Asset Productivity, Local Information Diffusion, and Commercial Real Estate Returns

David C. Ling¹ Chongyu Wang² Tingyu Zhou³

¹University of Florida

²Concordia University

³Florida State University

ASSA-AREUEA, Jan 2021

Motivation

Perceived Productivity of A Firm's Assets

Unlike stocks, much less is known about asset-level performance...

- Asset-level cash flows are rarely disclosed
 - Examples: a plant, R&D
- No active market
 - Market value is not observable
- For real estate assets, there is an active "parallel" private market...
 - whereas its valuation typically diverges from stock market cap

Motivation

Research Questions

Research Question 1 How to measure the **perceived productivity** of a firm's underlying assets?

Research Question 2 Does the perceived productivity of a firm's underlying assets predict *cross-sectional* stock returns?

- How fast does the return predictability dissipate?
- What drive the predictability?

Major Takeaways

- We gauge the perceived productivity of of a firm's underlying assets using property portfolio returns (PPR).
- PPR is a proxy for the average productivity of properties in the same location and of the same type
- Our PPR-based measures help predict the cross-section of stock returns.
 - Return predictability lasts for one year
 - PPR also predicts "unlevered" returns & Q
 - No evidence of reverse predictability
 - Not driven by (local) liquidity
- Predictability is driven by price appreciation
- More pronounced in gateway markets

Contribution

Stock returns are driven by the perceived productivity of a firm's underlying assets

"Geographic Footprint"

- Headquarters linkages Dougal et al. (2015), Jannati et al. (2019)
- 10-K based citation share Bernile et al. (2015), Addoum et al. (2017)
- Value-based property share Ling et al. (2019)

"Asset Productivity"

- HQ state-level economic activity index Korniotis and Kumar, (2013), Smajlbegovic, (2019)
- The economic meaning is difficult to interpret
 - What does 1% increase in a state's economic activity index tell us?

Contribution Private and Public CRE Returns

- Public predicts private at the index level Nelling and Gyourko, 1998;
 Ling, Naranjo, and Ryngaert, 2000
- The relation between private and public CRE returns Riddiough, Moriarty and Yeatman 2005; Pagliari, Scherer and Monopoli, 2005; Horrigan, Case, Geltner, and Pollakowski, 2009; Boudry, Coulson, Kallberg and Liu, 2013; Yunus, Hansz and Kennedy 2012; Muhlhofer, 2013; Ling and Naranjo, 2015
- We find private predicts public at the firm level

Measuring the Productivity of A Firm's Assets

- We focus on equity REITs, which mainly invest in income-producing properties
- We can measure their "geographic footprint"
- In addition, there is an active "parallel" private market for these properties
- Property transactions are recorded and compiled by several firms and industry associations
 - National Council of Real Estate Investment Fiduciaries (NCREIF)
 - Quarterly estimates of property-level returns of a wide variety of property types in over 300 metropolitan areas
 - A proxy for the average productivity of properties in the same location and of the same type

Measuring the Productivity of A Firm's Assets

Property-Level Return (PPR), the weighted average of NCREIF sub-indices

- The weight, or property share, is the % a firm's book value of assets invested in each property type in each MSA
- Match property shares to returns on the corresponding NCREIF property-MSA sub-indices
 - For example, the return on office properties in New York
- If missing MSA-level index? Use state-level index ...
- Control for systematic risk factors.
 - Capital market: market factor, funding liquidity, size, value & momentum
 - Property market: NCREIF national index, transaction volume
- Control for economic activity indices (state- and MSA-level)

Measuring the Productivity of A Firm's Assets

Property-Level Return (PPR), the weighted average of NCREIF sub-indices

- Appraisal smoothing (Geltner, 1992; Ling & Geltner, 2007)
 - 1. Using past comparable sales induces a backward-looking bias
 - 2. Formal appraisal is conducted annually and asset managers are responsible for updating the quarterly numbers internally
- We want to capture the variation in the speed of information diffusion across property types and locations
 - not through time...
- We rely on NCREIF indexes as a source of information that is widely adopted by asset managers
- We also use annualized PPR to mitigate the smoothing issue

Sample Construction

- Start with a sample of 415 equity REITs obtained from CRSP
 Ziman REIT database from 1996-2018.
- Merge firm-level data with quarterly (annual) financial data from Compustat
- Merge with S&P Global property holdings data
 - The data begins in 1995, which dictates start of our analysis
- Match with NCREIF indexes
- Final sample: 6,591 firm-quarters (1,754 firm-years)

PPR & Stock Returns

- 1. Does property portfolio returns (PPR) predict the cross-section of REIT returns?
- Estimate the following Fama-MacBeth regression model:

$$RetRf_{i,t+1} = \alpha + \frac{\beta_1}{\beta_1} PPR_{i,t} + \beta_2 IEA_{i,t} + \gamma X_{i,t} + \phi_i + \epsilon_{i,t}$$
 (1)

- where,
 - $RetRf_{i,t+1}$ is REIT i's return in excess of 30-day T-bill rate in quarter (year) t+1
 - PPR_{i,t} is a proxy for the average productivity of properties in the same location and of the same type
 - $X_{i,t}$ is a vector of return predictors...
 - including size, B/M, momentum
 - ϕ_i controls for property type fixed effects

PPR & Stock Returns

RetRf	(1) QTR	(2) QTR	(3) QTR
PPR (Lag 1)	0.660*** (3.94)		
lphaPPR (Lag 1)		0.550***	
, ,		(3.20)	
OlphaPPR (Lag 1)			1.198***
, ,			(3.20)
IEA	0.440	0.403	0.365
	(0.94)	(0.83)	(0.73)
	, ,	,	,
Controls	Yes	Yes	Yes
PropFE	Yes	Yes	Yes
R-squared	0.382	0.381	0.381
# Obs	6,591	6,591	6,591

PPR & Stock Returns

- 1. Do property portfolio returns predict the cross-section of REIT returns?
- Yes, the estimated coefficients on all three PPR-based measures are positive and significant
- More importantly, the economic magnitude is large
 - An change in αPPR from the bottom to the top quartile is associated with an increase in RetRf of 0.85 pt (mean=2.53%)
- The effect of local economic activity (measured by IEA) on returns is muted (less labor-intensive)
- Momentum and profitability predict returns.
- These findings also hold for annual data & panel regression.

Return Predictability of PPR

- 2. How fast does the return predictability of PPR dissipate?
- Estimate the following Fama-MacBeth regression model:

$$RetRf_{i,t+1} = \alpha + \frac{\beta_1}{\beta_1} PPR_{i,t-n} + \beta_2 IEA_{i,t} + \gamma X_{i,t} + \phi_i + \epsilon_{i,t}$$
 (2)

- where,
 - $RetRf_{i,t+1}$ is REIT i's return in excess of 30-day T-bill rate in quarter t+1
 - $PPR_{i,t-n}$ is the lagged αPPR in quarter t-n
 - where n = 0 to 4

Return Predictability of PPR

RetRf	(1)	(2)	(3)	(4)	(5)
	Lag 1	Lag 2	Lag 3	Lag 4	Lag 5
α PPR (Lag)	0.582***	0.656**	0.537**	0.466**	0.354*
	(3.46)	(3.37)	(2.61)	(2.63)	(1.73)
IEA	0.403	0.606	0.185	0.653	0.503
Control	Yes	Yes	Yes	Yes	Yes
PropFE	Yes	Yes	Yes	Yes	Yes
R-squared $\#$ Obs	0.386	0.388	0.393	0.388	0.393
	6,255	6,255	6,255	6,255	6,255

Decompose PPR

- 3. Which PPR component(s) predicts stock returns?
- Estimate the following Fama-MacBeth regression model:

$$RetRf_{i,t+1} = \alpha + \frac{\beta_1}{\alpha} PPR \ PRC_{i,t} + \frac{\beta_2}{\alpha} PPR \ INC_{i,t} + \beta_3 IEA_{i,t} + \gamma X_{i,t} + \phi_i + \epsilon_{i,t}$$
(3)

- where,
 - RetRf_{i,t+1} is REIT i's return in excess of risk-free rate
 - $\alpha PPR \ PRC_{i,t} \ (\alpha PPR \ INC_{i,t})$ is the price appreciation (income return) component of αPPR
- The std. dev. of $\alpha PPR\ PRC_{i,t}\ (\alpha PPR\ INC_{i,t})$ is almost 4 times of its mean!

Decompose *PPR*

(1) QTR	(2) QTR	(3) QTR
0.487*** (2.68)		0.520*** (2.74)
	-0.719	-1.408
	(-0.73)	(1.19)
0.308	0.655	0.447
(0.62)	(1.34)	(88.0)
Yes	Yes	Yes
Yes	Yes	Yes
0.378	0.385	0.395
6,591	6,591	6,591
	QTR 0.487*** (2.68) 0.308 (0.62) Yes Yes 0.378	QTR QTR 0.487*** (2.68) -0.719 (-0.73) 0.308 0.655 (0.62) (1.34) Yes Yes Yes Yes 0.378 0.385

Decompose PPR - Same-Store NOI Growth

 Do property portfolio returns predict the growth rate of net operating income (NOI)?

Total return = income return + price appreciation
$$= \frac{NOI_1}{MV_0} + NOI Growth$$
 (4)

- But in reality, NOI growth might be contaminated by new acquisitions...
- Solution: "same-store" NOI growth (SS NOI Growth)
 Ambrose et al. (2000)
 - the % change in NOI on properties owned for the entire current period and the entire previous period
 - available for a restricted sample
- Replace the dependent variable with SS NOI Growth.

Same-Store NOI Growth

	(1)	(0)	(2)	(4)
RetRf	(1) OTD	(2) OTD	(3)	(4) ANN
Ketki	QTR	QTR	ANN	ANN
lphaPPR (Lag 1)	0.672***		0.724***	
	(5.34)		(2.91)	
lphaPPR PRC (Lag 1)		0.647***		0.876***
		(4.04)		(2.28)
lphaPPR INC (Lag 1)		-0.085		-2.436
		(-0.08)		(-1.52)
IEA	0.779**	1.042***	0.349	0.017
	(2.50)	(3.63)	(0.65)	(0.02)
	, ,	,	, ,	, ,
Controls	Yes	Yes	Yes	Yes
FirmFE	Yes	Yes	Yes	Yes
TimeFE	Yes	Yes	Yes	Yes
R-squared	0.432	0.469	0.435	0.478
# Obs	3,869	3,869	3,869	3,869

Additional Tests & Robustness

- Portfolio sorts
- PPR innovation also predicts stock returns
- PPR predicts "unlevered" returns Ling and Naranjo (2015)
- PPR predicts firm value ("Green Street" Q)
- No evidence that predictability runs from private to public Riddiough et al (2005), Pagliari et al (2005), Boudry et al (2013)
- No evidence that (local) liquidity drives our results Downs and Zhu(2019)
- Gateway markets better explain the results
- PPR "innovation" also predicts stock returns
- Exploring information friction
 - limited attention
 - geography of investors

Conclusion

- We propose a new measure of asset-level productivity (PPR)
- Our PPR-based measures positively and significantly predict future cross-sectional stock returns
 - local information diffusion
 - from property market to stock market at the firm level
- PPR's return predictability is driven by price appreciation rather than income return

THANK YOU!

- Questions and Comments?
- Paper available @ssrn https: //papers.ssrn.com/sol3/papers.cfm?abstract_id=3628872