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Abstract

Which firms invest in artificial intelligence (AI) technologies, and how do these investments
affect individual firms and industries? We provide a comprehensive picture of the use of AI
technologies and their impact among US firms over the last decade, using a unique combina-
tion of job postings and individual-level employment profiles. We introduce a novel measure
of investments in AI technologies based on human capital and document that larger firms with
higher sales, markups, and cash holdings tend to invest more in AI. Firms that invest in AI ex-
perience faster growth in both sales and employment, which translates into analogous growth
at the industry level. The positive effects are concentrated among the ex ante largest firms, lead-
ing to a positive correlation between AI investments and an increase in industry concentration.
However, the increase in concentration is not accompanied by either increased markups or in-
creased productivity. Instead, firms tend to expand into new product and geographic markets.
Our results are robust to instrumenting firm-level AI investments with foreign industry-level
AI investments and with local variation in industry-level AI investments, and to controlling
for investments in general information technology and robotics. We also document consistent
patterns across measures of AI using firms’ demand for AI talent (job postings) and actual AI
talent (resumes). Overall, our findings support the view that new technologies, such as AI,
increase the scale of the most productive firms and contribute to the rise of superstar firms.
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Technological change is a key driver of economic growth. The past decade has seen a new tech-

nological shift: advances in computing power and data availability have led to substantial devel-

opments in artificial intelligence (AI) technologies,1 enabling their commercial applications across

a broad landscape of firms, industries, and countries. In surveys of executives at companies in-

vesting in AI, 70% of respondents think that AI investments will fundamentally transform their

companies and industries within the next 4–5 years.2 Yet it remains an open question whether

artificial intelligence can transform economies and spur economic growth. On the one hand, as a

potential general purpose technology, AI can generate growth through product innovations and

increased productivity (Aghion et al., 2017; Acemoglu and Restrepo, 2018; Cockburn et al., 2018;

Mihet and Philippon, 2019). On the other hand, aggregate productivity growth over the past

decade has slowed significantly, leading to concerns that AI may not deliver economic growth or

take a much longer time to reach its potential (Brynjolfsson et al., 2019). So far, there has been little

systematic evidence on AI investments and their economic impact.

In this paper, we examine the adoption of artificial intelligence technologies (e.g., machine

learning, natural language processing, and computer vision) and their impact on the growth of

U.S. firms and industries over the past decade. Artificial intelligence can lead to firm growth

through several non-mutually-exclusive channels with differing implications. First, AI technolo-

gies can streamline business processes involving prediction, leading to improvements in forecast

accuracy and resource allocation (Brynjolfsson et al., 2011; Mihet and Philippon, 2019; Tanaka et

al., 2019). This type of automation can potentially stimulate growth by streamlining production

and increasing productivity. Second, among the more visible applications of AI to date have been

the tailoring of product offerings and the targeting of online advertisements, which can potentially

enable firms to price discriminate and gain market power (Shiller, 2016; Mihet and Philippon,

2019). Third, AI can create scale advantages that benefit the ex ante largest and most produc-

tive firms. For example, AI can change cost structures by reducing the cost of spanning multiple

markets (Aghion et al., 2019), or disproportionately benefit firms with extensive operations that

generate large amounts of data due to AI’s unique reliance on big data (Farboodi et al., 2019).

A major challenge in studying the impact of AI is a lack of data on the use of AI technologies

at the firm level. We overcome this challenge by developing a novel measure of AI investments

based on detailed data on firms’ human capital, motivated by the heavy reliance of AI on human

expertise rather than physical capital. We use a unique combination of datasets to measure firms’

1According to Organisation for Economic Co-operation and Development (2019), an AI system is defined as a
“Machine-based system that can, for a given set of human-defined objectives, make predictions, recommendations or decisions
influencing real or virtual environments.”

2 See here for a survey by Deloitte in 2018. Bughin et al. (2018) and Furman and Seamans (2019) provide an overview
of AI investments in the private sector. When it comes to public investments, the U.S. government is looking to double
its non-defense research and development (R&D) in AI (Executive Office of the President, 2019); the European Union
has called for $24 billion investments in AI research by 2020 (European Commission, 2020); and China aims for $150
billion invested in the domestic AI market by 2030 (Mou, 2019).
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AI-related human capital: job postings data from Burning Glass Technologies, which include the

near-universe of online job vacancies, and resume data from Cognism Inc, which offer job histories

for hundreds of millions of individual employees. These datasets enable us to construct firm-level

measures of AI investments by observing both the stock and the hiring of AI-related employees.

We offer a new approach to identify AI-related jobs, which proceeds in several steps. First,

we measure AI-relatedness of each skill using the job postings data. This measure is based on

the intuition that if a given skill is related to AI, then jobs requiring that skill should also require

some of the core AI skills. We consider three core AI skills: “machine learning”, “natural language

processing”, and “computer vision”. We measure the AI-relatedness of a given skill in the job

postings data as the fraction of jobs requiring that skill that also require either “artificial intelli-

gence” directly or one of the three core AI skills.3 Second, we obtain a measure of AI-relatedness

of each job posting by averaging the AI-relatedness measure across all required skills listed in

that job posting. This gives a continuous measure of AI-relatedness ranging from 0 to 1 for each

job. We define AI jobs as jobs whose AI-relatedness measure exceeds a certain cutoff (e.g., 0.1).

Third, we leverage the most AI-related skill terms to classify AI workers in the less structured re-

sume data. For each employee, at each point in time, we consider whether terms with the highest

AI-relatedness (e.g. “deep learning”) appear either in the contemporaneous job title, in the job

description, in any patents or publications produced during the job, or in any awards received

during the job. This gives us a classification of each employee of each firm at each point in time.

Our measure of AI jobs offers several advantages over previous studies. First, compared to

previous studies using bag-of-words approaches with job postings data, our method does not

require researchers to pre-specify an exhaustive list of AI-related keywords and instead learns

the most relevant terms from the data. Second, our measure is built on a continuous (rather than

binary) classification, which allows us to capture a wide range of AI-related skills and differentiate

more AI-related skills (e.g., deep learning) from less AI-related skills (e.g., information retrieval).

Our paper is also the first one to cross-validate AI labor demand identified from job postings with

the stock of AI workers identified from resumes. Importantly, our methodology for identifying

AI-skilled jobs can also be applied to measure a wide range of other technologies (e.g., blockchain,

robotics, and digitization), especially those centering on human expertise.

We confirm that our human-capital-based measures of AI investments constructed from re-

sumes and job postings display intuitive properties. In both datasets, the fraction of AI jobs has

monotonically increased over time, growing more than five-fold from 2010 to 2018. Firms in all

sectors increased their AI investments by similar relative magnitudes, consistent with AI being

a general purpose technology. Encouragingly, the two measures of AI investments—based on a

3For example, the AI-relatedness measure for “deep learning” is 0.86, meaning that 86% of all jobs that require deep
learning also require one of the four core AI skills. In contrast, the measure for “information retrieval” is 0.37, the
measure for “regression analysis” is 0.09, and the measure for “communication skills” is 0.003.
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firm’s current employees (from resumes) and the demand for additional AI employees (from job

postings)—are highly correlated, and all subsequent tests in the paper yield consistent results

across these two independent datasets.

We begin our empirical analysis by examining which firms invest in AI. We aggregate both

job postings data and resume data to the firm level and match to public firms in the Compustat

database. We predict growth in the share of AI-related employees from 2010 to 2018 based on firm

characteristics measured as of 2010. Our results indicate that larger firms, in terms of both sales

and market share, are more likely to invest in AI, consistent with the evidence by Alekseeva et al.

(2020). Furthermore, AI investments are stronger among firms with larger cash holdings, higher

mark-ups, and higher R&D intensity. Looking at the local labor market conditions, we observe

that higher-wage and more educated areas experience faster growth in AI-skilled hiring.

We then address the fundamental question of whether artificial intelligence is able to stimulate

growth, with a particular emphasis on AI-using (rather than AI-inventing) firms. Given that AI

investments are gradual over time, and that we do not expect to observe their effects on firms

immediately, our primary specification is a long-differences regression of changes in firm-level

outcomes on contemporaneous changes in the share of AI workers from 2010 to 2018. We control

for industry fixed effects and firm-, industry-, and commuting-zone-level characteristics from 2010

that predict AI investments. We document a strong and consistent pattern: firms that invest in AI

grow more. Specifically, a one-standard-deviation increase in the share of AI workers based on

the resume data corresponds to a 15.6% increase in sales, a 15.2% increase in employment, and a

1.4 percentage point increase in market share within the 5-digit NAICS industry. The results are

similar using the job-postings-based measure of AI investments, where a one-standard-deviation

change in the share of AI workers corresponds to a 12.1% increase in sales, a 10.9% increase in

employment, and a 0.9 percentage point increase in market share. We also find similar effects on

firms’ stock market valuations. Moreover, the results are ubiquitous across major industry sectors,

supporting the claim that AI is a general purpose technology.

We perform two additional tests to rule out potential confounding factors. First, we use a

distributed lead-lag model (Stock and Watson, 2015; Aghion et al., 2020) to measure the dynamic

effects of AI investments and address concerns about reverse causality. We find no increases in

firm growth prior to AI investments and confirm that the effects are not immediate: the impact of

AI on both sales and employment becomes discernible only after a lag of two years. Second, we

confirm that our results reflect specifically investments in AI, rather than other related technolo-

gies. We show that the relationship between AI investments and firm-level growth is robust to

controlling for contemporaneous firm-level investments in robotics and other non-AI information

technologies.

Although we control for factors that predict AI investments, the decision to invest in AI may

be endogenous even conditional on controls, which can lead to biased estimates. The direction of
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this bias is ex ante ambiguous, with potential upward bias if firms investing in AI are on a faster

growth trajectory or have better management, and potential downward bias due to measurement

error or firms investing in AI in response to fewer growth opportunities or anticipated negative

shocks. These concerns are partially assuaged by the dynamic effects, which does not show any

pre-trends in either sales or employment. However, if AI investments coincide with shocks that

are exactly contemporaneous and not pre-existing, those would not be visible in the pre-trends.

In order to further address the endogeneity concerns around firms’ decisions to invest in AI,

we take advantage of two different instruments for AI investments. First, we employ a strategy

similar to Autor et al. (2013) and Acemoglu et al. (2020) and instrument the change in each firm’s

share of AI workers using the change in the share of AI workers among European firms in the same

5-digit NAICS industry. Our unique resume data, which include consistent coverage of European

firms, enable the detailed measurement of firm- and industry-level AI investments in Europe.

Second, we use a shift-share design, where firm-level AI investments are instrumented with a

weighted average of national industry-level AI investment rates, and the weights are given by

the industry share at the location(s) where the firm operates. Both instruments have a strong first

stage, with F-statistics above 10. Consistent with the argument that differences in AI investments

across industries are largely driven by differences in technical feasibility and availability of data

rather than different demand shocks or growth trajectories (Bughin et al., 2017), we show that

firms that have higher predicted AI investments are not on different growth trajectories prior to

2010, and controlling for pre-2010 growth does not change the results. We also show that industry-

level growth in the share of AI employees in Europe is not positively correlated with changes in

industry-level prices in the U.S. from 2010 to 2018, suggesting that the relevance of the European

IV is not driven by correlated industry-level demand shocks. Both IV strategies yield results that

are consistent with the estimates from the OLS regressions.

We next turn to whether firm-level growth aggregates into industry-level growth in sales and

employment. It is possible that the positive effects on employment and sales of firms investing

in AI are offset or even dominated by negative spillovers to competitors within the industry as

output and labor are reallocated from other firms to the AI-investing firms (Acemoglu et al., 2020).

Nevertheless, we find that industries that invest more in AI experience an overall increase in sales

and employment within the sample of Compustat firms. We estimate industry-level growth at

the 5-digit NAICS level, which is the same level of granularity as the instrument based on AI

investments in Europe, and we confirm that the industry-level results are consistent across OLS

and IV regressions. The positive effect on employment is especially surprising, given wide-spread

concerns regarding the potential for AI to replace labor (Frank et al., 2019). This highlights the

differences between AI and previous technologies, such as robots and automation: although larger

firms are also more likely to adopt robots (Humlum, 2019; Acemoglu et al., 2020), most of the prior

evidence finds that robot adoption leads to lower aggregate employment (Autor and Salomons,
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2018; Acemoglu and Restrepo, 2019; Zator, 2019).4

AI investments not only spur industry growth, but also increase industry concentration. By

estimating the effect of AI investments within groups of firms with differing initial size and con-

trolling for the initial size, we show that the positive relationship between AI investments and

growth concentrates among the ex ante largest firms. For example, a one-standard-deviation in-

crease in the share of AI workers based on resume data increases sales by 17.3% in the top tercile

of initial firm size, 4.3% in the middle tercile, and 0.0% in the bottom tercile. Furthermore, AI

investments lead to higher industry concentration measured by both the Herfindahl-Hirschman

Index (HHI) and the fraction of total industry sales accruing to the single largest firm.

We outline three non-mutually-exclusive channels through which investments in AI technolo-

gies can generate the empirical patterns we observe in terms of increased firm-level growth and

higher industry concentration: (i) productivity improvements; (ii) market power; and (iii) scale

advantages. For the first channel, we consider whether the observed effects stem from AI invest-

ments increasing firms’ productivity. Empirically, we do not find much support for this hypothe-

sis, at least in the short run. We document a weak, statistically insignificant, and slightly negative

relationship between AI investments and sales per worker or revenue total factor productivity

(TFP). The second channel reflects the idea that big data and AI enable granular product tailoring

that can potentially facilitate price discrimination. We test this channel empirically by evaluating

whether the AI-fueled growth is driven by increased market power captured by the AI-investing

firms. We find statistically insignificant and economically small effects on firm-level markups (on

the order of a +/-1% change in markups for a one-standard-deviation change in AI investments).

We find that our results appear most consistent with the third channel: that AI facilitates scale

advantages for the ex ante largest and most productive firms (Lashkari et al., 2018; Ayyagari et

al., 2019; Autor et al., 2020). Large firms are more likely to invest in AI, and these investments al-

low the firms to grow even larger, with the positive effects of AI concentrating among the ex ante

largest firms. In addition to the results by initial firm size, we perform two further tests of the scale

advantages mechanism. First, we document that the positive effects of AI on firm sales growth

are concentrated in the most ex ante productive firms, with large positive effects for firms in the

highest productivity tercile in 2010 and small and insignificant effects for firms in lower terciles.

Second, we document that AI investments are related to firms’ expansion across geographic mar-

kets and creation of new products, which is consistent with the theoretical argument by Aghion et

al. (2019) that new technologies lower the overhead costs of spanning multiple markets and allow

the most productive firms to expand.

Our paper contributes to the literature on the adoption and economic impact of new technolo-

4More recent evidence in Graetz and Michaels (2018), Aghion et al. (2020), and Fujiwara and Zhu (2020) suggests that
automation can have zero or even positive effects on aggregate employment. For theoretical treatments of the impact
of automation on labor displacement, see Korinek and Stiglitz (2017), Acemoglu and Restrepo (2019), and Agrawal et
al. (2019).
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gies. Specifically, we contribute to the growing literature on the advent of artificial intelligence and

its early impact on the economy. While a number of theories have been proposed about how AI

and big data could affect the economy, there has been a dearth of empirical evidence until recently

due to the lack of data (Brynjolfsson and Mitchell, 2017; Seamans and Raj, 2018).5 Most empiri-

cal evidence to date focuses on the effect of AI on the labor market (e.g., Erel et al., 2019; Felten

et al., 2018; Grennan and Michaely, 2019). Some recent papers show that AI increases the market

value of firms (Rock, 2019) and changes the knowledge production functions (Abis and Veldkamp,

2020). In concurrent work, Alderucci et al. (2020) explore the effect of AI-related patents on firms

inventing AI technologies, which contrasts with our focus on firms using AI technologies across

a wide range of firms and industries. Our findings highlight important differences between the

adoption of AI and the adoption of information technology (IT) in the 1980s and 1990s.6 Much

of the previous literature finds that IT investments were associated with economically large pro-

ductivity increases but mixed results on firm performance measures such as market share. By

contrast, we find that AI-investing firms see growth in market share but not in productivity. Our

results also show higher AI adoption and larger gains from AI investments for larger firms, which

contrasts with prior work on diffusion patterns for IT (Hobijn and Jovanovic, 2001). These dif-

ferences underscore the distinctive features of AI relative to previous waves of IT: as a general

purpose technology with non-rival uses across different operations of the firm, AI facilitates ex-

pansion into new markets, and the reliance of AI on data confers a special advantage to larger

firms.

We also contribute to the literature on the causes and consequences of increasing industry con-

centration. A growing literature documents the rise of concentration and market power in the

U.S. (e.g., Gutiérrez and Philippon, 2017; Grullon et al., 2019).7 Our results suggest that AI tech-

nologies contribute to increased concentration by enabling large firms to grow even larger. This

lends support to the theoretical mechanism that new technologies like AI can disproportionately

favor the largest and most efficient firms by enabling them to scale more easily (Aghion et al.,

2019). Importantly, the growth of big firms is not associated with higher market power or higher

productivity. Instead, AI-investing firms are able to enter new markets and expand their prod-

uct offerings, which is consistent with evidence on previous technologies during industrialization

(Braguinsky et al., 2020).

Methodologically, this paper offers a new measure of firms’ intangible capital based on hu-

man capital. While we employ this methodology to look specifically at investments in AI, our

5For theories on the impact of AI, see, for example, Korinek and Stiglitz (2017), Aghion et al. (2017), Brynjolfsson et
al. (2019), Brynjolfsson et al. (2020), Farboodi et al. (2019).

6See Dedrick et al. (2003) and Cardona et al. (2013) for a review of that literature.
7Other explanations for growing concentration include increasing barriers to entry and lax antitrust enforcement

(e.g., Grullon et al., 2019 and Covarrubias et al., 2019), low interest rates (Liu et al., 2020), and globalization (e.g., Elsby
et al., 2013).
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methodology can be applied more generally, including to other skills and technologies. Despite

ongoing efforts to incorporate more comprehensive measures of intangibles at the national level

(e.g., Corrado et al. 2016), most firm-level measures of intangible capital use cost items such as

R&D and SG&A (Eisfeldt and Papanikolaou, 2013; Peters and Taylor, 2017). Our methodology

offers a measure of intangibles that is consistent across all firms and sectors, can be defined as

broadly or narrowly as needed, and is not subject to different R&D or SG&A norms across firms

and industries.

The remainder of the paper proceeds as follows. Section 1 develops our main hypotheses.

We introduce the two primary datasets (job postings and resumes) in Section 2 and detail our

methodology for constructing the measures of AI investments in Section 3. Section 4 addresses

the question of which firms choose to invest in AI, while Section 5 considers the impact of AI in-

vestments on firm growth and industry concentration. Section 6 explores the mechanisms. Section

7 concludes.

1 Conceptual Framework

It is an open question whether AI investments fuel firms’ growth. On the one hand, as a general

purpose technology, AI can be widely applicable across firms’ operations, empowering the cre-

ation of new products and services or facilitating entry into new markets.8 This would lead to the

expansion of the AI-investing firms’ operations and growth in sales. On the other hand, current

attention to AI investments may be over-hyped (Mihet and Philippon, 2019), or AI may still be too

early in the adoption cycle to have a meaningful impact on firm growth (Brynjolfsson et al., 2020).

Moreover, even if the AI investments are already benefiting firms via faster sales growth, the im-

pact of AI on employment, which is of first-order importance (Frank et al., 2019), is ambiguous.

Since AI capabilities have the potential to displace a large share of occupations, employment may

decline even as output increases.

At a broader level, we are also interested in how investments in AI technologies affect industry

concentration. Following a well-documented increase in industry concentration over the past

several decades (Furman and Orszag, 2015; Grullon et al., 2019), an active debate emerged about

the causes and consequences of the increase in industry concentration (see Syverson, 2019 and

Covarrubias et al., 2019 for a review). One proposed channel driving this and other important

trends, including the decrease in the labor share, is improvements in information technology (IT)

(e.g., Karabarbounis and Neiman, 2014; Crouzet and Eberly, 2019; Lashkari et al., 2018; Aghion

et al., 2019). Empirically, Bessen (2017) finds a positive relationship between the rise in industry

8For example, the JPMorgan Chase 2017 annual report highlights the broad applicability of AI: “Artificial intelligence,
big data and machine learning are helping us reduce risk and fraud, upgrade service, improve underwriting and enhance marketing
across the firm.” A detailed case study of JPMorgan’s use of AI technologies is provided in Online Appendix A.1.
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concentration and the use of proprietary IT systems in the U.S. He stresses that the scalability

of IT is advantageous to firms that are already large. However, in the case of AI, the effect on

industry concentration is ex ante ambiguous. On the one hand, AI can democratize adoption

among smaller firms. Unlike proprietary IT systems that require large upfront investments, AI

implementation is largely dependent on human expertise, with auxiliary investments centering on

data storage and computing, which can be purchased from specialized providers on a per use basis

and hence do not require lumpy upfront investments (Organisation for Economic Co-operation

and Development, 2015; Van Ark, 2016). On the other hand, big data and AI technologies have

scale effects that favor large firms and industry leaders with large amounts of data, which can

contribute to the increase in industry concentration and winner-take-most dynamics (Farboodi et

al., 2019).

Below, we discuss specific channels through which investments in artificial intelligence can

lead to firm growth and higher industry concentration. First, as a technological advancement, AI

can potentially stimulate growth by streamlining production processes and increasing productiv-

ity. Second, some of the specific applications of AI could be used to price discriminate and increase

firms’ market power. Third, AI has unique features, such as reliance on big data, that can favor ex

ante larger, more productive firms and increase the scale of these firms. While all three channels

can lead to higher growth of individual firms and increases in industry concentration, they have

different implications for competitive industry dynamics and varying predictions for firm-level

productivity and markups, leading to different economic implications associated with “good” vs.

“bad” concentration (Covarrubias et al., 2019).

1.1 AI as a Driver of Productivity Growth

Technological innovations aim at streamlining operations and improving productivity. For exam-

ple, previous waves of information technologies brought about significant productivity improve-

ments through a number of channels (Bartel et al., 2007). When it comes to AI, the technology can

increase productivity in at least two ways. First, AI can potentially replace or augment human la-

bor for some tasks (Webb, 2020; Agrawal et al., 2019) and cut per-unit labor costs. Empirically, this

appears to be the case for other recent technological innovations such as automation and robots

(Acemoglu et al., 2020; Graetz and Michaels, 2018). Second, big data and AI can increase effi-

ciency through better forecasting (Mihet and Philippon, 2019; Agrawal et al., 2020). This aspect

is explored in depth by Tanaka et al. (2019), who present a model of firm input choice under un-

certainty and costly adjustment, where forecast errors result in under- or over-investment.9 The

forecasting applications of artificial intelligence are indeed prevalent in the data. Chase (2013)

9Their empirical evidence supports the prediction that forecast accuracy is associated with higher profitability
among Japanese firms. Relatedly, Brynjolfsson et al. (2011) use detailed survey data from 179 large public firms to
document a positive link between the use of “data driven decision making” and firm-level output and productivity.
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draws on executive interviews to point out that big data can streamline demand forecasting, lead-

ing to more efficient inventory management. Our detailed resume data highlight how AI-enabled

forecasting is implemented across a variety of industries: for example, AI workers at JPMorgan

Chase model default of non-performing loans; ExxonMobil invests in AI for assessment and mit-

igation of risks in oil exploration; and General Electric uses AI in decision support for jet engine

preventive maintenance. For further examples, detailed case studies of the applications of AI in

four firms across four different industries—UnitedHealth Group, JPMorgan Chase, Caterpillar,

and Qualcomm – are provided in Online Appendix A.1.

This varied set of potential productivity improvements can manifest through greater produc-

tivity of the standard labor and capital inputs, as well as through changes in the production func-

tion that reflect data as an input. Empirically, in a Cobb-Douglas framework, AI-induced pro-

ductivity gains should translate into increases in measured total factor productivity (TFP). Under

more general production functions, higher productivity should also be reflected in higher mea-

sured output per worker. Specific improvements (e.g., automation of tasks previously performed

by human labor) can be further reflected in decreased costs or employment.

Prediction 1 (Productivity Channel). Productivity gains from artificial intelligence would be observed

empirically as:

1. AI-investing firms see increases in productivity (TFP) and labor productivity (sales per worker).

2. AI-investing firms potentially see decreases in costs or employment.

1.2 AI as a Driver of Price Discrimination and Market Power

Three of the most notable applications of artificial intelligence to date are: (i) targeting and pric-

ing of online ads, (ii) tailoring product offerings to customers’ tastes, and (iii) using consumer

data to price products. For example, a consumer product company may use machine learning

to build more specialized products tailored to certain customers, thus shielding themselves from

competition and being able to charge higher prices. Mihet and Philippon (2019) highlight the

uses of artificial intelligence by companies such as Amazon to improve matching of products with

consumers and to deliver more tailored recommendations, which in turn can enable firms to set

prices based on a large number of features including consumers’ demographics (Varian, 2018).

As a result, firms can price discriminate by offering contracts based on personalized customer

information (Brunnermeier et al., 2020). For example, data on individual behaviors such as web

browsing history can enable even better approximations of individual demand functions than

pure demographics and can potentially lead to large heterogeneity in prices charged to different

consumers (Shiller, 2016).10

10At the same time, the transparency of online pricing may limit firms’ ability to successfully price discriminate
(Cavallo, 2017; Ater and Rigby, 2018).
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If this effect is present, then the ability to tailor products (thereby making them less substi-

tutable) and price discriminate would grant greater market power to firms investing in AI, en-

abling them to extract more consumer surplus. Empirically, this greater market power would

appear in the form of higher markups charged by the AI-investing firms (Syverson, 2019).

Prediction 2 (Market Power Channel). Applications of artificial intelligence that enable price discrim-

ination would generate the following effects:

1. Investments in AI lead to higher firm-level markups.

1.3 AI as a Driver of Scale Advantages

As an information good, AI can also have scale effects that would facilitate higher growth of large

firms and industry leaders even without increases in productivity or market power. If this is the

case, then AI can contribute to the rise of superstar firms, as in (Autor et al., 2020).

Big data and artificial intelligence are intangible assets (Mihet and Philippon, 2019). Crouzet

and Eberly (2019) highlight that intangible assets are more “scalable” than physical capital, and

De Ridder (2019) conceptualizes intangible assets as a shift towards fixed costs and away from

variable costs. In particular, successful implementation of AI technologies relies strongly on data

availability (Fedyk, 2016), and Farboodi et al. (2019) point out that there is a positive feedback

loop between firm size and the firm’s data assets, driven by the fact that data are a “by-product

of economic activity”. This makes data and AI skilled labor complementary inputs, where break-

throughs in AI technologies can enable firms with extensive datasets to produce output that was

not feasible previously. As a result, firms’ investments in AI technologies can help mitigate dimin-

ishing returns to data inputs (Abis and Veldkamp, 2020) or even increase the returns to scale, akin

to what Lashkari et al. (2018) suggest for IT technologies more generally.

AI can also directly increase firm scale by allowing the most efficient firms to expand more

easily across different markets. Aghion et al. (2019) argue that when there are lower overhead

costs of spanning multiple markets due to new technologies like IT, high-productivity firms ex-

pand into new markets, leading to higher sales and market share for these firms. Relatedly, Hsieh

and Rossi-Hansberg (2019) model the ongoing transformation of the services industry as techno-

logical innovation that increases fixed costs but reduces variable costs, allowing productive firms

to extend their boundaries to new geographical markets. In our data, we see that similar meth-

ods and skillsets are often used to leverage AI in different business segments, and when firms

begin investing in AI, they tend to do so concurrently on multiple fronts. For example, invest-

ments in AI by the construction manufacturing firm Caterpillar Inc. range from using techniques

from computer vision for part recognition to credit scoring for machinery financing (see Online

Appendix A.1). Some of these innovations include expansion into products and services that
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were previously either infeasible or not cost-effective: for example, the introduction of AI-driven

trading platform DeepX at JPMorgan and the manufacturing of “smart” machinery at Caterpillar.

This underscores the argument made by Braguinsky et al. (2020) that new technologies help firms

overcome supply-side constraints and grow through product innovations.

Overall, AI can create scale advantages by changing the cost structure (e.g., reducing the costs

of spanning multiple markets or moving towards a greater reliance on fixed costs) or by directly

impacting the production function (e.g., increasing returns to scale or using data and AI labor as

complementary inputs). Empirically, all of these channels predict that larger firms should both

(a) be more willing to invest in AI and (b) benefit more from AI investments. At the industry

level, firms’ ability to scale more easily can lead to greater market share accruing to the most ex

ante productive firms and a winner-takes-most phenomenon. At the same time, scale advantages

from AI would not necessarily be visible in empirical measures of productivity; for example, if AI

helps reduce the overhead costs of spanning multiple markets or creating new products, firms will

expand their operations but will not necessarily have higher productivity in any given market.

Prediction 3 (Scale Advantages Channel). Scale advantages from AI generate the following predictions:

1. Larger firms are more likely to invest in AI.

2. AI investments lead to the largest and most productive firms growing more and accruing greater

market share.

3. AI investments are associated with expansion into new markets.

2 Data

We provide a uniquely comprehensive perspective on firm-level AI investments by simultane-

ously measuring firms’ demand for AI workers through job postings and the stock of AI workers

through employment profiles. We detail each dataset in turn and describe our sample construc-

tion.

2.1 Job Postings from Burning Glass

The first dataset we use is a proprietary dataset covering over 180 million electronic job postings

in the United States in 2007 and 2010–2018. The dataset is provided by Burning Glass Technolo-

gies (BG in short) and draws from a rich set of sources. Burning Glass examines more than 40,000

online job boards and company websites to aggregate the job postings data, parse them into a

systematic, machine-readable form, and create labor market analytic products. The company em-

ploys a sophisticated deduplication algorithm to avoid double counting vacancies that post on

multiple job boards. Hershbein and Kahn (2018) provide a detailed description of the BG data.
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The BG data contain detailed information for each job posting, including job title, job loca-

tion, occupation, and employer name. Importantly, the job postings are tagged with thousands

of specific skills standardized from the open text in each job posting.11 The main advantages of

the BG dataset are the breadth of its coverage and the detail of the individual jobs in the sample.

The dataset captures a near-universe of jobs that were posted online and covers approximately

60–70% of vacancies posted in the U.S., either online or offline (Carnevale et al., 2014). The broad

coverage of the data presents a substantial advantage over datasets based on a single vacancy

source, such as CareerBuilder.com. Hershbein and Kahn (2018) show that the representativeness

of Burning Glass is stable over time at the occupation level. In other words, although BG slightly

over-represents some occupations (e.g. occupations requiring more skills) relative to the U.S. Cen-

sus Current Population Survey, the degree to which these occupations are over-represented does

not change over the sample period.

We focus on jobs with non-missing employer names and at least one required skill. About

65% of the job postings have employer information and 93% of the job postings are linked to at

least one skill.12 We also drop job postings that are internships. We then match the employer

firms in the remaining job postings to Compustat firms. This step is necessary to aggregate job

postings to firm level and merge with other firm-level variables. We perform a fuzzy matching

between firm names in BG and Compustat after stripping out common endings such as “Inc"

and “L.P.". For observations that do not match exactly on firm name, we manually assess the top

ten potential fuzzy matches by looking at the firm name, industry, and location.13 Out of 112

million job postings with non-missing employer names and skills, 42 million (38%) are matched

to Compustat firms. This is consistent with the fact that publicly listed firms constitute about

one-third of U.S. employment in the non-farm business sector (Davis et al., 2006).

2.2 Employment Profiles from Cognism

While job postings data provide an important look at the firms’ demand for certain types of em-

ployees, vacancies data represent just one aspect of a firm’s adjustment of labor inputs: stated, but

not necessarily realized, demand (Hershbein and Kahn, 2018), which is a less complete view of the

firm’s labor inputs than the actual employees. To address this concern, we complement our job

postings data with comprehensive information on the actual individuals employed at each firm.

11For example, a job posting might ask for a worker who is bilingual or who can organize and manage a team.
BG cleans and codes these and other skills into a taxonomy of thousands of unique but standardized requirements.
Beginning with a set of predefined possible skills, BG does a fuzzy search of each job posting’s text for an indication
that any given skill is required. For example, for team work, the BG algorithm searches for the key words “team work”
but also looks for variations such as “ability to work in a team.”

12The job postings with missing employer names are primarily those listed on recruiting websites that mask the
employers’ identities.

13Observations without an exact match generally fall into the following categories: (i) the employer name in BG
matches to several firms in Compustat; (ii) the entries contain extra words (e.g., “X company” vs. “X company interna-
tional”).
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To do so, we leverage a novel dataset of approximately 235 million individual profiles provided

by Cognism, an aggregator of employment profiles for lead generation and client relationship

management services. Cognism obtains the resumes from a variety of sources, including publicly

available online profiles, collaborations with recruiting agencies, third party resume aggregators,

and human resources databases of partner organizations, as well as direct user contributed data.14

These data are introduced and described in detail in Fedyk and Hodson (2019). While the data

slightly over-represent high-skilled employees, they cover approximately 43% of the entire U.S.

workforce as of 2019 and offer a representative breakdown across broad 2-digit NAICS industries.

For each individual in our sample, we have the following general information: a unique iden-

tifier, location (city and country), an approximate age derived from the individual’s educational

record, gender classified based on the first name, and a short bio sketch (where provided). For

each employment record listed by the individual, we see the start and end dates, the job title,

the company name, and the job description (where provided). Similarly, each education record

includes start and end dates, the name of the institution, and the degree (major). In addition, indi-

viduals may volunteer self-identified skills and list their courses attended, certifications, patents,

awards, and publications.

We take several steps to disambiguate self-reported employer names in the profile data to

the names of publicly traded firms. First, we follow the procedure outlined in Fedyk and Hod-

son (2019): (i) begin with a comprehensive list of publicly traded companies from the exchanges

(NASDAQ, NYSE) and common datasets (CRSP and Compustat), (ii) strip out common endings

(e.g., “Inc" and “L.P."); (iii) run a fuzzy matching algorithm from the self-reported employer names

to the official company names; and (iv) augment the algorithm by mapping the self-reported em-

ployer names to semantic entities in the WikiData project. In addition, for the set of Compustat

firms that are not mapped to any companies in the employment data, we perform a manual at-

tempt at finding matches. Similarly to our procedure matching BG job postings to Compustat

firms, we manually check candidate non-exact matches. Of the 462 million U.S.-based person-

firm-year employment records between 2007 and 2018, 86 million (19%) are matched to U.S. pub-

lic firms that are headquartered in the U.S. This is consistent with approximately 26% of overall

U.S. employment being accounted for by publicly listed firms (Davis et al., 2006), only our sample

additionally excludes cross-listed firms with headquarters outside of the U.S. The sample of 86

million person-firm-years matched to U.S. public firms accounts for 14 million distinct individual

employees.

14The processing of all profiles is compliant with the applicable GDPR and CCPA regulations.
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2.3 Additional Data Sources

We merge the Burning Glass job postings data and the Cognism resume data to several additional

data sources. We use commuting-zone-level wage and education information from the Census

American Community Surveys (ACS) and industry-level wage, employment, and price data from

the Bureau of Labor Statistics (BLS) and the Census Quarterly Workforce Indicators (QWI). Opera-

tional variables such as sales, employment, assets, net income, cash, costs of goods sold, operating

expenses, R&D expenditures, and SG&A expenses come from annual accounting data available

through Compustat.

3 Methodology: AI Investments by Firms

In this section, we introduce a new methodology to proxy for firm-level AI investments with

job postings data. We provide summary statistics of our AI investments measure and validate

the (job-postings-based) measure using resume data. The two measures—based on job openings

versus current employees—display analogous trends over time and across industries, and show

high correlations with each other.

3.1 AI Investments from Job Postings (Burning Glass)

We take advantage of the detailed information on required skills in the job postings data to pro-

pose a new methodology for identifying AI-related jobs. Previous work classifies job postings

based on the presence of key terms from a pre-specified list.15 This approach presents significant

measurement challenges, as word lists are highly subjective and are likely to suffer from both

Type I (incorrectly labeling tangentially-related employees as AI-related) and Type II (missing real

AI skills that did not make the initial dictionary) errors. In a quickly-evolving domain such as

AI, identifying an accurate and complete set of search terms is especially challenging, as newer

emerging skills can easily be missed. Our methodology circumvents these challenges by not re-

quiring researchers to impose any subjective assessments on which skills are AI-related ex ante,

instead learning the AI-relatedness of each of approximately 15,000 unique skills directly from

the job postings data, based on their empirical co-occurrence with unambiguous core AI skills.

We then aggregate the skill-level measure to the job level by generating a continuous measure of

AI-relatedness for each job posting, from which we can classify employees into AI-workers and

non-AI-workers.
15For example, Hershbein and Kahn (2018) identify jobs requiring cognitive abilities if any listed skills include at

least one of the following terms: “research,” “analy-,” “decision,” “solving,” “math,” “statistic,” or “thinking.” Similar
bag-of-words approaches with pre-specified search terms are used to identify AI-related employees (e.g., Alekseeva et
al., 2020).
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We consider three core AI skills: Machine Learning (ML), Natural Language Processing (NLP),

and Computer Vision (CV). For every other skill s, we define a metric that captures the relatedness

of that skill to the three core AI technologies and directly to the skill “Artificial Intelligence” (AI):

wAllAI
s =

# of jobs with skill s and {ML, NLP, CV or AI} in job title or in skills
# of jobs with skill s

Intuitively, this measure captures how related each skill s is to the core AI skills. For example,

the skill “Tensorflow” has a value of 0.9, which means that 90% of job postings with Tensorflow as

a required skill also require one of the core AI skills or contain one of the core AI skills in the job

title. Hence, requiring “Tensorflow” as a skill for a job is indicative of a job being AI-related. On

the other hand, the skill “Communication” is required in a large share of jobs across the board, so

its AI-relatedness measure is only 0.03%, and having the “Communication” skill does not indicate

that the job is AI-related.

We define the job-level AI-relatedness measure for a given job posting as the mean (skill-level)

measure across all required skills listed in that job posting. Specifically, letting N denote the num-

ber of required skills listed for job posting j, our job-level AI-relatedness measure is:

ωAllAI
j =

1
N

N

∑
s=1

wAllAI
s

To further refine our measure and screen out general skills (e.g., the programming language

“R”, which has a value of 0.25), we manually categorize all skills that have an AI-relatedness

measure wAllAI
s above 0.05 and that are required in at least 50 job postings into “narrow” and

“broad” AI skills. The threshold of 0.05 is set sufficiently low to ensure that we do not miss any

ex-ante important AI-skills. There are about 700 skills with wAllAI
s > 0.05 and at least 50 jobs.

We group these skills into nine categories: computing (e.g. GPU), data (e.g. NoSQL), general

programming (e.g. Python), AI software (e.g. Tensorflow), AI methodology or algorithm (e.g.

supervised learning), AI application (e.g. Chatbot), AI core (AI, ML, NLP, CV), statistics (e.g.

linear regression), and other. Of these, we consider “computing”, “data”, “AI software”, “AI

methodology or algorithm”, “AI application”, and “AI core” as “Narrow AI” skills, while “general

programming”, “statistics”, and “other” represent more general skills that are complementary to

AI.

We can decompose the job-level measure ωAllAI
j into components corresponding to these cate-

gories:

ωAllAI
j = ω

computing
j + ωdata

j + ω
AIso f tware
j + ω

AImethodology
j + ω

AIapplication
j + ωAIcore

j (1)

+ ω
programming
j + ωother

j + ωstatistics
j + ωw<0.05

j

= ωNarrowAI
j + ω

programming
j +ωstatistics

j + ωother
j + ωw<0.05

j
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For the remainder of the paper, we exclude the general complementary skills (“general pro-

gramming”, “statistics”, and “other”) and use ωNarrowAI
j as the primary continuous job-level mea-

sure of AI relatedness. We transform this continuous measure into a discrete indicator by defining

each job posting j as AI-related if the measure ωNarrowAI
j is above 0.1, which upon manual exam-

ination captures the majority of AI-related job postings.16 The firm-level measure ShareNarrowAI
f ,t

is the fraction of job postings by firm f in year t that is AI-related (i.e. ωNarrowAI
j > 0.1). The

reason for using a discrete classification of each job as AI-related or non-AI-related is twofold.

First, this increases the interpretability of the firm-level measure, which captures the share of the

firm’s employees classified as AI workers. Second, we apply the same binary classification to

the firm’s current employees when constructing the resume-based measure in Section 3.2, leading

to consistent approaches and interpretations across the two datasets. In Section 5.1, we confirm

that our key results are robust to averaging the continuous narrow-AI measure (ωNarrowAI
j ) or the

continuous measure using all skills (ωAllAI
j ) across all jobs in a given firm.

3.1.1 Summary Statistics

Our firm-level measure displays intuitive properties: the overall share of AI workers rises over

time, is highest in the “Information” sector, and is driven by relevant job titles such as “Artificial

Intelligence Researcher” and “Deep Learning Engineer”.

The trends over time are displayed in Figure 1. The average continuous job-level measure

ωNarrowAI
j starts out close to zero, at 0.02%, at the beginning of the sample in 2007. The average

AI-relatedness of job postings rises monotonically over time, with the increase speeding up from

2014 to 2018. The measure peaks at 0.2% at the end of the sample in 2018.17 The increase in AI jobs

is present across industries, as can be seen in Figure 2, in line with the notion that AI is a general

purpose technology (Goldfarb et al., 2019). This figure plots the average AI-relatedness measure

of job postings in each of the NAICS sectors, separately for the years 2007–2014 and 2015–2018.

The figure highlights that AI investments are highest in the “Information” sector, growing from

0.19% in the early years of 2007–2014 to 0.49% in the later period of 2015–2018. AI investments in

nearly all sectors show a substantial (two- to six-fold) increase from the earlier to the later period.

The heterogeneity in AI investments across industries is consistent with supply-side arguments

made in industry reports (Bughin et al., 2017): AI adoption across industries is largely driven

by availability of data and technical capabilities, which are crucial inputs for the AI production

function. At the same time, the ability of our measure to pick up AI investments in the broad

cross-section of economic sectors highlights a key advantage of our human-capital-based measure,

16Our results are robust to using a higher threshold (0.15) or a lower threshold (0.05).
17In unreported results, we confirm that the rise in ωNarrowAI

j accounts for almost all of the rise in wAllAI
j over time,

which means that the increase in AI-relatedness of jobs is entirely driven by the increase in the frequency of required
skills that we manually categorize as “Narrow AI” skills instead of other less AI-specific skills (e.g. statistics or pro-
gramming languages) or skills that have AI-relatedness measures below 0.05.
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which does not rely on specialized outputs such as patents.

Additional checks on the data confirm that our measure is indeed capturing the essence of

AI investments by firms. For example, Table A.1 shows that the job titles associated with the

highest job-level measure of AI-relatedness, ωNarrowAI
j , are all very relevant postings: “Artificial

Intelligence Engineer” (average AI-relatedness measure of 0.476), “Senior Data Scientist - Machine

Learning Engineer” (0.367), “AI Consultant” (0.365), and “AI Senior Analyst” (0.354). Similarly,

Table A.2 shows that the job titles that contribute the highest number of AI-related job postings

(i.e., job postings with the ωNarrowAI
j measure above 0.1) are relevant titles such as “Data Scientist”,

“Senior Data Scientist”, “Software Engineer”, “Principal Data Scientist”, and “Data Engineer”. AI

jobs are also concentrated in the BLS occupations “Computer and Information Research Scien-

tists”, “Software Developers, Applications”, and “Computer Occupations” (Table A.3).

Throughout our empirical analyses, we consider only jobs that are matched to Compustat

firms. Figure A.5 plots the share of all job postings and the share of AI-related job postings that

are matched to Compustat in each year. Although publicly listed firms constitute 38% of all job

postings, they account for about half of all AI-related job postings. This suggests that, on average,

publicly-listed firms hire more AI workers than private firms.

3.2 AI Investments from Resumes (Cognism)

We validate our job-postings-based measure of firms’ investments in AI against an analogous

measure using profiles of all firm employees with available resume records. This helps address

concerns that the job postings data are not fully representative of firm activities—for example, if a

firm is not able to hire despite active job postings, or if a firm posts numerous job openings due to

high employee turnover. This type of data issue does not appear to drive our job-postings-based

measure. Instead, the measure using resumes displays very similar trends (e.g., across industries

and over time) to the measure using job postings and the two measures are highly correlated, as

we show in Section 3.3.

We use resume data to identify AI-related employees as those whose current positions directly

involve AI through a holistic approach covering each person’s entire profile. We begin with the

set of keywords that are classified as having an AI-relatedness measure wAllAI
s above 0.70 in the

Burning Glass skills data. This includes 73 terms that are most relevant for AI-skilled jobs. We

then search for these terms in every employment record of each individual in the resume data.

Specifically, for each particular employment record, we consider four aspects: (i) whether that

job (role and description) directly includes any of the identified AI terms; (ii) whether any patents

obtained during the year of interest or the two following years (to account for the time lag between

the work and the patent grant) include these AI terms; (iii) whether any publications during the

year of interest or the following year include the AI terms; (iv) whether any of the identified AI
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terms appear in awards received during the year of interest or the following year. If any of these

conditions are met, then that person at that firm at that time is classified as an AI employee.

After classifying each individual at each point in time, we aggregate the number of AI and all

other employees up to the firm level: for each firm in each year, we compute the percentage of

employees of that firm in that year who are classified as AI-related. Our firm-level measures focus

on the employees of each firm within the same country as the firm’s listed exchange: i.e., for firms

listed on U.S. exchanges, we consider employees currently based in the U.S., and for firms listed

on European exchanges, we look at the employees based in corresponding European countries.18

For all analysis involving the resume data, we exclude firms that have fewer than 50 employees

in a year to reduce noise from small firms or firms with poor coverage.

3.2.1 Summary Statistics

The general patterns of AI investment are very similar using the resume-based measure and the

job-postings-based measure. Figure 3 displays the accelerating time trends of the resume-based

measure, plotting the fraction of all employees in each year who are classified as AI-related. Figure

4 shows the distribution of the fraction of AI employees across industries, separately for the 2007–

2014 and the 2015–2018 sub-periods. The rise in the fraction of AI employees (Figure 3) is very

similar to the contemporaneous rise in AI job postings (Figure 1), beginning very close to zero, at

0.03%, in 2007 and reaching 0.24% in 2018. Analogously to the job-postings-based measure, the

resume-based measure increases from earlier (2007–2014) to later (2015–2018) in the sample period

for all sectors.

3.3 Correlations between AI Investment Measures from Job Postings (Burning Glass)
and Resumes (Cognism)

The two proxies of AI investments—using job postings and resumes—are highly but imperfectly

correlated. Table 1 displays the cross-sectional correlations between the two measures at the firm

level for each year when job postings data are available, {2007,2010–2018}. We report correlations

for three variable pairs: (i) the absolute number of AI job postings in Burning Glass against the ab-

solute number of AI employees in Cognism; (ii) the fractions of AI employees in the two datasets;

and (iii) the fraction of AI jobs in the Cognism resume dataset against the average continuous

measure of AI-relatedness from the Burning Glass job postings data, ωNarrowAI
j . Panel 1 presents

Pearson correlations, while Panel 2 tabulates Spearman (rank) correlations.

18For firms cross-listed on U.S. and European exchanges, we assign firms to a single region based on their head-
quarters. For example, Nokia, listed on both NASDAQ Helsinki and the New York Stock Exchange, is captured as a
European firm headquartered in Finland, and we consider only its employees based in Finland. We exclude cross-listed
firms with headquarters outside of the U.S. from our baseline analysis sample.
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The correlations are quite high in the recent years: e.g., in 2018, we see a Pearson correlation

of 0.82 for the absolute numbers of AI jobs, 0.55 for the fractions, and 0.57 for the Cognism frac-

tion against the continuous Burning Glass measure. The relationship between the AI investment

measures computed from the two datasets is weaker in the earlier part of the sample: while the

absolute numbers of AI jobs still display a Pearson correlation of 0.65 in 2007, the correlation for

fractions is only 0.13. Given the low correlation in the measures in 2007, we limit all of our analyses

to the BG data available from 2010 onward.

We also leverage the detail of the Cognism resume data to confirm that our approach of fo-

cusing on AI workers to identify AI investments is an especially suitable one. First, we undertake

a deep dive into case studies of individual firms (see Appendix A.1 for examples) and observe

that (i) our measure captures internal AI investments well and (ii) that the external of external

AI software solutions (e.g., IBM Watson, IPSoft Amelia) tends to be complementary to internal

AI hiring, consistent with patterns highlighted by surveys of executives. Second, we process the

individual job descriptions and job titles for any mention of external AI softwares (including IBM

Watson Studio, Symphony AyasdiAI, Salesforce Einstein, and over eight dozen other key soft-

wares) to construct a proxy for firms’ reliance on external AI solutions. In untabulated analyses,

we confirm that our results are robust to directly including this proxy in our overall measure of

AI investments.

4 Which Firms Invest in AI?

We document differential patterns of investments in AI technologies across firm characteristics.

First, larger firms—with more employees, higher sales, and larger market share—see greater levels

of AI investments between 2010 and 2018. Second, firms with higher markups tend to invest in

AI more aggressively. Third, firms with higher cash reserves are also more likely to invest in AI

technologies. Geographically, AI investments tend to concentrate in locations with higher wages

and more educated workers.

4.1 AI Investments and Firm Characteristics

The firm-level AI investment patterns are presented in Table 2. Panel 1 displays the results for the

changes in the number of actual AI employees using the Cognism resume data. Panel 2 presents

the results for changes in the firms’ demand for AI talent using the job postings data from Burning

Glass. Since our focus is on understanding the impact of the general use of AI technologies on

firms, we exclude firms in the information technology (IT) sector from our main empirical analyses

in this and the following sections. The firms in IT sectors are likely to be inventors of new AI
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technologies or suppliers of AI solutions, in which case their hiring of AI employees would serve

different purposes and lead to different dynamics than in other sectors.19 Among the 2969 non-

IT-sector firms in Compustat with positive sales, employment and U.S. headquarters in 2010, 2074

firms are matched to Cognism in both 2010 and 2018, and 1664 firms are matched to Burning

Glass in both 2010 and 2018. For the Cognism sample, we further restrict to firms with at least 50

U.S. jobs in both 2010 and 2018 to make sure that there is good coverage of the firm’s workforce,

which leaves us with approximately 1400 firms. For the Burning Glass sample, we further restrict

to firms that are also matched to Cognism so that we can cross-validate with the actual hiring,

leaving us with approximately 1200 firms.

For each measure of AI investment, we estimate the following specification:

∆ShareAIWorkersi,[2010,2018] = βFirmVariablei,2010 + IndustryFE + εi, (2)

where ∆ShareAIWorkersi,[2010,2018] denotes the change in the share of firm i ’s AI-related employees

from 2010 to 2018 in the regressions in Panel 1, and the change in the share of firm i ’s AI-related

job postings in Panel 2. All regressions include 2-digit NAICS industry fixed effects. Here and

throughout all subsequent analyses, the ∆ShareAIWorkersi,[2010,2018] variables are standardized

to mean zero and standard deviation one to aid in economic interpretation. FirmVariablei,2010

represents one of the firm variables of interest: log firm employment in column 1, firm market

share in the corresponding 5-digit NAICS industry in column 2, log sales in column 3, the ratio of

cash to assets (Cash/Assets) in column 4, the ratio of R&D expenditures to sales (R&D/Sales) in

column 5, return on sales (ROS) measured as the ratio of net income plus interest expense to sales

following Fracassi and Tate (2012) in column 6, log markup measured as the log of the ratio of sales

to cost of goods sold following De Loecker et al. (2020) in column 7, and log markup measured as

the log of the ratio of sales to operating expenses following Traina (2018) in column 8.20 Column

9 includes all variables in a multivariate specification, except for employment and market share,

which are highly correlated with sales. All independent variables and controls are measured as

of 2010. To account for differences in precision in the measurement of AI investments due to the

number of observations available to calculate the measure for each firm, the estimating equation

is weighted by each firm’s number of resumes (job postings) in 2010.21

19IT sectors include NAICS 2-digit industry codes 51 (Information) and 54 (Professional, Scientific, and Technical
Services). In later analyses, we confirm that the main effects of AI spurring firm-level growth are also present and even
stronger in these industries, and a complementary treatment of the impact of AI on specifically AI-inventing firms is
provided by Alderucci et al. (2020).

20We examine log markups, because our subsequent analyses of the impact of AI on firms focus on changes
in firm outcomes, and the change in log markups captures the percent change in markups. Log markups are
also examined by De Loecker and Warzynski (2012). In De Loecker et al. (2020), firm-level markups are equal to
µit = θst

Revenueit
Variable Costit

, where θst is the degree of returns to scale in industry s in year t. When taking the logs,
log µit = log(θst) + log(Revenueit/VariableCostit), the change in term log(θst) is absorbed by industry fixed effects,
and therefore we can focus our empirical tests on the change in log(Revenueit/VariableCostit).

21Since the numbers of worker resumes and job postings are highly correlated with the size of the firm, this weight-
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The results reported in Table 2 highlight that larger firms experience higher levels of AI in-

vestment. For example, using the Cognism-based measure in Panel 1, a one-standard-deviation

increase in log sales in 2010 (which equals 2.0) corresponds to the share of AI workers increasing

by 26% of the standard deviation from 2010 to 2018, significant at the 1% level. In addition, firms

with higher starting Cash/Assets and higher R&D/Sales also see greater investment in AI, which

is consistent with contemporaneous work of Alekseeva et al. (2020), who use Burning Glass data

to measure firms’ AI demand. While overall return on sales is not predictive of future AI invest-

ments, the COGS-based markups positively predict future AI investments in the Cognism data.

Importantly, the results for firm-level demand for AI talent measured with Burning Glass data

are very consistent with the patterns using actual firm-level hiring of AI talent from Cognism

data, reinforcing the high correlations documented in Table 1. This consistency suggests that, in

the absence of matched employer-employee data, our methodology for identifying AI investments

from the Burning Glass data can be a good proxy for firms’ actual AI hiring.

4.2 AI Investments and Local Conditions

We now turn to examining how AI investment patterns relate to conditions at the local level,

which further helps validate our measure of firm-level AI investments based on AI-skilled human

capital. AI investment rates are higher in locations with a highly-educated and high-wage work-

force, consistent with AI-skilled labor being the most critical input to successful deployment of AI

programs (Bughin et al., 2018). This contrasts with investments in robotics, which concentrate in

areas with larger shares of manufacturing employment (Acemoglu et al., 2020).

We document this empirically by estimating the following specification, which aggregates

firm-level AI investments for all Compustat firms to a commuting-zone-level measure and links

it to 2010 commuting zone characteristics:

∆ShareAIWorkersi,[2010,2018] = α + βCommutingZoneVariablei,2010 + εi, (3)

where ∆ShareAIWorkersi,[2010,2018] measures the change in the share of AI workers in commuting

zone i from 2010 to 2018.22 The independent variable, CommutingZoneVariablei,2010 is either the

log average wage or the share of college-educated workers for commuting zone i in 2010, calcu-

lated from the Census American Community Survey.

Figure 5 (a) presents a binned scatter plot of the change in the share of AI workers from 2010

to 2018 against the average commuting-zone-level log wage in 2010, with the fitted regression line

ing scheme also roughly weights firms in accordance to their contribution to the economy. The results are robust to
weighting each firm by its sales or employment in 2010 or not using any weights.

22The share of AI workers is based on job postings data from Burning Glass, because the coverage of job-level location
information in job postings is better than in resumes, which tend to report an employee’s current location rather than
the location of all prior job records.

21



in red. The observations are weighted by the population as of 2010. We find a strong positive

relationship between the average wage of a region and the local growth in AI jobs—the R-squared

of the regression is 0.43. Figure 5 (b) plots the relationship between the change in the share of AI

workers from 2010 to 2018 and the share of college-educated workers in 2010. We see a very similar

pattern: growth in AI workers is concentrated in commuting zones with a large fraction of college-

educated workers. These results highlight that regional variation in the available skilled labor is

an important determinant of local AI investments, suggesting that it is important to control for the

workforce composition of the local labor markets when examining the impact of AI investments

on economic outcomes. Finally, Figure 6 displays a heat map of the growth in the average job-

level AI measure from 2010 to 2018 and shows that there is significant variation in AI investments

across commuting zones.

5 AI Investment, Growth, and Industry Concentration

We present our main results on the effects of AI investments on firm- and industry-level growth.

We document that firms and industries investing in AI technologies grow faster, and that this

result is robust to using two distinct instruments for AI investments in an instrumental variables

(IV) strategy. The positive effect of AI investments on growth is concentrated among the largest

firms, which leads to an increase in industry concentration.

5.1 Firm Growth

We begin the analysis by exploring the impact of AI investments on the growth of individual

firms, first in OLS regressions and then in the IV setting.

5.1.1 Ordinary Least Squares (OLS) Results

We examine the relationship between firms’ investments in artificial intelligence from 2010 to 2018

and a number of measures of firm-level growth over the same time period. Given that we do not

expect to observe the effects of AI investments on firms immediately, we use a long-differences

specification. In Table 3, we report the estimates from the following regression:23

∆FirmVariablei,[2010,2018] = β∆ShareAIWorkersi,[2010,2018] + Controls
′
i,2010γ + IndustryFE + εi, (4)

where the main independent variable, ∆ShareAIWorkersi,[2010,2018], captures the change in the

share of AI workers in firm i from 2010 to 2018, standardized to mean 0 and standard devia-
23In the baseline regressions, we include only firms that are observed in the Compustat sample both in 2010 and 2018.

We consider entry and exit in industry-level results in Section 5.2.
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tion 1. IndustryFE are 2-digit NAICS fixed effects. In Panel 1, we report the coefficients for the

resume-based measure of AI investments, while Panel 2 considers the job-postings-based mea-

sure. In columns 1, 3, and 5 we include only industry fixed effects to examine the unconditional

relationship between AI investments and firm growth. In columns 2, 4, and 6, we include controls

that are all measured at the start of the period in 2010: (a) firm-level characteristics that predict

investment in AI, including the log of the total number of jobs (or job postings), cash/assets, log

sales, R&D/Sales, and log markups (both COGS-based and operating-expense-based); and (b) a

rich set of controls for the characteristics of commuting zones where the firms are located (log

average wage, the share of college-educated workers, the share of routine workers, the share of

workers in finance and manufacturing industries, the share of workers in IT-related occupations,

and the share of female and foreign-born workers), as well as the log industry average wage,

which might independently affect the AI employment share or be correlated with investments in

other technologies.24

In columns 1 and 2 of Table 3, the dependent variable is the firm-level change in log sales from

2010 to 2018.25 Both measures of AI investment are associated with a significant and economically

large increase in sales growth: a one-standard-deviation increase in the share of AI workers pre-

dicts an additional 12% to 16% growth in sales, depending on the specification. In columns 3 and

4, we examine how AI investments are associated with changes in employment. The effect of AI

investments on employment is of particular interest, since its sign is ex ante ambiguous, with AI

having the potential to displace a large fraction of jobs, as discussed in Section 1. We find a pos-

itive effect on employment of similar magnitude to the effect on sales: a one-standard-deviation

increase in the share of AI workers predicts an 11% to 16% increase in firm-level employment. This

suggests that AI is not displacing firms’ workforces, at least on net and in the short-run, although

we do not rule out reallocation of labor across different job functions or tasks. Columns 5 and

6 show that firms investing in AI grow more than their industry peers: a one-standard-deviation

increase in the share of AI workers is associated with a 0.9–1.5 percentage point increase in a firm’s

market share in its 5-digit NAICS industry, although the effect is not always statistically signifi-

24For example, the share of routine workers is correlated with adoption of automation technologies (Autor and Dorn,
2013), and the share of workers in IT-related occupations is correlated with general information technologies. When
firms span multiple commuting zones, we calculate these variables as the weighted average, using the number of BG
job postings in each commuting zone as weights, which restricts the sample in Cognism regression analysis to firms
that are also matched to the Burning Glass data. The results are similar in magnitude and economic significance if we
only include firm-level controls enumerated in list (a). We also confirm, in Table A.4, that the results are robust to the
addition of (i) state fixed effects to control for all omitted variables at the state level, and (ii) initial Tobin’s Q as of 2010,
which proxies for the firm’s growth opportunities.

25Out of the approximately 1400 (1200) firms in the Cognism (Burning Glass) sample in Table 2, 1088 (934) firms have
positive sales and employment in 2018, which are used to calculate the dependent variables. We further restrict the
sample to firms with non-missing control variables (which are all measured as of 2010 and include firm-level variables,
industry average wage, and geographical controls based on Burning Glass data) throughout, to keep the sample com-
position stable. This results in a sample of 766 firms in Cognism and 849 firms in Burning Glass. The results of the
regressions without controls are similar if we estimate based on the entire available sample.
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cant. In untabulated analyses, we confirm that the results are similar (with positive and significant

effects on the order of 10-15%) when using different measures of firm growth, for example market

value instead of sales and the number of workers in each firm in the Cognism resume data instead

of Compustat employment.

The positive relationship between AI investments and firm growth is ubiquitous across differ-

ent sectors of the economy, reinforcing the notion that AI is a general purpose technology. Table

A.5 shows the results from regressing changes in log sales and log employment on the change in

the share of AI workers, separately for the largest 2-digit NAICS sectors: (i) Manufacturing, (ii)

Wholesale and Retail Trade, (iii) Finance, and (iv) the remaining non-AI-producing sectors. We

also estimate the regression for the two AI-producing sectors—Information and Professional and

Business Services—and find that AI has an even stronger positive effect on growth in direct AI

producers (see Table A.6). Overall, we observe that investments in AI are associated with eco-

nomically significant increases in firms’ operations, and these effects are meaningful across all

economic sectors.

5.1.2 Dynamic Effects

In this section, we analyze the dynamics of the positive effects on sales and employment relative

to the AI investments. In addition to elucidating the lag between AI investments and their realized

effects, this analysis helps to rule out reverse causality explanations and address concerns about

AI-investing firms being on differential growth trajectories.

Firms tend to invest in AI on a continuous basis from year to year, rather than make a lumpy

investment in a single year.26 Therefore, we estimate the dynamic effects of AI investments using

a distributed lead-lag model similar to Aghion et al. (2020) and discussed in Stock and Watson

(2015). In particular, the model is specified as:

Yit =
5

∑
k=−2

δk∆ShareAIWorkersi,t−k + µi + λst + εit (5)

where ∆ShareAIWorkersi,t−k is the annual change in the share of AI workers from year t− k− 1 to

year t− k, normalized to have mean zero and standard deviation of 1, and Yit is the outcome vari-

able (either log sales or log employment) in year t. We include firm fixed effects µi to absorb firm-

specific time-invariant factors and industry-year fixed effects λst to control for industry-specific

trends. Each lead-lag coefficient δk captures the cumulative response of firm size in year t (Yit) to

AI investments in year t− k, holding fixed the path of AI investments in all other years. As such,

specification (5) incorporates both immediate and delayed responses of sales or employment to

26The percentage of AI-investing firms that only invest in a single year is 29.5%, compared to 70.6% for robots (Hum-
lum, 2019).
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the firms’ AI investments. For each firm-year sales and employment observation between 2010

and 2016, we consider five lags and two leads so that we estimate the cumulative impact of AI

investments on firm growth from two years before the investments to five years after the invest-

ments.27 The estimated coefficients for the leads can be used as a pre-trend test: if firms investing

in AI are on similar growth trends as other firms prior to AI investments, δk with k < 0 should be

statistically indistinguishable from zero.

Figure 7 reports the coefficients from the lead-lag regression. The top panel shows that sales

increase following AI investments. The effect is not immediate, and it takes two to three years

for firms to realize the benefits from AI investments. The cumulative effect of a one-standard-

deviation increase in annual AI investments on log sales is between 1% and 2% and remains steady

even five years after the investments. This is consistent with the long-differences estimates in

Section 5.1.1.28 The bottom panel shows that AI investments have a similar positive effect on

firms’ employment.

Importantly, there is no evidence of pre-trends, which helps to assuage concerns about reverse

causality and differential growth trends: conditional on the controls we include, firms that invest

more in AI in any given year show comparable sales and employment paths in prior years and

start diverging only afterwards. This suggests that our results are not capturing the reverse effect

of firm growth on AI investments and restricts the potential set of confounders to the set of shocks

that occur simultaneously with AI investments. We further validate the causal interpretation of

the estimates using two IV strategies in the next section.

5.1.3 Instrumental Variables (IV) Results

In this section, we further explore the causal effect of AI on firm growth using two instrumental

variables (IV) strategies. Although we control for factors that predict firms’ investments in AI, the

OLS estimates may still be biased if there are other omitted variables that correlate with both AI

investments and firm growth. The direction of the bias is ex ante ambiguous. On the one hand, the

OLS estimates may be biased upwards if the firms investing in AI are already on a faster growth

trajectory or have more efficient managers who concurrently improve other aspects of the firm.

On the other hand, firms that have fewer growth opportunities or anticipate negative shocks may

have lower opportunity costs to engage in large-scale innovations and adopt new technologies

(Bloom et al., 2013b), leading to a negative correlation between the endogenous choice to adopt AI

27Since the data on AI investments end in 2018, we include only two leads so that we can keep all firm-year observa-
tions up to 2016. We obtain similar results when including only one lead or no leads at all. Furthermore, we focus this
analysis of dynamic effects on the Cognism resume data because these data offer full coverage of AI investments from
2005 to 2018. By contrast, Burning Glass job postings data have a more limited time series, where including 2 leads and
5 lags would restrict the sample to only firm-year observations in 2015 and 2016.

28In long-differences estimates, we find that a one-standard-deviation increase in AI investments over 8 years is
associated with a 12-16% increase in sales, which is in line with the magnitude of the annual lead-lag effects scaled up
to 8 years.
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and future growth. Furthermore, measurement error can attenuate the estimated coefficients in

OLS regressions, which creates further downward bias. Leveraging two distinct instruments,we

find consistent results with the OLS regressions, lending further credence to the estimated link

between AI investments and firm growth.

Foreign Industry Instrument. We instrument for a firm’s change in the share of AI workers

using the change from 2010 to 2018 in the share of AI workers of foreign firms in the firm’s 5-

digit NAICS industry, which is the finest level at which our data provide good coverage of foreign

firms. This instrument is similar to those used by Autor et al. (2013) and Acemoglu and Restrepo

(2020), where a weighted average of US industry-level changes is instrumented by a weighted

average of changes in corresponding foreign industries. The identifying assumption underlying

this strategy is that the common within-industry component of the rising share of AI workers

is due to differences in data availability and technological feasibility across industries. This is

supported by industry reports, such as Bughin et al. (2017), which argue that AI adoption across

industries is largely driven by the availability of data and technical capabilities, which are crucial

inputs for implementing AI investments.

We construct the instrument using all firms that are listed on stock exchanges in Europe.29

We focus on European firms for three reasons. First, similar to the U.S., Europe has experienced a

surge in AI investment in recent years. Figure A.6 shows that Europe has the largest increase in the

share of AI workers between 2010 and 2018 outside of the U.S.30 Second, Cognism has good cov-

erage of resumes in Europe, while the coverage is sparser for other countries (e.g. China). Third,

focusing on Europe helps to capture inherent cross-industry heterogeneity that is likely similar to

that in the U.S. because, as a developed economy, Europe is likely to have similar technological

development and data availability to the U.S. The main threat to the validity of our instrument is

that industries with higher rates of AI investment (in the United States and Europe) could be on

an upward trend because of, for example, increasing demand or other positive shocks. In Figure

A.7, we show that changes in U.S. industry-level prices from 2010 to 2018 are weakly negatively

correlated with industry-level growth in the share of AI employees in Europe, which suggests

that our measure is not correlated with positive demand shocks to industries. We also discuss

pre-trend tests to further address this concern at the end of this subsection.

We begin by reporting the first stage of the IV regressions: the relationship between the in-

strument and our two measures of AI investments. The results are reported in columns 1 and 2

of Table 4. Panel 1 displays the results using the resume-based measure of AI investments, and
29The European exchanges include Euronext Paris, Frankfurt Stock Exchange, Borsa Italiana (Milan), SIX Swiss Ex-

change, NASDAQ Stockholm, NASDAQ Copenhagen, Oslo Stock Exchange, Warsaw Stock Exchange, Vienna Stock
Exchange, and Madrid Stock Exchange. Similar to our US Cognism analysis, we include firms with at least 50 Euro-
pean employees in the Cognism data in at least one year. We exclude European workers of U.S. multinational firms
that are listed in the U.S. and the non-European workers of European firms.

30Europe also has the third largest number of AI researchers right behind the U.S. and China. See here.
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Panel 2 uses the job-postings-based measure. As in OLS regressions, we control for 2-digit NAICS

industry fixed effects. The specification in column 1 includes only industry fixed effects, while

column 2 also includes the same set of controls as in the OLS regressions. The instrument has a

strong first stage for both AI measures, with F-statistics ranging from 19 to 32, depending on the

specification.

Next, we report the instrumented effect of AI investments on firm growth in columns 3 through

6 of Table 4. We consider the same set of outcomes and controls as in the OLS regressions, with

the outcome being the change in log sales in columns 3 and 4 and the change in log employ-

ment in columns 5 and 6. We do not look at the changes in market share in this set of IV results,

since the instrument is based on industry-level variation. A one-standard-deviation increase in

the resume-based measure of AI investments corresponds to a 42% increase in sales and a 36%

increase in employment. Similarly, a one-standard-deviation increase in the job-postings-based

measure translates into a 19% increase in sales and a 23% increase in employment. Overall, the

findings are consistent across the OLS and IV specifications with higher point estimates in the IV

regressions potentially due to lower opportunity costs of innovation and lower growth prospects

of firms investing in AI. It’s important to note, however, that the OLS and IV coefficients are not

statistically different. This suggests that the difference between the point estimates could also be

driven by estimation error.

To address the concern that industries (in the U.S. and Europe) with larger investments in

AI are on an upward trend prior to these investments, we evaluate the pre-trends in Table A.7.

Specifically, we regress the changes in the outcome variables of interest (log sales and log employ-

ment) from 1999 to 2007 on subsequent changes in the two measures of AI investments from 2010

to 2018.31 The coefficients are all statistically insignificant and flip signs across different AI mea-

sures, indicating that industries that invest more in AI are not on different pre-trends. Table A.8

goes one step further and directly controls for the 1999-2007 changes in sales and employment at

the industry level and firm level on the right-hand side of our baseline IV specifications. Including

these controls has little impact on the estimates of the effect of AI investments.

Geographic Shift-Share Instrument. In an alternative instrumental variables strategy, we em-

ploy a shift-share instrument for a firm’s change in the share of AI workers using a weighted

average of U.S. national industry-level changes in the share of AI workers, where the weights are

given by the industry employment shares at the locations of the firm’s operations. Let sic denote

the share of U.S. employment of firm i that falls within commuting zone c, approximated by the

share of job postings of firm i in commuting zone c. Let θcj be the share of commuting zone c’s

employment that is mapped to (5-digit NAICS) industry j in 2010, obtained from the County Busi-

31We look at 1999-2007 to avoid the confounding effect of the financial crisis between 2008 and 2010. We find similar
results when using 2000-2008.
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ness Patterns data. Our instrument for firm i’s change in the share of AI workers from 2010 to 2018

(∆ShareAIWorkersi,[2010,2018]) is:

∑
c

sic

(
∑

j
θcj∆AIj,[2010,2018]

)
,

where ∆AI2010−2018
j is industry j’s change in the share of AI workers from 2010 to 2018.

This instrument is similar to a Bartik-style shift-share instrument (Bartik, 1991), which would

correspond to instrumenting firm-level AI investments by a weighted average of the national

industries’ average AI investments. The difference from a canonical Bartik instrument is that our

instrument not only assigns positive weights to the industries a firm operates in, but also assigns

positive weights to the industries geographically close to the firm. For example, a technological

shock that enables firms in the finance industry to adopt AI would not only affect financial firms

in New York City, but also positively affect non-financial firms in New York City because of the

increase in AI-skilled labor supply in the city.

The identifying assumption is that firms’ industry shares (∑c sic ∑j θcj) are uncorrelated with

errors in changes in firm sales, employment, and market shares. In other words, whether a firm

is geographically close to industries that subsequently invest in AI should be pre-determined and

uncorrelated with changes in firm outcomes. Goldsmith-Pinkham et al. (2019) suggest that one

way to test the plausibility of this assumption is to check whether there are pre-trends before the

shocks. We test for pre-trends in Table A.9 and find no relationship between future shocks to

AI investments and past changes in firm outcomes. Specifically, we regress the changes in the

outcome variables of interest (log sales, log employment, and market share) from 1999 to 2007 on

the subsequent weighted industry-level changes in the two AI investment measures from 2010 to

2018. Panel 1 of Table A.9 considers the resume-based measure of AI investments, while Panel 2

uses the job-postings-based measure. All pre-trends are statistically insignificant.

In Table 5, we report the results from the shift-share IV for both measures of AI investments

(the resume-based measure in Panel 1 and the job-postings-based measure in Panel 2). Columns

1 and 2 display the results from the first stage regressions, while columns 3 through 8 show the

second stage results for the changes in log sales in columns 3–4, changes in log employment in

columns 5–6, and changes in market share within the 5-digit NAICS industry in columns 7–8.

The results of the first stage regressions show that the instrument’s F-statistic ranges from 16 to

35 for our resume-based measure. The second stage regressions show a robust and significant

effect of AI investments on sales and a positive effect on employment that is significant in 3 out

of 4 specifications. The instrumented AI investments also have a positive effect on the firms’

market share. The magnitudes of the effects are similar to those from the foreign industry IV; for

example, a one-standard-deviation change in the share of AI workers measured in the resume
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data translates into a 32% increase in sales and a 26% increase in employment. Table A.10 controls

for the 1999–2007 changes in sales and employment at the industry level and firm level, yielding

similar estimates of the effects of AI investments on firm growth.

Overall, the results from our second IV are consistent with the OLS results and the first IV spec-

ification: all three analyses show that AI investments predict robust and economically meaningful

growth at the firm-level. Moreover, we document strikingly similar magnitudes of the effects

across the two IV strategies, which are based on different identifying assumptions. In Table A.11,

we use both IVs to instrument for AI investments simultaneously, and the over-identification test

cannot reject that both IVs are valid in every single specification. This lends further credence to

the IV estimation capturing the causal impact of AI investments.

5.1.4 Robustness

We perform several robustness tests around our main findings of increased firm growth stimu-

lated by AI investments.32 We first confirm that the results are not sensitive to different variable

construction approaches. In Table A.12 and Table A.13, we show that the results are robust to

using firm-level average continuous AI-relatedness measures of job postings, which are defined

at the end of Section 3.1. In addition, since the mean of the share of AI workers is relatively low,

we confirm that our results are not driven by firms going from zero AI employees in 2010 to a

single AI employee in 2018 by excluding such firms in Table A.14. This test addresses a concern

that, mechanically, faster expanding firms would employ an AI employee as part of increased

employment across all occupations.

Importantly, our results reflect specifically investments in artificial intelligence, rather than

other related technologies. In Table A.15, we estimate the relationship between AI investments

and firm-level growth (changes in log sales, log employment, and market share), controlling for

(i) investments in robots and (ii) investments in other information technologies (IT). Our measures

of robot and IT investments are constructed from the job postings data and parallel the measure

of AI investments: for each firm, we measure the percentage of job postings in each year requiring

robotics- or IT-related skills. The estimated effects of AI investments remain very similar with the

addition of these controls.

5.2 Industry Growth

To shed light on the aggregate effects of AI investments, we examine the relationship between

industry-level variation in AI investments and industry growth. While AI-investing firms grow

32All robustness tests in this section report the results using the long-differences and the foreign industry IV specifi-
cations. In untabulated analyses, we also confirm that none of these robustness tests alter the results of the geographic
shift-share IV specification.
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faster, the gain in sales and employment may be zero-sum if the rivalrous nature of data and tech-

nologies creates a business-stealing effect on the competitors, and signing the effect is an empirical

question (Bloom et al., 2013a). For example, the negative spillovers have been shown to dominate

the positive effect on firms investing in new technologies in the case of robotics, leading to an

overall negative effect on aggregate employment (Acemoglu et al., 2020).

To examine whether AI-fueled growth at the firm level translates into aggregate growth at the

industry level, we estimate the following industry-level variant of our firm-level long-differences

regression:

∆ ln yj,[2010,2018] = γ∆ShareAIWorkersj,[2010,2018] + IndustryFE + εj (6)

where ∆ ln yj,[2010,2018] is the change in total sales or employment for all Compustat firms (in-

cluding those that entered the sample after 2010 or exited before 2018) in industry j, and

∆ShareAIWorkersj,[2010,2018] is the change in the share of AI workers among Compustat firms in

industry j from 2010 to 2018. Analogously to the firm-level tests, regressions are weighted by

the total number of resumes (or job postings) in each industry in 2010. We also use the first IV

strategy described in Section 5.1.3. Specifically, we instrument US industry-level AI investments

with European industry-level AI investments calculated from the resume data. All industry-level

regressions are at the 5-digit NAICS level, which is the same level as the instrument.33

Table 6 shows that AI investments are associated with a robust increase in employment and

sales at the industry level. We report the coefficients for the resume-based measure of AI invest-

ments in Panel 1 and the job-postings-based measure in Panel 2. In both panels, columns 1–3

present the OLS estimates, and columns 4–6 show the second stage IV results. Odd columns esti-

mate the unconditional relationship (with 2-digit NAICS fixed effects only), and even columns add

controls for log employment, log sales, and log average wages in 2010. At the industry level, the

instrument is generally strong with first-stage F-statistics above 10 for the resume-based measure.

For the resume-based measure, a one-standard-deviation increase in the share of AI workers in an

industry is associated with a 15% increase in sales and a 17% increase in employment (columns 2

and 4). Similarly to the firm-level IV results, the IV estimates are positive, statistically significant,

and larger than the OLS estimates.

To evaluate the potential spillovers on firms outside of the Compustat sample, in Table A.16

we estimate the impact of AI investments by Compustat firms on the aggregate industry-level

employment of all (public and private) firms from the Census Quarterly Workforce Indicators. The

net effect is approximately zero, indicating that although there may be some negative spillovers

from public to private firms, these spillovers do not dominate and, contrary to robots, AI does not

reduce aggregate employment.

33We only consider the first IV strategy (foreign industry IV) for industry-level regressions. The second instrument
(geographic shift-share IV) relies on firm-level variation and does not directly map to an industry-level instrumental
variable.
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5.3 AI Investments and Industry Concentration

Our results so far show that larger firms invest more in AI, and that AI fuels firm and industry

growth. We next examine whether AI investments are related to changes in industry concen-

tration. As we discuss in Section 1, AI can reduce the barriers to growth among small firms or

contribute to the growth of larger firms and higher industry concentration documented in Autor

et al. (2020).

To explore these hypotheses, we begin by looking at how the effect of AI investments on firm

growth varies along the initial firm size distribution, while controlling for the initial firm size. If

AI leads to the highest growth among the ex ante smallest firms, then it will reduce overall con-

centration; on the other hand, if AI leads to greater growth among the ex ante largest firms, then

it will increase overall concentration. Table 7 shows the relationship between AI investments and

firm growth by firms’ initial size terciles, measured as firm employment in 2010, where we control

for the initial firm size by including tercile group fixed effects and the measures of size used in pre-

vious analysis (e.g., logs of 2010 sales and employment). The independent variables are changes

in the firm-level share of AI workers (resume-based in Panel 1 and job-postings-based in Panel 2)

from 2010 to 2018 interacted with dummy variables indicating which size tercile (within the firm’s

2-digit NAICS sector) the firm falls into in 2010. For employment, sales, and market share, the

effect of AI investments is monotonically increasing in the firm’s initial size. For example, using

the resume-based measure, the results in column 2 indicate that a one-standard-deviation increase

in the share of AI workers is associated with a 17% increase in sales for firms in the top size tercile,

a 4% increase for firms in the middle tercile, and no increase for firms in the bottom tercile. The

difference in the coefficients between the top and bottom size terciles is statistically significant at

the 5% level.

To examine whether the effect of AI on the growth of the largest firms is substantial enough to

translate into increased industry concentration, we link industry-level growth in AI investments

to contemporaneous changes in industry concentration from 2010 to 2018. Following Autor et

al. (2020), we use the Herfindahl-Hirschman Index (HHI) to measure industry concentration. To

examine winner-take-all dynamics, we also consider the fraction of sales accruing to the largest

firm in each 5-digit NAICS industry among the Compustat firms. Table 8 estimates the relation-

ship between changes in industry concentration and industry-level AI investments in both OLS

and IV regressions, using the resume-based measure of AI investments in Panel 1 and the job-

postings-based measure in Panel 2. Industry-level growth in AI investments leads to growth in

both measures of industry concentration. For example, in OLS regressions with controls, a one-

standard-deviation change in the industry share of AI workers measured using resume data cor-

responds to a 2.2% increase in the HHI and a 1.7% increase in the market share accruing to the top

firm. It is worth noting that our concentration results are based on the sample of Compustat firms;
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to the extent that AI investments stimulate greater growth in this sample of firms than among

non-Compustat firms (Table A.16), the overall effect on industry concentration is likely to be even

greater. This result is consistent with Bessen (2017), who argues that investments in proprietary

technology systems are likely responsible for the rise in industry concentration observed in the

U.S. data. Our results suggest that, as a general purpose technology that can be applied across

many industries, AI has the potential to further increase concentration across a broad range of

industries.

6 Mechanisms

In this section, we examine the three non-mutually-exclusive mechanisms detailed in Section 1

that can explain both the AI-fueled growth and the increase in industry concentration. We find

no evidence of higher productivity or market power. Instead, our results point to more nuanced

effects of AI investments, with AI increasing the scale of the most productive firms by facilitating

their expansion into new geographic and product markets.

6.1 Productivity

First, we explore whether the increase in firm growth from AI investments is driven by AI tech-

nologies making firms more productive (i.e. the productivity channel in Section 1.1). To test

Prediction 1.1, we consider two measures of productivity: sales per worker (or labor productivity)

and revenue Total Factor Productivity (TFP).34 Table 9 shows that investments in AI are associated

with slightly lower sales per worker and revenue TFP, although the effects are not statistically sig-

nificant. The lack of growth in labor productivity is consistent with the results in Section 5 that AI

investments lead to similar increases in sales and employment and challenges the view that the

primary use of AI is to replace human tasks and cut down labor costs. We also do not observe

any evidence of a decrease in costs (Prediction 1.2): the growth in costs of goods sold (COGS)

and operating expenses associated with AI investments is similar in magnitude to the growth in

firm size. For example, a one-standard-deviation increase in the share of AI workers measured

using the resume data corresponds to a 15% increase in operating expenses when all controls are

included in column 8 of Panel 1, comparable to the effect of AI on sales growth in Section 5.

As a result, we do not find evidence that investments in AI make firms more productive, at

least in the short term. This speaks to the broader debate on the timing of productivity gains from
34Revenue TFP is the residual from regressing log real sales on log employment and log capital controlling for firm

fixed effects and year fixed effects: log yit = µi + µt + αl
s log(lit) + αk

s log(kit−1) + εit. The regression is estimated using
OLS separately for each industry. The capital stock is constructed using the perpetual inventory method. The TFP
measure is specific to Cobb-Douglas production functions, while sales per worker measures labor productivity for
more general production functions. For example, to the extent that AI changes the production function through a shift
from variable to fixed costs, the empirical estimates would be biased in favor of finding large increases in sales per
worker in response to AI investments, which is contrary to the null results we document.
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general purpose technologies: while it’s long been argued that the adoption of general purpose

technologies leads to delayed productivity benefits (David, 1990), recent evidence in Fizsbein et al.

(2020) shows rapid productivity growth following electrification. In the case of AI, Brynjolfsson

et al. (2020) point out that because complementary investments are necessary to obtain the full

benefit of AI, productivity growth will follow a J-curve, where firms investing in AI can have

low measured productivity growth in the short run and high productivity growth in the future.

In Table A.17, we look at the effect of AI investments during the first half of the period (2010–

2014) on productivity growth through 2018 and do not find any significant positive effect. This

underscores the extent of the puzzle presented by Brynjolfsson et al. (2019): even with a lag of

a few years, AI is not yet associated with productivity gains of AI-investing firms. If AI does

bring productivity gains in the future, our results indicate that the time lag between adoption and

productivity growth must be longer than a few years.

6.2 Market Power

As discussed in Section 1.2, an alternative explanation for AI-fueled growth is that artificial intel-

ligence grants firms more market power in the product market, enabling firms to expand and in-

crease markups. To test this mechanism, we look at the effect of AI investments on firms’ markups

(Prediction 2.1). We consider three measures of markups: the first two measures are based on

De Loecker et al. (2020) and Traina (2018) and use Cost of Goods Sold (COGS) and Operating

Expenses, respectively, as the measure of variable costs. For both of these measures, the markup

is the log of revenues divided by the corresponding variable cost measure. For robustness, we

also look at the operating profit rate, termed the “Lerner Index” (Gutiérrez and Philippon, 2017).

The Lerner Index is defined as operating income before depreciation and amortization (OIBDA)

minus depreciation, scaled by sales. As in previous analyses, we include industry fixed effects in

all regressions to absorb sector-specific variation.

Table 10 shows that for all three measures, the effect of AI investments on market power is sta-

tistically insignificantly different from zero (except for a small negative effect on the Lerner Index

in one of the specifications).35 This is inconsistent with the explanation that AI increases the mar-

ket power of firms. It is, however, in line with the significant increase in variable costs (COGS or

Operating Expenses) reported in Table 9. The increase in costs associated with AI investments has

a similar magnitude to the increase in sales (both on the order of 15% per one-standard-deviation

change in the share of AI workers in OLS regressions), suggesting that firms grow sales and vari-

35Our measures of markups are robust to a wide range of production functions with constant returns to scale. How-
ever, the two markup measures may not reflect market power accurately if AI investments change firms’ production
functions. Empirically, the possibility that AI changes the production function, for example through shifts from vari-
able to fixed costs (De Ridder, 2019), would bias both markup measures in favor of detecting increased markups and
against the null results we document. Regardless of the potential changes in the production function, the Lerner Index
offers an accounting-based measure of monopoly power enjoyed by firms.
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able costs at approximately the same rate.

6.3 Scale Advantages

Lastly, we explore the possibility that investments in artificial intelligence allow already large firms

to further scale up their operations, as outlined in Section 1.3. The results presented so far are

consistent with this mechanism. First, Table 2 shows that large firms invest more in AI, consistent

with Prediction 3.1. Second, controlling for firm size, the positive effects of AI investments are

greatest among the ex ante largest firms (Table 7), consistent with Prediction 3.2.

We perform two additional tests to further investigate the scale advantages channel. First, in

addition to the slicing by initial firm size performed in Table 7, we slice firms based on ex ante

productivity, as also suggested by Prediction 3.2. Specifically, in Table 11, we group firms in each

2-digit NAICS industry into terciles based on revenue TFP measured as of 2010 and, within each

group, examine the relationship between the changes in the share of AI workers and the growth in

sales (columns 1 and 2), employment (columns 3 and 4), and market share (columns 5 and 6).36 The

results indicate that even though AI does not appear to improve firms’ productivity, the growth

fueled by AI is mostly concentrated among the most ex ante productive firms. For example, for the

firms in the top tercile of ex ante productivity, a one-standard-deviation increase in the share of AI

workers measured using the resume data predicts a 3.2 percentage point increase in market share

from 2010 to 2018, compared to a much smaller (0.5 percentage point) and insignificant effect for

firms in the bottom tercile of ex ante productivity. This result highlights that the increased industry

concentration documented in Table 8 reflects the growth of the most ex ante productive firms.

Second, we look into the drivers of scale (Prediction 3.3) directly by exploring whether AI

allows firms to expand their product offerings across markets in our Burning Glass job postings

data. Specifically, we estimate the relationship between a firm’s investment in AI and changes

in: (i) the geographic reach of the firm, measured as the number of counties with at least 1% of

the firm’s job postings in any given year; (ii) the number of industries at the most granular (6-

digit NAICS) level with at least 1% of the firm’s job postings; and (iii) the number of product

manager jobs posted by the firm. Since product managers align the firm’s product capabilities to

specific market segments and are responsible for product innovations and servicing, the number

of product managers hired by a given firm is a direct measure of the firm’s expansion of product

offerings.

The results, reported in Table 12, are consistent with AI-investing firms expanding into new

geographical and product markets. A one-standard-deviation increase in the share of AI workers

is accompanied by a 7–9% increase in the number of counties that the firm operates in (column

2) and a 14-15% increase in job openings for product managers (column 6).37 The product effects

36For robustness, Table A.18 shows similar results when using sales per worker to measure initial productivity.
37In unreported results, we also scale the number of product manager job postings by the number of all job postings at
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are consistent with executives of AI-investing firms predicting the primary benefits from these

investments to be the enhancement of their products and services.38 The effect on the number of

different industries spanned is milder at only 2% and not statistically significant, suggesting that

AI investments are less strongly associated with expansion into new industries. Consistent with

AI enabling more product innovations, investments in AI are also associated with increased R&D

investments, both in absolute value and as a fraction of sales, as can be seen in columns 7–10 of

Table 12. The juxtaposition of positive results on firms’ expansion and null results on produc-

tivity and markups points towards firms utilizing AI to enter new markets, without necessarily

increasing efficiency in their existing markets or charging higher markups. This is consistent with

evidence from prior technological innovations during industrialization, where new technologies

have been shown to help firms expand both vertically and horizontally (Braguinsky et al., 2020).

7 Conclusion

We introduce a novel measure of AI investments at the firm level using two detailed datasets

of human capital: job postings from Burning Glass Technologies, which indicate each firm’s de-

mand for particular skills, and resume data from Cognism, which reveal the actual composition

of a firm’s workforce. Our measure of AI investments takes advantage of the co-occurrence of

different skills with fundamental concepts such as “machine learning” to empirically determine

each skill’s AI-relatedness, which avoids relying on ex ante specified AI-related keywords. Our

measure demonstrates the steep growth in AI over the last decade across the full landscape of

industries.

We examine both the determinants and consequences of AI investments by firms. We find a

positive feedback loop between AI investments and firm size: AI investments concentrate among

the largest firms, and as a firm invests in AI, it grows larger, gaining sales, employment, and mar-

ket share. This firm-level AI-fueled growth is concentrated among larger firms and is associated

with increased concentration at the industry level. AI facilitates scalability of the ex ante largest

and most productive firms, allowing them to expand product offerings and geographic reach.

Our results highlight that new technologies, such as AI, are an important factor contributing

to the increase in industry concentration and the rise of “superstar” firms documented in recent

papers (Gutiérrez and Philippon, 2017; Autor et al., 2020). We find little evidence of higher mar-

ket power of AI-investing firms (“bad” concentration), and instead see that AI allows the most

efficient firms to overcome supply-side constraints and expand to new markets. Although we do

not observe AI-investing firms obtaining measurable productivity gains in the short run, this can

the same firm and find that a one-standard-deviation increase in the share of AI workers increases the share of product
manager job postings by about 15% of the mean, although only statistically significant in some specifications.

38See here for a survey of executives conducted by Deloitte.
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be reflective of the productivity J-curve proposed by Brynjolfsson et al. (2019). The positive effect

on firm expansion and the null result on firm productivity are consistent with recent evidence in

Juhász et al. (2020) and Braguinsky et al. (2020), who show—in the context of mechanized cot-

ton spinning during industrialization—that technology adoption by firms is associated with a

high degree of uncertainty in how to apply the new technology effectively. This high uncertainty

necessitates experimentation and results in high dispersion with expansion of some firms and po-

tentially slow accrual of productivity benefits for the average firm. Further understanding how AI

affects production processes, corporate strategies, and product innovations of firms, and the dis-

tribution of gains from investing in AI technologies across firms and workers, are fruitful avenues

for future research.
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Figure 1. Time Series of the AI Investments Measure from Job Posting Data

This figure shows the time series of the job-posting-based measure of AI investments. The figure
reports averages for 2007 and 2010-2018, based on the sample of job postings in Burning Glass with
employer firms matched to Compustat. The solid line shows the average job-level continuous
measure based on narrow AI skills (wNarrowAI

j ) (left y-axis), and the dashed line tracks the fraction
of jobs with (narrow AI) continuous measure above 0.1 (right y-axis).
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Figure 2. AI Investments by Industry Sector from Job Postings Data

This figure presents the job-posting-based measure of AI investments using the Burning Glass data
(based on the sample of public firms) at the industry level. For each sector (based on NAICS–2
digit industry codes), we compute the average job-level continuous measure across all jobs posted
by firms in that sector across two sub-periods: 2007–2014 and 2015–2018.
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Figure 3. Time Series of the Share of AI Workers from Resume Data

This figure shows the time series of the resume-based measure of AI investments for the sample
of public firms in Cognism data, computed as the fraction of all employees (across all firms) in
a given year who are classified as holding directly AI-related positions. The figure reports the
fraction for each year from 2007 to 2018.
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Figure 4. Share of AI Workers by Industry Sector from Resume Data

This figure presents the resume-based measure of AI investments using Cognism data (based on
the sample of public firms) at the industry level. For each of the sectors (based on NAICS–2 digit
industry codes), we compute the fraction of all individuals employed at the firms within that
sector who are classified as AI-related employees. This is done separately for two sub-periods:
2007–2014 and 2015–2018.
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Figure 5. AI Investments and Local Conditions

This figure is a binned scatter plot of commuting-zone-level AI investments against local condi-
tions. The solid line is the fitted regression line, where regressions are weighted by commuting
zones’ population in 2010. The y-axis is the change in AI investments (measured as the share of AI
workers) from 2010 to 2018, using the Burning Glass data (based on the sample of public firms).
The x-axis in the top figure is the average log wage of a commuting zone in 2010. The x-axis in the
bottom figure is the share of college educated workers in a commuting zone in 2010. The log wage
and the share of college-educated workers are from the Census American Community Survey.
The t-statistic on the regression slope is 23.6 in the top figure and 23.9 in the bottom figure.
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Figure 6. Distribution of AI Investments across US Geographies

This figure plots the heat map of changes in the job-posting-based measure of AI investments
across geographies in the U.S. The figure plots the change in the average AI-relatedness measure
(wNarrowAI

j ) of job postings of public firms in each commuting zone from 2010 to 2018.
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Figure 7. Effect of AI Investments on Firm Growth Over Time

This figure plots the coefficients of the distributed lead-lag model described in Section 5.1.2. The
dependent variable is annual log sales in the top figure and log employment in the bottom figure.
The independent variable is the annual change in the share of AI workers in Cognism resume
data. The independent variables are standardized to have mean zero and standard deviation of
one. Regressions include firm-level sales (or employment) observations between 2010 and 2016,
and control for firm fixed effects and 2-digit NAICS industry-by-year fixed effects. Regressions
are weighted by the number of workers in Cognism resume data. Standard errors are clustered at
the 5-digit NAICS level.
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Table 1. Correlations between Job-posting-based and Resume-based AI Measures

This table reports correlations between three pairs of firm-level variables: (i) the absolute number
of AI job postings in Burning Glass against the absolute number of AI employees in resume-based
data from Cognism; (ii) the fraction of employees classified as AI-related in the two datasets;
and (iii) the fraction of AI employees in Cognism against the continuous shareNarrowAI

f ,t measure in
Burning Glass. Panel 1 shows the Pearson correlation, and Panel 2 displays the Spearman rank
correlation, with both correlations computed over the cross-section of firms with at least 50 total
employees in the Cognism resume data in each year of the sample.

Panel 1: Pearson correlation

Correlations between:
Year Numbers of AI jobs Fractions of AI Jobs Cognism fraction & BG shareNarrowAI

2007 0.651 0.127 0.181
2010 0.888 0.192 0.292
2011 0.783 0.113 0.242
2012 0.830 0.190 0.440
2013 0.808 0.325 0.405
2014 0.777 0.102 0.232
2015 0.803 0.422 0.502
2016 0.694 0.460 0.522
2017 0.715 0.426 0.560
2018 0.818 0.547 0.567

Panel 2: Spearman correlation

Correlations between:
Year Numbers of AI jobs Fractions of AI Jobs Cognism fraction & BG shareNarrowAI

2007 0.381 0.342 0.288
2010 0.400 0.370 0.358
2011 0.410 0.376 0.336
2012 0.357 0.322 0.326
2013 0.458 0.409 0.383
2014 0.504 0.459 0.418
2015 0.514 0.449 0.445
2016 0.554 0.489 0.457
2017 0.608 0.525 0.510
2018 0.599 0.521 0.513
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Table 2. Firm-level Determinants of AI Investments

This table reports the coefficients from regressions of cross-sectional changes in AI investments by
U.S. public firms (in non-IT sectors) from 2010 to 2018 on the following ex-ante firm characteristics
measured in 2010: log firm employment in column 1, market share within the 5-digit NAICS
industry in column 2, log sales in column 3, Cash/Assets in column 4, R&D/Sales in column 5,
return on sales in column 6, log markup measured following De Loecker et al. (2020) in column 7,
and log markup measured following Traina (2018) in column 8. In Panel 1, the dependent variable
is the growth in the share of AI workers from 2010 to 2018 using the resume data from Cognism. In
Panel 2, the dependent variable is the growth in the share of AI workers from 2010 to 2018 using
the job posting data from Burning Glass. Regressions are weighted by the number of Cognism
resumes in 2010 in Panel 1 and the number of Burning Glass job postings in 2010 in Panel 2. All
specifications control for industry sector fixed effects. The dependent variable is normalized to
have a mean of zero and a standard deviation of one. *, **, and *** denote statistical significance at
the 10%, 5%, and 1% levels, respectively.

Panel 1: AI measure from resume data

∆ Share of AI Workers, 2010–2018

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Log Employment 2010 0.071*
(0.043)

Market Share 2010 0.443*
(0.234)

Log Sales 2010 0.131*** 0.137***
(0.045) (0.031)

Cash/Assets 2010 2.932*** 3.017***
(0.729) (0.675)

R&D/Sales 2010 2.845** 2.060*
(1.206) (1.053)

ROS 2010 1.171** 0.090
(0.525) (0.319)

Log Markup (COGS) 2010 0.429* -0.387**
(0.220) (0.165)

Log Markup (Total Exp) 2010 1.388** 1.833**
(0.635) (0.775)

NAICS2 FE Y Y Y Y Y Y Y Y Y
Adj R-Squared 0.126 0.124 0.166 0.236 0.149 0.140 0.147 0.171 0.372
Observations 1,361 1,412 1,410 1,412 1,410 1,377 1,409 1,410 1,376

Panel 2: AI measure from job postings data

∆ Share of AI Workers, 2010–2018

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Log Employment 2010 0.032
(0.053)

Market Share 2010 0.495*
(0.264)

Log Sales 2010 0.146*** 0.168***
(0.042) (0.041)

Cash/Assets 2010 3.227*** 3.006**
(1.235) (1.295)

R&D/Sales 2010 0.715* 2.852***
(0.382) (1.034)

ROS 2010 0.748* 1.125*
(0.433) (0.657)

Log Markup (COGS) 2010 0.340 -0.215
(0.220) (0.312)

Log Markup (Total Exp) 2010 1.220*** 1.398**
(0.466) (0.677)

NAICS2 FE Y Y Y Y Y Y Y Y Y
Adj R-Squared 0.124 0.133 0.150 0.216 0.128 0.140 0.134 0.154 0.317
Observations 1,171 1,202 1,200 1,202 1,200 1,181 1,200 1,200 1,181
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Table 3. Effect of AI Investments on Firm Growth: OLS results

This table reports the coefficients from long-differences regressions of changes in firm size of U.S.
public firms (in non-IT sectors) from 2010 to 2018 on the contemporaneous firm-level changes in
AI investments. We consider three measures of firm size: log sales (columns 1 and 2), log em-
ployment (columns 3 and 4), and market share within the NAICS 5-digit industry (columns 5 and
6). The dependent variables are measured as growth from 2010 to 2018. The main independent
variable is the growth in the share of AI workers from 2010 to 2018, standardized to mean zero
and standard deviation of one. Panel 1 considers the resume-based measure of the share of AI
workers, while Panel 2 looks at the job-posting-based measure. Regressions are weighted by the
number of Cognism resumes in 2010 in Panel 1 and the number of Burning Glass job postings in
2010 in Panel 2. All specifications control for industry sector fixed effects. Columns 2, 4, and 6
also control for log employment, cash/assets, log sales, log industry wages, R&D/Sales, and log
markups, as well as characteristics of the commuting zones where the firms are located (average
log wage, the share of college graduates, the share of routine workers, the share of workers in fi-
nance and manufacturing industries, the share of workers in IT-related occupations, and the share
of female and foreign-born workers), all measured as of 2010. Standard errors are clustered at the
5–digit NAICS industry level. *, **, and *** denote statistical significance at the 10%, 5%, and 1%
levels, respectively.

Panel 1: AI measure from resume data

∆ Log Sales ∆ Log Employment ∆ Market Share

(1) (2) (3) (4) (5) (6)

∆ Share AI Workers 0.129* 0.156*** 0.134 0.152*** 0.015 0.014*
(0.073) (0.055) (0.082) (0.059) (0.012) (0.007)

NAICS2 FE Y Y Y Y Y Y
Controls N Y N Y N Y
Adj R-Squared 0.163 0.336 0.111 0.261 0.229 0.292
Observations 766 766 766 766 766 766

Panel 2: AI measure from job postings data

∆ Log Sales ∆ Log Employment ∆ Market Share

(1) (2) (3) (4) (5) (6)

∆ Share AI Workers 0.138*** 0.121*** 0.155** 0.109** 0.012* 0.009
(0.052) (0.041) (0.069) (0.054) (0.007) (0.006)

NAICS2 FE Y Y Y Y Y Y
Controls N Y N Y N Y
Adj R-Squared 0.208 0.398 0.330 0.421 0.140 0.259
Observations 849 849 849 849 849 849
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Table 4. Effect of AI Investments on Firm Growth: Foreign Industry IV

This table estimates the relationship between AI investments and changes in firm size from 2010
to 2018 for U.S. public firms (in non-IT sectors), using the change in the share of AI workers in
European public firms in the same NAICS 5-digit industry as an instrument for the two firm-level
measures of the growth in the share of AI workers from 2010 to 2018. Panel 1 presents the results
for the resume-based measure of the share of AI workers, while Panel 2 focuses on the job-posting-
based measure. Regressions are weighted by the number of Cognism resumes in 2010 in Panel 1
and the number of Burning Glass job postings in 2010 in Panel 2. The first stage is tabulated in
columns 1 and 2, and the second stage results are displayed in columns 3-6. The independent vari-
able and the IV are standardized to mean zero and standard deviation of one. As the dependent
variable, we consider changes in log sales in columns 3 and 4 and in log employment in columns
5 and 6. All specifications control for industry sector fixed effects. Columns 2, 4, and 6 also control
for log employment, cash/assets, log sales, log industry wages, R&D/Sales, and log markups,
as well as characteristics of the commuting zones where the firms are located (average log wage,
the share of college graduates, the share of routine workers, the share of workers in finance and
manufacturing industries, the share of workers in IT-related occupations, and the share of female
and foreign-born workers), all measured as of 2010. Standard errors are clustered at the 5–digit
NAICS industry level. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels,
respectively.

Panel 1: IV results using AI measure from resume data

First Stage Second Stage

∆ Share of AI Workers ∆ Log Sales ∆ Log Employment

(1) (2) (3) (4) (5) (6)

Instrument 0.398*** 0.281***
(0.092) (0.050)

∆ Share AI Workers 0.359*** 0.419*** 0.313* 0.356*
(0.100) (0.103) (0.160) (0.185)

NAICS2 FE Y Y Y Y Y Y
Controls N Y N Y N Y
F Statistic 18.6 31.6 18.6 31.6 18.6 31.6
Observations 643 643 643 643 643 643

Panel 2: IV results using AI measure from job postings data

First Stage Second Stage

∆ Share of AI Workers ∆ Log Sales ∆ Log Employment

(1) (2) (3) (4) (5) (6)

Instrument 0.548*** 0.495***
(0.151) (0.090)

∆ Share AI Workers 0.224*** 0.190*** 0.253** 0.232**
(0.065) (0.060) (0.099) (0.093)

NAICS2 FE Y Y Y Y Y Y
Controls N Y N Y N Y
F Statistic 13.2 29.9 13.2 29.9 13.2 29.9
Observations 714 714 714 714 714 714
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Table 5. Effect of AI Investments on Firm Growth: Bartik IV

This table estimates the relationship between AI investments and changes in firm size from 2010 to
2018 for U.S. public firms (in non-IT sectors), using a weighted average of national industry-level
changes in the share of AI workers as an instrument for the two firm-level measures of the growth
in the share of AI workers from 2010 to 2018. Panel 1 presents the results for the resume-based
measure of AI workers, while Panel 2 focuses on the job-posting-based measure. Regressions are
weighted by the number of Cognism resumes in 2010 in Panel 1 and the number of Burning Glass
job postings in 2010 in Panel 2. The first stage is provided in columns 1 and 2, and the second
stage results are displayed in columns 3-8. The independent variable and the IV are standardized
to mean zero and standard deviation of one. We consider changes in log sales in columns 3 and
4, log employment in columns 5 and 6, and market share within the 5-digit NAICS industry in
columns 7 and 8. All specifications control for industry sector fixed effects. Columns 2, 4, 6, and 8
also control for log employment, cash/assets, log sales, log industry wages, R&D/Sales, and log
markups, as well as characteristics of the commuting zones where the firms are located (average
log wage, the share of college graduates, the share of routine workers, the share of workers in
finance and manufacturing industry, the share of workers in IT-related occupations, and the share
of female and foreign-born workers), all measured as of 2010. Standard errors are clustered at the
5–digit NAICS industry level. *, **, and *** denote statistical significance at the 10%, 5%, and 1%
levels, respectively.

Panel 1: IV results using AI measure from resume data

First Stage Second Stage

∆ Share of AI Workers ∆ Log Sales ∆ Log Employment ∆ Market Share

(1) (2) (3) (4) (5) (6) (7) (8)

Instrument 0.642*** 0.754***
(0.109) (0.192)

∆ Share AI Workers 0.343*** 0.317*** 0.297*** 0.261*** 0.036 0.024*
(0.092) (0.077) (0.093) (0.088) (0.022) (0.013)

NAICS2 FE Y Y Y Y Y Y Y Y
Controls N Y N Y N Y N Y
F Statistic 34.5 15.5 34.5 15.5 34.5 15.5 34.5 15.5
Observations 766 766 766 766 766 766 766 766

Panel 2: IV results using AI measure from job postings data

First Stage Second Stage

∆ Share of AI Workers ∆ Log Sales ∆ Log Employment ∆ Market Share

(1) (2) (3) (4) (5) (6) (7) (8)

Instrument 0.771*** 0.489**
(0.209) (0.198)

∆ Share AI Workers 0.230*** 0.360** 0.281** 0.237 0.018 0.053
(0.053) (0.159) (0.123) (0.254) (0.017) (0.040)

NAICS2 FE Y Y Y Y Y Y Y Y
Controls N Y N Y N Y N Y
F Statistic 13.6 6.1 13.6 6.1 13.6 6.1 13.6 6.1
Observations 849 849 849 849 849 849 849 849
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Table 6. Effect of AI Investments on Industry-level Employment and Sales

This table reports the coefficients from industry-level regressions of the changes in total sales and
employment for all firms in Compustat (including entrants and exits between 2010 and 2018) on
contemporaneous changes in AI investments. Each observation is a 5-digit NAICS industry, and
we exclude IT sectors. The independent variable is the change in the share of AI workers from
2010 to 2018, standardized to mean zero and standard deviation of one. Panel 1 considers the
resume-based measure of AI investments, while Panel 2 looks at the job-posting-based measure.
Regressions are weighted by the total industry number of Cognism resumes in 2010 in Panel 1
and the total industry number of Burning Glass job postings in 2010 in Panel 2. Columns 1 to
4 are estimated by OLS, and in columns 5 to 8 the independent variable is instrumented by the
contemporaneous growth in the share of AI workers in European public firms in the same in-
dustry. The dependent variables are changes in log total sales (columns 1, 2, 5, and 6) and log
total employment (columns 3, 4, 7, and 8) at the industry level from 2010 to 2018. All specifica-
tions control for industry sector fixed effects. Regressions in columns 2, 4, 6 and 8 also control
for log total employment, log total sales, and log average wage in 2010. Standard errors are ro-
bust against heteroskedasticity. *, **, and *** denote statistical significance at the 10%, 5%, and 1%
levels, respectively.

Panel 1: AI measure from resume data

OLS IV

∆ Log ∆ Log ∆ Log ∆ Log
Sales Employment Sales Employment

(1) (2) (3) (4) (5) (6) (7) (8)

∆ Share AI Workers 0.129** 0.127*** 0.124* 0.136** 0.184*** 0.210*** 0.210** 0.257***
(0.056) (0.043) (0.068) (0.059) (0.056) (0.056) (0.095) (0.086)

NAICS2 FE Y Y Y Y Y Y Y Y
Controls N Y N Y N Y N Y
F Statistic 13.6 20.5 13.6 20.5
Observations 233 233 233 233 152 152 152 152

Panel 2: AI measure from job postings data

OLS IV

∆ Log ∆ Log ∆ Log ∆ Log
Sales Employment Sales Employment

(1) (2) (3) (4) (5) (6) (7) (8)

∆ Share AI Workers 0.163*** 0.150*** 0.155 0.136 0.201*** 0.247*** 0.307*** 0.386***
(0.062) (0.054) (0.103) (0.096) (0.057) (0.062) (0.106) (0.117)

NAICS2 FE Y Y Y Y Y Y Y Y
Controls N Y N Y N Y N Y
F Statistic 7.9 12.6 7.9 12.6
Observations 243 243 243 243 158 158 158 158
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Table 7. Heterogeneous Effects on Firm Growth by Initial Firm Size

This table reports the coefficients from long-differences regressions of changes in firm size from
2010 to 2018 on contemporaneous changes in AI investments among US public firms (in non-IT
sectors), separately for each tercile of initial firm size. Firms in each 2-digit NAICS sector are di-
vided into terciles based on employment in 2010. We consider three measures of firm-level growth
for the dependent variable: changes in log sales (columns 1 and 2), changes in log employment
(columns 3 and 4), and changes market share within the 5-digit NAICS industry (columns 5 and
6). The main independent variable is the growth in the share of AI workers from 2010 to 2018,
standardized to mean zero and standard deviation of one. Panel 1 considers the resume-based
measure of AI workers, while Panel 2 looks at the job-posting-based measure. Regressions are
weighted by the number of Cognism resumes in 2010 in Panel 1 and the number of Burning Glass
job postings in 2010 in Panel 2. All specifications control for industry sector fixed effects and initial
firm size tercile fixed effects. Columns 2, 4, and 6 also control for log employment, cash/assets,
log sales, log industry wages, R&D/Sales, and log markups, as well as characteristics of the com-
muting zones where the firms are located (average log wage, the share of college graduates, the
share of routine workers, the share of workers in finance and manufacturing industries, the share
of workers in IT-related occupations, and the share of female and foreign-born workers), all mea-
sured as of 2010. Standard errors are clustered at the 5–digit NAICS industry level. *, **, and ***
denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Panel 1: AI measure from resume data

∆ Log Sales ∆ Log Employment ∆ Market Share

(1) (2) (3) (4) (5) (6)

∆ Share AI Workers*Size Tercile 1 0.016 -0.000 0.037 0.008 -0.007 -0.007
(0.037) (0.040) (0.036) (0.047) (0.004) (0.005)

∆ Share AI Workers*Size Tercile 2 0.090 0.043 0.139** 0.116** 0.009 0.008
(0.060) (0.067) (0.054) (0.058) (0.008) (0.009)

∆ Share AI Workers*Size Tercile 3 0.149* 0.174*** 0.153 0.164** 0.017 0.016*
(0.083) (0.066) (0.093) (0.070) (0.014) (0.009)

NAICS2 FE Y Y Y Y Y Y
Controls N Y N Y N Y
Size tercile FE Y Y Y Y Y Y
Adj R-Squared 0.193 0.339 0.141 0.262 0.228 0.290
Observations 766 766 766 766 766 766
T-test statistic 2.3 5.5 1.4 3.0 2.7 6.3
T-test p value 0.130 0.019 0.245 0.083 0.103 0.012

Panel 2: AI measure from job postings data

∆ Log Sales ∆ Log Employment ∆ Market Share

(1) (2) (3) (4) (5) (6)

∆ Share AI Workers*Size Tercile 1 -0.057 -0.149*** -0.118 -0.207** -0.008 -0.012
(0.079) (0.054) (0.099) (0.090) (0.007) (0.009)

∆ Share AI Workers*Size Tercile 2 0.092* -0.000 0.064 0.018 0.004 -0.001
(0.049) (0.047) (0.061) (0.054) (0.011) (0.012)

∆ Share AI Workers*Size Tercile 3 0.141*** 0.126*** 0.162** 0.114** 0.013* 0.009
(0.053) (0.042) (0.071) (0.056) (0.007) (0.006)

NAICS2 FE Y Y Y Y Y Y
Controls N Y N Y N Y
Size tercile FE Y Y Y Y Y Y
Adj R-Squared 0.210 0.399 0.339 0.423 0.137 0.256
Observations 849 849 849 849 849 849
T-test statistic 4.6 18.0 5.2 11.0 4.5 6.5
T-test p value 0.033 0.000 0.024 0.001 0.034 0.011
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Table 8. AI Investments and Changes in Industry Concentration

This table reports the coefficients from industry-level long-differences regressions of the changes
in industry concentration on contemporaneous changes in AI investments. Each observation is a
5-digit NAICS industry, and we exclude IT sectors. The independent variable is the change in the
share of AI workers from 2010 to 2018, standardized to mean zero and standard deviation of one.
Panel 1 considers the resume-based measure of the share of AI workers, while Panel 2 looks at the
job-posting-based measure. Regressions are weighted by the total industry number of Cognism
resumes in 2010 in Panel 1 and the total industry number of Burning Glass job postings in 2010
in Panel 2. Columns 1 to 4 are estimated by OLS, and in columns 5 to 8 the independent variable
is instrumented by the contemporaneous growth in the share of AI workers in European firms
in each industry. The dependent variables are the changes, from 2010 to 2018, in the Herfindahl-
Hirschman Index (HHI) in columns 1, 2, 5, and 6 and in the market share of the top firm in an
industry in columns 3, 4, 7, and 8. Both measures are calculated using all Compustat firms. All
specifications control for industry sector fixed effects. Regressions in columns 2, 4, 6, and 8 also
control for log total employment, log total sales, and log average wage in 2010. Standard errors
are robust against heteroskedasticity. *, **, and *** denote statistical significance at the 10%, 5%,
and 1% levels, respectively.

Panel 1: AI measure from resume data

OLS IV

HHI Top Firm Market Share HHI Top Firm Market Share

(1) (2) (3) (4) (5) (6) (7) (8)

∆ Share AI Workers 0.023*** 0.022*** 0.016*** 0.017*** 0.048*** 0.053*** 0.035** 0.039***
(0.005) (0.006) (0.005) (0.006) (0.018) (0.018) (0.014) (0.014)

NAICS2 FE Y Y Y Y Y Y Y Y
Controls N Y N Y N Y N Y
F Statistic 13.6 20.5 13.6 20.5
Observations 233 233 233 233 152 152 152 152

Panel 2: AI measure from job postings data

OLS IV

HHI Top Firm Market Share HHI Top Firm Market Share

(1) (2) (3) (4) (5) (6) (7) (8)

∆ Share AI Workers 0.023*** 0.026*** 0.013** 0.013* 0.047*** 0.054*** 0.027* 0.034***
(0.006) (0.007) (0.006) (0.008) (0.011) (0.011) (0.016) (0.012)

NAICS2 FE Y Y Y Y Y Y Y Y
Controls N Y N Y N Y N Y
F Statistic 7.9 12.6 7.9 12.6
Observations 243 243 243 243 158 158 158 158
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Table 9. Effect of AI Investments on Productivity

This table reports the coefficients from long-differences regressions of changes in firm produc-
tivity from 2010 to 2018 on contemporaneous changes in AI investments by US public firms (in
non-IT sectors). We consider two measures of productivity: log sales per worker (columns 1–2)
and revenue TFP (columns 3–4). Revenue TFP is the residual from regressing log revenue on log
employment and log capital (constructed using the perpetual inventory method), with separate
regressions for each industry sector. We also look at two measures of costs: log COGS in columns
5 and 6 and log operating expenses in columns 7 and 8. The main independent variable is the
growth in the share of AI workers from 2010 to 2018, standardized to mean zero and standardized
deviation of one. Panel 1 considers the resume-based measure of the share of AI workers, while
Panel 2 looks at the job-posting-based measure. Regressions are weighted by the number of Cog-
nism resumes in 2010 in Panel 1 and the number of Burning Glass job postings in 2010 in Panel
2. All specifications control for industry sector fixed effects. Columns 2, 4, 6, and 8 also control
for log employment, cash/assets, log sales, log industry wages, R&D/Sales, and log markups,
as well as characteristics of the commuting zones where the firms are located (average log wage,
the share of college graduates, the share of routine workers, the share of workers in finance and
manufacturing industries, the share of workers in IT-related occupations, and the share of female
and foreign-born workers), all measured as of 2010. Standard errors are clustered at the 5–digit
NAICS industry level. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels,
respectively.

Panel 1: AI measure from resume data

∆ Log Sales ∆ Revenue ∆ Log ∆ Log
per Worker TFP COGS Operating Expense

(1) (2) (3) (4) (5) (6) (7) (8)

∆ Share AI Workers -0.015 -0.009 -0.006 -0.003 0.142** 0.142*** 0.133* 0.154***
(0.030) (0.026) (0.032) (0.032) (0.065) (0.048) (0.069) (0.049)

NAICS2 FE Y Y Y Y Y Y Y Y
Controls N Y N Y N Y N Y
Adj R-Squared 0.209 0.264 0.158 0.222 0.157 0.303 0.173 0.354
Observations 766 766 720 720 766 766 766 766

Panel 2: AI measure from job postings data

∆ Log Sales ∆ Revenue ∆ Log ∆ Log
per Worker TFP COGS Operating Expense

(1) (2) (3) (4) (5) (6) (7) (8)

∆ Share AI Workers -0.045 -0.020 -0.017 -0.019 0.159*** 0.124*** 0.145*** 0.121***
(0.043) (0.037) (0.037) (0.034) (0.038) (0.028) (0.046) (0.033)

NAICS2 FE Y Y Y Y Y Y Y Y
Controls N Y N Y N Y N Y
Adj R-Squared 0.471 0.545 0.236 0.301 0.211 0.329 0.209 0.374
Observations 849 849 788 788 849 849 849 849

58



Table 10. Effect of AI Investments on Markups

This table reports the coefficients from long-differences regressions of the changes in markups
from 2010 to 2018 on the contemporaneous changes in AI investments by US public firms (in non-
IT sectors). We consider three measures of mark-ups: sales divided by cost of goods sold (COGS)
in columns 1 and 2, sales over total operating expenses in columns 3 and 4, and the Lerner Index
(operating income before depreciation and amortization minus depreciation scaled by sales) in
columns 5 and 6. For the main independent variable, Panel 1 considers the resume-based measure
of the growth in the share of AI workers from 2010 to 2018, while Panel 2 looks at the job-posting-
based measure. Both measures are standardized to mean zero and standardized deviation of one.
Regressions are weighted by the number of Cognism resumes in 2010 in Panel 1 and the number
of Burning Glass job postings in 2010 in Panel 2. All specifications control for industry sector fixed
effects. Columns 2, 4, 6, and 8 also control for log employment, cash/assets, log sales, log industry
wages, R&D/Sales, and log markups, as well as characteristics of the commuting zones where the
firms are located (average log wage, the share of college graduates, the share of routine workers,
the share of workers in finance and manufacturing industries, the share of workers in IT-related
occupations, and the share of female and foreign-born workers), all measured as of 2010. Standard
errors are clustered at the 5–digit NAICS industry level. *, **, and *** denote statistical significance
at the 10%, 5%, and 1% levels, respectively.

Panel 1: AI measure from resume data

∆ Log ∆ Log ∆
Markup (COGS) Markup (Total Exp) Lerner Index

(1) (2) (3) (4) (5) (6)

∆ Share AI Workers -0.010 0.013 -0.004 0.003 -0.007* -0.002
(0.016) (0.022) (0.006) (0.009) (0.004) (0.006)

NAICS2 FE Y Y Y Y Y Y
Controls N Y N Y N Y
Adj R-Squared 0.332 0.411 0.260 0.338 0.173 0.340
Observations 766 766 766 766 766 766

Panel 2: AI measure from job postings data

∆ Log ∆ Log ∆
Markup (COGS) Markup (Total Exp) Lerner Index

(1) (2) (3) (4) (5) (6)

∆ Share AI Workers -0.020 -0.004 -0.008 0.001 -0.005 -0.001
(0.029) (0.031) (0.009) (0.012) (0.006) (0.009)

NAICS2 FE Y Y Y Y Y Y
Controls N Y N Y N Y
Adj R-Squared 0.277 0.386 0.309 0.457 0.119 0.587
Observations 849 849 849 849 849 849
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Table 11. Heterogeneous Effects by Initial Firm Productivity (TFP)

This table reports the coefficients from long-differences regressions of changes in firm size and
productivity from 2010 to 2018 on the contemporaneous changes in AI investments among US
public firms (in non-IT sectors), separately for each tercile of initial firm productivity. Firms in
each 2-digit NAICS sector are divided into terciles based on revenue TFP in 2010. We consider
three measures of firm size: log sales (columns 1 and 2), log employment (columns 3 and 4), and
market share within the 5-digit NAICS industry (columns 5 and 6). The independent variables
are changes in the share of AI workers from 2010 to 2018 interacted with indicator variables for
the productivity tercile in 2010. Panel 1 considers the resume-based measure of the share of AI
workers, while Panel 2 looks at the job-posting-based measure. Both measures are standardized
to mean zero and standardized deviation of one. Regressions are weighted by the number of
Cognism resumes in 2010 in Panel 1 and the number of Burning Glass job postings in 2010 in
Panel 2. All specifications control for industry sector fixed effects and productivity tercile fixed
effects. Columns 2, 4, and 6 also control for log employment, cash/assets, log sales, log industry
wages, R&D/Sales, and log markups, as well as characteristics of the commuting zones where the
firms are located (average log wage, the share of college graduates, the share of routine workers,
the share of workers in finance and manufacturing industries, the share of workers in IT-related
occupations, and the share of female and foreign-born workers), all measured as of 2010. Standard
errors are clustered at the 5–digit NAICS industry level. *, **, and *** denote statistical significance
at the 10%, 5%, and 1% levels, respectively.

Panel 1: AI measure from resume data

∆ Log Sales ∆ Log Employment ∆ Market Share

(1) (2) (3) (4) (5) (6)

∆ Share AI Workers*TFP Tercile 1 0.062 0.069 0.149** 0.152** 0.010 0.005
(0.070) (0.073) (0.066) (0.066) (0.012) (0.010)

∆ Share AI Workers*TFP Tercile 2 0.038 0.095*** 0.021 0.076* 0.002 0.010*
(0.029) (0.033) (0.035) (0.038) (0.004) (0.005)

∆ Share AI Workers*TFP Tercile 3 0.350*** 0.346*** 0.315*** 0.294*** 0.043** 0.032**
(0.072) (0.073) (0.082) (0.090) (0.020) (0.015)

NAICS2 FE Y Y Y Y Y Y
Controls N Y N Y N Y
TFP tercile FE Y Y Y Y Y Y
Adj R-Squared 0.257 0.368 0.229 0.319 0.274 0.319
Observations 724 724 724 724 724 724
T-test statistic 8.6 7.3 2.8 1.7 1.8 2.0
T-test p value 0.004 0.008 0.099 0.199 0.177 0.161

Panel 2: AI measure from job postings data

∆ Log Sales ∆ Log Employment ∆ Market Share

(1) (2) (3) (4) (5) (6)

∆ Share AI Workers*TFP Tercile 1 0.035 0.023 0.169** 0.140*** -0.004 -0.007
(0.049) (0.055) (0.073) (0.052) (0.011) (0.011)

∆ Share AI Workers*TFP Tercile 2 0.051** 0.045** 0.045* 0.024 -0.002 0.001
(0.022) (0.022) (0.026) (0.029) (0.005) (0.005)

∆ Share AI Workers*TFP Tercile 3 0.252*** 0.236*** 0.234*** 0.181*** 0.032*** 0.025**
(0.046) (0.034) (0.080) (0.062) (0.010) (0.011)

NAICS2 FE Y Y Y Y Y Y
Controls N Y N Y N Y
TFP tercile FE Y Y Y Y Y Y
Adj R-Squared 0.279 0.441 0.419 0.522 0.210 0.310
Observations 793 793 793 793 793 793
T-test statistic 12.2 14.1 0.3 0.2 4.2 4.3
T-test p value 0.001 0.000 0.555 0.628 0.042 0.040
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Table 12. AI Investments and Expansion into New Markets

This table reports the coefficients from long-differences regressions of the changes in the number of
markets spanned and innovation efforts by U.S. public firms (in non-IT sectors) from 2010 to 2018
on the contemporaneous changes in AI investments. In columns 1 and 2, the dependent variable
is the change in the log number of counties with at least 1% of the firm’s job postings in Burning
Glass; in columns 3 and 4, the dependent variable is the change in the log number of NAICS 6-digit
industries associated with at least 1% of the firm’s job postings in Burning Glass; in columns 5 and
6, the dependent variable is the change in the log number of job postings for product managers; in
columns 7 and 8, the dependent variable is the change in log R&D investment; in columns 9 and
10, the dependent variable is the change in R&D expenditure as a fraction of sales. For the main
independent variable, Panel 1 considers the resume-based measure of the growth in the share of AI
workers from 2010 to 2018, while Panel 2 looks at the job-posting-based measure. Both measures
are standardized to mean zero and standard deviation of one. Regressions are weighted by the
number of Cognism resumes in 2010 in Panel 1 and the number of Burning Glass job postings in
2010 in Panel 2. All specifications control for industry sector fixed effects. Columns 2, 4, 6, 8, and 10
also control for log employment, cash/assets, log sales, log industry wages, R&D/Sales, and log
markups, as well as characteristics of the commuting zones where the firms are located (average
log wage, the share of college graduates, the share of routine workers, the share of workers in
finance and manufacturing industries, the share of workers in IT-related occupations, and the
share of female and foreign-born workers), all measured as of 2010. Standard errors are clustered
at the 5–digit NAICS industry level. *, **, and *** denote statistical significance at the 10%, 5%,
and 1% levels, respectively.

Panel 1: AI measure from resume data

∆ Log Number of ∆ Log Number of ∆ Log Number of ∆ Log ∆
Counties Industries Product Managers R&D R&D/Sales

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

∆ Share AI Workers 0.081*** 0.085*** -0.001 0.023 0.209*** 0.137 0.227** 0.227** 0.008*** 0.008***
(0.020) (0.028) (0.015) (0.021) (0.059) (0.083) (0.110) (0.091) (0.001) (0.002)

NAICS2 FE Y Y Y Y Y Y Y Y Y Y
Controls N Y N Y N Y N Y N Y
Adj R-Squared 0.254 0.328 0.130 0.167 0.063 0.108 0.207 0.308 0.048 0.444
Observations 757 757 759 759 756 756 766 766 766 766

Panel 2: AI measure from job postings data

∆ Log Number of ∆ Log Number of ∆ Log Number of ∆ Log ∆
Counties Industries Product Managers R&D R&D/Sales

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

∆ Share AI Workers 0.038* 0.071*** 0.003 0.017 0.193*** 0.149** 0.193** 0.180** 0.005*** 0.006***
(0.023) (0.023) (0.009) (0.015) (0.043) (0.075) (0.079) (0.084) (0.002) (0.002)

NAICS2 FE Y Y Y Y Y Y Y Y Y Y
Controls N Y N Y N Y N Y N Y
Adj R-Squared 0.441 0.610 0.076 0.106 0.119 0.190 0.258 0.360 0.009 0.738
Observations 847 847 849 849 849 849 849 849 849 849
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A Online Appendix

A.1 Case Studies on Firms’ AI Investments

In order to illustrate the wide range of applications of AI technologies by individual firms, we

provide detailed summaries of the investment patterns and uses of AI technologies within four

firms in four different industries.

A.1.1 UnitedHealth Group

UnitedHealth Group (UNH) is a large managed healthcare company based in Minnetonka, Min-

nesota. The group includes a healthcare arm (UnitedHealthcare) established in 1977 and a new

technology arm founded in 2011 (Optum). While the UnitedHealthcare arm makes use of AI tech-

niques to optimize operations ranging from cost projections to fraud detection in medical claims,

the launch of Optum highlights the way in which firms such as UNH can leverage AI technologies

to expand operations by creating new products and entering new market segments. UNH is one

of very few companies with access to detailed patient, patient-physician, and drug-patient inter-

action data for large portions of the U.S. and many additional global locations, making it perfectly

placed to harness AI in its operations.

AI use cases and product impact. Most of the AI investments and impact at UNH center around

its Optum arm. The traditional UnitedHealthcare part of UNH uses AI in a limited capacity for

predictive analytics that inform business decisions and safeguards for vulnerabilities such as fraud

detection. The launch of Optum in 2011 has enabled UNH to leverage AI technologies to de-

liver new products across several healthcare markets. At its core, Optum is a vast data store

of proprietary and 3rd party datasets linked together to enable machine-learning-based analysis.

Specifically, the AI-powered Optum products include: (i) statistics on drugs and potential alterna-

tives through the pharmaceutical platform Optum Rx; (ii) analysis of electronic medical records

through the Optum One platform for physicians; and (iii) the Optum Population Health Man-

agement platform for larger institutions (including employers and federal and state agencies) to

optimize costs and accessibility to care. The AI-powered OptumIQ system, which is leveraged

throughout the Optum solutions, also targets machine-learning-based prediction and diagnostics

for diseases such as atrial fibrillation.

Timeline of AI investments at UNH. The use of AI technologies at UNH traces further back

than at most firms. As early as the 1990s, UNH piloted AdjudiPro, an AI-powered platform for

processing claims from physicians. However, the presence of AI-skilled labor at UNH remained

low throughout the 1990s and 2000s, noticeably picking up in 2011 with the launch of the Optum

platform. Thereafter, UNH’s investment in AI human capital rose steadily throughout the 2010s.

The Optum arm of the firm released the Optum360 and Impact Pro products in 2013 and the
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Optum One Analytics Platform in 2014, prompting a further acceleration in the rise of UNH’s

AI human capital in the second half of the decade. The timeline of AI investments at UNH is

displayed in Figure A.1.

Internal structure of UNH’s AI workforce. UNH has a centralized approach to AI integration,

with strategic decisions primarily coming from the headquarters in Minnesota and regional of-

fices handling specific applications. Correspondingly, the majority of UNH’s AI workforce con-

centrates in Minneapolis and Minnetonka, including senior personnel heading AI and machine

learning efforts, automation/deployment, consumer analytics, and Optum enterprise analytics.

Locations outside of the headquarters tend to employ predominantly engineering and general IT

personnel to support the AI efforts.

A.1.2 JPMorgan Chase & Co

JPMorgan Chase & Co (JPM) is the largest bank in the U.S., based in New York City, NY, with

consumer banking that has relationships with more than half of U.S. households, a commercial

banking arm, a large investment banking business, and a sizable asset management arm. The bank

stores hundreds of petabytes of data ranging from credit card transactions and loan applications,

to financial news and market data, to alternative data sources.

AI use cases and product impact. The main use cases for AI at JPM fall into the following cate-

gories: (i) risk modeling and management ranging from internal cybersecurity to fraud detection

in consumer banking and assessment of geo-political risks; (ii) quantitative analysis and algo-

rithmic investment products, including the Algo Central, LOXM, and DeepX programs aimed at

executing trades at both maximal speed and optimal prices; (iii) general analytics for Big Data

use in broad internal applications including recruiting; and (iv) product development, including

enhancements to mobile apps and customer support through AI-powered virtual assistants. In

addition, JPM also employs AI in more peripheral applications, for example, with methods for

processing of alternative data such as satellite images and mapping contingency plans for AI-

driven workforce disruptions. The use of AI at JPM is aimed at both cutting costs (e.g., through

risk assessment) and creating new products (e.g., machine-learning-powered trading platforms

such as DeepX).

Timeline of AI investments at JPM. As highlighted by Figure A.2, investments in AI at JPM

began at the turn of the century, with a steady increase through the first decade turning into

an exponential growth in the second decade. The explosion in AI investments at JPM during

the 2010s is marked by the acquisition of the multimedia recommendations patent in 2011; an

underscoring of the risks associated with data security following a data leak in 2016; and finally

the establishment of a dedicated AI research initiative (Machine Learning Center for Excellence)

spearheaded by Dr. Manuela Veloso (previously the Chair of the Machine Learning Department
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at Carnegie Mellon University) in 2018.

Internal structure of JP Morgan’s AI workforce. AI efforts at JPM are centered in the New York

location, with peripheral AI expertise throughout the U.S., in London, and in India. JPM has taken

a top-down approach to AI investments, with involvement from the highest levels of management

and the establishment of a dedicated AI research team in 2018. At the same time, JPM’s invest-

ments in AI have seen not only the formation of dedicated AI hubs, but also a different approach

to corporate structuring. Specifically, the firm’s approach relies heavily on small skilled and re-

sponsive AI “task-forces" specializing in different sectors (quantitative analysis, user experience,

etc.), which can alternatively work on experimental projects (e.g., satellite imagery analysis) or

coordinate together to work on core applications (trading algorithms, firm-wide cybersecurity).

A.1.3 Caterpillar Inc.

Caterpillar Inc. is a large construction manufacturing firm headquartered in Deerfield, IL, with a

variety of additional business activities including financial products and insurance. The firm has

correspondingly varied applications for AI, ranging from inventory management to part recogni-

tion, to credit scoring for machinery financing.

AI use cases and product impact. AI investments at Caterpillar are organized along several key

verticals. First, the Data Innovation Lab at UIUC conducts core projects in demand forecasting

(unstable demand anticipation) and inventory management, in part identification (using tech-

niques from image recognition), and in tracking and tracing technology for fleet management.

Second, Caterpillar’s asset intelligence efforts include a product line of Internet of Things (IoT)

style analytics for managers and machine operators, which facilitates data collection, interpreta-

tion, predictive maintenance, and integration. Lastly, smaller targeted efforts at Caterpillar also

employ AI techniques in other parts of the business, including leveraging sensor-based data for

equipment management and using drone data to optimize job site organization. Caterpillar’s uses

of AI serve to modernize the firm’s machinery, streamline operations and reduce waste through

better forecasting and inventory management, and expand the product offerings with the IoT

product line and efficient long-term service contracts.

Timeline of AI investments at Caterpillar. Caterpillar began employing workers with AI exper-

tise at the turn of the century, but the growth in the firm’s AI workforce went hand-in-hand with

the growth in the firm’s overall workforce throughout the 2000s (with a dip during the financial

crisis). The share of AI employees at Caterpillar noticeably picked up only in mid-2010s, with the

CEO Douglas Obenhelmer underscoring the importance of capitalizing on the firm’s vast avail-

able data resources. Since 2014, Caterpillar has aggressively pursued the development of “smart"

machinery, connecting it to predictive IoT-style networks and developing better models for de-

mand prediction. In 2015, Caterpillar established the Analytics and Innovation Division headed
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by Greg Foley, and in 2016, the firm hired Morgan Vawters as the Chief of Analytics. The timeline

of Caterpillar’s investments in AI human capital is presented in Figure A.3.

Internal structure of Caterpillar’s AI workforce. The majority of the AI employees at Caterpil-

lar are in the firm’s Technology division, with notable presence also in Business and Production

departments. The major locations setting the trend for Caterpillar’s AI adoption are the company

centers in Chicago and Peoria, Illinios, with projects percolating through the dedicated research

centers such as the Champaign Innovation Center and production centers such as the manufac-

turing plant in Aurora, Illinois.

A.1.4 Qualcomm Inc.

Qualcomm Inc. is a wireless telecommunications firm headquartered in San Diego, CA. The firm

produces a number of products including semiconductors, hardware, software, and other services

related to wireless technology. Device manufacturers such as Apple are Qualcomm’s primary

clients.

AI use cases and product impact. The principal use of AI at Qualcomm over the past decade

and a half has been the improvement of its core products. This includes optimization of chips

within mobile devices, improvements to the camera using techniques from computer vision for

face recognition and auto-adjustments, audio and video processing, physical sensitivity, power

use, and location tracking capabilities. More recently, Qualcomm made a large investment in

the development of the Snapdragon Neural Processing Engine (SNPE) platform, which offers a

combination of hardware and software on android devices that allows developers to more easily

create AI-powered or assisted applications. With the exception of a few stand-alone projects for

internal data processing efficiency (e.g., improving internal servers), Qualcomm does not appear

to be heavily invested in applying AI for applications such as sales or supply chain optimization,

unlike Caterpillar Inc. described above.

Outside of its core businesses, Qualcomm has invested in a number of side products at more ex-

ploratory or proof-of-concept stages, such as general work on autonomous vehicles, or enterprise

partnerships, for example with Accenture and Kellogg on virtual reality tracking of customers

for marketing purposes. This highlights the broad scope of AI technologies that facilitate firms

entering new markets: for example, the autonomous vehicle work at Qualcomm makes use of the

efforts aimed at enhancing smartphone components, only applied to a different domain.

Timeline of AI investments at Qualcomm. As can be seen from the timeline in Figure A.4, the

presence of AI employees at Qualcomm began earlier than in the other firms, and by 2007 the

firm initiated dedicated AI research projects in its research arm. The ramp up continued through

2013, marked by collaborations with outside partners such as Brain Corp and internal projects on

problems such as face detection. After 2013, Qualcomm saw notable consequences of the earlier
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investments, including the first release of SNPE and the formation of an organizationally separate

AI research group, but the share of Qualcomm’s overall workforce that is skilled in AI remained

approximately flat from 2013 to 2018.

Internal structure of Qualcomm’s AI workforce. Between 2000 and 2018, the majority of Qual-

comm’s AI employees have been engineers focused on the improvement of the core product being

developed at each point in time, supported by an auxiliary staff of patent counsels and data sci-

entists. In 2018, Qualcomm established a separate AI research group, which is bringing about

increased centralization of its AI workforce. Specifically, AI efforts at Qualcomm are organized

around the San Diego headquarters, with leadership on overall AI strategy, the newly formed

AI research group, and teams spanning nearly every project from computer vision R&D to GPU

architecture. Smaller AI offices, scattered mostly throughout the U.S. and Canada, tend to focus

on single elements of Qualcomm’s AI initiative (for example, SNPE in Toronto and positioning

sensors in Santa Clara).
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Figure A.1. Timeline of AI investments by UnitedHealth Group

Figure A.2. Timeline of AI investments by JPMorgan Chase & Co
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Figure A.3. Timeline of AI investments by Caterpillar Inc

Figure A.4. Timeline of AI investments by Qualcomm Inc
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A.2 Additional Figures and Tables

Figure A.5. Matching Rate to Compustat in Job Posting Data

This figure shows the time series of the share of all job postings and the share of AI job postings
(job postings with continuous measure ωNarrowAI above 0.1) that are matched to Compustat firms
in the Burning Glass data in 2007 and in each year from 2010 to 2018.
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Figure A.6. Time Series of the Share of AI Workers in Foreign Countries from Resume Data

This figure plots the share of AI workers identified in the Cognism data for public firms in non-U.S.
countries in each year. All lines exclude firms listed in the U.S. and workers of multinational firms
working in the U.S. The group “EU” includes all firms listed on Euronext Paris, Frankfurt Stock
Exchange, Borsa Italiana (Milan), SIX Swiss Exchange, NASDAQ Stockholm, NASDAQ Copen-
hagen, Oslo Stock Exchange, Warsaw Stock Exchange, Vienna Stock Exchange, and Madrid Stock
Exchange. The group “UK” includes all firms listed on London Stock Exchange. The group “In-
dia” includes all firms listed on National Stock Exchange of India and Bombay Stock Exchange.
Firms listed on other non-U.S. stock exchanges are included in the group “Rest of the World”.
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Figure A.7. Correlation Between Changes in the Producer Price Index (PPI) and Changes in
the Share of AI Workers in Europe at the Industry Level

This figure is a binned scatter plot of industry-level AI investments against industry-level inflation
(measured as PPI). Each dot represents the same number of NAICS 5 digit industries. The solid
line is the fitted regression line. The y-axis is the change in AI investments by European firms
(measured as the share of AI workers in Cognism data) from 2010 to 2018s, which is our first
instrument. The x-axis is the change in log PPI in the U.S. from 2010 to 2018. Both variables are
measured at the 5-digit NAICS level. The PPI data are from the Bureau of Labor Statistics. The
correlation between the two variables is -0.06.
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Table A.1. Job Titles with the Highest Average AI-relatedness Measure

This table reports the job titles in Burning Glass with the highest average AI measure ωNarrowAI .
We only include job titles that have at least 50 job postings and are matched to Compustat firms.

cleantitle share narrowai
1 Artificial Intelligence Engineer 0.476
2 Senior Data Scientist - Machine Learning Engineer 0.367
3 Ai Consultant 0.365
4 Ai Senior Analyst 0.354
5 Lead Machine Learning Scientist - Enterprise Products 0.313
6 Technician Architecture Delivery Senior Analyst Ai 0.294
7 Artificial Intelligence Analyst 0.291
8 Artificial Intelligence Architect 0.288
9 Software Engineer, Machine Learning 0.283

10 Machine Learning Engineer 0.283
11 Computer Vision Engineer 0.272
12 Machine Learning Researcher 0.261
13 Senior Machine Learning Engineer 0.260
14 Senior Software Engineer - Machine Learning 0.252
15 Senior Machine Learning Scientist 0.250
16 Artificial Intelligence Consultant 0.245
17 Computer Vision Scientist 0.233
18 Senior Ai Engineer 0.229
19 Senior Engineer II - Data Scientist 0.227
20 Senior Machine Learning Researcher 0.226
21 Artificial Intelligence Manager 0.216
22 Senior Applied Scientist 0.215
23 Lead Machine Learning Researcher 0.215
24 Vice President- Data Analytics 0.202
25 Big Data Hadoop Consultant 0.198
26 Machine Learning Scientist 0.195
27 Software Engineer - Data Mining/Data Analysis/Machine Learning 0.193
28 Applied Scientist 0.189
29 Senior Engineer - Machine Learning 0.187
30 Senior Associate, Data Scientist 0.183
31 Data Scientist - Engineer 0.181
32 Architect - Relevance Infrastructure 0.177
33 Data Scientist Specialist 0.175
34 Director, Data Scientist 0.175
35 Senior Staff Data Scientist 0.171
36 Data Scientist, Junior 0.169
37 Engineering Manager - Feed Personalization Platform 0.167
38 Manager, Data Scientist 0.162
39 Principal Data Scientist 0.161
40 Director, Data Science 0.161
41 Senior Risk Modeler 0.160
42 Data Science Specialist 0.160
43 Manager/Senior Manager Small Business Open Digital Acquisition 0.159
44 Chief Data Scientist 0.159
45 Manager, Data Science 0.157
46 Research And Development Engineer - Data Mining/Data Analysis/Machine Learning 0.157
47 Senior Manager, Data Science 0.157
48 Big Data Scientist 0.153
49 Data Scientist II 0.152
50 Senior Data Science Engineer 0.151
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Table A.2. Job Titles with the Highest Number of AI Jobs

This table reports the job titles in Burning Glass with the highest number of AI jobs. AI jobs are
defined as jobs with continuous measure ωNarrowAI above 0.1. We only include job postings that
are matched to Compustat firms.

cleantitle number of AI jobs
1 Data Scientist 3,529
2 Senior Data Scientist 1,547
3 Software Engineer 665
4 Principal Data Scientist 434
5 Data Engineer 409
6 Senior Software Engineer 399
7 Research Scientist 398
8 Lead Data Scientist 358
9 Machine Learning Engineer 305

10 Big Data Engineer 239
11 Senior Data Engineer 230
12 Big Data Architect 197
13 Big Data Consultant 191
14 Data Analyst 176
15 Data Scientist, Senior 168
16 Data Scientist II 153
17 Hadoop Developer 153
18 Software Development Engineer 151
19 Data Science Engineer 147
20 Machine Learning Scientist 144
21 Big Data Developer 144
22 Software Engineer - Data Mining/Data Analysis/Machine Learning 140
23 Data Scientist, Mid 132
24 Senior Research Scientist 128
25 Research Engineer 128
26 Artificial Intelligence Consultant 126
27 Machine Learning Researcher 125
28 Research And Development Engineer - Data Mining/Data Analysis/Machine Learning 116
29 Applied Scientist 113
30 Lead Machine Learning Scientist - Enterprise Products 113
31 Software Engineer Ads & Data Mining 112
32 Software Engineer - Entry Level 111
33 Business Process Analyst 110
34 Artificial Intelligence Manager 109
35 Big Data Scientist 109
36 Big Data Engineer Consultant 108
37 Principal Software Engineer 106
38 Big Data Manager 105
39 Senior Applied Scientist 103
40 Software Developer 103
41 Principal Digital Product Manager 103
42 Senior Engineer II - Data Scientist 102
43 Artificial Intelligence Analyst 102
44 Senior Engineer I 102
45 F - Program Intel Threat Analyst 101
46 Staff Data Scientist 97
47 Engineering Manager - Feed Personalization Platform 96
48 Architect - Relevance Infrastructure 93
49 Software Engineer, Machine Learning 93
50 Computer Vision Engineer 91
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Table A.3. Occupations with the Highest Number of AI Jobs

This table reports the names of the BLS occupations with the highest number of AI jobs in Burning
Glass. AI jobs are defined as jobs with continuous measure ωNarrowAI above 0.1. We only include
job postings that are matched to Compustat firms.

BLS Occupation Name number of AI jobs
1 Computer and Information Research Scientists 21,273
2 Software Developers, Applications 20,977
3 Computer Occupations, All Other 12,692
4 Operations Research Analysts 6,980
5 Database Administrators 3,451
6 Marketing Managers 2,760
7 Managers, All Other 2,592
8 Architectural and Engineering Managers 1,559
9 Engineers, All Other 1,391

10 Computer Systems Analysts 1,212
11 General and Operations Managers 1,070
12 Management Analysts 1,047
13 Information Security Analysts 811
14 Mechanical Engineers 761
15 Detectives and Criminal Investigators 741
16 Statisticians 736
17 Web Developers 658
18 Computer Hardware Engineers 648
19 Electrical Engineers 628
20 Computer Network Architects 625
21 Financial Specialists, All Other 599
22 Sales Managers 594
23 Medical and Health Services Managers 539
24 Engineering Technicians, Except Drafters, All Other 524
25 Natural Sciences Managers 460
26 Market Research Analysts and Marketing Specialists 454
27 Computer Programmers 425
28 Medical Scientists, Except Epidemiologists 408
29 Sales Representatives, Wholesale and Manufacturing, Except Technical and Scientific Products 398
30 Computer and Information Systems Managers 357
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Table A.4. Effect of AI on Firm Growth, Controlling for State FE and Tobin’s q

This table reports the coefficients from long-differences regressions of changes in firm size of U.S.
public firms (in non-IT sectors) from 2010 to 2018 on the contemporaneous firm-level changes in
AI investments. We consider three measures of firm size: log sales (columns 1 and 2), log em-
ployment (columns 3 and 4), and market share within the NAICS 5-digit industry (columns 5 and
6). The dependent variables are measured as growth from 2010 to 2018. The main independent
variable is the growth in the share of AI workers from 2010 to 2018, standardized to mean zero
and standard deviation of one. Panel 1 considers the resume-based measure of the share of AI
workers, while Panel 2 looks at the job-posting-based measure. Regressions are weighted by the
number of Cognism resumes in 2010 in Panel 1 and the number of Burning Glass job postings in
2010 in Panel 2. All specifications control for industry sector fixed effects and state fixed effects. All
columns also control for log employment, cash/assets, log sales, log industry wages, R&D/Sales,
and log markups, as well as characteristics of the commuting zones where the firms are located
(average log wage, the share of college graduates, the share of routine workers, the share of work-
ers in finance and manufacturing industries, the share of workers in IT-related occupations, and
the share of female and foreign-born workers), all measured as of 2010. Columns 2, 4, and 6 also
control for Tobin’s Q in 2010, defined as market value of assets divided by book value of assets.
Standard errors are clustered at the 5–digit NAICS industry level. *, **, and *** denote statistical
significance at the 10%, 5%, and 1% levels, respectively.

Panel 1: AI measure from resume data

∆ Log Sales ∆ Log Employment ∆ Market Share

(1) (2) (3) (4) (5) (6)

∆ Share AI Workers 0.154*** 0.127*** 0.148*** 0.126*** 0.021*** 0.019***
(0.047) (0.032) (0.048) (0.035) (0.008) (0.006)

Tobin’s Q 2010 0.225*** 0.196*** 0.022**
(0.055) (0.047) (0.010)

NAICS2 FE Y Y Y Y Y Y
Controls Y Y Y Y Y Y
State FE Y Y Y Y Y Y
Adj R-Squared 0.405 0.481 0.422 0.470 0.331 0.371
Observations 746 733 746 733 746 733

Panel 2: AI measure from job postings data

∆ Log Sales ∆ Log Employment ∆ Market Share

(1) (2) (3) (4) (5) (6)

∆ Share AI Workers 0.112*** 0.079*** 0.110*** 0.072*** 0.014** 0.013**
(0.034) (0.022) (0.038) (0.027) (0.007) (0.006)

Tobin’s Q 2010 0.222*** 0.248*** 0.006
(0.040) (0.045) (0.008)

NAICS2 FE Y Y Y Y Y Y
Controls Y Y Y Y Y Y
State FE Y Y Y Y Y Y
Adj R-Squared 0.464 0.526 0.671 0.707 0.423 0.430
Observations 832 814 832 814 832 81475



Table A.5. Effect of AI on Firm Growth in Non-IT Sectors

This table reports the coefficients from long-differences regressions of the changes in firm size
of U.S. public firms (in non-IT sectors) from 2010 to 2018 on the contemporaneous changes in
AI investments, separately by broad industry sectors. Columns 1 and 2 consider firms in the
manufacturing sector (2-digit NAICS = 31, 32, 33), columns 3 and 4 consider firms in the wholesale
and retail trade sectors (2-digit NAICS = 42, 44, 45), columns 5 and 6 look at firms in the finance
sector (2-digit NAICS = 52), and columns 7 and 8 include firms in the other non-IT sectors (all
2-digit NAICS sectors, except those listed above and 51 and 54). Panel 1 considers the resume-
based measure of the share of AI workers, while Panel 2 looks at the job-posting-based measure.
The changes in the AI measures are standardized to mean zero and standard deviation of one.
We consider two measures of firm size: log sales in odd columns and log employment in even
columns. The main dependent variables are measured as growth in the size measures from 2010
to 2018. Regressions are weighted by the number of Cognism resumes in 2010 in Panel 1 and the
number of Burning Glass job postings in 2010 in Panel 2. All regressions control for industry sector
fixed effects, log employment, cash/assets, log sales, log industry wages, R&D/Sales, and log
markups, as well as characteristics of the commuting zones where the firms are located (average
log wage, the share of college graduates, the share of routine workers, the share of workers in
finance and manufacturing industries, the share of workers in IT-related occupations, and the
share of female and foreign-born workers), all measured as of 2010. Standard errors are clustered
at the 5–digit NAICS industry level. *, **, and *** denote statistical significance at the 10%, 5%,
and 1% levels, respectively.

Panel 1: AI measure from resume data

Manufacturing Wholesale & Retail Finance Other

Sales Employment Sales Employment Sales Employment Sales Employment

(1) (2) (3) (4) (5) (6) (7) (8)

∆ Share AI Workers 0.145** 0.137** 0.222*** 0.253** 0.212* 0.307*** 0.125 0.096
(0.059) (0.062) (0.076) (0.102) (0.101) (0.097) (0.092) (0.113)

NAICS2 FE Y Y Y Y Y Y Y Y
Controls Y Y Y Y Y Y Y Y
Adj R-Squared 0.319 0.281 0.649 0.667 0.478 0.462 0.511 0.255
Observations 382 382 98 98 122 122 164 164

Panel 2: AI measure from job postings data

Manufacturing Wholesale & Retail Finance Other

Sales Employment Sales Employment Sales Employment Sales Employment

(1) (2) (3) (4) (5) (6) (7) (8)

∆ Share AI Workers 0.136*** 0.086** 0.276*** 0.325*** 0.055** 0.069** 0.163* 0.018
(0.048) (0.038) (0.032) (0.032) (0.019) (0.029) (0.093) (0.111)

NAICS2 FE Y Y Y Y Y Y Y Y
Controls Y Y Y Y Y Y Y Y
Adj R-Squared 0.319 0.251 0.749 0.791 0.502 0.524 0.380 0.702
Observations 431 431 100 100 130 130 188 188
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Table A.6. Effect of AI on Firm Growth in IT Sectors

This table reports the coefficients from long-differences regressions of the changes in firm size
of U.S. public firms in the IT sectors from 2010 to 2018 on the contemporaneous changes in AI
investments. Columns 1 and 2 consider firms in the information sector (2-digit NAICS = 51), and
columns 3 and 4 consider firms in the professional and business services sector (2-digit NAICS =
54). Panel 1 considers the resume-based measure of the share of AI workers, while Panel 2 looks
at the job-posting-based measure. The changes in the AI measures are standardized to mean zero
and standard deviation of one. We consider two measures of firm size: log sales in odd columns
and log employment in even columns. The main dependent variables are measured as growth
in the size variables from 2010 to 2018. Regressions are weighted by the number of Cognism
resumes in 2010 in Panel 1 and the number of Burning Glass job postings in 2010 in Panel 2. All
regressions control for industry sector fixed effects, log employment, cash/assets, log sales, log
industry wages, R&D/Sales, and log markups, as well as characteristics of the commuting zones
where the firms are located (average log wage, the share of college graduates, the share of routine
workers, the share of workers in finance and manufacturing industries, the share of workers in IT-
related occupations, and the share of female and foreign-born workers), all measured as of 2010.
Standard errors are clustered at the 5–digit NAICS industry level. *, **, and *** denote statistical
significance at the 10%, 5%, and 1% levels, respectively.

Panel 1: AI measure from resume data

Information Prof. & Business Svcs

∆ Log Sales ∆ Log Employment ∆ Log Sales ∆ Log Employment

(1) (2) (3) (4)

∆ Share AI Workers 0.324*** 0.331*** 0.277*** 0.397***
(0.070) (0.066) (0.061) (0.069)

NAICS2 FE Y Y Y Y
Controls Y Y Y Y
Adj R-Sq 0.418 0.413 0.620 0.473
Obs 110 110 50 50

Panel 2: AI measure from job postings data

Information Prof. & Business Svcs

∆ Log Sales ∆ Log Employment ∆ Log Sales ∆ Log Employment

(1) (2) (3) (4)

∆ Share AI Workers 0.117 0.172 0.291*** 0.375***
(0.197) (0.149) (0.071) (0.094)

NAICS2 FE Y Y Y Y
Controls Y Y Y Y
Adj R-Sq 0.305 0.354 0.520 0.524
Obs 123 123 54 54
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Table A.7. Robustness: Pre-trend of Foreign Industry IV

This table investigates pre-trends in the firm size variables of U.S. public firms (in non-IT sectors),
measured over 1999-2007, prior to the AI investments in 2010-2018. We estimate an IV regression
of each pre-trend variable against the two measures of the growth in the share of AI workers from
2010 to 2018 (based on resume data in Panel 1 and based on job posting data in Panel 2), standard-
ized to mean zero and standard deviation of one. The independent variable is instrumented using
the change in the share of AI workers for European public firms in the NAICS 5-digit industry.
Column 1 looks at pre-trends in log sales, and column 2 considers pre-trends in log employment.
All specifications control for industry sector fixed effects and log employment, cash/assets, log
sales, log industry wages, R&D/Sales, and log markups, as well as characteristics of the commut-
ing zones where the firms are located (average log wage, the share of college graduates, the share
of routine workers, the share of workers in finance and manufacturing industry, the share of work-
ers in IT-related occupations, and the share of female and foreign-born workers), all measured as
of 2010. Standard errors are clustered at the 5–digit NAICS industry level.

Panel 1: Testing for pre-trends using AI measure from resume data

∆ Log Sales, 1999–2007 ∆ Log Employment, 1999–2007

(1) (2)

∆ Share AI Workers 0.011 -0.047
(0.163) (0.178)

NAICS2 FE Y Y
Controls Y Y
F Statistic 27.2 24.9
Observations 529 498

Panel 2: Testing for pre-trends using AI measure from job postings data

∆ Log Sales, 1999–2007 ∆ Log Employment, 1999–2007

(1) (2)

∆ Share AI Workers 0.082 0.040
(0.065) (0.077)

NAICS2 FE Y Y
Controls Y Y
F Statistic 27.9 24.8
Observations 577 541
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Table A.8. Robustness of Foreign Industry IV: Industry- and Firm-level Pre-trend

This table estimates the relationship between AI investments and changes in firm size from 2010
to 2018 for U.S. public firms (in non-IT sectors), using the change in the share of AI workers in
European public firms in the same NAICS 5-digit industry as an instrument for the two firm-level
AI measures. In this table, we control for firm- and industry-level growth in the years before
we measure changes in AI investments. The independent variable is the growth in the share of
AI workers from 2010 to 2018. Panel 1 presents the results for the resume-based measure of the
share of AI workers, while Panel 2 focuses on the job-posting-based measure. Regressions are
weighted by the number of Cognism resumes in 2010 in Panel 1 and the number of Burning Glass
job postings in 2010 in Panel 2. The independent variable and the IV are standardized to mean
zero and standard deviation of one. We consider changes in log sales in columns 1 and 2, and
log employment in columns 3 and 4. All specifications control for industry sector fixed effects,
log employment, cash/assets, log sales, log industry wages, R&D/Sales, and log markups, as
well as characteristics of the commuting zones where the firms are located (average log wage,
the share of college graduates, the share of routine workers, the share of workers in finance and
manufacturing industries, the share of workers in IT-related occupations, and the share of female
and foreign-born workers), all measured as of 2010. Additionally, columns 1 and 3 control for the
growth in industry-level total sales and employment of Compustat firms (at 5-digit NAICS level)
from 1999 to 2007, and columns 2 and 4 also control for firm-level growth in sales and employment
from 1999 to 2007. Standard errors are clustered at the 5–digit NAICS industry level. *, **, and ***
denote statistical significance at the 10%, 5%, and 1% levels, respectively.

Panel 1: AI measure from resume data

∆ Log Sales ∆ Log Employment

(1) (2) (3) (4)

∆ Share AI Workers 0.419*** 0.473*** 0.355** 0.399**
(0.097) (0.116) (0.173) (0.189)

NAICS2 FE Y Y Y Y
Controls Y Y Y Y
Industry pre-trend Y N Y N
Firm pre-trend N Y N Y
F Statistic 29.2 24.2 29.2 24.2
Observations 637 498 637 498

Panel 2: AI measure from job postings data

∆ Log Sales ∆ Log Employment

(1) (2) (3) (4)

∆ Share AI Workers 0.182*** 0.197*** 0.234** 0.227**
(0.055) (0.054) (0.097) (0.088)

NAICS2 FE Y Y Y Y
Controls Y Y Y Y
Industry pre-trend Y N Y N
Firm pre-trend N Y N Y
F Statistic 31.6 25.0 31.6 25.0
Observations 709 541 709 541
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Table A.9. Robustness: Pre-trend of Bartik IV

This table investigates pre-trends in the firm size variables of U.S. public firms (in non-IT sectors),
measured over 1999-2007, prior to the AI investments in 2010-2018. We estimate an IV regression
of each pre-trend variable against the two measures of the growth in the share of AI workers from
2010 to 2018 (based on resume data in Panel 1 and based on job posting data in Panel 2), stan-
dardized to mean zero and standard deviation of one. The independent variable is instrumented
using a weighted average of national industry-level changes in the share of AI workers. Column
1 looks at pre-trends in log sales; column 2 considers pre-trends in log employment, and column
3 reports pre-trends in market share within the 5-digit NAICS industry. All specifications control
for industry sector fixed effects and log employment, cash/assets, log sales, log industry wages,
R&D/Sales, and log markups, as well as characteristics of the commuting zones where the firms
are located (average log wage, the share of college graduates, the share of routine workers, the
share of workers in finance and manufacturing industry, the share of workers in IT-related occu-
pations, and the share of female and foreign-born workers), all measured as of 2010. Standard
errors are clustered at the 5–digit NAICS industry level.

Panel 1: Testing for pre-trends using AI measure from resume data

∆ Log Sales, 1999–2007 ∆ Log Employment, 1999–2007 ∆ Market Share, 1999–2007

(1) (2) (3)

∆ Share AI Workers 0.260 0.204 0.008
(0.178) (0.160) (0.023)

NAICS2 FE Y Y Y
Controls Y Y Y
F Statistic 13.7 12.9 13.7
Observations 627 591 631

Panel 2: Testing for pre-trends using AI measure from job postings data

∆ Log Sales, 1999–2007 ∆ Log Employment, 1999–2007 ∆ Market Share, 1999–2007

(1) (2) (3)

∆ Share AI Workers -0.142 -0.131 -0.019
(0.270) (0.298) (0.043)

NAICS2 FE Y Y Y
Controls Y Y Y
F Statistic 5.5 4.8 5.4
Observations 687 647 690
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Table A.10. Robustness of Bartik IV: Industry- and Firm-level Pre-trend

This table estimates the relationship between AI investments and changes in firm size from 2010
to 2018 for U.S. public firms (in non-IT sectors), using a weighted average of national industry-
level changes in the share of AI workers as an instrument for the two firm-level AI measures. In
this table, we control for firm- and industry-level growth in the years before we measure changes
in AI investments. The independent variable is the growth in the share of AI workers from 2010
to 2018. Panel 1 presents the results for the resume-based measure of the share of AI workers,
while Panel 2 focuses on the job-posting-based measure. Regressions are weighted by the number
of Cognism resumes in 2010 in Panel 1 and the number of Burning Glass job postings in 2010 in
Panel 2. The independent variable and the IV are standardized to mean zero and standard devi-
ation of one. We consider changes in log sales in columns 1 and 2, log employment in columns
3 and 4, and market share within the 5-digit NAICS industry in columns 5 and 6. All specifica-
tions control for industry sector fixed effects, log employment, cash/assets, log sales, log industry
wages, R&D/Sales, and log markups, as well as characteristics of the commuting zones where the
firms are located (average log wage, the share of college graduates, the share of routine workers,
the share of workers in finance and manufacturing industries, the share of workers in IT-related
occupations, and the share of female and foreign-born workers), all measured as of 2010. Addi-
tionally, columns 1, 3, and 5 control for the growth in industry-level total sales and employment of
Compustat firms (at 5-digit NAICS level) from 1999 to 2007, and columns 2, 4, and 6 also control
for firm-level growth in sales and employment from 1999 to 2007. Standard errors are clustered at
the 5–digit NAICS industry level. *, **, and *** denote statistical significance at the 10%, 5%, and
1% levels, respectively.

Panel 1: AI measure from resume data

∆ Log Sales ∆ Log Employment ∆ Market Share

(1) (2) (3) (4) (5) (6)

∆ Share AI Workers 0.281*** 0.252*** 0.223*** 0.150 0.021 0.016
(0.067) (0.071) (0.084) (0.096) (0.013) (0.013)

NAICS2 FE Y Y Y Y Y Y
Controls Y Y Y Y Y Y
Industry pre-trend Y N Y N Y N
Firm pre-trend N Y N Y N Y
F Statistic 15.3 11.1 15.3 11.1 15.3 11.1
Observations 755 591 755 591 755 591

Panel 2: AI measure from job postings data

∆ Log Sales ∆ Log Employment ∆ Market Share

(1) (2) (3) (4) (5) (6)

∆ Share AI Workers 0.369** 0.372* 0.231 0.125 0.053 0.026
(0.161) (0.192) (0.252) (0.148) (0.041) (0.039)

NAICS2 FE Y Y Y Y Y Y
Controls Y Y Y Y Y Y
Industry pre-trend Y N Y N Y N
Firm pre-trend N Y N Y N Y
F Statistic 6.3 5.2 6.3 5.2 6.3 5.2
Observations 839 647 839 647 839 647
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Table A.11. Robustness: Over-identification Test of the Two IVs

This table estimates the relationship between AI investments and changes in firm size from 2010
to 2018 for U.S. public firms (in non-IT sectors), using both instruments for firm-level growth in
the share of AI workers: 1) the change in the share of AI workers in European public firms in the
same NAICS 5-digit industry, and 2) a weighted average of national industry-level changes in the
share of AI workers. Panel 1 presents the results for the resume-based measure of the share of AI
workers, while Panel 2 focuses on the job-posting-based measure. Regressions are weighted by the
number of Cognism resumes in 2010 in Panel 1 and the number of Burning Glass job postings in
2010 in Panel 2. The independent variable and the IV are standardized to mean zero and standard
deviation of one. We consider changes in log sales in columns 1 and 2, and log employment in
columns 3 and 4. All specifications control for industry sector fixed effects. Columns 2 and 4
also control for log employment, cash/assets, log sales, log industry wages, R&D/Sales, and log
markups, as well as characteristics of the commuting zones the firms are located (average log
wage, the share of college graduates, the share of routine workers, the share of workers in finance
and manufacturing industries, the share of workers in IT-related occupations, and the share of
female and foreign-born workers), all measured as of 2010. We report the Hansen J Statistics
for the over-identification test of the two IVs and its corresponding p values at the bottom of each
panel, which all show that the null hypothesis that the overidentifying restrictions are valid cannot
be rejected. Standard errors are clustered at the 5–digit NAICS industry level. *, **, and *** denote
statistical significance at the 10%, 5%, and 1% levels, respectively.

Panel 1: AI measure from resume data

∆ Log Sales ∆ Log Employment

(1) (2) (3) (4)

∆ Share AI Workers 0.339*** 0.298*** 0.304*** 0.294***
(0.083) (0.072) (0.093) (0.091)

NAICS2 FE Y Y Y Y
Controls N Y N Y
F Statistic 27.0 31.3 27.0 31.3
Hansen J Statistic 0.05 2.67 0.01 0.20
Over-id p value 0.82 0.10 0.94 0.65
Observations 643 643 643 643

Panel 2: AI measure from job postings data

∆ Log Sales ∆ Log Employment

(1) (2) (3) (4)

∆ Share AI Workers 0.192*** 0.188*** 0.271*** 0.239**
(0.052) (0.049) (0.097) (0.099)

NAICS2 FE Y Y Y Y
Controls N Y N Y
F Statistic 13.1 23.7 13.1 23.7
Hansen J Statistic 0.59 0.00 0.04 0.01
Over-id p value 0.44 0.95 0.84 0.92
Observations 714 714 714 714
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Table A.12. Robustness: Continuous Narrow AI Measure

This table reports the coefficients from long-differences regressions of the changes in firm size
of U.S. public firms (in non-IT sectors) from 2010 to 2018 on the contemporaneous changes in
the average job-level continuous AI measure based on narrow AI skills (ωNarrowAI

j ) across all job
postings in Burning Glass . Panel 1 presents OLS results, Panel 2 shows IV results. using the
change in the share of AI workers in European public firms in the same NAICS 5-digit industry
as instrument, and Panel 3 shows IV results using a weighted average of national industry-level
changes in the share of AI workers as instrument. We consider changes in three measures of firm
size: log sales (Panel 1: columns 1 and 2; Panel 2 and 3: columns 3 and 4), log employment (Panel
1: columns 3 and 4; Panel 2 and 3: columns 5 and 6), and market share within the 5-digit NAICS
industry (Panel 1: columns 5 and 6; Panel 3: columns 7 and 8). The independent variable and the
IV are standardized to mean zero and standard deviation of one. Regressions are weighted by the
number of Burning Glass job postings in 2010. All specifications control for industry sector fixed
effects. Columns 2, 4, 6, and 8 also control for log employment, cash/assets, log sales, log industry
wages, R&D/Sales, and log markups, as well as characteristics of the commuting zones where the
firms are located (average log wage, the share of college graduates, the share of routine workers,
the share of workers in finance and manufacturing industries, the share of workers in IT-related
occupations, and the share of female and foreign-born workers), all measured as of 2010. Standard
errors are clustered at the 5–digit NAICS industry level. *, **, and *** denote statistical significance
at the 10%, 5%, and 1% levels, respectively.

Panel 1: OLS

∆ Log Sales ∆ Log Employment ∆ Log Market Share

(1) (2) (3) (4) (5) (6)

∆ Share AI Workers 0.140*** 0.128*** 0.157** 0.112** 0.012* 0.010
(0.053) (0.042) (0.070) (0.057) (0.007) (0.006)

NAICS2 FE Y Y Y Y Y Y
Controls N Y N Y N Y
Adj R-Squared 0.208 0.388 0.330 0.423 0.140 0.260
Observations 849 849 849 849 849 849

Panel 2: Foreign IV

First Stage Second Stage

∆ Share of AI Workers ∆ Log Sales ∆ Log Employment

(1) (2) (3) (4) (5) (6)

Instrument 0.511*** 0.443***
(0.148) (0.079)

∆ Share AI Workers 0.241*** 0.208*** 0.271*** 0.257**
(0.066) (0.064) (0.102) (0.101)

NAICS2 FE Y Y Y Y Y Y
Controls N Y N Y N Y
F Statistic 11.9 31.6 11.9 31.6 11.9 31.6
Observations 714 714 714 714 714 714

Panel 3: Bartik IV

First Stage Second Stage

∆ Share of AI Workers ∆ Log Sales ∆ Log Employment ∆ Log Market Share

(1) (2) (3) (4) (5) (6) (7) (8)

Instrument 0.793*** 0.524***
(0.191) (0.201)

∆ Share AI Workers 0.232*** 0.385*** 0.282** 0.256 0.019 0.048
(0.055) (0.148) (0.118) (0.229) (0.016) (0.037)

NAICS2 FE Y Y Y Y Y Y Y Y
Controls N Y N Y N Y N Y
F Statistic 17.2 6.8 17.2 6.8 17.2 6.8 17.2 6.8
Observations 849 849 849 849 849 849 849 849
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Table A.13. Robustness: Continuous All-skill AI measure

This table reports the coefficients from long-differences regressions of the changes in firm size
of U.S. public firms (in non-IT sectors) from 2010 to 2018 on the contemporaneous changes in
the average job-level continuous AI measure based on all skills (ωAllAI

j ) across all job postings
in Burning Glass. Panel 1 presents OLS results, Panel 2 shows IV resultsusing the change in the
share of AI workers in European public firms in the same NAICS 5-digit industry as instrument,
and Panel 3 shows IV results using a weighted average of national industry-level changes in the
share of AI workers as instrument. We consider changes in three measures of firm size: log sales
(Panel 1: columns 1 and 2; Panel 2 and 3: columns 3 and 4), log employment (Panel 1: columns
3 and 4; Panel 2 and 3: columns 5 and 6), and market share within the 5-digit NAICS industry
(Panel 1: columns 5 and 6; Panel 3: columns 7 and 8). The independent variable and the IV
are standardized to mean zero and standard deviation of one. Regressions are weighted by the
number of Burning Glass job postings in 2010. All specifications control for industry sector fixed
effects. Columns 2, 4, 6, and 8 also control for log employment, cash/assets, log sales, log industry
wages, R&D/Sales, and log markups, as well as characteristics of the commuting zones where the
firms are located (average log wage, the share of college graduates, the share of routine workers,
the share of workers in finance and manufacturing industries, the share of workers in IT-related
occupations, and the share of female and foreign-born workers), all measured as of 2010. Standard
errors are clustered at the 5–digit NAICS industry level. *, **, and *** denote statistical significance
at the 10%, 5%, and 1% levels, respectively.

Panel 1: OLS

∆ Log Sales ∆ Log Employment ∆ Log Market Share

(1) (2) (3) (4) (5) (6)

∆ Share AI Workers 0.136** 0.123** 0.147* 0.092 0.014* 0.014*
(0.063) (0.049) (0.083) (0.066) (0.008) (0.008)

NAICS2 FE Y Y Y Y Y Y
Controls N Y N Y N Y
Adj R-Squared 0.180 0.369 0.310 0.412 0.139 0.263
Observations 849 849 849 849 849 849

Panel 2: Foreign IV

First Stage Second Stage

∆ Share of AI Workers ∆ Log Sales ∆ Log Employment

(1) (2) (3) (4) (5) (6)

Instrument 0.453*** 0.373***
(0.108) (0.067)

∆ Share AI Workers 0.272*** 0.247*** 0.306** 0.305**
(0.082) (0.081) (0.124) (0.127)

NAICS2 FE Y Y Y Y Y Y
Controls N Y N Y N Y
F Statistic 17.6 31.4 17.6 31.4 17.6 31.4
Observations 714 714 714 714 714 714

Panel 3: Bartik IV

First Stage Second Stage

∆ Share of AI Workers ∆ Log Sales ∆ Log Employment ∆ Log Market Share

(1) (2) (3) (4) (5) (6) (7) (8)

Instrument 0.672*** 0.453***
(0.150) (0.160)

∆ Share AI Workers 0.274*** 0.446*** 0.333** 0.296 0.023 0.055
(0.074) (0.166) (0.146) (0.265) (0.019) (0.041)

NAICS2 FE Y Y Y Y Y Y Y Y
Controls N Y N Y N Y N Y
F Statistic 20.1 8.0 20.1 8.0 20.1 8.0 20.1 8.0
Observations 849 849 849 849 849 849 849 849
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Table A.14. Robustness: Excluding Firms With Only One AI Job

This table reports the coefficients from long-differences regressions of the changes in firm size
of U.S. public firms (in non-IT sectors) from 2010 to 2018 on the contemporaneous changes in
the share of AI workers, excluding firms that had zero AI workers in 2010 and one AI worker in
2018s. Panel 1 considers the resume-based measure of the share of AI workers, while Panel 2 looks
at the job-posting-based measure. The independent variable and the IV are standardized to mean
zero and standard deviation of one. In each panel, columns 1-3 present OLS results, columns 4-
5 show IV results using the change in the share of AI workers in European public firms in the
same NAICS 5-digit industry as instrument, and columns 6-8 show IV results using a weighted
average of national industry-level changes in the share of AI workers as instrument. We consider
changes in three measures of firm size: log sales (columns 1, 4 and 6), log employment (columns
2, 5 and 7), and market share within the 5-digit NAICS industry (columns 3 and 8). Regressions
are weighted by the number of Cognism resumes in 2010 in Panel 1 and the number of Burning
Glass job postings in 2010 in Panel 2. All regressions control for industry sector fixed effects,
log employment, cash/assets, log sales, log industry wages, R&D/Sales, and log markups, as
well as characteristics of the commuting zones where the firms are located (average log wage,
the share of college graduates, the share of routine workers, the share of workers in finance and
manufacturing industries, the share of workers in IT-related occupations, and the share of female
and foreign-born workers), all measured as of 2010. Standard errors are clustered at the 5–digit
NAICS industry level. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels,
respectively.

Panel 1: AI measure from resume data

OLS Foreign IV Bartik IV

∆ Log ∆ Log ∆ ∆ Log ∆ Log ∆ Log ∆ Log ∆
Sales Employment Market Share Sales Employment Sales Employment Market Share

(1) (2) (3) (4) (5) (6) (7) (8)

∆ Share AI Workers 0.170*** 0.158** 0.015* 0.470*** 0.429** 0.339*** 0.273*** 0.028**
(0.060) (0.065) (0.008) (0.112) (0.199) (0.083) (0.099) (0.014)

NAICS2 FE Y Y Y Y Y Y Y Y
Controls Y Y Y Y Y Y Y Y
F Statistic 34.3 34.3 14.4 14.4 14.4
Observations 684 684 684 570 570 684 684 684

Panel 2: AI measure from job postings data

OLS Foreign IV Bartik IV

∆ Log ∆ Log ∆ ∆ Log ∆ Log ∆ Log ∆ Log ∆
Sales Employment Market Share Sales Employment Sales Employment Market Share

(1) (2) (3) (4) (5) (6) (7) (8)

∆ Share AI Workers 0.122*** 0.090* 0.008 0.197*** 0.256*** 0.405*** 0.419* 0.056
(0.040) (0.052) (0.006) (0.056) (0.088) (0.150) (0.229) (0.034)

NAICS2 FE Y Y Y Y Y Y Y Y
Controls Y Y Y Y Y Y Y Y
F Statistic 31.1 31.1 8.9 8.9 8.9
Observations 802 802 802 674 674 802 802 802

85



Table A.15. Robustness: Controlling for General IT and Robot Technologies

This table reports the coefficients from the long-differences regressions of the changes in firm size
of U.S. public firms (in non-IT sectors) from 2010 to 2018 on the contemporaneous changes in each
firm’s share of AI workers. Panel 1 considers the resume-based measure of the share of AI workers,
while Panel 2 looks at the job-posting-based measure. All regressions also control for the 2010-2018
changes in the firm’s share of other IT jobs and the share of robot-related jobs measured using the
Burning Glass data. An IT job is defined as a job for which at least 10% of the required skills are in
the “Information Technology” skill cluster, and a robot-related job is a job with a robot relatedness
score (constructed with the same methodology as the AI-relatedness score but using the core skill
of “Robotics”) above 0.1. The growth in the AI, IT, and robot measures and the IV are standardized
to mean zero and standard deviation of one. In each panel, columns 1-3 present OLS results,
columns 4-5 show IV results using the change in the share of AI workers in European public
firms in the same NAICS 5-digit industry as instrument, and columns 6-8 show IV results using a
weighted average of national industry-level changes in the share of AI workers as instrument. We
consider changes in three measures of firm size: log sales (columns 1, 4 and 7), log employment
(columns 2, 5 and 7), and market share within the 5-digit NAICS industry (columns 3 and 8).
Regressions are weighted by the number of Cognism resumes in 2010 in Panel 1 and the number
of Burning Glass job postings in 2010 in Panel 2. All regressions control for industry sector fixed
effects, log employment, cash/assets, log sales, log industry wages, R&D/Sales, and log markups,
as well as characteristics of the commuting zones where the firms are located (average log wage,
the share of college graduates, the share of routine workers, the share of workers in finance and
manufacturing industries, the share of workers in IT-related occupations, and the share of female
and foreign-born workers), all measured as of 2010. Standard errors are clustered at the 5–digit
NAICS industry level. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels,
respectively.

Panel 1: AI measure from resume data

OLS Foreign IV Bartik IV

∆ Log ∆ Log ∆ ∆ Log ∆ Log ∆ Log ∆ Log ∆
Sales Employment Market Share Sales Employment Sales Employment Market Share

(1) (2) (3) (4) (5) (6) (7) (8)

∆ Share AI Workers 0.159*** 0.152** 0.015** 0.420*** 0.373* 0.325*** 0.271*** 0.027**
(0.054) (0.062) (0.008) (0.111) (0.193) (0.080) (0.093) (0.013)

∆ Share Other IT Workers 0.019 -0.001 0.005 0.080 0.053 0.033 0.008 0.005
(0.038) (0.044) (0.010) (0.065) (0.063) (0.048) (0.049) (0.011)

∆ Share Robot Workers -0.009 -0.023 -0.010 -0.060 -0.056 -0.035 -0.041 -0.012
(0.050) (0.054) (0.011) (0.069) (0.066) (0.060) (0.060) (0.011)

NAICS2 FE Y Y Y Y Y Y Y Y
Controls Y Y Y Y Y Y Y Y
F Statistic 25.7 25.7 14.0 14.0 14.0
Observations 756 756 756 635 635 756 756 756

Panel 2: AI measure from job postings data

OLS Foreign IV Bartik IV

∆ Log ∆ Log ∆ ∆ Log ∆ Log ∆ Log ∆ Log ∆
Sales Employment Market Share Sales Employment Sales Employment Market Share

(1) (2) (3) (4) (5) (6) (7) (8)

∆ Share AI Workers 0.108*** 0.095** 0.006 0.152** 0.211** 0.375** 0.226 0.053
(0.034) (0.048) (0.006) (0.066) (0.103) (0.176) (0.267) (0.042)

∆ Share Other IT Workers 0.046 0.056 0.022 0.079 0.057 -0.018 0.024 0.011
(0.060) (0.063) (0.015) (0.063) (0.081) (0.087) (0.098) (0.019)

∆ Share Robot Workers 0.385** 0.274 0.044 0.186 0.085 0.058 0.114 -0.014
(0.169) (0.182) (0.038) (0.127) (0.167) (0.280) (0.390) (0.059)

NAICS2 FE Y Y Y Y Y Y Y Y
Controls Y Y Y Y Y Y Y Y
F Statistic 25.7 25.7 6.0 6.0 6.0
Observations 849 849 849 714 714 849 849 849
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Table A.16. Effect of AI Investments on Aggregate Industry-level Employment from QWI

This table reports the coefficients from industry-level regressions of the changes in total employ-
ment for all (public and nonpublic) US firms on the contemporaneous changes in AI investments
of Compustat firms. The dependent variable is change in log industry employment from 2010
to 2018 calculated from Census Quarterly Workforce Indicators (QWI) data. Each observation is
a 4-digit NAICS industry, which is the finest industry level available in the QWI data. The in-
dependent variable is the change in the share of AI workers from 2010 to 2018, standardized to
mean zero and standard deviation of one. Panel 1 considers the resume-based measure of AI in-
vestments, while Panel 2 looks at the job-posting-based measure. Regressions are weighted by
the total industry number of Cognism resumes in 2010 in Panel 1 and the total industry number
of Burning Glass job postings in 2010 in Panel 2. Columns 1 to 2 are estimated by OLS, and in
columns 3 to 4 the independent variable is instrumented by the contemporaneous growth in the
share of AI workers in European public firms in the same industry. All specifications control for
industry sector fixed effects. Regressions in columns 2 and 4 also control for log total employment,
log total sales, and log average wage in 2010. Standard errors are robust against heteroskedasticity.

Panel 1: AI measure from resume data

Dependent variable: ∆ Log Employment

OLS IV

(1) (2) (3) (4)

∆ Share AI Workers -0.038 -0.031 -0.013 0.007
(0.038) (0.039) (0.031) (0.022)

NAICS2 FE Y Y Y Y
Controls N Y N Y
F Statistic 34.1 37.9
Observations 149 149 130 130

Panel 2: AI measure from job postings data

Dependent variable: ∆ Log Employment

OLS IV

(1) (2) (3) (4)

∆ Share AI Workers -0.003 -0.020 0.042 0.060
(0.036) (0.039) (0.039) (0.042)

NAICS2 FE Y Y Y Y
Controls N Y N Y
F Statistic 8.6 16.7
Observations 155 155 132 132
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Table A.17. Effect of AI Investments on Productivity of Early Adopters

This table reports the coefficients from long-differences regressions of changes in firm productiv-
ity from 2010 to 2018 on the changes in AI investments by U.S. public firms (in non-IT sectors)
from 2010 to 2014. We consider two measures of productivity: log sales per worker and revenue
TFP. Revenue TFP is the residual from regressing log revenue on log employment and log capital
(constructed using the perpetual inventory method), with separate regressions for each industry
sector. The main independent variable is growth in the share of AI workers from 2010 to 2014.,
calculated based on resumes in Panel 1 and job postings in Panel 2. All independent variables are
standardized to mean zero and standard deviation of one. Regressions are weighted by the num-
ber of Cognism resumes in 2010 in Panel 1 and the number of Burning Glass job postings in 2010
in Panel 2. All specifications control for industry sector fixed effects. Columns 2 and 4 also control
for log employment, cash/assets, log sales, log industry wages, R&D/Sales, and log markups,
as well as characteristics of the commuting zones where the firms are located (average log wage,
the share of college graduates, the share of routine workers, the share of workers in finance and
manufacturing industries, the share of workers in IT-related occupations, and the share of female
and foreign-born workers), all measured as of 2010. Standard errors are clustered at the 5–digit
NAICS industry level.

Panel 1: AI measure from resume data

∆ Log Sales ∆ Revenue
per Worker TFP

(1) (2) (3) (4)

∆ Share AI Workers 2010-2014 -0.039 -0.030 -0.021 -0.017
(0.047) (0.037) (0.051) (0.046)

NAICS2 FE Y Y Y Y
Controls N Y N Y
Adj R-Squared 0.212 0.265 0.160 0.223
Observations 766 766 720 720

Panel 2: AI measure from job postings data

∆ Log Sales ∆ Revenue
per Worker TFP

(1) (2) (3) (4)

∆ Share AI Workers 2010-2014 -0.039 -0.030 -0.021 -0.017
(0.047) (0.037) (0.051) (0.046)

NAICS2 FE Y Y Y Y
Controls N Y N Y
Adj R-Squared 0.212 0.265 0.160 0.223
Observations 766 766 720 720
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Table A.18. Heterogeneous Effects by Initial Labor Productivity

This table reports the coefficients from long-differences regressions of changes in firm size from
2010 to 2018 on the contemporaneous changes in AI investments among U.S. public firms (in non-
IT sectors), separately for each tercile of initial labor productivity. Firms in each 2-digit NAICS
sector are divided into terciles based on sales per worker in 2010. We consider three measures
of firm size: log sales (columns 1 and 2), log employment (columns 3 and 4), and market share
within the 5-digit NAICS industry (columns 5 and 6). The independent variables are changes in
the share of AI workers interacted with indicator variables for productivity terciles in 2010. Panel
1 considers the resume-based measure of the share of AI workers, while Panel 2 looks at the job-
posting-based measure. Both measures are standardized to mean zero and standard deviation of
one. Regressions are weighted by the number of Cognism resumes in 2010 in Panel 1 and the num-
ber of Burning Glass job postings in 2010 in Panel 2. All specifications control for industry sector
fixed effects and productivity tercile fixed effects. Regressions in columns 2, 4, and 6 also control
for log employment, cash/assets, log sales, log industry wages, R&D/Sales, and log markups,
as well as characteristics of the commuting zones where the firms are located (average log wage,
the share of college graduates, the share of routine workers, the share of workers in finance and
manufacturing industries, the share of workers in IT-related occupations, and the share of female
and foreign-born workers), all measured as of 2010. Standard errors are clustered at the 5–digit
NAICS industry level. *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels,
respectively.

Panel 1: AI measure from resume data

∆ Log Sales ∆ Log Employment ∆ Market Share

(1) (2) (3) (4) (5) (6)

∆ Share AI Workers*Productivity Tercile 1 -0.087 -0.094 0.023 0.048 0.011 0.009
(0.103) (0.088) (0.095) (0.093) (0.019) (0.017)

∆ Share AI Workers*Productivity Tercile 2 -0.119 0.140 -0.139* 0.118 -0.013 0.006
(0.074) (0.109) (0.077) (0.126) (0.013) (0.019)

∆ Share AI Workers*Productivity Tercile 3 0.132 0.154** 0.115 0.136** 0.014 0.015*
(0.083) (0.064) (0.087) (0.067) (0.014) (0.009)

NAICS2 FE Y Y Y Y Y Y
Controls N Y N Y N Y
Productivity tercile FE Y Y Y Y Y Y
Adj R-Squared 0.195 0.349 0.158 0.287 0.236 0.288
Observations 766 766 766 766 766 766
T-test statistic 2.4 4.8 0.4 0.5 0.0 0.1
T-test p value 0.123 0.029 0.513 0.461 0.900 0.745

Panel 2: AI measure from job postings data

∆ Log Sales ∆ Log Employment ∆ Market Share

(1) (2) (3) (4) (5) (6)

∆ Share AI Workers*Productivity Tercile 1 0.086 -0.188 -0.434 -0.618 -0.039 -0.076
(0.431) (0.293) (0.435) (0.446) (0.053) (0.065)

∆ Share AI Workers*Productivity Tercile 2 -0.029 0.189*** 0.118 0.309** 0.030* 0.043***
(0.109) (0.069) (0.132) (0.139) (0.017) (0.014)

∆ Share AI Workers*Productivity Tercile 3 0.137** 0.116*** 0.104 0.077 0.010 0.005
(0.054) (0.043) (0.070) (0.059) (0.008) (0.006)

NAICS2 FE Y Y Y Y Y Y
Controls N Y N Y N Y
Productivity tercile FE Y Y Y Y Y Y
Adj R-Squared 0.229 0.407 0.432 0.487 0.170 0.299
Observations 849 849 849 849 849 849
T-test statistic 0.0 1.1 1.5 2.4 0.8 1.6
T-test p value 0.907 0.301 0.222 0.120 0.371 0.211
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