Does Unobservable Heterogeneity Matter for Portfolio-Based Asset Pricing Tests?

Daniel Hoechle Markus Schmid Heinz Zimmermann

American Finance Association (AFA) Annual Meeting

Session: New Methods and Portfolios for the Cross Section (G1)

January 3, 2021

Overview

Portfolio Sorts

- Theoretical result: Portfolio sorts tend to misattribute parts of the "alpha" to the firm characteristic underlying the sort
- Specification test: Hausman (1978) type test for assessing the reliability of alpha estimates from portfolio sorts

GPS-Model

GPS = Generalized Portfolio Sorts

- Firm-level regression approach for analyzing stock returns
- GPS-Model can be estimated with firm fixed effects, which so far are largely ignored in (portfolio-based) asset pricing tests
- Method nests standard portfolio sorts and solves their weaknesses

Popular method for analyzing stock returns

Portfolio Sorts Approach

Step 1

- Sort stocks into 10 decile portfolios on firm characteristic X
- Compute the high-minus-low decile portfolio return

$$r_{\Delta,t} = r_{High,t} - r_{Low,t}$$
 where $r_{pt} = \sum_{i} w_{it} r_{it}$ $(p = High, Low)$

Step 2

Estimate k-factor model (time-series regression)

$$r_{\Delta,t} = \alpha_{\Delta} + \beta_{\Delta} RMRF_t + ... + \varepsilon_{\Delta t}$$

 \rightarrow Characteristic *X* predicts cross-section of stock returns if $\hat{\alpha}_{\Delta} \neq 0$

Question: Is $\hat{\alpha}_{\Delta} \neq 0$ a *reliable* criterion for identifying characteristics-based factors?

Our approach for analyzing stock returns

Generalized Portfolio Sorts (GPS) Model

Model Setup

Firm-level panel regression: $r_{it} = (\mathbf{z}_{it} \otimes \mathbf{x}_t) \boldsymbol{\theta} + c_i + v_{it}$

 r_{it} (excess) return of firm i in period t

 \mathbf{z}_{it} vector of firm characteristics $z_{m,it}$

 x_t vector of market-level factor variables $x_{k,t}$

 c_i firm fixed effect $(E(c_i) = 0)$

Econometric Properties

- GPS model handles multivariate & continuous firm characteristics
- In case of $Cov(\mathbf{z}_{it}, c_i) \neq \mathbf{0}$, coefficient estimates $\widehat{\boldsymbol{\theta}}$ are
 - biased, if GPS model is estimated with pooled OLS (i.e. estimation without firm fixed effects)
 - consistent, if GPS model is estimated with firm fixed effects

Key result

GPS-Model vs. Portfolio Sorts

Proposition

When estimated with **pooled OLS**, the GPS-Model can perfectly reproduce the

- alpha and factor exposure estimates
- standard errors and t-statistics

of conventional portfolio sorts.

Implications

- 1. The GPS model nests portfolio sorts as a special case
- 2. If firm fixed effects are present and correlated with the firm characteristic underlying the sort, the portfolio sorts approach
 - yields alpha and factor exposure estimates that are biased
 - does NOT reliably identify characteristics-based factors if $\hat{\alpha}_{\Lambda} \neq 0$

Proposition: Formal illustration

Portfolio Sorts Approach

$$r_{Low,t} = \alpha_{Low} + \beta_{Low} RMRF_t + \varepsilon_{\Delta t}$$

$$r_{\Delta,t} = \alpha_{\Delta} + \beta_{\Delta} RMRF_t + \varepsilon_{\Delta t}$$

GPS Model

(pooled OLS Estimation)

$$r_{it} = (\mathbf{z}_{it} \otimes \mathbf{x}_t) \, \boldsymbol{\theta} + v_{it} = \left(\begin{bmatrix} 1 & D_{it}^{(High)} \end{bmatrix} \otimes \begin{bmatrix} 1 & RMRF_t \end{bmatrix} \right) \boldsymbol{\theta} + v_{it}$$

$$= \theta_{Low,0} + \theta_{Low,1}RMRF_t + \theta_{\Delta,0} D_{it}^{(High)} + \theta_{\Delta,1} D_{it}^{(High)}RMRF_t + v_{it}$$

Result

$$\hat{\alpha}_{Low} \equiv \hat{\theta}_{Low,0} \qquad \hat{\beta}_{Low} \equiv \hat{\theta}_{Low,1}$$

$$\hat{\beta}_{Low} \equiv \hat{\theta}_{Low,1}$$

$$\hat{\alpha}_{\Delta} \equiv \hat{\theta}_{\Delta,0}$$

$$\hat{\beta}_{\Delta} \equiv \hat{\theta}_{\Delta,1}$$

Proposition: Empirical Validation

Table 4: Performance of high vs. low quintile portfolios sorted on operating profitability (OA_{it})

Panel A: Conventional portfolio sorts				Panel B: GPS-model (Pooled OLS estimation)			
	Q1 (low)	Q5 - Q1			Vector $oldsymbol{z}_{it}$ $ ightarrow$	1	$OA_{it}^{(5)}$
а	-0.318*** (-4.26)	0.542*** (5.48)		tor $oldsymbol{x}_t$	1 (Intercept)	-0.318*** (-4.26)	0.542*** (5.48)
$b_{{\scriptscriptstyle RMRF}}$	1.092*** (48.10)	-0.143*** (-4.99)		← Vector	$RMRF_t$	1.092*** (48.10)	-0.143*** (-4.99)
b _{SMB}	0.212*** (7.65)	-0.287*** (-8.19)			SMB_t	0.212*** (7.65)	-0.287*** (-8.19)
b _{нмL}	0.175*** (4.24)	-0.491*** (-10.35)			$ HML_t $	0.175*** (4.24)	-0.491*** (-10.35)
R-squared N Obs.	0.897 642	0.335 642			R-squared N Obs. N Stocks	0.224 1,025,809 14,705	

GPS-Model Applications beyond Portfolio Sorts

Multivariate Analysis

- Conduct competing hypotheses tests and robustness checks
- Perform asset pricing tests based on the full sample data
 - → no need to focus on top and bottom groups

TS vs. XS Predictability

- Test if TS predictability equals XS predictability
 - → Characteristics only predicting the cross-section of returns are susceptible to alpha misattribution

Do Firm Fixed Effects Matter?

- GPS-model allows to perform Hausman (1978) type tests
 - → GPS-model specification test
 - → Portfolio sorts specification test

Do Firm Fixed Effects Matter?

 $r_{it} = (\begin{bmatrix} 1 & OA_{it} & GA_{it} & Vola_{it} & Beta_{it} \end{bmatrix} \otimes \begin{bmatrix} 1 & RMRF_t & SMB_t & HML_t \end{bmatrix}) \theta + (c_i) + e_{it}$ **GPS-model**: GPS-models estimated with weighted pooled OLS GPS-models including firm fixed effects (weighted FE est.) 0.422*** Constant -0.317*** -0.248*** 0.275** 0.343*** -0.008 -0.082-0.335*** 0.044 -0.062 (-4.22)(-3.46)(2.54)(3.02)(-0.06)(-0.82)(-3.32)(0.33)(3.05)(-0.37)**Operating Profitability** 1.743*** 1.105*** -1.583*** 0.614 (4.97)(2.61)(1.31)(-2.63)1.003*** **Gross Profitability** 0.778*** 1.744*** 0.338 (1.58)(3.99)(5.40)(4.47)-5.423* 0.269 Volatility -0.142 4.672 (-1.94)(0.08)(-0.05)(1.60)-0.290** -0.303** -0.370*** -0.420*** Beta (-2.57)(-2.52)(-2.67)(-2.95)R-squared 0.296 0.236 0.235 0.264 0.281 0.295 0.237 0.236 0.265 0.282 2,115,518 2,115,518 2,275,370 2,059,734 2,289,867 N Obs. 2,289,867 2,115,518 2,115,518 2,275,370 2,059,734 17,008 19,109 19,124 16,908 17,008 17,008 19,109 19,124 16,908 N Stocks 17,008

Conclusion

GPS-Model

GPS-model does everything portfolio sorts can do + more

- Competing hypotheses tests and robustness checks
- Specification testing
- **→** Estimation with firm fixed effects ensures coefficient estimates are consistent even in case of $Cov(\mathbf{z}_{it}, c_i) \neq \mathbf{0}$

Empirical Insight

Conventional portfolio sorts tend to misattribute parts of the "alpha" to the characteristic underlying the sort

- → Operating profitability and volatility suffer from such alpha misattribution
- \rightarrow Gross profitability and Beta predict the cross-section of stock returns even when accounting for $Cov(\mathbf{z}_{it}, c_i) \neq \mathbf{0}$