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Motivation

Rising inequality over recent decades with important social and economic
consequences (Piketty and Saez, 2014; Lakner and Milanovic, 2016).
Limited availability of consistent data at a global scale.

Quality, sources and methods vary across countries (Atkinson and Brandolini, 2001).
Household surveys under-sample richer households (Deaton, 2005).
Tax records affected by tax evasion and not available consistently (Galbraith, 2019).
Hard to account for informal sector (Alstadsæter et al., 2019).
Existing global inequality databases with many missing data points and wide
confidence intervals.

f We propose a measure based on geospatial data that are internationally
comparable and globally available.
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The View from Outer Space

Remote sensing applied to social sciences, e.g.:
epidemiology, disaster management, population size and
location, economic growth and poverty.
Satellite-recorded data on nighttime lights emited from
Earth and visible from space.

Defense Meteorological Satellite Program

Night lights data in economics:
As a complement to national GDP statistics (Henderson et al., 2012; Nordhaus and
Chen, 2015; Pinkovskiy and Sala-i Martin, 2016).
Geographic mapping of economic activity (Mellander et al., 2015; Bickenbach et al.,
2016; Henderson et al., 2018).
Regional development analysis (Michalopoulos and Papaioannou, 2013b,a).
Measurement of inequality (Elvidge et al., 2012; Alesina et al., 2016; Lessmann and
Seidel, 2017).
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Contribution

A measure of economic inequality using night lights and gridded population data.
Light-based Gini-coefficients for 234 countries/territories from 1992 to 2013.

List of Countries and Territories

Methodological innovations.
Different sources of gridded population data.
Varying levels of geographical aggregation.
Calibrated to income inequality (SWIID, Solt, 2016).

Three applications in health economics and international finance for illustrative
purposes.
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Night Lights Data (DMSP/NOAA)
Average Lights over Europe – 2013

Global grid of 30 arc second
cells with 6-bit digital number
(DN) values [0-63] of light
intensity.
Annual average of cloud-free
observations, also discarding
images affected by sun and
moonlight, aurora lighting.
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Night Lights Data (DMSP/NOAA)
Average Lights over East Asia – 2013

Measurement issues:
sensor saturation/top-coding,
low-coding, satellite
intercalibration,
blurring/blooming, gas flares.

Data Stats
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Lights and Economic Activity

Relationship between lights and economic activity is not necessarily linear:

xi = DNκ
i ,

where each pixel i ’s digital number (DN) is coverted to a light-based measure of
economic activity, xi .
Estimation of κ at pixel level is very difficult:

No data on xi at such disaggregated level.
Likely more heterogeneous than panel aggregate estimates
(Bickenbach et al., 2016; Hu and Yao, 2019; Galimberti, 2020).

We follow an agnostic calibration approach and consider:
κ = {0.5, 1.0, 1.5, 2.0, 3.0, 5.0}
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Gridded Population of the World (GPW/CIESIN)
Gabon’s Population Counts – 2010

Population census data
collected for administrative
census areas and
disaggregated to grid cells.
Extrapolated from censuses
occurring between 2005 and
2014.
Measurement issue: uniform
distribution within census
areas!
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LandScan Global Population (LSC/ORNL)
Gabon’s Population Counts – 2010

Census data disaggregated
using: land cover, roads,
slope, urban areas, village
locations, high-resolution
imagery.
Available from 2000, updated
annually.
Measurement issue:
time-inconsistency!
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Construction of Geospatial Inequality Measures

Goal: Calculate country-year Gini-coefficients based on gridded geospatial data on
night lights and population counts.
Stage 1: calculate 12 geospatial Gini-coefficients.

Different levels of aggregation: census-level (GPW), pixel-level (LSC)
Different lights scaling parameters: κ = {0.5, 1.0, 1.5, 2.0, 3.0, 5.0}.

Stage 2: generate final light-based Gini-coefficients weighting 12 Ginis above.

Gw =
12∑

i=1
ωiGg

i .

Weights that maximize correlations with SWIID inequality measures:

max
{ωi }12

i=1

{λCorrcross (w) + (1− λ) Corrwithin (w)}
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Stage 1: Geospatial Gini-coefficients
Light-based Inequality in Gabon – 2010

Rank spatial units by lights
per capita.
Sum up the cumulative shares
of lights versus cumulative
shares of population in a
country – Lorenz curve.
Gini is the area between line
of perfect equality and the
Lorenz curve.

Summary Stats
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Stage 2: Weighted Light-based Gini-coefficients

Dot = correlations averaged
across all countries and years.
Dominance of weighted Ginis.
Trade-off between cross- and
within country correlations.
λ = 0.5 provides a good
compromise.

Correlations Weights

Summary Stats Area Light/Area
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Applications

Compare how the light- and income-based inequality measures correlate with
different (potential) determinants of inequality.

Epidemics.
Capital account liberalization.
(Out-of-pocket health care expenditures)

Unified empirical approach:

Gc,t = γzc,t + δt + αc + εc,t ,

where
Gc,t : light- and income-based Gini-coefficients for country c in year t.
zc,t : variable of interest according to application.
δt and αc : time and country fixed effects.
Gini-coefficients are normalized – estimates are std. devs. from sample mean.
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Epidemics and Inequality

Literature:
Côte d’Ivoire: AIDS-induced mortality reduces household income, but has no
significant effect on income distribution (Cogneau and Grimm, 2008).
Malawi: people living in neighborhoods with higher wealth inequality face a higher
risk of HIV infection (Durevall and Lindskog, 2012).
Sweden: increase in poverty due to 1918 Spanish flu (Karlsson et al., 2014).

We use data on epidemic disasters from the Centre for Research on the
Epidemiology of Disasters (CRED, 2019).

Disaster criteria: (i) 10 or more deaths; (ii) 100 or more people affected; (iii) country
declares state of emergency or (iv) calls for international assistance.
Percentage of individuals within each country that were affected by an epidemic
during the year.

Summary Statistics
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Epidemics and Inequality Robustness

Dependent variable (1) (2) (3) (4) (5) (6)

Income-based Gini 6.903** 0.332** 6.246*** 0.829*
(2.750) (0.147) (2.201) (0.446)

Light-based Gini 6.710*** -0.328 -1.065 5.749*** -0.264 -0.245
(1.562) (0.721) (0.817) (1.185) (0.367) (0.432)

Observations 3278 3278 5148 3278 3278 5148
# of countries 187 187 234 187 187 234
Country fixed effects no yes yes no yes yes
Population weights no no no yes yes yes

Notes: Each coefficient is a separate regression with % people affected by epidemics as explanatory.

Lights data are less prone to effects of transitory income shocks,
while still capturing long run effects of regular incidence of epidemics.
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Capital Account Liberalization and Inequality

Literature:
Liberalization can lead to lower income inequality for countries with high level of
financial depth (Bumann and Lensink, 2016).
Liberalization tends to increase inequality, depending on quality of political
institutions and level of financial development (De Haan and Sturm, 2017).
Episodes of capital account liberalization increase income inequality, particularly in
countries that lack financial depth (Furceri and Loungani, 2018).

We use data from the Chinn and Ito (2008) index of financial openness.
Based on PCA of IMF data on restrictions to cross-border financial transactions.

Summary Statistics
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Capital Account Liberalization and Inequality Robustness

Dependent variable (1) (2) (3) (4) (5) (6)

Income-based Gini -0.186*** 0.011 -0.206*** -0.079*
(0.043) (0.013) (0.059) (0.043)

Light-based Gini -0.152*** 0.040*** 0.031*** -0.272*** 0.036** 0.034**
(0.032) (0.011) (0.011) (0.063) (0.018) (0.017)

Observations 3013 3013 3780 3013 3013 3780
# of countries 170 170 181 170 170 181
Country fixed effects no yes yes no yes yes
Population weights no no no yes yes yes

Notes: Each coefficient is a separate regression with Chinn-Ito index as explanatory.

Once financial markets open up, tax evasion and shadow economy activities are
likely to increase – income-based measures are unable to capture these effects.
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Conclusions

Lack of consistent and globally available measure of inequality.
New measure of inequality based on geospatial data on nighttime light emissions
and gridded population counts.
Balanced sample of 234 countries/territories from 1992 to 2013.
Measure significantly correlated with income inequality across countries, but
capturing different dynamics.

Our conjecture: consumption, informal activities, infrastructure, wealth.
Applications show similar cross-country, but different within-country results for
income- and light-based measures.

19 / 19



Motivation Source Data and Measurement Issues Geospatial Inequality Measures Applications Concluding Remarks

Thank you for your attention and comments.

Our inequality measures can be accessed through NASA SEDAC webpage:
https://www.ciesin.columbia.edu/data/global-geospatial-inequality/
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Bickenbach, F., E. Bode, P. Nunnenkamp, and M. Söder (2016). Night lights and regional GDP. Review of
World Economics 152, 425–447.

Bumann, S. and R. Lensink (2016). Capital account liberalization and income inequality. Journal of
International Money and Finance 61, 143–162.

Chinn, M. D. and H. Ito (2008). A New Measure of Financial Openness. Journal of Comparative Policy
Analysis: Research and Practice 10(3), 309–322.

Christopher, A. S., D. U. Himmelstein, S. Woolhandler, and D. McCormick (2018). The Effects of Household
Medical Expenditures on Income Inequality in the United States. American Journal of Public Health 108(3),
351–354.

Cogneau, D. and M. Grimm (2008). The Impact of AIDS Mortality on the Distribution of Income in Côte
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Cross-Country Data Summary Statistics Back
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Correlations Across and Within Countries Back

Light-based Ginis:
AFG AGO ALB · · ·

1992 • • • · · ·
1993 • • • · · ·
1994 • • • · · ·

: : : : :
2000 • • • · · ·
2001 • • • · · ·
2002 • • • · · ·

: : : : :
2013 • • • · · ·

Income-based Ginis:
AFG AGO ALB · · ·

◦ ◦ · · · 1992
◦ · · · 1993
◦ ◦ · · · 1994

: : : : :
◦ · · · 2000

◦ ◦ · · · 2001
◦ ◦ ◦ · · · 2002
: : : : :
◦ ◦ · · · 2013

1 Pooled correlations: driven by cross-country variation.
2 Cross-country correlations by year.
3 Within-country correlations by country.
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Geospatial Gini-coefficients – Summary Statistics Back
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Estimated Weights Back

Census-level GPW-based
Ginis receive greater weight
when targeting within
correlation.
λ = 0.5 provides balanced
weights, with interesting
correlations trade-off.
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Weighted Light-based Gini-coefficients – Summary Statistics Back
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Cross-country Variation in Measured Inequality by Area Back

Light-based Ginis lower for
smaller countries.
Not the case with
income-based Ginis.
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Cross-country Variation in Measured Inequality by Lights/Area Back

Lights/area as proxy to
development.
Inequality is lower in more
developed countries.
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OOP Health Care Expenditure and Inequality

Literature:
OOP health expenditures lead to financial hardship and poverty in developing
countries (Xu et al., 2018).
OOP health expenditures increase inequality in the US (Christopher et al., 2018).

We use WHO (2019) data on the share of OOP expenditures relative to total
health expenditures.

Data only available for some countries starting from 2000.
Summary Statistics
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OOP Health Care Expenditure and Inequality Robustness

Dependent variable (1) (2) (3) (4) (5) (6)

Income-based Gini 0.735* 0.145 1.463*** -0.091
(0.403) (0.120) (0.541) (0.212)

Light-based Gini 1.002*** 0.066 -0.004 1.779*** 0.589** 0.537*
(0.279) (0.144) (0.137) (0.473) (0.292) (0.311)

Observations 2089 2089 2601 2089 2089 2601
# of countries 177 177 188 177 177 188
Country fixed effects no yes yes no yes yes
Population weights no no no yes yes yes

Note: Each coefficient is a separate regression with OOP share (2000-2013) as explanatory.

Lights data captures more than income:
OOP might not affect distribution of income, but composition of expenditures.
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Robustness to λ – OOP health expenditure Back
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Robustness to λ – Epidemics Back
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Robustness to λ – Liberalization Back
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Descriptive Statistics of Application Variables Back



References Appendix

Regression Results without Controlling for Country Area
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