ERP of about 1.2% when γ = 10, the intertemporal elasticity of substitution (IES) is 0.5, and there
are non-fluctuating (or homoscedastic) long-run risks.
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of the SDF is driven by the percent variability of the equilibrium consumption bundle C∗t = C(c∗t )

(see (8)). But in equilibrium C∗t = Zt
Pt
and hence, as mentioned already, the normalized variability

of the SDF (see (47)) is positively related to the volatility and comovements of aggregate income

and the price index. In terms of empirical magnitudes, the annual volatility of real per capita

consumption in the US during our sample period is about 1.3%, while the volatility of X– the

principal driver of Z– is 3.1%. Of course, the volatility of the price index P is complex, but this is

computed in our simulations. Indeed, the mean volatility of the equilibrium C∗t (for the moderately

concentrated sample of industries) is 3.2%. Consistent with this, the model-generated risk-free rate

is about 3%, which is significantly lower than those generated by benchmark single-consumption

good models (Weil (1989)).

Stepping outside the model, the general point here is that the volatility of consumption bundles

in multi-good models can be significantly higher than the per capital overall consumption. As noted

above, in our sample period the volatility of annual log changes in real per capita consumption (using

the BEA data) is 1.3%. But during the same period, BEA data indicate that the volatility of annual

log changes in real per capita durable goods consumption is over 5% while that of goods is 3%.26 Of

course, this intuition applies independent of the industry market structure; our analysis indicates

that effective industry competition significantly impacts the effect of this volatility on asset prices.

Finally, the computations for the case γ = 7.5 show lower ERP and its volatility for both the

oligopoly and the market (compared with the baseline risk aversion). This is consistent with the

standard intuition due to reduced value of consumption smoothing by the representative CI. And

in a similar vein, the Sharpe ratios are also lower.

7.2 Highly Concentrated Industries

As earlier, the following results are based on 5000 replications of the equilibrium paths of a 54 year

model economy (1958-2011).

26As we mentioned above, the role of product differentiation in helping explain the equity premium puzzle is also
noted in the literature in a different setting. Ait-Sahalia et al. (2004) differentiate between the consumption of
luxury and basic goods. They find that luxury good consumption covaries much more with equity returns compared
with aggregate (or basic) goods consumption so that the risk aversion required to match the data is lower than in
single-goods settings.
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7.2.1 Product Market Variables

In Table 5, we present the equilibrium computations for product market variables for the dynamic

collusive outcome path depicted in Proposition 3. The equilibrium investment, material input, and

output along the oligopolistic equilibrium path are smoother than in the benchmark competitive

outcome path.27 This is similar to the results in Table 3 and is another manifestation of the

strategic effects of product market power on optimal input and investment policies. The investment

volatility from the model is actually close to the data, albeit somewhat higher. The volatilities of

material input and output are lower than that in the data, as in Table 3. Consistent with the

data, the model generates procyclical investment and input policies with respect to both aggregate

and sectoral business cycles. In particular, the correlation of percent changes in inputs with the

aggregate and sectorial shocks generated by the model are relatively close to the data.

Notably, the collusive outcome path results in countercyclical price-cost margins with respect

to the aggregate business cycle, although the magnitude is lower than in the data. Along with the

procyclical markups observed for moderately concentrated industries above, this result is consistent

with the theoretical predictions of our model (see Section 4.3). The countercyclical collusive markup

ratios are also consistent with subgame perfect collusion considered by Rotemberg and Saloner

(1986) and Rotemberg and Woodford (1992).

7.2.2 Asset Market Variables

Table 6 shows equilibrium asset markets’variables for the collusive equilibrium path. The volatility

of the industry ERP along the oligopolistic equilibrium path is significantly lower compared with

the competitive benchmark industry, similar to the results for moderately concentrated industries

(Table 4). Meanwhile, the expected ERP in the highly concentrated oligopoly is lower than the

competitive benchmark industry. Along with the results in Table 4, these observations indicate a

positive relation of competition and ERP.

But the equilibrium ERP for highly concentrated oligopolies is still higher than those reported

for analogous risk aversion and power utility preferences (without habit formation) in single good

production-based asset pricing model (Jermann (1998)).28 And since the industry and market

27The benchmark competitive outcomes here are computed based on the assumption of an industry with 8 (com-
petitive) firms, to maintain consistency with a treasonable number of firms in highly concentrated industries.
28With a risk aversion of 10, no habit formation, but in the presence of adjustment costs, Jermann (1998) reports

an expected ERP of about 0.7%, which is less than one-half of the 1.49% generated by our model for the sample of

30



expected ERP are close in this case, the same observation applies for the aggregate equity premium

as well.

Notably, the industry Sharpe ratio (0.27) almost exactly matches the (industry) Sharpe ratio in

the data; it is also similar to the Sharpe ratio of the market (which is lower than that in the data).

In contrast, the industry Sharpe ratio for moderately concentrated industries (in Table 4) was

significantly lower than the market Sharpe ratio. Thus, there is a positive relation of equilibrium

Sharpe ratios to product market power. This view is reinforced by the relatively low Sharpe ratio

of the competitive benchmark (0.20), which is higher than the Sharpe ratio for the competitive

benchmark in moderately concentrated industries. We also continue to find that the equilibrium

risk free rate is lower than that in benchmark CCAPM models.

7.3 Impulse Response Functions

The theoretical and empirical analysis above indicates that oligopolistic firms tend to “smooth

out”responses to the aggregate wealth and industry productivity shocks. To examine this further,

Figures 1 and 2 present impulse response functions (IRFs) of log investment, log dividends, log sales,

and log SDF of one standard deviation shocks to Xt and θt for highly concentrated oligopolies.29

For comparison, we also display the IRFs for the competitive benchmark. Specifically, starting

from the empirical means of these shocks X̄ and θ̄ (the proxies for their steady state values) at

the initial point, we generate two simulations that differ only by one standard deviation of the

respective shocks at t = 1 (see Petrosky-Nadeau and Zhang (2017) and Garlappi and Song (2017)).

Turning, first, to capital investment, exogenous increases in aggregate wealth and industry

productivity generate an immediate positive response, which is consistent with average procyclical

behavior of investment seen in Table 6. This effect declines over time, but it is clearly persistent.

However, for both kinds of shocks, the immediate impulse response and its subsequent decline is

much sharper in the competitive benchmark industry relative to the oligopolistic market structure.

This supports the view that oligopolies tend to “smooth out”the effects of aggregate and industry

shocks on investment.

Meanwhile, the effect of the positive shocks on sales (pyY ) follows a hump-shaped pattern,

that is, the difference between the sales level in the “shocked”economy and the baseline economy

highly concentrated industries.
29To economize on space, we do not present the analogous analysis for the sample of moderately concentrated

industries, which is qualitatively similar to the one presented in Figures 1 and 2.
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continues to rise up to a maximum (roughly around 4 or 5 years after the initial shock) and then

declines in a persistent manner. But here again, the slope of the initial ascent and the subsequent

decline is much sharper in competitive industry relative to oligopoly. We also notice that aggregate

wealth has a greater effect in magnitude, relative to industry shocks, which is not surprising given

the relative calibration of these shocks. Turning to dividends, recall that Dy
t = pyt Yt−Ht−A(It,Kt);

hence, we expect their IRF to reflect the features of the IRFs of both investment and sales. And

this is what we observe in Figures 1 and 2: The IRF for dividends in oligopolies tend to follow the

IRF pattern of investment, but for the competitive benchmark firms we see the hump-shaped IRF

pattern of sales. This difference (between oligopolies and competitive firms) possibly reflects the

closer link between strategic investment and dividends in oligopolies relative to competitive firms.

Finally, we analyze the IRFs of log SDF to aggregate wealth and industry productivity shocks.

Theoretically, the effect of aggregate wealth shocks on the SDF is ambiguous, as can be seen from

(39), because both the growth rate of aggregate income and the price index are positively related

to X. Empirically, we see in Figure 1 that increases in aggregate wealth generate a sharp increase

in log SDF and this effect then declines almost linearly over time. Consistent with our theoretical

assumption, market structure (or industry market power) do not have a significant impact on the

SDF and similarly for the effects of industry productivity shocks.

8 Global Solutions

As we pointed out already, because of the endogenous industry demand function and asset pricing

kernel, the general equilibrium consumption, dividends and asset returns in our model are not

conditionally lognormal. While the log-linear solution approach used above is convenient and allows

a ready comparison with existing macrofinance literature, there is a concern that it may generate

errors in light of the nonlinearities in the model, the parameterization of γ = 10, and high persistence

in the aggregate output (X) series (e.g., Pohl et al. (2018)). For robustness we, therefore, also

compute global solutions of the model’s equilibrium using projection methods, that is, polynomial

approximations of unknown policy and asset pricing functions (e.g., Judd (1996)).

Because of the Cobb-Douglas production function and the CES utility function, the equilibrium

price function (27) is smooth, that is, belongs to the class of infinitely continuously differentiable

functions C∞. The Theorem of the Maximum then implies that optimal (interior) equilibrium

firm policies are also smooth. In particular, with the parameterization on ψK , ψH and σ used
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above, errors from quadratic polynomial approximations around critical points of our model have

tight upper bounds. We exploit this fact and iterate on multi-variable (with the three states

Γ = (K,X, θ)) quadratic polynomial approximations to the optimal policy functions (I∗, H∗), as

characterized in Propositions 2 and 4.30 We use the same parameterization as we employed for

log-linear solutions discussed above.

With the optimal investment and material input policy functions in hand, we solve for uncon-

ditional expected returns and volatilities of equities (in both sectors x and y) utilizing the fact that

log returns rjt , j = x, y, can be written in terms of log price-dividend ratios ξjt (see section 5.2) as

rjt+1 = ln(exp(ξjt+1) + 1)− ξjt + gjd,t+1. (49)

We approximate the unknown ξjt as quadratic polynomial functions of Γt (denoted by ξ̃
j
t ) by solving

the asset return Euler conditions 1 = Et
[
exp

(
mt+1 + r̃jt+1

)]
, j = x, y. This process allows us to

compute the unconditional first and second moments of equity returns. Similarly, the equilibrium

expected risk-free return is computed by approximating the risk-free bond price, Sf with a quadratic

polynomial and solving 1 = Et
[
Mt+1(1/Sft )

]
.31 The model is then simulated using these solutions,

starting at the steady state, with cubic spline interpolation.

We display the results in Table 7 for the sample of highly concentrated industries analyzed

in Tables 5 and 6.32 Panel A indicates that, in terms of fitting the data, and when compared

to the log-linear solutions, the global solution for the oligopolistic equilibrium performs better in

some dimensions, but less well in other dimensions. For example, the global solution performs

better with respect to the volatilities of material inputs and outputs and the correlation of the

price-cost margin with the aggregate shock. But it (the global solution) performs less well than the

log-linear solution with respect to the investment volatility and the correlations of the investment

and inputs with the aggregate and industry productivity shocks. In particular, there is a tendency

30Because of the three state variables, approximations using oscillating polynomials such as Chebyshev polynomials
of the first kind Tn(·) are quite computationally intensive. For example, using n = 0, ..6, which is a typical choice in
the literature, results in computing 343 coeffi cients for investment and material inputs alone, and the computational
needs for the three asset returns are even higher. The use of value- or policy-iteration methods to compute global
solutions for multi-sectoral production-based asset pricing models is consitent with the literature (see, e.g., Garlappi
and Song (2017)).
31The three (state) variable quadratic polynomial has ten coeffi cients. We use a 30×30×30 point grid for (K,X, θ).

We discretize the continuous shock space with a 10×10 grid for (εx, εθ) using Gauss-Hermite quadrature. We simulate
the product market variables using cubic spline interpolation and the mean Euler equation errors in the simulations
are less than 0.1%.
32Untabulated results indicate that results using global solutions for moderately concentrated industries (and the

competitive benchmark) are qualitatively similar to those in Tables 3 and 4.
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for the investment volatility and the correlations of investment and inputs in the global solution

to understate the data; in contrast, these quantities have a tendency to over-state the data in the

log-linear solution (Table 5). We continue to find a negative relation of industry competition and

volatilities of investment and material inputs, consistent with the previous results. Overall, results

from the oligopoly model fit the data better than the competitive benchmark when using the global

solution approach.

Panel B indicates that the empirical fit of the global solution relative to the log-linear solution

(Table 6) is also mixed. The global solution has a higher ERP and its volatility for the equity of

the aggregate sector, compared with the log-linear solution. Therefore, the fit with observed equity

return moments of this sector improves with the global solution; however, the Sharpe ratio is a

little lower with the global solution, implying a greater deviation from the data. Meanwhile, the

risk free rate is lower than that in the log-linear case, and this also improves the fit with the data.

But the ERP and its volatility of the oligopolistic sector are lower than in Table 6, and hence the

fit with the data is relatively worse along these dimensions compared to the log-linear solution.

Meanwhile, the relation of industry competition to the ERP, its volatility, and the Sharpe ratio

with the global solution is similar to that observed with log-linear solution in Table 6.

9 Summary and Conclusions

The role of imperfect competition– in particular, oligopolistic collusion– in transmitting the effects

of aggregate and industry shocks on industry and aggregate real and financial outcomes is of sub-

stantial interest. We develop a dynamic production-based general equilibrium multi-consumption

good model with an oligopolistic industry and fit it to U.S. aggregate and manufacturing industry

data. At the industry level, separate analysis of highly and moderately concentrated oligopolistic

industries shows that the model conforms reasonably well with the cyclical properties of capital

investment, material inputs, and price-cost markups. And, consistent with the theoretical predic-

tions from the model, the volatilities of ERP, investment, inputs, and excess equity returns, as well

as the procylicality of markups are negatively related to industry competition. In equilibrium, the

SDF is driven by aggregate output and sectoral productivity shocks as well as industry competition.

Compared with the benchmark single-consumption good model, the interaction of aggregate and

sectoral shocks can increase the volatility of the SDF and covariance of asset returns with the SDF,

thereby raising the expected ERP and the maximal Sharpe ratio. These conclusions are robust to
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using both log-linear and global solution approaches.

Overall, the oligopoly model provides a better fit overall to product and asset markets’data

compared to the competitive benchmark industry. We conclude that modeling industry market

structures in multi-good general equilibrium models may help explain important product and asset

markets phenomena at the industry level.
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Table 1. List of Highly Concentrated Manufacturing Industries

This table lists the 6-digit NAICS Codes and names of industries in our sample of oligopolies, that is,

industries where the largest 4 firms account for more than 70% of industry output in 1997.

NAICS Code Industry Name
311221 Wet corn milling
311222 Soybean processing
311230 Breakfast cereal mfg.
311320 Beans
311919 Other snack food mfg.
311930 Flavoring syrup & concentrate mfg.
312120 Breweries
316212 House slipper mfg.
321213 Engineered wood member
325181 Alkalies & chlorine mfg.
325191 Gum & wood chemical mfg.
325312 Phosphatic fertilizer mfg.
326192 Resilient floor covering mfg.
326211 Tire mfg (except retreading).
331528 Other nonferrous foundries (except die-casting).
332992 Small arms ammunition mfg.
332995 Other ordnance & accessories mfg.
333315 Photographic & photocopying equipment mfg.
333611 Turbine & turbine generator set unit mfg.
335110 Electric lamp bulb & part mfg.
335222 Household refrigerator & home freezer mfg.
335912 Primary battery mfg.
336111 Automobile mfg.
336112 Light truck & utility vehicle mfg.
336120 Heavy duty truck mfg.
336391 Motor vehicle air-conditioning mfg.
336411 Aircraft mfg.
336412 Aircraft engine & engine parts mfg.
336419 Auxiliary equip mfg.
336992 Military armored vehicle, tank and tank component mfg.
339995 Burial casket mfg.
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Table 2. Parameter Assumptions

This table displays the parameterization of the model for a sample of 425 manufacturing industries (based

on the NBER-CES sample of manufacturing industries (1958-2011) where the largest four firms account for

less than 70% of industry output. The notation is as in the text, but the various parameters are defined for

convenience.

Global Parameters

Parameter Highly Conc. Industries Moderately Conc. Industries Description

β 0.97 0.97 Discount factor

δ 0.25 0.25 Depreciation rate

γ 10/7.5 10/7.5 Relative risk aversion

υ 0.10 0.10 Capital adjustment cost

1958-2011

X̄ ($ billion) 7603.13 9983.71 Mean X

λ0.5
X × 100 3.12 3.32 Annual volatility of εX

ρX 0.998 0.998 Autocorrelation of X

ψK 0.16 0.43 Output elasticity: capital

ψH 0.88 0.63 Output elasticity: materials

θ̄ 1.19 1.20 Mean θ

λ0.5
θ × 100 2.07 1.96 Volatility of εθ

λXθ 0.0 0.0 Covariance of shocks

ρθ 0.948 0.97 Autocorrelation of θ
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Table 3. Moderately Concentrated Industries: Product Market Variables

This table presents salient statistics on equilibrium capital investment, material input demand, output

and price-cost margins for a sample of 425 manufacturing industries (based on the NBER-CES sample of

manufacturing industries (1958-2011)) where the largest four firms account for less than 70% of output. The

internally calibrated values for the elasticity of substitution (σ) and the consumption weight in the utility

function of the good produced in the oligopolistic sector (φ) are 2.92 and 0.11, respectively. The other

parameters of the model are specified in Table 2. The statistics are derived from numerical simulations

involving 5000 replications of the equilibrium paths of a 54-year model economy. For any variable w, gw

denotes the log change in adjacent periods. The p-values of the correlations are given in the parentheses.

Data Oligopoly (γ = 10) Competitive (γ = 10) Oligopoly (γ = 7.5)

Vol(εX) 3.12% 3.20% 3.24% 3.20%

Vol(εθ) 2.07% 2.11% 2.12% 2.12%

Mean(pmcr) 1.2 1.2 1.0 1.2

Vol(gI) 9.72% 14.29% 29.64% 14.29%

Vol(gH) 4.26% 4.28% 4.40% 4.28%

Vol(gY ) 4.26% 5.66% 5.86% 5.65%

Corr(gI, gX) 0.62 0.68 (0.0) 0.51 (0.0) 0.66 (0.0)

Corr(gI , gθ) 0.31 0.66 (0.0) 0.62 (0.0) 0.67 (0.0)

Corr(gH , gX) 0.82 0.62 (0.0) 0.60 (0.0) 0.62 (0.0)

Corr(gH , gθ) 0.63 0.77 (0.0) 0.75 (0.0) 0.77 (0.0)

Corr(gpmcr, gX) 0.83 0.09 (0.0) 0.0 (0.0) 0.08 (0.0)
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Table 4. Moderately Concentrated Industries: Asset Markets Variables

This table presents salient statistics on equilibrium asset markets variables for the sample of industries

described in Tables 2 and 3. The calibration for σ and φ are given in Table 3, while the other parameters

are specified in Table 2. The statistics are derived from numerical simulations involving 5000 replications of

the equilibrium paths of a 54-year model economy.

Data Oligopoly (γ = 10) Competitive (γ = 10) Oligopoly (γ = 7.5)

Vol(εX) 3.12% 3.20% 3.20% 3.20%

Vol(εθ) 2.07% 2.12% 2.12% 2.12%

Mean(pmcr) 1.2 1.2 1.0 1.2

E(ry − rf ) 5.93% 2.65% 3.97% 1.75%

E(rx − rf ) 5.55% 1.41% 1.44% 0.94%

Volu(ry − rf ) 16.10% 11.40% 18.73% 10.82%

Volu(rx − rf ) 15.69% 5.02% 5.10% 4.58%
E(ry−rf )

Volu(ry−rf ) 0.37 0.23 0.21 0.16
E(rx−rf )

Volu(rx−rf ) 0.35 0.28 0.28 0.21

E(rf ) 1.36% 3.00% 2.99% 3.00%
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Table 5. Highly Concentrated Industries: Product Market Variables

This table presents salient statistics on equilibrium capital investment, material input demand, output

and price-cost margins for a sample of 31 manufacturing industries (based on the NBER-CES sample of

manufacturing industries (1958-2011)) where the largest four firms account for at least 70% of industry

output. The internally calibrated values for the elasticity of substitution (σ) and the consumption weight in

the utility function of the good produced in the oligopolistic sector (φ) are 3 and 0.05, respectively. The

other parameters of the model are specified in Table 5. The statistics are derived from numerical simulations

involving 5000 replications of the equilibrium paths of a 54-year model economy. For any variable w, gw

denotes the log change in adjacent periods. The p-values of the correlations are given in the parentheses.

Data Oligopoly (γ = 10) Competitive (γ = 10) Oligopoly (γ = 7.5)

Vol(εX) 3.20% 3.24% 3.30% 3.24%

Vol(εθ) 1.90% 1.94% 1.90% 1.94%

Mean(pmcr) 1.5 1.5 1.00 1.5

Vol(gI) 17.69% 19.50% 26.07% 19.22%

Vol(gH) 7.84% 3.49% 3.67% 3.48%

Vol(gY ) 7.12% 4.57% 4.85% 4.55%

Corr(gI, gX) 0.45 0.61 (0.0) 0.55 (0.0) 0.60 (0.0)

Corr(gI , gθ) 0.13 0.65 (0.0) 0.60 (0.0) 0.66 (0.0)

Corr(gH , gX) 0.68 0.54 (0.0) 0.52 (0.0) 0.54 (0.0)

Corr(gH , gθ) 0.62 0.63 (0.0) 0.59 (0.0) 0.63 (0.0)

Corr(gpmcr, gX) -0.41 -0.07 (0.0) 0.0 (0.0) -0.07 (0.0)
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Table 6. Highly Concentrated Industries: Asset Markets Variables

This table presents salient statistics on equilibrium asset markets variables for the sample of industries

described in Tables 5 and 6. The calibration for σ and φ are given in Table 6, while the other parameters

are specified in Table 5. The statistics are derived from numerical simulations involving 5000 replications of

the equilibrium paths of a 54-year model economy.

Data Oligopoly (γ = 10) Competitive (γ = 10) Oligopoly (γ = 7.5)

Vol(εX) 3.20% 3.24% 3.24% 3.24%

Vol(εθ) 1.90% 1.94% 1.94% 1.94%

Mean(pmcr) 1.5 1.5 1.00 1.5

E(ry − rf ) 5.09% 1.49% 3.86% 0.99%

E(rx − rf ) 5.55% 1.49% 1.55% 0.99%

Volu(ry − rf ) 18.28% 5.46% 19.20% 5.00%

Volu(rx − rf ) 15.69% 5.10% 5.19% 4.61%
E(ry−rf )

Volu(ry−rf ) 0.28 0.27 0.20 0.20
E(rx−rf )

Volu(rx−rf ) 0.35 0.29 0.30 0.21

E(rf ) 1.36% 2.99% 2.99% 3.0%

44



Table 7. Global Solutions: Highly Concentrated Industries

This table presents salient statistics on equilibrium product and asset markets variables for the sample of

highly concentrated industries (described in Tables 5 and 6) computed using the projection method described

in Section 8 . The calibration for σ and φ are given in Table 6, while the other parameters are specified in

Table 5. The statistics are derived from numerical simulations involving 5000 replications of the equilibrium

paths of a 54-year model economy.

Panel A: Product Market Variables
Data Oligopoly (γ = 10) Competitive (γ = 10)

Vol(εX) 3.20% 3.22% 3.14%

Vol(εθ) 1.90% 1.94% 1.94%

Mean(pmcr) 1.5 1.5 1.00

Vol(gI) 17.69% 8.84% 13.48%

Vol(gH) 7.84% 9.62% 40.27%

Vol(gY ) 7.12% 9.60% 40.18%

Corr(gI, gX) 0.45 0.15 (0.0) -0.07 (0.0)

Corr(gI , gθ) 0.13 0.05 (0.0) -0.01 (0.0)

Corr(gH , gX) 0.68 0.20 (0.0) 0.00 (0.0)

Corr(gH , gθ) 0.62 0.21 (0.0) 0.07 (0.0)

Corr(gpmcr, gX) -0.41 -0.23 (0.0) 0.0 (0.0)

Panel B: Asset Markets Variables
Data Oligopoly (γ = 10) Competitive (γ = 10)

Vol(εX) 3.20% 3.24% 3.24%

Vol(εθ) 1.90% 1.94% 1.94%

Mean(pmcr) 1.5 1.5 1.00

E(ry−rf ) 5.09% 1.32% 2.02%

E(rx−rf ) 5.55% 2.70% 3.96%

Volu(ry−rf ) 18.28% 4.30% 17.31%

Volu(rx−rf ) 15.69% 9.61% 4.21%
E(ry−rf )

Volu(ry−rf ) 0.28 0.31 0.25
E(rx−rf )

Volu(rx−rf ) 0.35 0.28 0.29

E(rf ) 1.36% 2.62% 2.61%
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Figure 1: Highly Concentrated Industries: Impulse Response Function (X)
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This figure plots the impulse response functions (IRFs) of logarithms of salient product and asset markets

variables that are subjected to one standard-deviation shock to the (aggregate) output in sector x (X).
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Figure 2: Highly Concentrated Industries: Impulse Response Function (θ)
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This figure plots the impulse response functions (IRFs) of logarithms of salient product and asset markets

variables that are subjected to one standard-deviation shock to the productivity shock in sector y (θ).
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Online Appendix

Appendix A: Derivations and Proofs

A.1 Derivation of Optimal Consumption and Portfolio Policies

Since the objective function is strictly increasing and concave, the optimal consumption and port-

folio policies can be characterized through a two-step process, where optimal consumption ct is

determined as a function of available consumption expenditure Zt, and the optimal portfolio is

then determined taking as given the optimal consumption policy. Using the dynamic programming

principle (DP), at any t, the representative consumers optimization problem (6)-(7) can be written

as

max
ct,qt+1

Et

[ ∞∑
τ=t

βτ−t
C1−γ
τ − 1

1− γ

]
+χt [Zt − pt · ct] . (A1.1)

Here, χt is the Lagrange multiplier for the budget constraint (7). Since preferences are strictly

increasing, the budget constraint is binding and χt > 0. Next, using the definition of aggregate

consumption (8), the first order optimality conditions for cjt , j = x, y, can be written

(Ct)
1−γσ
σ (cjt )

− 1
σφj = χtp

j
t , (A1.2)

where pxt = 1, φx ≡ (1− φ), φy ≡ φ. It follows from (A1.2) that

pjtc
j
t = χ−σt (pjt )

1−σ(Ct)
−(1−γσ)(φj)σ (A1.3)

Then recognizing that Zt = pt · ct, and using (A1.3), and the definition of the aggregate price index

Pt (see (10)) allows one to solve for the Lagrange multiplier as

χt =

(
Zt
Pt

)− 1
σ

P−1
t (Ct)

1−γσ
σ . (A1.4)

Substituting this in (A1.2) and rearranging terms then gives the optimal consumption functions

given in (9).

Next, for any τ ≥ t, let Uτ ≡ βτ−t C
∗1−γ
τ −1
1−γ denote the indirect period utility function with the

optimal consumption functions given in (9). The envelope theorem then yields χτ = ∂Uτ
∂Zτ

. Using

the fact that

Zτ = qτ · (Dτ + Sτ )− qτ+1 · Sτ ,
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then yields the optimality conditions for qt+1

χtSt = Et
[
βχt+1(Dt+1 + St+1)

]
. (A1.5)

But using C∗t = Zt
Pt
and substituting in (A1.4) gives χt =(C∗t )

−γ
P−1
t . Since this holds for any τ ,

inserting in (A1.5) yields Eq. (11).

A.2 Proofs

Proof of Proposition 1: Substituting the optimal consumption functions (9) in the market

clearing conditions (13)-(14) in a symmetric equilibrium yield

Zt
Pt

[Pt(1− φ)]σ = Xt −
N∑
i=1

[A(Iit,Kit) +Hit)] (A2.1)

Zt
Pt

[
Ptφ

pyt

]σ
= Ỹt (A2.2)

Dividing (A2.1) by (A2.2) and rearranging terms yields p̆yt =
(
W̆t

NY̆t

)1/σ
ηt in a symmetric equi-

librium. Since competitive firms equate marginal costs with any given price, in equilibrium the

marginal cost [FH(Kt, H̆t, θt)]
−1 is equated with the price as given in (16). Next, using the Bellman-

representation (15), along any competitive equilibrium path, at any t, conditional on Γt, the opti-

mization problem for the typical competitive firm is

Vt(Γt) = max
I,Ht≥0

(
Zt
Pt

)−γ ( p̆yt Yt −Ht −A(It,Kt)

Pt

)
+ βEt [Vt+1(Γt+1)] , s.t., (1)—(3). (A2.3)

Then, subject to (1)—(3), the optimal (interior) investment input path satisfies

0 = −∂Vt(Γt)
∂Kt

+

(
Zt
Pt

)−γ ( 1

Pt

)
∂Dy

t

∂Kt
+ β(1− δ)∂Et [Vt(Γt+1)]

∂Kt+1
, (A2.4)

0 =

(
Zt
Pt

)−γ ( 1

Pt

)
∂Dy

t

∂It
+ β

∂Et [Vt+1(Γt+1)]

∂It
. (A2.5)

Now, Dy
t = pyt Yt −Ht − A(It,Kt). Hence,

∂Dyt
∂It

= −AI(It,Kt). Furthermore,
∂Kt+1
∂It

= 1 and thus
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∂Et[Vt+1(Γt+1)]
∂It

= ∂Et[Vt+1(Γt+1)]
∂Kt+1

. Recalling that the SDF is

Mt+1 ≡ β
(
Zt+1

Zt

)−γ (Pt+1

Pt

)γ−1

,

(A2.4) and (A2.5) then together imply that the Euler condition characterizing the equilibrium

investment path is

−∂D
y
t

∂It
= Et

[
Mt+1

(
∂Dy

t+1

∂Kt+1
− (1− δ)

∂Dy
t+1

∂It+1

)
,

]
(A2.6)

where in (A2.6) we have used iterated expectations and recursively substituted the optimality

condition for It+1. Now, using the envelope theorem (that sets the indirect effects of ∂Kt+1 on the

optimally chosen It+1 and Ht+1 to zero), in a symmetric competitive (price-taking) equilibrium

with Yit+1 = Yt+1, we have

∂Dy
t+1

∂Kt+1
= pyt+1FK(Kt+1, Ht+1, θt+1)−AK(It+1,Kt+1). (A2.7)

(A2.6)-(A2.7) and
∂Dyt+1
∂It+1

= −AI(It+1,Kt+1) then together characterize the equilibrium path for

investment in a symmetric competitive equilibrium viz.,

AI(Ĭt,Kt) = Et
[
M̆t+1{p̆yt+1FK(K̆t+1, H̆t+1, θt+1)−AK(Ĭt+1, K̆t+1)}+

(1− δ)AI(Ĭt+1, K̆t+1)
]
. (A2.8)

Proof of Lemma 1: By construction, for each t ≥ τ and any Γt, (p
¯
y
t ,H¯ t

) determined by (18)-(19)

satisfy the general equilibrium market clearing conditions (13)-(14) and just cover the average input

cost. Note that the average cost with material input H
¯ t
is

H
¯ t

F (Kt,H¯ t
, θt)

, (A.2.9)

and hence (18) implies that p
¯
y
t given in (19) equals (A.2.9). Furthermore, because of decreasing

returns to scale in H, the marginal cost [FH(K,H, θ)]−1 exceeds the average cost for every Y > 0.

Hence, any deviation to a price below p
¯
y
t yields negative profits while any deviation to a price above

p
¯
y
t clearly generates zero sales. Hence, with I¯t

= 0, (p
¯
y
t ,H¯ t

) yields zero economic profits. The action

profiles µy′t = (p
¯
y
t ,H¯ t

,I
¯t

) is (weakly) optimal for each firm and hence a Nash equilibrium for any Γt.
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But we have also established that no firm can improve expected profits by deviating from µy′t at t

and returning to this strategy at t+1. Hence, Hence, {µy′t = (p
¯
y
t ,H¯ t

,I
¯t

)}t≥τ is a SPE along subgame

Γτ .

Proof of Lemma 2: Fix any Γt = (·, K̃t, (Xt, θt)). Note from (15) that

µ̃y∗t,p ∈ arg max
pyt ,It

(
Zt
Pt

)−γ ( 1

Pt

)[
pyt c

y∗
t (pt, Zt)−H−1(cy∗t ; (K̃t, θt))−

−A(It, K̃t)] + βEt [Vt+1(Γt+1)] , (A.2.10)

where, from (9),

cy∗t (pt, Zt) = φσZt(Pt)
1−σ(pyt )

−σ, (A.2.11)

and H−1(cy∗t ; (K̃t, θt)) is the material input demand function for output conditional on (K̃t, θt),

that is

H−1(cy∗t ; (K̃t, θt)) =

(
cy∗t

θt(K̃t)ψK

) 1
ψH

. (A.2.12)

But market clearing in sector y requires (see (14)) that for any chosen p̃y∗t , c
y∗
t ((pxt , p̃

y∗
t ), Zt) = Ỹt

and hence from (A.2.11) we must have

p̃y∗t = φ

(
ZtP

1−σ
t

Ỹt

) 1
σ

. (A.2.13)

Meanwhile, the market clearing price for sector x, say p̃x∗t , must satisfy (see (13))

p̃x∗t = (1− φ)

(
ZtP

1−σ
t

Xt − (Ht +A(It, K̃t))

) 1
σ

. (A.2.14)

Hence, normalizing p̃x∗t = 1 and dividing (A.2.13) by (A.2.14) gives the sector y price that must

hold along any (general) equilibrium path, viz.,

p̃y∗t (Ht, It) =

(
Xt − (Ht +A(It, K̃t))

Ỹt

) 1
σ

. (A.2.15)

It also follows that in equilibrium

H−1(cy∗t ; (K̃t, θt)) =

(
Ỹt

θt(K̃t)ψK

) 1
ψH

= Ht. (A.2.16)
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Then substituting (A.2.15)-(A.2.16) in (A.2.10) yields the equivalent optimization problem

µ̃y∗t,H ∈ arg max
Ht≥0,It

(
Zt
Pt

)−γ ( 1

Pt

)[
p̃y∗t (Ht, It)F (K̃t, Ht, θt)− (Ht +A(It, K̃t))

+ βEt [Vt+1(Γt+1)] . (A.2.17)

Proof of Proposition 2: As shown in Lemma 2 (see (A.2.15)) along the equilibrium path the

relative price of good y as a function of (Ht, It) is, viz.,

p̃y∗t (Ht, It) =

[
Xt − [A(It, K̃t) +Ht]

F (K̃t, Ht, θt)

]1/σ

η. (A.2.18)

It is convenient to set W̃t ≡ Xt − [A(It, K̃t) + Ht]. Since Ht does not directly affect expected

future profits, the optimal material input demand in a monopoly is determined by ∂(p̃y∗t Ỹt)

∂H̃t
= 1.We

compute (using (A.2.18))

p̃y∗t Ỹt = η(W̃t)
1
σ (Ỹt)

σ−1
σ , (A.2.19)

and, hence, at the optimum,

∂(p̃y∗t Ỹt)

∂H̃t

= ησ−1(W̃t)
1−σ
σ (Ỹt)

− 1
σ

[
(σ − 1)W̃tFH(K̃t, Ht, θt)− Ỹt

]
= 1. (A.2.20)

Using (A.2.18), (A.2.20) can be written (denoting the optimal material input as H̃∗t ),

(σ − 1)

σ
p̃y∗t FH(K̃t, H̃

∗
t , θt)−

(p̃y∗t )1−σησ

σ
= 1. (A.2.21)

Rearranging terms in (A.2.21) then gives (21).

Next, the optimal (interior) investment chosen by the monopolist satisfies the following system

of equations

∂Vt(Γt)

∂Kt
=

(
Zt
Pt

)−γ ( 1

Pt

)
∂Dy

t

∂Kt
+ β(1− δ)∂Et [Vt+1(Γt+1)]

∂Kt+1
, (A2.22)

−
(
Zt
Pt

)−γ ( 1

Pt

)
∂Dy

t

∂It
= β

∂Et [Vt+1(Γt+1)]

∂It
. (A2.23)
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where Dy
t = p̃y∗t F (K̃t, Ht, θt)− (Ht +A(It, K̃t)). Then it follows from (A.2.18) and (A.2.19) that

∂Dy
t

∂It
= −AI(It, K̃t)

[
1 +

(p̃y∗t )1−σησ

σ

]
, (A2.24)

∂Dy
t

∂Kt
= p̃y∗t FK(K̃t, Ht, θt)

(
σ − 1

σ

)
−AK(It, K̃t). (A2.25)

Furthermore, ∂Kt+1∂It
= 1 and hence ∂Et[Vt+1(Γt+1)]

∂It
= ∂Et[Vt+1(Γt+1)]

∂Kt+1
. Then (A2.24) and (A2.25) to-

gether imply that the Euler condition characterizing the equilibrium investment path is given by

−∂D̃
y∗
t

∂It
= Et

[
M∗t+1

(
∂D̃y∗

t

∂Kt+1
− (1− δ)∂D̃

y∗
t

∂It+1

)]
, (A2.26)

where D̃y∗
t = p̃y∗t F (K̃t, H̃

∗
t , θt) − [A(Ĩ∗t , K̃t) + H̃∗t ]. In (A2.26) we have used iterated expectations

and recursively substituted the optimality condition for I∗t+1 (using A(2.25)),

−
(
Zt+1

Pt+1

)−γ ( 1

Pt+1

)
∂D̃y∗

t+1

∂It+1
= β

∂Et+1 [Vt+2(Γt+2)]

∂Kt+2
. (A2.27)

Now, using the envelope theorem (that sets the indirect effects of ∂Kt+1 on the optimally chosen

Ĩ∗t+1 and H̃
∗
t+1 to zero), (A2.27) implies that

∂D̄y∗
t+1

∂Kt+1
= py∗t+1

∂Yt+1

∂Kt+1

[
σ − 1

σ

]
−AK(Ī∗t+1,Kt+1). (A2.28)

Proof of Proposition 3: Along the symmetric collusive path, each firm produces 1/N of the

monopoly output and hence each firm chooses H̄∗t such that

N
(
θt(K)ψK (H̄∗t )ψH

)
= θt(NKt)

ψK (H̃∗t )ψH , (A.2.29)

which yields H̄∗t =

(
N

ψK−1
ψH

)
H̃∗t . And because of the linearity of the law of motion of capital stock

K̃t+1 = N(Kt(1− δ) +N−1Ĩ∗t )

= K̃t(1− δ) + Ĩ∗t (A.2.30)
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so that the equilibrium evolution of the industry capital stock is the same as that in the monopoly.

Now {µ̄y∗t (Γt)}t specifies a symmetric SPE if and only the following two incentive constraints

must be satisfied. First, at every Γt such that there has been no deviation by an firm up to

t − 1, there should be no gain to any firm from deviating at t (compared to continuing with the

collusive policies). Using (25)-(26) and noting that Ỹ ∗t = NY ∗t and H̄
′
t(Ỹ

∗
t ; (Kt, θt)) = (N)

1
ψH H̄∗t ,

this incentive constraint can be written

(
Zt
Pt

)−γ ( 1

Pt

)[
(p̄y∗t (NY ∗t )−N

1
ψH H̄∗t −A(Ī∗t ,Kt))− D̄y∗

t

]
≤ βEt

[
V̄ ∗t+1(Γ̄∗t+1)

]
, (A.2.31)

where the second term in the RHS of (A.2.31) is the expected value of the firm next period con-

ditional on following the collusive policies. But then using the fact that D̄y∗
t = p̄y∗t F (Kt, H̄

∗
t , θt)−

(H̄∗t +A(Ī∗t ,Kt)), (A.2.31) can be written(
Zt
Pt

)−γ ( 1

Pt

)[
p̄y∗t Ȳ

∗
t (N − 1)− (N

1
ψH − 1)H̄∗t

]
≤ βEt

[
V̄ ∗t+1(Γ̄∗t+1)

]
. (A.2.32)

Hence, the incentive constraint will be satisfied strictly if

(
Zt
Pt

)−γ ( 1

Pt

)
[p̄y∗t Ȳ

∗
t (N − 1)] ≤ βEt

[
V̄ ∗t+1(Γ̄∗t+1)

]
. (A.2.33)

But the LHS of (A.2.33) is increasing in N while the RHS is non-increasing in N. Hence, there

exists some N̄ such that (A.2.33) is satisfied if the number of firms N ≤ N̄ . The second incentive

constraint requires that there be no gains from one-stage deviation during the “punishment”phase.

But this has been established in Lemma 1.

It now remains to show that if (A.2.33) holds, then given Lemma 1, there exist no infinite

sequence of deviations that are value-improving for any firm. Suppose to the contrary that there

exists some Γt such that (for some firm) deviations for τ ≥ t are value-improving. Now let

V −t (Γt) = sup
{µy−τ }τ≥t

Et

[ ∞∑
τ=t

βτ−t
(
Zτ
Pτ

)−γ (Dy
τ

Pτ

)
Γt

]
, s.t., (1)—(3). (A.2.34)

i.e., the supremum of expected payoffs along all deviating strategies {µy−τ }τ≥t along the continua-

tion game defined by Γt. But given Lemma 1 and (A.2.32)-(A.2.33), we have (using the recursive
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representation of V −t (Γt))

V −t (Γt) <

(
Zt
Pt

)−γ ( p̄y∗t Ȳ ∗t (N − 1)

Pt

)
+ βEt

[
V
−
t+1(Γt+1)

]
. (A.2.35)

But by Lemma 1, Et
[
V
−
t+1(Γt+1)

]
≤ Et

[
V
′
t+1(Γt)

]
, which is the expected value along the punish-

ment strategies {µy′τ }τ≥t+1 (see Lemma 1) played following any defection at t. Since Et
[
V
′
t+1(Γt)

]
=

0,

V −t (Γt) <

(
Zt
Pt

)−γ ( p̄y∗t Ȳ ∗t (N − 1)

Pt

)
. (A.2.36)

Because this is true for all t and Γt, it follows from (A.2.33) that for N ≤ N̄ , there exists no

state Γt such that V −t (Γt) ≥ V̄ ∗t (Γt), which contradicts the hypothesis that an infinite sequence of

deviations exists that is value-improving.

Proof of Proposition 4: Fix any t and any state Γt. As above, substituting the optimal con-

sumption functions (9) in the market clearing conditions (13)-(14) in a symmetric equilibrium yield

Zt
Pt

[Pt(1− φ)]σ = Xt −
N∑
i=1

[A(I∗it,Kit) +H∗it)] (A2.37)

Zt
Pt

[
Ptφ

pyt

]σ
= Ỹt (A2.38)

Dividing (A.2.38) by (A.2.37) and rearranging terms yields py∗t given in (27) for a symmetric

equilibrium. Next, the constrained optimization problem for firm i is (for Ii = (Ii0, ...), Hi =

(Hi0, ...)),

max
Ii,Hi≥0

E0

[ ∞∑
t=0

βt
(
Zt
Pt

)−γ (py∗t Yit −Hit −A(Iit,Kit)

Pt

)]
, s.t., (1)—(3). (A2.39)

Substituting the constraints in the objective function, and using the assumption that firms take

the pricing kernel as exogenous, the dynamic programming (DP) principle implies that along any

equilibrium path, at any t and conditional on the state Γt = (Kt, Xt,θt), Kt = (K1t, ...,KNt), if the

firm takes as given the rival firms’investment profile {Ijτ , Hjτ}τ≥t (j = 1, ...i − 1, i + 1, ..N) and

its own future optimal investment {I∗iτ}τ≥t+1, then the firms indirect value function is given by

Vit(Γt)= max
Iit,Hit≥0

(
Zt
Pt

)−γ (py∗t Yit −Hit −A(Iit,Kit)

Pt

)
+βEt [Vit+1(Γt+1)] , (A2.40)
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where, for τ ≥ t, py∗τ is given in (27) and Yiτ = θτ (Kiτ )
ψK (Hiτ )

ψH , and Dy∗
iτ = py∗τ Yiτ − Hiτ −

A(Iiτ ,Kiτ ). Then the optimal (interior) investment and material input path satisfies the following

system of equations

∂Vit(Γt)

∂Kit
=

(
Zt
Pt

)−γ ( 1

Pt

)
∂Dy∗

it

∂Kit
+β(1− δ)∂Et [Vit+1(Γt+1)]

∂Kit+1
, (A2.41)(

Zt
Pt

)−γ ( 1

Pt

)
∂Dy∗

it

∂Iit
= β

∂Et [Vit+1(Γt+1)]

∂Iit
, (A2.42)

∂(py∗t Yit)

∂Hit
= 1. (A2.43)

Furthermore, in a symmetric equilibrium with Kiτ = Kτ , Yiτ = Yτ , and Iiτ = Iτ , Hiτ = Hτ for

i = 1, ...N and each τ = 1, 2... Hence,
∑N

j=1,i 6=j [A(Iiτ ,Kiτ ) +Hiτ )] = (N −1)[A(Iτ ,Kτ ) +Hτ ]. Now

let

W̃iτ ≡ Xτ − (N − 1)(A(Iτ ,Kτ ) +Hτ )− (A(Iiτ ,Kτ ) +Hiτ ). (A2.44)

Note that in a symmetric equilibrium, Wτ = W̃iτ , i = 1, ...N ,
(
Wiτ
Yτ

)−1
= (py∗τ )−σησ

N and

py∗τ Yiτ = η(Wiτ )1/σ((N − 1)Yτ + Yiτ )−
1
σ Yiτ . (A2.45)

Therefore, recognizing that ∂Yiτ
∂Iiτ

= 0, we have in a symmetric equilibrium,

∂(py∗t Yit)

∂Iit
= −(py∗t )1−σAI(Iit,Kt)η

σ

Nσ
. (A.2.46)

Hence, in any symmetric equilibrium, for I∗it = I∗t ,

∂Dy∗
it

∂Iit
= −

[
AI(I

∗
t ,Kt)

(
1 +

(py∗t )1−σησ

Nσ

)]
. (A2.47)

Furthermore, ∂Kt+1∂It
= 1 and hence ∂Et[Vt+1(Γt+1)]

∂It
= ∂Et[Vt+1(Γt+1)]

∂Kt+1
. Then (A2.41) and (A2.42) to-

gether imply that the Euler condition characterizing the equilibrium investment path is given by

−∂D
y∗
it

∂Iit
= Et

[
M∗t+1

(
∂Dy∗

t+1

∂Kt+1
− (1− δ)

∂Dy∗
t+1

∂It+1

)
,

]
(A2.48)

where in (A2.48), we have used iterated expectations and recursively substituted the optimality
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condition for I∗t+1 (using A(2.41)),

−
(
Zt+1

Pt+1

)−γ ( 1

Pt+1

)
∂Dy∗

t+1

∂It+1
= β

∂Et+1 [Vt+2(Γt+2)]

∂Kt+2
. (A2.49)

Now, using the envelope theorem (that sets the indirect effects of ∂Kt+1 on the optimally chosen

I∗t+1 and H
∗
t+1 to zero), (A2.45) implies that in a symmetric equilibrium with Yit+1 = Yt+1, we

have
∂Dy∗

t+1

∂Kt+1
= py∗t+1FK(Kt+1, H

∗
t+1, θt)

[
Nσ − 1

Nσ

]
−AK(I∗t+1,Kt+1). (A2.50)

(A2.47)-(A2.50) then together characterize the equilibrium path for investment in a symmetric

equilibrium.

Next, to determine H∗it, using (A2.43), we have

∂(py∗t Yt)

∂Hit
= −(py∗t )1−σησ

Nσ
+ py∗t FH(Kt, H

∗
t , θt)

[
Nσ − 1

Nσ

]
. (A2.51)

Inserting this in (A2.43) and rearranging terms gives,

Nσ + (py∗t )1−σησ

(Nσ − 1)
= py∗t FH(Kt, H

∗
t , θt). (A2.52)

Finally, if N ≤ N̄ , then by Proposition 2 the monopoly or collusive outcome path is a symmetric

SPE. Hence, the Cournot path is not an optimal symmetric SPE. So consider the case whereN > N̄.

If deviation from µy∗t (Γt) by any firm at any Γt is followed by all firms playing the symmetric SPE

strategies µy′τ (Γτ ), τ ≥ t + 1, then defection is suboptimal if Equation (26) (in the text) holds.

Since D̄y′

t is increasing in N, there must exist some uniform upper bound N∗ such that defection

is optimal for some Γt, t ≥ 0, if N > N∗.

Appendix B: Equilibrium Computations

B.1 Capital Investment and Material Input Policies

Log-linearization allows one to write ΦI(Ωt)

ΦI(Ωt) ' αK1K̂t+2 + αK2K̂t+1 + αK3K̂t + αK4Ĥt+1 + αK5Ĥt +

αK6X̂t+1 + αK7X̂t + αK8θ̂t+1 + αK9θ̂t, (B1)

where αK1 = K̄ ∂ΦI
∂Kt+2

, ..., αK9 = θ̄ ∂ΦI
∂θt

. In particular, the steady state endogenous variables (K̄, H̄)
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are derived from specializing the optimality conditions in Theorem 1 to the steady state with

Kt = K̄, It = δK̄ (≡ Ī), and Ht = H̄. In a similar fashion, we have

ΦH(Ωt) ' αH1K̂t+1 + αH2K̂t + αH3Ĥt + αH4X̂t + αH5θ̂t, (B2)

where αH1 = K̄ ∂ΦH
∂Kt+1

, ..., αH5 = θ̄ ∂ΦI
∂θt

. Then the linearized Euler condition for πt = [K̂t+1 Ĥt] is

Et
[
ς0πt+1 + ς1πt + ς2πt−1 + νX0X̂t+1 + νX1X̂t + νθ0θ̂t+1 + νθ1θ̂t

]
= 0, (B3)

where ς0 =

 αK1 αK4

0 0

 , ς1 =

 αK2 αK5

αH1 αH3

 , ς2 =

 αK3 0

αH2 0

 , νX0 =

 αK6

0

 ,
νX1 =

 αK7

αH4

 , νθ0 =

 αK8

0

 , νθ1 =

 αK9

αH5

 . Therefore, if πt = V πt−1 + UXX̂t + Uθθ̂t,

then the Euler condition (B3) imposes the restriction,

ς0V
2 + ς1V + ς2I = 0, (B4)

ρX(νX0 + ς0UX) + ((ς1 + ς0V )UX + νX1) = 0, (B5)

ρθ(νθ0 + ς0Uθ) + (ς1Uθ + νθ1) = 0. (B6)

(where I is the identity matrix). Writing V =

 VK1 VK2

VH1 VH2

 , a solution to (B4) is found by
VK2 = VH2 = 0 and VK1, VH1 that satisfy

αK1(VK1)2 + αK2VK1 + αK4VH1VK1 + αK3 = 0, (B7)

αH1VK1 + αH3VH1 = 0. (B8)

The condition for saddlepoint stability requires that there should be one non-explosive (that is,

with modulus less than 1) and two explosive roots of (B4). The non-explosive root, say V ∗K1, is

chosen.

Given V, the elements of UX = [UXK UXH ] and Uθ = [UθK UθH ] are then derived from (B5)-

(B6).

B.2 Financial Asset Returns
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Given the pricing kernel Mt+1 ≡ β
(
Zt+1
Zt

)−γ (
Pt+1
Pt

)γ−1
,mt+1 = logMt+1 is

mt+1 = log β − γgz,t+1 + (γ − 1)gp,t+1, (B10)

where gz,t+1 ≡ ln(Zt+1) − ln(Zt) and gp,t+1 ≡ ln(Pt+1) − ln(Pt). Now, from the definitions of the

aggregate income Zt and price index Pt , it follows that mt+1 is a function of the state and costate

vector Ωt. Then using the relation mt+1 = β exp(m̂t+1), the first order Taylor series expansion of

mt+1 around steady state values gives

m̂t+1 = ϕm1K̂t + ϕm2K̂t+1 + ϕm3K̂t+2 + ϕm4Ĥt + ϕm5Ĥt+1 + (B11)

ϕm6X̂t + ϕm7X̂t+1 + ϕm8θ̂t + ϕm9θ̂t+1,

where ϕm1 = K̄ ∂mt+1
∂Kt

, ϕm2 = K̄ ∂mt+1
∂Kt+1

, ..., ϕm9 = θ̄ ∂mt+1∂θt+1
(when these derivatives are evaluated at

the steady state). But using the relation πt = V πt−1 +UXX̂t+Uθθ̂t (where V, UX and Uθ have been

determined as specified previously) and the facts that θ̂t+1 = ρθθ̂t + εθt+1 and X̂t+1 = ρxX̂t + εxt+1

in (B11) yields the following coeffi cients for m̂t+1 ' ã · Γ̂t + ωmxε
X
t+1 + ωmθε

θ
t+1

ã1 = ϕm1 + ϕm2vK1 + ϕm3(vK1)2 + ϕm4vH1 + ϕm5vH1vK1,

ã2 = ϕm6 + uHX(ϕm4 + ϕm5vH1) + uKX(ϕm3vK1 + ϕm2) + ρx(ϕm7 + uHXϕm5 + uKXϕm3),

ã3 = ϕm8 + uHθ(ϕm4 + ϕm5vH1) + uKθ(ϕm3vK1 + ϕm2) + ρθ(ϕm9 + uHθϕm5 + uKθϕm3),

ωmx = ϕm7 + ϕm3uKX + ϕm5uHX ,

ωmθ = ϕm9 + ϕm3uKθ + ϕm5uHθ. (B12)

Then, following a procedure similar to that for approximating mt+1, the first order Taylor series

expansion of gydt+1 yields the appropriate coeffi cients b, ωdx, and ωdθ, so that ĝ
y
d,t+1 = b · Γ̂t +

ωydxε
X
t+1 + ωymθε

θ
t+1. Next, the log equity return (for j = x, y) can be written

rjt+1 = sjt+1 − s
j
t + log(1 + exp(djt+1 − s

j
t+1)). (B13)

Treating this as a function of djt+1 − s
j
t+1, taking the first order Taylor approximation around the

steady state r̄j = − log β, recalling that d̄j − s̄j = log(1 − β) − log β, and adding and subtracting
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djt , yields the approximation r
j
t+1 ' − log β + r̂jt+1, where

r̂jt+1 = βξ̂
j

t+1 − ξ̂
j

t + ĝyd,t+1. (B14)

Furthermore, letting ξ̂
j

t ' ej0 + ej · Γ̂t, the coeffi cients ejn (n = 0, 1, 2, 3) are determined as follows.

In log-linearized form, the Equilibrium return condition (38) can be written

1 = Et
[
exp

(
κj0 + κj1K̂t + κj2X̂t + κj3θ̂t + κj4ε

x
t+1 + κj5ε

θ
t+1

)]
, (B15)

where κjn (n = 0, 1, 2, 3) are linear functions of the coeffi cients of V,UX , Uθ, ãn, bn (when j = y),

and ejn. Now let j = y. Collecting together the coeffi cients for K̂t from the first-order Taylor series

expansions of mt+1 and r
y
t+1 around the steady state, one gets

κy1 = ã1 + ey1(βvK1 − 1) + b1. (B16)

But since (B15) must hold for all realizations of Γ̂t, κ
j
1 = 0 (n = 1, 2, 3). Hence, from (B16), it

follows that ey1 = b1+ã1
(1−βvK1) . In a similar fashion, we can compute,

κy2 = βuXKe
y
1 + ey2(ρxβ − 1) + b2 + ã2. (B17)

Since ey1 is already determined from (B16), it follows that ey2 =
βuXKe

y
1+b2+ã2

(1−ρxβ) , and following an

analogous computation, ey3 =
βuXθe

y
1+b3+ã3

(1−ρθβ) . Finally, κy0 is obtained as follows. Since e
j
n (n = 1, 2, 3)

are chosen to set κjn = 0 (n = 1, 2, 3), the equilibrium condition (B15) must satisfy

1 = Et
[
exp

(
κy0 + κy4ε

x
t+1 + κy5ε

θ
t+1

)]
. (B18)

Then, by collecting the appropriate terms, we can compute

κy0 = (1− β)[log β − log (1− β)] + (β − 1)ey0 (B19)

κy4 = ωmx + ωdx + βey2;κy5 = ωmθ + ωdθ + βey3. (B20)

Now let r̃y ≡ m+ ry denote logarithm of the discounted return MRy. Hence, using the foregoing,

Var(r̃y) ≡ (κy4)2λ2
x + (κy5)2λ2

θ + 2λxθκ
y
4κ

y
5. Then, exploiting the bivariate normality of (εXt+1, ε

θ
t+1)
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and taking the logarithm of both sides of (B18) gives κy0 + 0.5 Var(r̃y) = 0, which implies that

ey0 = log

(
β

1− β

)
+

0.5 Var(r̃y)
1− β . (B21)

Using (42) and collecting together the relevant terms from above, one can write

ryt+1 = vy0 + vy1K̂t + vy2X̂t + vy3 θ̂t + ωyrxε
x
t+1 + ωyrθε

θ
t+1, (B22)

with the following coeffi cients:

vy0 = −[β log β + (1− β) log (1− β)] + ey0(β − 1) = − log β − 0.5 Var(r̃y);

vy1 = ey1(βvK1 − 1) + b1 = −ã1; vy2 = βey1ã2 + ey2(ρxβ − 1) + b2 = −ã2;

vy3 = βey1ã3 + ey3(ρθβ − 1) + ã3 = −ã3;ωyrx = βey2 + b2; ωyrθ = βey3 + b3. (B23)

Turning to security x,let

rxt+1 = vx0 + vx1 K̂t + vx2 X̂t + vx3 θ̂t + ωxrxε
x
t+1 + ωxrθε

θ
t+1.

Note that the coeffi cients exn (n = 0, 1, 2, 3) are similarly obtained, except that in this case the log of

dividends is directly obtained as dxt = logXt ≡ xt. Note that xt+1−xt = X̂t+1− X̂t (by subtracting

log X̄ from both xt+1 and xt). Then repeating the foregoing procedure (allowing for the difference

in the log dividend growth) leads to the following:

ex1 =
b1

(1− βvK1)
; ex2 =

βuXKe
x
1 + b2 + (ρx − 1)

(1− ρxβ)
; ex3 =

βuXθe
x
1 + b3

(1− ρθβ)
. (B24)

Since the equilibrium condition (B15) must hold given (B24) (for j = x),

κx0 = (1− β)[log β − log (1− β)] + (β − 1)ex0 ,

κx4 = ωmx + 1 + βex2 ;κx5 = ωmθ + βex3 , (B25)

Then, since Var(r̃x) ≡ (κx4)2λ2
x + (κx5)2λ2

θ + 2λxθκ
x
4κ

x
5), ex0 = log

(
β

1−β

)
+ 0.5 Var(r̃x)

1−β . Hence, r̂xt+1 has
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the following coeffi cients:

vx0 = − log β − 0.5 Var(r̃x); vx1 = −ã1;

vx2 = −− ã2; vx3 = −− ã3;ωxrx = βex2 + 1; ωxrθ = βex3 . (B26)

Appendix C: Steady State

In the steady state, exogenous competitive sector output and oligopolistic sector productivity are

constant over time, as are the endogenous variables of the model. Thus, Xt = X̄ > 0, θt = θ̄ > 0,

and Kt = K̄, Ht = H̄, ∀t. It follows that the steady state investment per period is Ī = δK̄, so that

∂Ī
∂K̄

= δ. We characterize the steady state of the Cournot dynamic equilibrium (Proposition 4) for

general N , with the collusive industry equilibrium being the special case for N = 1. We recall that

the maintained assumptions on the parameters are σ > 1 and (β, δ, φ, ψH , ψK) ∈ (0, 1)5.

Let W̄ (N) = X̄ − N(A(Ī , K̄) + H̄). Assuming, for the moment, that W̄ (N) > 0, the steady

state equilibrium product price is

p̄y =

(
W̄ (N)

NF (K̄, H̄, θ̄)

)1/σ

η, (C1)

when K̄ > 0, H̄ > 0, and is undefined else. Meanwhile, the optimality condition for H in steady

state is
Nσ + (p̄y)1−σησ

(Nσ − 1)
= p̄yFH(K̄, H̄, θ̄). (C2)

Since FH(K̄, H̄, θ̄) = θ̄ψHK̄
ψK H̄ψH−1 , it follows from (C1)-(C2) that K̄ > 0, H̄ > 0 if W̄ (N) > 0

(since θ̄ > 0 and σ > 1). Next, put D̄y = p̄yF (K̄, H̄, θ̄)− (A(Ī , K̄) + H̄), so that

∂D̄y

∂I
= −AI(Ī , K̄)

[
1 +

(p̄y)1−σησ

Nσ

]
, (C3)

∂D̄y

∂K
= p̄yFH(K̄, H̄, θ̄)

(Nσ − 1)

Nσ
−AK(Ī , K̄). (C4)

It follows that in the steady state, for each t, Zt = Z̄ = X̄ + D̄y + 1 and the aggregate price index

Pt = P̄ . Hence, the SDF is Mt = β ∀t. Then the Euler condition for optimal investment is

−∂D̄
y

∂I
= β

(
∂D̄y

∂K
− (1− δ)∂D̄

y

∂I

)
, (C5)
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which can be rearranged as

(1 + δυ)

(
Nσ + (p̄y)1−σησ

Nσ

)
[(1− β(1− δ)] = β

(
p̄yFK(K̄, H̄, θ̄)

(Nσ − 1)

Nσ
− 0.5υδ2

)
. (C6)

Using the notation of Proposition 2, the steady state collusive industry prices (p̃y∗), material

inputs (H̃∗), and capital stock (K̃∗) are derived from (C1), C2), and (C6) for case N = 1. Using

Proposition 3, the per firm material inputs are H̄∗ =

(
N

ψK−1
ψH

)
H̃∗, while the per firm capital

stocks and investment are K̄∗ = K̃∗

N and Ī∗ = δK̄, respectively. Hence, the steady state dividends

for each firm in the symmetric collusive equilibrium are

D̄y∗ = p̄y∗F (K̄∗, H̄∗, θ̄)− H̄∗ − δK̄∗(1 + 0.5δυ), (C7)

where the last term in (C7) is the total investment cost A(Ī∗, K̄∗). Therefore, at any date, the

steady state firm value is V̄ ∗ = D̄y∗

P̄ ∗(1−β)
, where P̄ ∗ is the steady state aggregate price index. Then,

from (A.2.33), the upper bound (N̄) for the number of firms that strictly sustain collusion along a

symmetric SPE is determined implicitly by the condition

p̄y∗F (K̄∗, H̄∗, θ̄)

(
N − 1

N

)
+ δK̄∗(1 + 0.5δυ) =

(
β

1− β

)
D̄y∗. (C8)

so that D̄y∗ > 0 if p̄y∗ > 0, H̄∗ > 0, K̄∗ > 0, θ̄ > 0. Finally, the equilibrium asset returns are given

by R̄j = 1
β , j = x, y, f.

We now show that X̄ > N(A(δK̄∗, K̄∗) + H̄∗). Fix any N ≤ N̄ and X̄. Note that W̄ ∗(N) ≥ 0

(else equilibrium prices are undefined). So suppose to the contrary that W̄ ∗(N) = 0. Hence, from

(C7), D̄y∗ < 0 and from (C2) ∂D̄y∗

∂H < 0. Hence, perturbations H̄∗ − ε (for ε > 0) are strictly

improving as long as (C2) is satisfied, so that W̄ ∗(N) = 0 cannot be an optimum.
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