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Abstract 

This paper studies the quantitative impacts of Basel-style capital and liquidity requirements on 

bank lending, bank liquidity holdings and interbank trading activities. We develop a model in 

which banks are subject to business cycle variations, are financed by deposits and equity, and 

transform these liabilities into loans, liquid assets, and interbank lending. Banks are exposed 

to systematic credit and liquidity shocks and idiosyncratic credit and liquidity shocks, where 

the idiosyncratic shocks can be managed through the interbank market. Our novel findings 

show (1) adding banking requirements, especially the liquidity requirements, reduces the 

interbank rates, (2) the benefits of liquidity requirements are at the cost of lowered social 

welfare, and (3) there exists a U-shaped relationship between interbank trading volume 

(representing banks’ reliance on the interbank market) and the liquidity requirements (for both 

Liquidity Coverage Ratio and Net Stable Funding Ratio), where the required ratios set around 

65% reach the minimum. We then conclude that the current liquidity requirement ratio (100%) 

appears to be too strict to limit banks’ reliance on the interbank market. 

JEL Classification: G21, G28, G33, E58. 
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1. Introduction 

The Basel Committee on Banking Supervision (BCBS) has introduced several Basel Accords, 

known as Basel I, Basel II and Basel III, with the aim to strengthen the soundness and stability 

of the international banking system. The first two accords, i.e., Basel I and Basel II, mainly 

focus on banks’ capital regulations. The latest version, Basel III 1 , improves the capital 

requirements by stipulating that the ratio of banks’ Tier-1 capital to banks’ risk-weighted assets 

(RWA) should be at least 6%, where the minimum requirement is 4% from previous regimes. 

Basel III also introduces liquidity requirements in the form of Liquidity Coverage Ratio (LCR) 

and Net Stable Funding Ratio (NSFR) to mitigate banks’ short-term and long-term liquidity 

issues, respectively. More importantly, unlike previous accords, Basel III also aims to address 

some banks’ macro-prudential issues, e.g., penalising banks’ excessive reliance on the 

interbank market, using the liquidity requirements (BCBS, 2011, Paragraph 33). 

This raises some macro-prudential questions: how does these Basel-style requirements, 

especially Basel III, affect banks’ behaviour and the interbank market activities? How do these 

requirements impact the real economy and social welfare? Has the target for mitigating macro-

prudential issues been fulfilled as expected? To answer these questions, we build up a dynamic 

equilibrium model to investigate the impacts of those Basel-style banking requirements from a 

macro-prudential perspective. In our model, time horizon is infinite and there are a continuum 

of banks facing a same source of systematic credit shocks and aggregate deposit variations 

(source of liquidity shocks), and they are also subject to specific idiosyncratic credit shocks 

and idiosyncratic deposit variations. Both the idiosyncratic shocks are short-term and occur 

continuously and overnight while a variation in the mass of liquidity-deficit banks makes those 

                         
1 A newer version of the Basel Accords, referred to as Basel IV, is now under discussion and is planned to be 

implemented by 2023. However, there is no official guidance on this new accord and, as we will mention in 

Section 5, the proposed changes to be introduced in Basel IV would not affect our model. Hence, we neglect the 

discussion of this accord in our paper. 
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banks become liquidity-surplus or liquidity-deficit banks. These assumptions of regarding the 

idiosyncratic shocks capture specific variations in credit revenues (the credit shocks) and in 

liquidity (deposit variations) among banks which cannot be predicted by them beforehand, 

usually occur within short periods (less than a few days), and can normally be managed through 

the interbank market. Therefore, our model mimics the overnight interbank market. 

Unlike other studies which mainly focus on micro-prudential analyses, we incorporate 

some macro-prudential aspects by including several forces that are beyond a single bank, such 

as the interbank market and the heterogeneity among banks caused by idiosyncratic shocks. 

Our model generates the results of aggregate bank loans, liquid asset holdings, average 

interbank rate, and the aggregate interbank trading volume for each period (year), aiming to 

mimic the macroeconomic dynamics of the real economy. We then compare the results among 

all requirement regimes considered, such as when banks are under no regulation, under capital 

requirements, and under both capital and liquidity requirements, to evaluate the impacts of 

these requirements on banks, the interbank market, and the real economy (social welfare). 

The first contribution of this paper is that we develop a quantitative equilibrium dynamic 

model to evaluate the impacts of the (Basel-style) capital and liquidity requirements on 

financial stability (banks’ resilience) and social welfare from a macro-prudential angle, i.e., we 

evaluate their performance considering a system of banks. Unfortunately, this consideration is 

missing in the literature. Existing studies, such as Repullo and Suarez (2013), De Nicolo et al. 

(2014) and Hugonnier and Morellec (2017), merely evaluate these requirements micro-

prudentially, i.e., from the perspective of a representative bank. Walther (2016) considers a 

macro-prudential analysis merely dealing with fire sales. Accordingly, our paper provides a 

more thorough evaluation for those requirements as more macro-prudential factors (e.g., banks’ 

heterogeneity due to idiosyncratic shocks) are incorporated in our model. 

The second contribution of this paper is that we evaluate the impacts of the Basel-style 
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capital and liquidity requirements on the interbank market. Although extant studies, such as 

Freixas et al. (2011), Liu (2016), Corrado and Schuler (2017) and Davis et al. (2020), have 

considered interbank markets and to some degree investigated the impacts of the banking 

requirements on the interbank markets, they have not explicitly investigated the impacts on two 

factors: interbank rates and interbank trading volume. Our paper fills this gap. We calculate 

these two factors endogenously to investigate their changes across various requirement regimes. 

This consideration is important as one of the main motivations of the liquidity requirements in 

Basel III is to limit banks’ excessive reliance on the interbank market (BCBS, 2011, Paragraph 

33). We find that adding the liquidity requirement to the capital requirement would reduce the 

interbank rate and thus lower the price of liquidity in the interbank market, i.e., the cost of 

borrowing from counterpart banks, which implies these requirements would address some 

macro-prudential issues. Our findings also suggest the existence of a U-shaped relationship 

between the interbank trading volume (reflecting banks’ reliance on the interbank market) and 

the liquidity ratio required (both for the LCR and NFSR requirements). This result, which has 

not yet been shown in the existing literature, indicates that the Basel committee’s aim to limit 

banks’ excessive reliance on the interbank market would not be achieved if higher liquidity is 

required. 

The third contribution is the consideration of a ‘two-stage’ decision-making process for 

our quantitative equilibrium model analysis. Recent quantitative studies such as De Nicolo et 

al. (2014), Begenau and Landvoigt (2018), and Elenev et al. (2021), assume that banks’ optimal 

decision choices to maximise their utility function are made simultaneously, i.e., all the 

decision choices are assumed to be made at the beginning of each period. This simplifying 

assumption seems to violate reality as some of banks’ decision choices, e.g., in response to 

idiosyncratic deposit value variations, would be made at different points in time. We provide a 

solution to accommodate nonsynchronous events in our analysis, which could therefore help 
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with the applicability of our quantitative equilibrium model to more complex analyses. In our 

model, both the discrete-time and continuous-time factors are incorporated, while we solve our 

model relying on a method designed for discrete-time models. Introducing several appropriate 

assumptions, e.g., aggregation methods, while no generality is lost, which supports the fact that 

our approach can also be seen as a methodological contribution. 

The main results of our paper are as follows. We find that when banks are unregulated or 

are only under capital requirements (i.e., no liquidity requirements), their loan holdings are 

pro-cyclical, and their liquidity holdings are countercyclical. In other words, banks are more 

illiquid in the economic expansions under those requirement regimes. This liquidity issue can 

be remedied by liquidity requirements. Imposing liquidity requirements could lead to a lowered 

interbank rate, which means the liquidity requirement would help to lower the price of liquidity 

within the interbank market. This finding is in line with the empirical data of the US and 

European markets represented in Figure 1, which demonstrates a trend of reduction of both the 

interbank rates and the volume of interbank loans especially after 2010, the year when the 

liquidity requirements (introduced by Basel III) begin to be implemented.2 

<Insert Figure 1 here> 

We also find from our simulation results that there exists a U-shaped relationship between 

the interbank trading volume and the liquidity ratio required, which is in line with a simplified 

version of our model (provided in the Online Appendix). This result can be explained in two 

ways: 1) under a lower liquidity requirement, banks tend to have low liquidity and thus they 

would rely on the interbank market to obtain liquidity while raising the liquidity requirements 

would improve banks’ liquidity and help to reduce their reliance on the interbank market 

                         
2 This trend might also be explained as a response to the Global Financial Crisis occurring in 2007-08, which 

could possibly impact the trading volume and rate. However, there should exist a recovery process at some point 

before the end of the period represented in the plot (which does not happen given that they remain relatively low 

until the end of the sample period). This reasoning implies that the observed trend in Figure 1 could be largely 

due to the introduction of the liquidity requirements. 
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(captured by lowered interbank trading volume), until the requirement is strengthened to a 

proper level; however, 2) when liquidity requirements become stricter, banks would rely more 

on the interbank market to seek more liquidity to meet the stricter requirement. Our results 

show that liquidity ratios required (for both LCR and NSFR requirements) around 65% would 

result in lowest interbank trading volume, i.e., less reliance on the interbank market. This means 

that the current requirement set at 100% seems relatively high when it comes to the reduction 

of the reliance of banks on the interbank market. Lastly, we find that implementing capital 

requirements alone results in the highest value of social welfare as compared to other regimes 

considered. The benefits of imposing liquidity requirements are at the cost of lowered social 

welfare. 

There are several policy implications of our paper. Our findings suggest that the Basel-

style capital and liquidity requirements would have some macro-prudential impacts on the 

banking system, i.e., reducing interbank rates. Liquidity requirements could, in a way, mitigate 

banks’ reliance on the interbank market to manage their liquidity issues only with an 

appropriate level of the required ratios. Our results imply that the current ratio (100%) required 

seems ineffective in addressing banks’ reliance on the interbank market. 

The rest of this paper is organised as follows. Section 2 summarises the related literature. 

Section 3 presents our model, which is solved in Section 4. Section 5 introduces the banking 

regulations, which will be applied as constraints in the simulation process. Section 6 reports 

the simulation analyses and results of our quantitative model while Section 7 concludes the 

paper. An Online Appendix presents our simulation method employed for the simulation, a 

simplified version of our model as a supplement to our analysis, and additional tables regarding 

our results. 

2. Literature Review 

This paper is closely related to the following literature. De Nicolo et al. (2014) build up a 
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dynamic model and consider the effects of banks’ capital and liquidity requirements from a 

micro-prudential perspective. They argue that liquidity requirements will unambiguously 

reduce social welfare, which is in line with our analysis, and they reveal that resolution policies, 

such as prompt corrective action, seem to dominate the regulations in efficiency and welfare 

terms. We extend this study by including some macro-prudential factors, such as the interbank 

market. Hugonnier and Morellec (2017) also establish a dynamic model to allow banks’ equity 

refinancing decisions in case of their insolvency, which has not been considered by De Nicolo 

et al. (2014). Hugonnier and Morellec (2017) find that combining liquidity and capital 

requirements reduces both the probabilities of default and the related default loss. However, 

their analysis is also limited to micro-prudential concerns. 

Our paper is also related to other literature in banking. Allen et al. (2009) develop a model 

within which the interbank market connects the banks suffering from idiosyncratic liquidity 

shocks. They conclude that when the interbank market cannot fully hedge banks’ liquidity 

shocks, the market will be prone to higher volatility, and in such situation central banks should 

intervene. Freixas et al. (2011) model a scenario where idiosyncratic liquidity shocks and 

interbank market are present and they claim that to make banks hold enough liquid assets, the 

interbank rates should be set high enough, while the rates should be cut during financial crises 

to maintain financial stability. Acharya and Merrouche (2012) empirically find a 30% increase 

in the liquidity demand of banks following the 2007–08 subprime crises, causing over-night 

interbank rate to rise. This finding is in line with our results according to which the interbank 

rates are higher in economic downturns. Heider et al. (2015) argue that due to the existence of 

counterparty risks the interbank market will be subject to break-down and banks will turn to 

hold liquidity instead. Walther (2016) investigates the interactions between banks’ capital and 

liquidity requirements employing a model incorporating their projects’ systematic and 

idiosyncratic risks. The findings of this study suggest that the requirements should be set in a 
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time-varying manner and that the macro- and micro-prudential regulations are imperfect 

substitutes. Corrado and Schuler (2017) employ a dynamic model to analyse the effects of 

macro-prudential policies on the interbank market. They find that combining both the capital 

and liquidity requirements would help to lower welfare losses, thereby highlighting the 

importance of Basel III. Castiglionesi et al. (2019) investigate the impacts of financial 

integration, which allows banks in different regions to manage liquidity shocks by participating 

in the interbank market, on the stability of the financial system. They conclude that financial 

integration leads to more stable interbank interest rates in normal times but to higher interest 

rates in financial crises, and they also show that financial integration can increase the benefits 

of the liquidity requirements in a second-best world. Kim et al. (2020) build a static model 

incorporating banks and nonbanking sectors, and they find that despite that the interbank 

volume would increase when banks’ reserves decline the existence of balance sheet costs may 

motivate banks to borrow from nonbanks instead of from the interbank market. Davis et al. 

(2020) investigate the impacts of liquidity requirements under a stylised interbank market 

environment by employing an experimental method. They find that adding liquidity 

requirements (both LCR and NSFR) hampers investment inefficiency and seems less effective 

than imposing a capital requirement alone in reducing bankruptcies. Elenev et al. (2021) 

propose a general equilibrium model in which both producers and bankers are financially 

constrained. They find that raising the capital requirements would reduce financial fragility, 

reduce the size of both financial and non-financial sectors, and lower banks’ profits. They also 

find that a capital requirement set around 6% would maximise social welfare, and counter-

cyclical capital requirements improve welfare. 

3. The Model 

Consider an economy where the horizon is infinite and is divided into a number of periods of 
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unit length. There is a continuum of banks3, aggregating to unit mass and a representative bank 

is indexed by 𝑖 ∈ [0,1]. At the beginning of each period 𝑡, banks make decisions on loans and 

liquid asset holdings in response to a systematic credit shock 𝑍𝑡−1 and aggregate deposit value 

𝑑𝑡−1 to maximise their value function. These two exogenous shocks occur at the end of each 

period and are generic to all banks. During each period after decisions are made at time 𝑡, each 

bank 𝑖 face idiosyncratic credit shocks, denoted by 𝑓𝜔,𝑡+𝑣(𝑖), and idiosyncratic deposit value 

variations, denoted by  𝑓𝜓,𝑡+𝑣(𝑖) , where  𝑣 ∈ [0,1]  denotes time intervals within each time 

period. Both the idiosyncratic shocks are exogenous4 and are specific to each bank and these 

shocks occur continuously within each period and independently across periods. 5  An 

exogenous variation in the mass of liquidity-deficit banks, occurring at the beginning of the 

period and independent across periods, makes banks liquidity-surplus or liquidity deficit. As a 

response, each bank 𝑖 will continuously choose to adjust its loans6 and liquid asset holdings 

and borrow/lending thorough the interbank market with its counterparties (i.e., liquidity-

surplus or liquidity-deficit banks) to maximise it value function. 

The systematic credit shock 𝒁𝒕 captures the uncertainty of banks’ loan revenues due to the 

variation in economic situations. It follows a first-order autoregressive process7 

                         
3 This assumption enables us to divide banks in different groups (to be introduced later) and undertake aggregation 

of banks without considering their exact number. 
4 The idiosyncratic credit and liquidity shocks are introduced to target banks’ probability of failure and interbank 

trading volume, respectively. Although the shocks are exogenous (i.e., can be seen as random variables, 

irrespective of banks’ asset holdings), banks’ loans and liquidity holdings are endogenously determined as the 

holdings are not purely dependent of the realisation of these shocks; therefore, the resulting banks’ probability of 

failure and interbank volume are endogenous. 
5 The independency assumption of the idiosyncratic shocks across periods is similar to that in Elenev et al. (2021), 

where the authors assume the dispersion of the idiosyncratic shocks follows a Markov process. However, given 

the objective of our paper, the idiosyncratic shocks are assumed to be unexpected and cannot be managed by 

banks beforehand, we assume the dispersion of the idiosyncratic shocks is time-varying while the realisation of 

the dispersion is independent across time. 
6 Due to the fact of lacking in opportunities of investment in the middle of each period, we assume that increment 

of loans made by liquidity-surplus banks can only be bought from sales of loans by liquidity-deficit banks; this 

leads to a non-positive net loan increment constraint in our simulation, i.e., no new loans will be generated within 

each period. 
7 The autoregressive assumption is widely used in related literature, such as De Nicolo et al. (2014) and Elenev et 

al. (2021). 
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𝑍𝑡 = (1 − 𝜌𝑍)𝑍̅ + 𝜌𝑍𝑍𝑡−1 + 𝜀𝑍,𝑡,                                             (1) 

where 𝜌𝑍 is persistence of the systematic shock, 𝑍̅ is its long-term average, and 𝜀𝑍,𝑡~𝑁(0, 𝜎𝑍
2) 

is the error term. The shareholders’ stochastic discount factor (SDF), 𝑀𝑡−1,𝑡, is then determined 

by 

𝑀𝑡−1,𝑡 = 𝛽𝑒−𝑔𝑡−1𝜀𝑍,𝑡−
1

2
𝑔𝑡−1

2 𝜎𝑍
2

,                                     (2) 

where 𝑔𝑡−1 = 𝛾0 + 𝛾1𝑍𝑡−1, in which 𝛾0 and 𝛾1 are constant price and time-varying price of 

risk parameter. The term 𝜎𝑍  is the time-invariant standard deviation of the error term  𝜀𝑍,𝑡 . 

Equation (2) ensures that 𝔼𝑡−1[𝑀𝑡−1,𝑡] = 𝛽𝑒−
1

2
𝑔𝑡−1

2 𝜎𝑍
2

𝔼𝑡[𝑒
−𝑔𝑡𝜀𝑍,𝑡] = 𝛽, which implies the risk-

free rate is 1 𝛽⁄ − 1. The assumption made in (2) is widely employed in asset pricing literature, 

such as Zhang (2005) and Jones and Tuzel (2013), indicating a countercyclical price of risk 

such that the SDF takes higher values during financial contractions while lower values in 

expansions. 

The aggregate deposit value 𝑑𝑡  banks receive also follows a first-order autoregressive 

process8 

log 𝑑𝑡 = (1 − 𝜌𝐷) log 𝑑̅ + 𝜌𝐷 log 𝑑𝑡−1 + 𝜀𝐷,𝑡, 

where 𝝆𝑫 is the persistence of deposits, 𝒅̅ is its long-term average, and 𝜺𝑫,𝒕~𝑵(𝟎, 𝝈𝑫
𝟐 ) is the 

error term. The error terms 𝜺𝑫,𝒕 and 𝜺𝒁,𝒕 have a correlation coefficient 𝜽 < 𝟎, as in De Nicolo 

et al. (2014).9 The negative 𝜽 suggests that when 𝜺𝒁,𝒕 > 𝟎, i.e., when banks receive a positive 

credit shock, deposit variations are likely to be negative as depositors might withdraw more 

than in other economic states to look for other profitable investment opportunities because the 

economy is booming. On the other hand, depositors would withdraw less when 𝜺𝒁,𝒕 < 𝟎 due to 

                         
8 We adopt this assumption following De Nicolo et al. (2014). 
9 We show in Online Appendix A how this force is modelled in our simulations. 
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the lack of attractive investment opportunities.10 

Idiosyncratic credit shocks11 are independent and identically distributed (i.i.d.) across 

banks and time and are defined as 𝑓𝜔,𝑡+𝑣(𝑖) = 𝜎𝜔𝑑𝐵𝑣, where 𝑣 ∈ [0,1] and 𝐵𝑣 is a Brownian 

motion. For notational simplicity and in line with the law of large numbers,12 we drop the 

subscript 𝑖  from the equations in the remainder of this paper. These shocks capture the 

uncertainty of banks’ revenues from loans, occurring in banks’ daily operations, due to 

individual factors such as operational costs and managers’ skills. Idiosyncratic deposit value 

variations realise at the value of 𝑓𝜓,𝑡+𝑣 = 𝑑𝑡(𝜏𝑑𝑣 + 𝜎𝑑𝑑𝐵𝑣), impacting on liquidity-surplus 

banks with  𝑓𝜓,𝑡+𝑣  and on liquidity-deficit ones with  −𝑓𝜓,𝑡+𝑣 . These shocks reflect banks’ 

individual short-term deposit value variations, normally lasting overnight or a couple of days, 

i.e., within [𝑡 − 𝑣, 𝑡 + 𝑣], where 𝑣 represents a time interval. For a given period 𝑡, the mass of 

liquidity-deficit banks is 𝜆𝑡~𝑁(1 2⁄ , 𝜎𝜆
2), where 𝜆𝑡 is truncated to 0 < 𝜆𝑡 < 1, and the mass 

of liquidity-surplus banks is 1 − 𝜆𝑡. 13 This assumption implies that a representative bank has 

a probability of 𝜆𝑡 to become a liquidity-deficit bank and 1 − 𝜆𝑡 to become liquidity-surplus. 

The expected cumulative idiosyncratic deposit variation in one period is ∫ 𝑓𝜓,𝑡+𝑣
1

0
𝑑𝑣 = 𝜏𝑑𝑡, 

which means the expected cumulative variation in deposits of one representative bank in one 

period, conditional on the realisation of 𝜆𝑡 , is 𝜏(1 − 2𝜆𝑡)𝑑𝑡 . Given the properties we have 

assumed for 𝜆𝑡, the expected cumulative idiosyncratic deposit value variation in bank 𝑖 in one 

                         
10 The existence of a negative 𝜃 is supported by our collected data of US chartered banks from 1995 to 2017. The 

results are available upon request. 
11 By the law of large numbers, idiosyncratic credit shocks will not affect banks’ decision choices occurring at the 

beginning of each period. We thus assume the idiosyncratic credit shocks will only occur in each period (not 

across periods). 
12 As mentioned later by the aggregation problem, which is proved in Online Appendix B, we can investigate the 

investment choice of a representative bank for the aggregation of banks. 
13 This assumption captures the heterogeneity of liquidity among banks which leaves some banks surplus of 

liquidity looking for investment opportunities while causes other ones’ shortage of liquidity seeking for an 

immediate liquidity aid. To focus on our objectives, we assume that an interbank market, which we will introduce 

later, is more efficient and less costly than a central bank’s liquidity injection when absent an aggregate liquidity 

shortage (Liu, 2016). Since our focus in this paper is banks’ behaviours and it is assumed that there are no severe 

aggregate liquidity shortages which may lead to interbank market breakdown, we thus disregard the central banks’ 

intervention to inject liquidity in our analysis. 
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given period is zero.14  

3.1 Bank Dynamics for Systematic Credit Shocks and Aggregate Deposit Variations 

At the beginning of a representative period 𝑡, a representative bank makes investment choices 

in loans  𝑙𝑡  and in liquid assets (such as risk-free government bonds)  𝑐𝑡  and funds its 

investments with deposits 𝑑𝑡 and its own capital 𝑘𝑡. This arrangement makes the balance sheet 

of the bank at the beginning of period 𝑡 satisfy 

𝑙𝑡 + 𝑐𝑡 = 𝑑𝑡 + 𝑘𝑡. 

Loans 𝑙𝑡  generate risky revenues (subject to the realisation of 𝑍𝑡 ) and liquid assets 𝑐𝑡 

generate a risk-free return 𝑟𝑓. Note that 𝑐𝑡 < 0 implies a negative position in risk-free assets, 

e.g., issuing bonds. The deposit rate of 𝑑𝑡 is 𝑟𝑑.  

The law of motion of 𝑙𝑡 can be modelled as15 

𝑙𝑡 = 𝑙𝑡−1(1 − 𝜎) + ∆𝑙𝑡, 

where ∆𝑙𝑡 is the new investment in loans for period 𝑡, and 𝜎 ∈ (0, 1 2⁄ ) is the portion of the 

existing loans matured at the end of the previous period, i.e., 𝑡 − 1.  ∆𝑙𝑡 can be positive if banks 

expand lending and negative if they liquidate their existing loans.16 The loan management cost 

can be expressed as 

𝑀(𝑙𝑡) = 𝑚 (
𝑙𝑡

𝑑̅𝑡
− 1)

2

, 

where 𝑚 is the unit price for loan management cost and 𝑑̅𝑡 = 𝜐𝑑𝑡 is introduced to target 

                         
14 This assumption indicates that the idiosyncratic deposit value variations cannot be forecasted and be considered 

for investment decisions in advance. Such assumptions claiming that the idiosyncratic variations are unknown 

prior to their realisations are largely employed in the literature, for example Diamond and Dybvig (1983). 
15 As in Repullo and Suarez (2013) and De Nicolo et al. (2014), we implicitly assume that the amount of the 

existing loans will not be reduced if loans default. However, defaults of the loans are modelled in the realisations 

of the (systematic and idiosyncratic) credit shock, which affects loan returns as in (3). Hence, a lower loan return 

can represent a higher default rate of loans. For more details regarding modelling this force, refer to Repullo and 

Suarez (2013). 
16 As in De Nicolo et al. (2014), 𝜎 < 1 2⁄  ensures that 1 𝜎⁄ − 1 > 1. This assumption implies that the weighted 

average maturity of the existing loans is longer than one period, which implies their illiquid properties compared 

with the liquid assets. The weighted average maturity of existing loans at 𝑡 is ∑ 𝑠
𝜎𝑙𝑖,𝑡+𝑠

𝑙𝑖,𝑡

∞
𝑠=0 =

1

𝜎
− 1, where the 

residual of outstanding loans at 𝑡 + 𝑠 is 𝑙𝑖,𝑡+𝑠 = 𝑙𝑖,𝑡(1 − 𝜎)𝑠. 
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the average ratio of bank credit to deposits, observed from the relevant data.17 This assumption 

implies that the management costs are higher if banks’ loan holdings are above or below the 

average value 𝑑̅𝑡 , similar to De Nicolo et al. (2014), Hugonnier and Morellec (2017), and 

Elenev et al. (2021). This means that banks may need more labour and resources to manage 

and supervise the increased loans or banks may need to exert more efforts (e.g., advertising) to 

seek loan borrowers if banks’ loan holdings are lower. 

The loan revenue function 𝜋(𝑙𝑡) at 𝑡 can be presented as 

𝜋(𝑙𝑡) = 𝐴𝑙𝑡
𝛼,                                                             (3) 

where  𝐴 > 0 is the loan rate parameter, and 𝛼  is the parameter of return to scale of loan 

revenues, and  0 < 𝛼 < 1 . We can show that 𝜋(0) = 0 ,  𝜋(𝑙𝑡) > 0 , ∂𝜋(𝑙𝑡) ∂𝑙𝑡⁄ > 0 

and  𝜕2𝜋(𝑙𝑡) 𝜕𝑙𝑡
2⁄ < 0. The total loan revenues, represented by 𝜋(𝑙𝑡)𝑍𝑡 , are subject to the 

realisations of the credit shock 𝑍𝑡, which is introduced in (1). Equation (3) implies banks’ loan 

revenues are subject to a decreasing return to scale, following Holmstrom and Tirole (2001) 

and Acharya et al. (2010). This assumption guarantees banks’ value function is concave, and 

thus ensures the existence of an upper bound of 𝑙𝑡 for the simulation solution. 

3.2 Bank Dynamics for Idiosyncratic Shocks 

Within each period, idiosyncratic shocks occur to each bank continuously and independently, 

and for a representative time interval, for example 𝑡 + 𝑣, banks can participate in the interbank 

market,18 leading to an equilibrium interbank trading volume 𝑟𝑡+𝑣
𝑗

, where 𝑗 = 𝑑, 𝑠 indicates the 

bank is a liquidity-deficit and -surplus bank, respectively. Banks can also adjust their assets, 

i.e., loans and liquid assets, subject to an adjustment cost 𝛷,19 which can be defined as 

                         
17 The target is the average ratio of US banks’ credit to deposits, which we will introduce in Section 7.1. 
18 As mentioned before, our model mimics the overnight interbank market. Hence, our results have a better 

implication for this particular market. 
19 The management cost includes transaction and underwriting costs of trading these assets as the trading occurs 

before the maturity of the assets, i.e., at the end of each period. This assumption implies that interbank borrowing 

or lending would incur lower costs in dealing with short-term funding needs. 
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𝛷𝐿(𝑙𝑡+𝑣
𝑗

) = 𝜙𝐿 (
𝑙𝑡+𝑣−
𝑗

𝑙𝑡
𝑗 ) 𝑙𝑡+𝑣

𝑗
,                                              (4) 

𝛷𝐶(𝑐𝑡+𝑣
𝑗

) = 𝜙𝐶 (
𝑐𝑡̂+𝑣−
𝑗

𝑐𝑡
𝑗 ) 𝑐𝑡+𝑣

𝑗
,                                             (5) 

where 𝑙𝑡+𝑣
𝑗

 and 𝑐𝑡+𝑣
𝑗

 are banks’ adjustments in the asset holdings made at  𝑡 + 𝑣 , and 𝑙𝑡+𝑣−
𝑗

 

and  𝑐̂𝑡+𝑣−
𝑗

 are the corresponding cumulative changes until  𝑡 + 𝑣− , where  𝑣−  denotes the 

previous time interval of 𝑣. We set the parameters 𝜙𝐿 > 𝜙𝐶  to reflect the fact that it is more 

costly to trade loans than the liquid assets due to loans’ higher illiquidity. Equations (4) and (5) 

indicate that the unit cost of adjustment,  𝜙𝐿𝑙𝑡+𝑣−
𝑗

𝑙𝑡
𝑗

⁄  and  𝜙𝐶 𝑐̂𝑡+𝑣−
𝑗

𝑐𝑡
𝑗

⁄ , depends on the 

deviations of their original position of asset holdings, which means that, as in Elenev et al. 

(2021), the adjustment costs are frictions of the banking system that penalise upward and 

downward deviations of banks’ original position of asset holdings, at the beginning of each 

period.20  

3.3 Timeline 

The timeline of the events described previously and the collection of corporate tax Ϛ(𝑦𝑖,𝑡) 

occurred at the end of the period is summarised in Figure 2, in which we use a typical time 

period 𝑡 and a representative bank for illustration. 

<Insert Figure 2 here> 

In case of bankruptcy, the government will take over the defaulting banks, repay their 

depositors in full and replace those banks with new ones, and endow new banks with the same 

value of deposits and capital as the surviving ones.21 By the law of large numbers, we can 

obtain aggregation of banks’ optimal choices by looking into a representative bank for the 

analysis and by investigating the problem from a representative time interval (for the decision 

                         
20 As explained in Online Appendix B, the function forms assumed in Equations (4) and (5) also ensure the 

additivity of the first-order conditions in the aggregation, which makes ∫ 𝛷𝐿
′ (𝐿𝑡+𝑣

𝑗
)

1

0
𝑑𝑣 ≈ 𝛷𝐿

′ (𝐿̂𝑡+𝑣
𝑗

). 
21 This assumption ensures the total mass of banks is one (i.e., one unit) and banks’ aggregate assets are unchanged 

after the replacement. 
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regarding the idiosyncratic shocks). We present the proof of the aggregation problem in Online 

Appendix B. Model solution is introduced in Section 4, where we use the capital letter of the 

corresponding variables as the notation to indicate that the solutions refer to the whole banking 

system, when considering the aggregation of individual banks. 

4. Model Solution 

Due to the characteristics of our model, we first introduce the analysis of idiosyncratic shocks 

and then introduce the analysis of systematic credit shocks and aggregate deposit variations. 

4.1 Decisions for Idiosyncratic Shocks 

Denote the original value of loans and liquid assets (i.e., at the beginning of 𝑡) held by the 

banking system as 𝐿𝑡 and 𝐶𝑡, respectively, and deposit amount as 𝐷𝑡. We also use the following 

equations  𝐿𝑡
𝑑 = 𝜆𝑡𝐿𝑡  ( 𝐶𝑡

𝑑 = 𝜆𝑡𝐶𝑡 ) and  𝐿𝑡
𝑠 = (1 − 𝜆𝑡)𝐿𝑡  (𝐶𝑡

𝑠 = (1 − 𝜆𝑡)𝐶𝑡 ) to respectively 

represent the loan and liquid asset holdings of liquidity-deficit and liquidity-surplus banks at 

the beginning of period 𝑡, recalling that 𝜆𝑡 is the mass of liquidity-deficit banks. Given the 

different decision choices of the liquidity-deficit and liquidity-surplus banks, we will introduce 

them separately in the following subsections. 

4.1.2 Liquidity-Deficit Banks 

For the time interval 𝑣 ∈ [0,1], we write the liquidity-deficit banks’ budget constraint as 

𝐼𝑡+𝑣
𝑑 + 𝐿𝑡+𝑣

𝑑 + 𝐶𝑡+𝑣
𝑑 − 𝑅𝑡+𝑣−

𝑑 + 𝑞𝑡
𝑅𝑅𝑡+𝑣

𝑑 ≥ 𝑓𝜓,𝑡+𝑣 − 𝑓𝜔,𝑡+𝑣 + 𝛷𝐿(𝐿𝑡+𝑣
𝑑 ) + 𝛷𝐶(𝐶𝑡+𝑣

𝑑 ).    (6) 

The above constraint shows that the liquidity-deficit banks face exogenous idiosyncratic 

shocks −𝑓𝜓,𝑡+𝑣 + 𝑓𝜔,𝑡+𝑣 , and can choose to sell (trade) loans to obtain 𝐿𝑡+𝑣
𝑑  subject to the 

adjustment cost 𝛷𝐿(𝐿𝑡+𝑣
𝑑 ), sell (trade) liquid assets to obtain 𝐶𝑡+𝑣

𝑑  by paying for the related 

costs 𝛷𝐶(𝐶𝑡+𝑣
𝑑 ), borrow 𝑞𝑡

𝑅𝑅𝑡+𝑣
𝑑  from the interbank market, and repay 𝑅𝑡+𝑣−

𝑑  borrowed from 

the previous time interval, i.e., 𝑣−, or pay (negative) dividends 𝐼𝑡+𝑣
𝑑  with the equity issuance 

cost 𝜂 to make up for the liquidity shortage. Note that one can show that from this definition 
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the interbank rate 𝑟𝑡
𝑝 = 1 𝑞𝑡

𝑅 − 1⁄ .22 We present a detailed simulation solution for the liquidity-

deficit banks in Online Appendix C.1.1. 

4.1.3 Liquidity-Surplus Banks 

The budget constraint of the liquidity-surplus banks at time interval 𝑣 ∈ [0,1] is given by 

𝐼𝑡+𝑣
𝑠 + 𝐿𝑡+𝑣

𝑠 + 𝐶𝑡+𝑣
𝑠 + 𝑞𝑡

𝑅𝑅𝑡+𝑣
𝑠 ≤ 𝑓𝜓,𝑡+𝑣 + 𝑓𝜔,𝑡+𝑣 − 𝛷𝐿(𝐿𝑡+𝑣

𝑠 ) − 𝛷𝐶(𝐿𝑡+𝑣
𝑠 ) + [1 −

𝜂𝜔+𝜓,𝑡+𝑣−
𝑑 ]𝑅𝑡+𝑣−

𝑠 .                                               (7) 

Equation (7) implies that liquidity-surplus banks facing exogenous idiosyncratic shocks 

𝑓𝜓,𝑡+𝑣 + 𝑓𝜔,𝑡+𝑣  need to adjust their holdings of loans at the amount of 𝐿𝑡+𝑣
𝑠  subject to the 

adjustment cost 𝛷𝐿(𝐿𝑡+𝑣
𝑠 ), adjust the holdings of liquid assets at the amount of 𝐶𝑡+𝑣

𝑠 , and pay 

for the related costs 𝛷𝐶(𝐿𝑡+𝑣
𝑠 ), and retain dividends 𝐼𝑡+𝑣

𝑠  to the shareholders. The banks can 

also participate in the interbank market to lend 𝑞𝑡
𝑅𝑅𝑡+𝑣

𝑠  to the liquidity-deficit ones and are 

repaid  [1 − 𝜂𝜔+𝜓,𝑡+𝑣−
𝑑 ]𝑅𝑡+𝑣−

𝑠  that is lent at the previous time interval, i.e.,  𝑣− , 

where 𝜂𝜔+𝜓,𝑡+𝑣−
𝑑  indicates the probability of default of the liquidity-deficit banks at 𝑡 + 𝑣−, 

which thus captures the counterparty risks in the interbank market. Upon default, the 

government will step in and bail out the failed banks for the following time interval.23 We 

present a detailed simulation solution for the liquidity-surplus banks in Online Appendix C.1.2. 

4.1.4 Equilibrium of the Banking System 

Given the realisations of {𝑍𝑡−1, 𝐷𝑡 , 𝜆𝑡, 𝐿𝑡 , 𝐶𝑡, 𝑓𝑡+𝑣(𝜓), 𝑓𝑡+𝑣(𝜔)}, we define equilibrium values 

of the cumulative variables at the end of the period, i.e., at  𝑡 + 1 , summarised as 

{𝐿̂𝑡+1
𝑑 , 𝐶̂𝑡+1

𝑑 , 𝑅̂𝑡+1
𝑑 } for liquidity-deficit banks and {𝐿̂𝑡+1

𝑠 , 𝐶̂𝑡+1
𝑠 , 𝑅̂𝑡+1

𝑠 } for liquidity-surplus banks 

in the following set of equations, which features the equilibrium of this model: 

Loans:                            𝐿̃𝑡 = ∑ 𝐻𝜔+𝜓,𝑡+1
𝑗

(𝐿𝑡
𝑗
+ 𝐿̂𝑡+1

𝑗=𝑠
1{𝑗=𝑠} − 𝐿̂𝑡+1

𝑗=𝑑
1{𝑗=𝑑})𝑗=𝑠,𝑑 ,                      (8) 

                         
22 For computational tractability, we assume the (overnight) interbank rate 𝑞𝑡

𝑅 is constant for a given 𝑡. 
23 We assume the defaulting banks are bailed out by the government, thus the mass of the liquidity-deficit and 

liquidity-surplus is unchanged and the total mass of the banks remains one. 
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Liquid assets:              𝐶̃𝑡 = ∑ 𝐻𝜔+𝜓,𝑡+1
𝑗

(𝐶𝑡
𝑗
+ 𝐶̂𝑡+1

𝑗=𝑠
1{𝑗=𝑠} − 𝐶̂𝑡+1

𝑗=𝑑
1{𝑗=𝑑})𝑗=𝑠,𝑑 ,                    (9) 

Interbank assets:       𝑅̂𝑡+1
𝑑 = 𝑅̂𝑡+1

𝑠 ,                                                                                     (10) 

Profits after taxes:     𝑃𝑡 = (1 − 𝜑)𝑌𝑡 = (1 − 𝜑){𝜋(𝐿𝑡)𝑍𝑡𝐿̃𝑡 + 𝑟𝑓𝐶̃𝑡 −

 𝑟𝑑 ∑ 𝐻𝜔+𝜓,𝑡+1
𝑗 [1 + 𝜏(1 − 2𝜆𝑡)]𝐷𝑡

𝑗
𝑗=𝑠,𝑑 }.                                                                             (11) 

Equations (8) and (9) are the market clearing conditions for loans and liquid assets, 

where 𝐻𝜔+𝜓,𝑡+1
𝑗

= 1 − ∫ 𝜂𝜔+𝜓,𝑡+𝑣
𝑗

𝑑𝑣
1

0
 denotes the mass of surviving banks 𝑗 = 𝑠, 𝑑 at the end 

of the period and 𝜂𝜔+𝜓,𝑡+𝑣
𝑗

 is the probability of default of bank 𝑗 = 𝑠, 𝑑 at 𝑡 + 𝑣. Equation (10) 

is the clearing condition for interbank assets and (11) is the profit after corporate taxes, where 

corporate taxes are defined as Ϛ(𝑌𝑡) = 𝜑𝑌𝑡. Note that the corporate taxes are levied according 

to a convex function of Earnings Before Taxes (EBT), i.e., 𝑌𝑡 , which means 𝜑 =

𝜑+max {𝑌𝑡, 0} 𝑌𝑡⁄ + 𝜑−min {𝑌𝑡, 0} 𝑌𝑡⁄ . The assumption that 𝜑− ≤ 𝜑+ reflects a reduced tax 

benefit from loss carryback or carryforward. We present a detailed implementation of the 

market clearance and of the whole model in Online Appendix C.2. 

4.2 Decisions for Systematic Credit Shocks and Aggregate Deposit Variations 

At the beginning of 𝑡 + 1 (after the realisation of 𝑍𝑡  and 𝐷𝑡+1), banks will maximise their 

equity value by choosing optimal loans 𝐿𝑡+1  and liquid assets 𝐶𝑡+1  for the coming period, 

according to the realisations of (𝐿̃𝑡, 𝐶̃𝑡, 𝑃𝑡, 𝐷𝑡+1, 𝐷𝑡), where (𝐿̃𝑡, 𝐶̃𝑡, 𝑃𝑡) are defined in (8), (9) 

and (11), respectively. Banks will be subject to requirement constraints, if any, and the 

following budget constraint 

(1 − 𝛷0)𝑁𝑡 + 𝐸𝑡 − 𝛷𝐸(𝐸𝑡) − 𝑀(∆𝐿𝑡+1) ≥ 𝐿𝑡+1 + 𝐶𝑡+1 − 𝐷𝑡+1 − 𝜚𝐶𝑡+1
2 ∙ 𝜒𝐶𝑡+1<0,   (12) 

where 𝛷0  stands for the target pay-out ratio of dividends to equity.  𝑁𝑡 = [1 + (1 −

𝜑)𝜋(𝐿𝑡)𝑍𝑡]𝐿̃𝑡 + [1 + (1 − 𝜑)𝑟𝑓]𝐶̃𝑡 − 𝐷𝑡+1 represents the (market) equity value of banks prior 
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to the decision choices. 𝐸𝑡 and 𝛷𝐸(𝐸𝑡) are the amount of equity issuance24 and the relating 

issuing costs. ∆𝐿𝑡+1 = 𝐿𝑡+1 − (1 − 𝜎)𝐿̃𝑡 and 𝑀(∆𝐿𝑡+1) denotes the loan adjustments and the 

associated adjustment costs, respectively. The term  𝜚𝐶𝑡+1
2 ∙ 𝜒𝐶𝑡+1<0  captures the deposit 

insurance fee, and 𝜚 is the corresponding parameter, which will be incurred if banks have a 

negative position in liquid assets, i.e., when 𝐶𝑡+1 < 0 . 25  Equation (12) ensures that the 

retaining equity (1 − 𝛷0)𝑁𝑡 plus the newly issued equity 𝐸𝑡 − 𝛷𝐸(𝐸𝑡) − 𝑀(∆𝐿𝑡+1), net of the 

incurred costs, should be no less than the equity after the decision of new investments, 

i.e.,  𝐿𝑡+1 + 𝐶𝑡+1 − 𝐷𝑡+1 − 𝜚𝐶𝑡+1
2 ∙ 𝜒𝐶𝑡+1<0 , considering the deposit insurance fee  𝜚𝐶𝑡+1

2 ∙

𝜒𝐶𝑡+1<0. The equity issuance cost 𝛷𝐸(𝐸𝑡) in (12) is defined as 

𝛷𝐸(𝐸𝑡) = 𝜙𝐸𝐸𝑡
2,                                                   (13) 

where 𝜙𝐸  is the parameter of equity issuance cost. The equity issuance cost is considered with 

a view to targeting the ratio of banks’ equity issuance to total book equity, as observed from 

our data. Thus, the net dividend pay-out 𝐼𝑡 can be summarised as the sum of after-tax income 𝑃𝑡 

and dividend pay-out 𝛷0𝑁𝑡, deducting equity issuance 𝐸𝑡, and is expressed as: 

𝐼𝑡 = 𝑃𝑡 + (𝛷0 + 𝛷1)𝑁𝑡 − 𝐸𝑡,                                          (14) 

where 𝛷1 is the ratio of banks’ share repurchase to total equity, as observed from US data. The 

inclusion of (13) and (14) aims to match the observed banks’ net equity issuance ratio and net 

dividend payout ratio, respectively. Equation (14) will then be used for the banks’ equity 

valuation and will be introduced in Section 4.3. 

4.3 Bank Equity Valuation and Bellman Equation 

                         
24 In our analysis, a positive equity issuance indicates banks shareholders’ retaining revenues as equity; while a 

negative equity issuance implies shareholders’ selling their equity to new shareholders (equity issuance to new 

shareholders), a way of diluting their ownership of the banks. 
25 The inclusion of the deposit insurance fee aims to match the targeted ratio of bank loans to deposits (86%) for 

unregulated banks according to our collected data. We will present the respective comparison in Table 4. This 

assumption also set up a collateral constraint on banks which are in the negative position of liquid assets (bonds) 

to ensure their issued bonds are fully collateralised. This consideration thus has a function similar to Equation (10) 

in De Nicolo et al. (2014). 
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Let 𝐸(𝑥𝑡) denote the equity value of banks at time 𝑡. Given the realisations of the state 𝑥𝑡 =

{𝐿𝑡, 𝐶𝑡, 𝑍𝑡, 𝐷𝑡 , 𝜆𝑡}, we define 𝐸(𝑥𝑡) as 

𝐸(𝑥𝑡) = max
{(𝒬𝑝,𝒬𝑝+𝑣

𝑗
),𝑝=𝑡,…,𝑇,𝑣∈[0,1]}

𝔼𝑡 {∑[𝐼𝑝(𝑥𝑝,𝑊𝑝)

𝑇

𝑝=𝑡

+ ∫ [−𝐼𝑝+𝑣
𝑑 (𝑥𝑝,𝑊𝑝+𝑣

𝑑 ) + 𝐼𝑝+𝑣
𝑠 (𝑥𝑝,𝑊𝑝+𝑣

𝑠 )]𝑑𝑣
1

0

]∏𝑀𝑞−1,𝑞

𝑝

𝑞=𝑡

}， 

where 𝔼𝑡[·] is the expectation with respect to 𝑡, which is employed to value the streams of 

banks’ dividends 𝐼𝑝+𝑣
𝑗

(𝑥𝑝,𝑊𝑝+𝑣
𝑗

) , resulting from banks’ optimal decision choices for the 

idiosyncratic shocks, and 𝐼𝑝(𝑥𝑝,𝑊𝑝), from the optimal choices for systematic credit shocks 

and aggregate deposit variations. These dividends are defined in (6), (7) and (14), respectively, 

where 𝑊𝑝+𝑣
𝑗

 is the initial wealth of bank 𝑗 upon 𝑝 + 𝑣 and 𝑊𝑝 is the initial wealth of banks at 

period  𝑝 .  𝒬𝑝+𝑣
𝑗

 is the decision choices of  {𝐼𝑝+𝑣
𝑗

, 𝐿𝑝+𝑣
𝑗

, 𝐶𝑝+𝑣
𝑗

, 𝑅𝑝+𝑣
𝑗

}  and 𝒬𝑝  is the decision 

choices of {𝐿𝑡, 𝐶𝑡}  described in sections 4.1 and 4.2, respectively. 𝑀𝑞−1,𝑞 is the discount factor 

as defined in (2). Note that 𝑀𝑞−1,𝑞 = 1 if 𝑞 = 𝑡 as the valuation is calculated with respect to 𝑡. 

Since this model is stationary, it can be solved by Bellman Equation with involvement of two 

periods, e.g., current period and the next one. The value of banks’ equity thus satisfies 

𝐸(𝑥𝑡, 𝑊𝑡) = max {0, max
{𝒬𝑡,𝒬𝑡+𝑣,𝑣∈[0,1]}

{𝐼𝑡(𝑥𝑡,𝑊𝑡) + ∫ [∑ 𝐼𝑡+𝑣
𝑗

(𝑥𝑡,𝑊𝑡+𝑣
𝑗

)𝑗=𝑑,𝑠 ]𝑑𝑣
𝑡+1

𝑡
+

𝔼𝑡[𝑀𝑡,𝑡+1𝐸(𝑥𝑡+1,𝑊𝑡+1)]}}.                                       (15) 

Due to limited liability, equity value 𝐸(𝑥𝑡,𝑊𝑡) is nonnegative and will be zero if banks 

are insolvent, at which point the government will bail out banks in distress. In Online Appendix 

C, we explain how Equation (15) is used in both decisions. 

4.4 Bank Value and Social Welfare 

Following De Nicolo et al. (2014), we define enterprise welfare of banks as a metric of their 
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efficiency, which calibrates banks’ ability to create ‘productive’ intermediation.26 We define it 

as the sum of bank equity value and deposits netting of short-term investments (i.e., liquid 

assets), which play no role in contributing to production. The measurement is taken for the 

whole banking system at the end of each period. As per our definition, banks’ enterprise value 

can be represented as 

𝐸𝑉(𝑥𝑡) = 𝐸(𝑥𝑡) + 𝐷𝑡(1 + 𝑟𝑑){1 − 𝑐𝐻(𝑥𝑡)} − 𝐶𝑡,                          (16) 

where 𝑐 is the bankruptcy cost of banks’ deposits and 𝐻(𝑥𝑡) is the portion of defaulting banks. 

Social welfare is measured as the value generated from banks’ activities to government and the 

whole economy. We thus define social welfare as 

𝑆𝑊(𝑥𝑡) = 𝐸(𝑥𝑡) + 𝐷𝑡(1 + 𝑟𝑑) − 𝐶𝑡 + 𝐺(𝑥𝑡),                           (17) 

where 𝐺(𝑥𝑡) is the net revenue of the government, which can be written as 

𝐺(𝑥𝑡) = 𝐹(𝑥𝑡){𝜑𝑌𝑡 + 𝔼𝑡[𝐺(𝑥𝑡+1)𝑀𝑡,𝑡+1]} − [1 − 𝐹(𝑥𝑡)]{𝑐(1 + 𝑟𝑑)𝐷𝑡 + 𝜍(𝐿𝑡 + 𝐶𝑡)}.  (18) 

The first term of (18) is sum of the current tax revenues 𝜑𝑌𝑡 and the expected future tax 

revenues, 𝔼𝑡[𝐺(𝑥𝑡+1)𝑀𝑡,𝑡+1], as long as banks are solvent. The second term of (18) shows the 

(negative) payoffs to the government in the form of bankruptcy costs 𝑐(1 + 𝑟𝑑)𝐷𝑡 due to its 

role as the deposit insurer and recovery costs 𝜍(𝐿𝑡 + 𝐶𝑡) paid for the defaulting banks. 

5. Banking Regulations 

In this section, we introduce Basel-style capital and liquidity requirements as the banking 

regulations, which will be inserted as the constraints in our simulations.27 

5.1 Capital Requirements 

In the Basel Accords requirements, the capital ratio refers to the ratio of bank capital to risk-

                         
26 For the support of this calibration, see Gamba and Triantis (2008), Bolton et al. (2011) and De Nicolo et al. 

(2014).  
27 In this paper, we consider capital and liquidity requirements from Basel III (BCBS, 2010, 2011, 2013 and 2014). 

Although a newer version, to be called as Basel IV (BCBS, 2017), is under discussion, the main amendments to 

be introduced, e.g., restoring creditability in the calculation of risk-weighted assets and improving the 

comparability of banks’ capital ratios, will not affect our model. Thus, we use Basel III as the requirement regime 

in our analysis. 
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weighted assets, where we assume they are loans in our model. If banks are under the capital 

requirement, at least an amount of capital  𝐾̃𝑡 = 𝜅𝐿̃𝑡  is required to support its lending. 28 

Therefore, the feasible set of optimal choices (𝐿𝑡+𝑣
𝑗

, 𝐶𝑡+𝑣
𝑗

, 𝑅𝑡+𝑣
𝑗

) and (𝐿𝑡, 𝐶𝑡), for both decision 

choices, under the capital requirement can be defined as 

Л = {
{(𝐿𝑡+𝑣

𝑗
, 𝐶𝑡+𝑣

𝑗
, 𝑅𝑡+𝑣

𝑗
)│(1 − 𝜅)𝐿𝑡+𝑣

𝑗
+ 𝐶𝑡+𝑣

𝑗
+ 𝑅𝑡+𝑣

𝑗
≥ 𝑓𝜔+𝜓,𝑡+𝑣

𝑗
}

{(𝐿𝑡, 𝐶𝑡)│(1 − 𝜅)𝐿𝑡 + 𝐶𝑡 ≥ 𝐷𝑡}
,      (19) 

where  𝑓𝑡+𝑣
𝑗 (𝜓 + 𝜔) = −𝑓𝜓,𝑡+𝑣1{𝑗=𝑑} + 𝑓𝜓,𝑡+𝑣1{𝑗=𝑠} + 𝑓𝜔,𝑡+𝑣  captures the idiosyncratic 

shocks faced by both groups of banks, where 1{𝑗=𝑑} and 1{𝑗=𝑠} are indicators equal to 1 when 

the condition of their subscripts is satisfied and equal to zero otherwise. Equation (19) thus 

summarises the capital requirement constraint for decisions regarding idiosyncratic shocks (the 

upper equation) and of credit and aggregate deposit variations (the lower equation), 

respectively.29 Thus, for banks under the capital requirement, the feasible set of choice is Л. 

5.2 Liquidity Requirements 

Basel III regulation (BCBS, 2013) introduces the Liquidity Coverage Ratio (LCR) requirement 

for mitigating a 30-day liquidity distress, and Net Stable Funding Ratio (NSFR) requirement 

for a long-term liquidity management, such as one year. Based on our model, LCR better fits 

the analysis in Section 4.1 and NSFR matches the analysis in Section 4.2. Hence, we will model 

these two requirements for the analyses individually. 

5.2.1 LCR Requirement 

The LCR is defined as the ratio of High-Quality Liquid Assets (HQLAs) to Net Cash Outflows 

(NCOs). Following BCBS (2013) and Walther (2016), HQLAs are a weighted sum of bank 

                         
28 Since in our analysis loans are equally risky, this treatment for the risk-weighted loans as in the Basel Accords 

does not lose generality. Similarly, Shleifer and Vishny (2010) and Walther (2016) apply an exogenous ‘marked-

to-market’ collateral constraint to mimic the capital requirement by modelling a ‘haircut’ on debt to limit the 

amount of loan investment. 
29 Note that the requirement constraint for decisions of idiosyncratic shocks is set for the increment in the variables 

at 𝑡 + 𝑣, which implicitly assumes that the requirement constraint holds before that time interval. 
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assets, where illiquid assets have low weights, while NCOs are weights of bank liabilities with 

a cash outflow within 30 days assigned with a higher weight. According to LCR and to fit the 

analysis described in Section 3.1, the ratio of HQLAs to NCOs at 𝑡 + 𝑣 should be no less 

than 𝜄1, which means 

ℎ𝑆𝐿𝑡+𝑣+𝐶𝑡+𝑣+𝑅𝑡+𝑣
𝑗=𝑠

−𝑅𝑡+𝑣
𝑗=𝑑

𝜇𝑑𝑓
𝜔+𝜓,𝑡+𝑣
𝑗 ≥ 𝜄1.                                         (20) 

Equation (20) indicates that the HQLAs 30  are the sum of: 1) ‘haircut’ increment in 

loans, ℎ𝑆𝐿𝑡+𝑣, where ℎ𝑆 is the haircut on loans; 2) increments in liquid assets 𝐶𝑡+𝑣; and 3) net 

interbank market assets 𝑅𝑡+𝑣
𝑗=𝑠

− 𝑅𝑡+𝑣
𝑗=𝑑

.31 NCOs are defined as the worst-case scenario of deposit 

outflow 𝜇𝑑𝑓𝜔+𝜓,𝑡+𝑣
𝑗

, due to the idiosyncratic deposit value variations. Accordingly, the feasible 

set Ж1 of bank decision choices (𝐿𝑡+𝑣
𝑗

, 𝐶𝑡+𝑣
𝑗

, 𝑅𝑡+𝑣
𝑗

) under the LCR liquidity requirement is 

Ж1 = {(𝐿𝑡+𝑣
𝑗

, 𝐶𝑡+𝑣
𝑗

, 𝑅𝑡+𝑣
𝑗

)│
ℎ𝑆

𝜄1𝜇𝑑
𝐿𝑡+𝑣
𝑗

+
1

𝜄1𝜇𝑑
𝐶𝑡+𝑣

𝑗
+

1

𝜇𝑑
𝑅𝑡+𝑣

𝑗=𝑠
−

1

𝜇𝑑
𝑅𝑡+𝑣

𝑗=𝑑
≥ 𝑓𝜔+𝜓,𝑡+𝑣

𝑗
}.   (21) 

Thus, if banks are subject to both the capital and the LCR liquidity requirement, the 

feasible set of choice is Л ∩ Ж1. 

5.2.2 NSFR Requirement 

The NSFR is defined as the ratio of Available Stable Funding (ASF) to Required Stable 

Funding (RSF). Following BCBS (2013) and Walther (2016), ASF is the weighted sum of bank 

liabilities and the ones which may cause liquidity shortfalls have low weights. RSF is the sum 

of bank assets according to their weights where illiquid assets are assigned with high weights. 

According to NSFR and to fit the analysis described in Section 3.2, the ratio should be no less 

                         
30 For computational tractability, we neglect the tax effect on HQLAs. However, this treatment does not lose 

generality as HQLAs will be unambiguously reduced when the corporate tax is considered while NCOs are 

unchanged. Thereby, a higher  𝑙  would offset this minor bias of neglecting the tax without affecting the 

characteristics of the LCR liquidity requirement. 
31 As in (19), we implicitly assume banks’ asset positions satisfy the liquidity requirement before occurrence of 

the idiosyncratic shocks, i.e., we can transform the requirement constraints to the increments of the assets. 
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than 𝜄2, which means 

𝐿𝑡+𝐶𝑡−𝐷𝑡+ℎ𝐷𝐷𝑡

𝐿𝑡
≥ 𝜄2, 

where the numerator is the sum of equity 𝐿𝑡 + 𝐶𝑡 − 𝐷𝑡  and ‘haircut’ deposits ℎ𝐷𝐷𝑡  with a 

‘haircut’ of ℎ𝐷, while the denominator is the sum of illiquid assets, i.e., loans 𝐿𝑡. Accordingly, 

the feasible set Ж2 of bank decision choices (𝐿𝑡, 𝐶𝑡) under NSFR liquidity requirement is 

Ж2 = {(𝐿𝑡, 𝐶𝑡)│
1−𝜄2

1−ℎ𝐷
𝐿𝑡 +

1

1−ℎ𝐷
𝐶𝑡 ≥ 𝐷𝑡}.                                   (22) 

Thus, if banks are subject to both the capital and the NSFR liquidity requirement, the 

feasible set of choice they are subject to is Л ∩ Ж2. 

6. Quantitative Analysis and Results 

We use this section to present the simulation results of the model described in Sections 3, 4 

and 5. We first introduce the parameters of the variables used in our simulations, and then 

present our baseline results.32 We continue this section comparing the results generated by our 

model with empirical data. Lastly, we conduct some sensitivity analyses to better understand 

some key drivers of our results. 

6.1 Parameters 

The parameters we use for simulation are presented in Table 1. The time period is set to one 

year in order to reflect the fact that, in practice, corporate tax is levied once a year. The 

estimates are from US data or studies on the US market. 

<Insert Table 1 here> 

The persistence and standard deviation of the credit shock are estimated from the data of 

annual return on investments for all US banks, from 1984 to 2019. This leads to the values of 

the parameters as 𝜌𝑍 = 0.81 and 𝜎𝑍 = 0.00962. The standard deviation of idiosyncratic credit 

                         
32 A detailed simulation procedure is provided in Online Appendix D. 
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shocks is set at 𝜎𝜔 = 0.045 to match the average US bank failure rate of 0.739%, from the 

period from 1984 to 2019. Since the estimates of the autocorrelation process of (log) deposits 

indicate a unit root, we thus estimate its values using the HP-detrending algorithm, which leads 

to the value of 𝜌𝐷 = 0.88 and 𝜎𝐷 = 0.0145. The unconditional value of deposits is set at 𝐷̅ =

2, according to the average value of (log) deposits, in trillion dollars, from 1984 to 2019. The 

correlation between (HP-detrended) deposits and systematic credit shock is set at 𝜃 = −0.66, 

as in our data. 

The loan rate parameter 𝐴, as defined in (3), is set at 𝐴 = 0.075 to match the observed 

average loan rates, from 1984 to 2019. This figure is also close to the estimates given by De 

Nicolo et al. (2014). Based on their study, we also adopt the values of parameter of 𝛼 = 0.90. 

The persistence and standard deviation of idiosyncratic deposit value variations are set at 𝜏 =

0.12 and 𝜎𝜆 = 0.005, respectively, to match the observed mean ratio (5.8%) of interbank loans 

to deposits from 1984 to 201733 and the bank failure rate of 0.739% from the period of 1984 to 

2019. The discount factor is set at the value of 𝛽 = 0.976 to match the observed average real 

risk-free (Treasury bond) rate of 2.5% (thus 𝑟𝑑 = 𝑟𝑓 = 2.5%) from 1984 to 2019. The constant 

price and time-varying price of risk parameter, defined in (2), are set at 𝛾0 = 3.22 and 𝛾1 =

−15.30, following Jones and Tuzel (2013) and De Nicolo et al. (2014). The annual ratio of 

matured loans is 𝜎 = 20%, following Van den Heuvel (2008) and De Nicolo et al. (2014), 

which implies that the average maturity of outstanding loans is four years.34 The tax rates on 

positive and negative earnings are 𝜑+ = 20% and 𝜑− = 0%, respectively, according to the 

average value of US corporate tax rates between 1984 and 2019. 

The equity issuance cost 𝜂 = 0.09 is adopted according to the average return on equity in 

the US market from 1984 to 2019. The bankruptcy cost follows Mendicino et al. (2018), who 

                         
33 The curtailed observation period of this parameter is due to data availability. Likewise, this limitation also 

applies to other parameters the observation period of which does not span from 1984 to 2019. 
34 Based on the calculation, the average maturity is 1 𝜎⁄ − 1 = 4. 
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provide an estimated value of 𝑐 = 0.30. The recovery cost of defaulting banks’ assets is 𝜍 =

0.03, which comes from observed data on the ratio of overhead costs to total assets (at 3%) 

from 1996 to 2017. The targeted ratio of bank credit to deposits is set at 𝜐 = 1.12 to match the 

observed data of US average ratio of bank credit to deposits of 112% from 1984 to 2019. The 

parameter of deposit insurance fee is set at 𝜚 = 0.80 to ensure the targeted ratio of bank loans 

to deposits is satisfied for banks which are in a negative position of liquid assets.35 The pair of 

the adjustment costs of loans and liquid assets are set at (𝜙𝐿 = 6,𝜙𝐶 = 2), respectively. These 

values are selected to match the observed data, from 1986 to 2018, of interbank rate of 4.13% 

and the standard deviation of the rate of 2.63%. The ratio of dividend pay-out 𝛷0 = 6.8% and 

the ratio of share repurchase to total equity 𝛷1 = 3.8% are based on the observed results from 

Elenev et al. (2021). According to this study, we also set the parameter of equity issuance 

cost 𝜙𝐸 = 4 and the loan management cost 𝑚 = 7.8 to target the observed average ratio of 

equity issuance to total equity of 4.8% and the average net dividend pay-out ratio of 5.8%, 

respectively. 

The values of regulatory liquidity ‘haircut’ are 50% and 90%, respectively, for loans and 

deposits. They are selected from the documents of BCBS (2013) and BCBS (2014) according 

to the appropriate category of the respective asset. Lastly, the parameters for banking 

regulations are set at 𝜅 = 6%36 and 𝜄1 = 𝜄2 = 100% for the capital and liquidity requirement 

ratios, respectively (BCBS, 2011). 

6.1 Baseline Results 

6.1.1 Bank Lending, Equity Issuance and Dividend Pay-out 

Our baseline results are reported in Table 2. 

<Insert Table 2 here> 

                         
35 In the case when banks’ liquid bonds are in negative positions, we treat the bonds as deposits of the banks. 
36 The required ratio of 6% is set for the Tier 1 capital. 
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This table presents the results of the banks under various regulation regimes, namely when 

they are unregulated, are subject to capital requirement only, and are subject to both capital and 

liquidity requirements. The results are obtained using the value function in Equation (15), based 

on the parameter values in Table 1. 

As shown in Table 2, bank lending rises from 1.896 (No regulation) to 2.177 when they 

are only under the capital requirements (slightly lowered to 2.158 when capital requirements 

are strengthened to 12%), while this figure falls to 1.949 when liquidity requirements are added 

to the capital requirements. This result is not surprising and is in line with De Nicolo et al. 

(2014), which implies that a mild capital requirement raises banks’ resilience and encourages 

banks to raise their lending to secure potential profitability, while adding liquidity requirements 

unambiguously reduces bank lending as banks are required to hold more liquid assets. 

The equity issuance ratio rises from –29.50% (unregulated) to 4.79% (capital and liquidity 

requirements) while the net pay-out ratio reduces from 29.50% (unregulated) to 5.81% (capital 

and liquidity requirements). This finding indicates that both the requirements would result in a 

higher equity issuance and a reduced dividend pay-out, thereby lowering banks’ value. 

6.1.2 Interbank Rate and Interbank Trading Volume 

The interbank rate is reduced from 20.84% (unregulated) to 11.61% (capital requirement) and 

further reduced to 4.24% (capital and liquidity requirements). This finding implies that the 

requirements imposed raise the liquidity position of banks (reflecting their increased liquid 

asset holdings) and thus reduces the price of the liquidity within the interbank market. One can 

also see that with the strengthening of the LCR liquidity requirements (i.e., increasing the 

minimum ratio required) the interbank rate falls (i.e., reduction in the price of liquidity). The 

average rate lowers to 0.44% when  𝜄1 = 110% , while rises to 12.05% when  𝜄1 = 80% . 

However, this trend does not apply to the NSFR requirements, where the interbank rate falls to 

3.68% when the requirement reduces to  𝜄2 = 80%, compared with our baseline results of 
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4.24% when 𝜄2 = 100%. This result suggests that LCR and NSFR would affect the interbank 

rate in different directions, which is not surprising as NSFR targets banks’ longer-term liquidity 

issues and is less effective in affecting the function of the interbank market. 

The interbank trading volume is higher at 0.192 when banks are unregulated, and the 

volume is reduced to 0.073 when capital requirements are added. This result is intuitive as 

banks are in a healthier condition with capital requirements regulated at the ratio of 𝜅 = 6%, 

and their liquid holdings rise to −0.048 (compared with the unregulated banks of −0.427). The 

interbank trading volume is 0.107 (𝜄1 = 100%) in our baseline result, rising to 0.112 when the 

LCR requirement 𝜄1 = 110%, while this figure reduces to 0.085 when 𝜄1 = 80%. The volume 

remains around 0.107 when the NSFR requirement ranges from 𝜄2 = 80% to 𝜄2 = 110%. This 

result is expected as the NSFR requirement aims to address banks’ longer-term liquidity issues 

and could be less effective in affecting the interbank trading volume. The trading volume 

reduces to 0.060 when 𝜄1 = 𝜄2 = 50%, the figure is even lower than the results (0.073) when 

only the capital requirement is imposed. This result indicates that there is a U-shaped 

relationship between the interbank trading volume and the liquidity requirements, which is in 

line with our findings derived from a simplified model (provided in Online Appendix E). This 

result is not surprising as with mild liquidity requirements banks are in a good liquidity position 

and thus would not excessively rely on the interbank market to obtain liquidity. However, if 

the liquidity requirement become strict enough, banks would need to borrow more from the 

interbank market to satisfy the increased liquidity requirement. This result implies that Basel 

III’s effort for limiting banks’ excess reliance on the interbank market seems to have a limited 

(or even a converse) impact if the liquidity requirements are higher than the optimal level.  

We then conduct an analysis by changing the ratios of the liquidity requirements (while 

keeping the LCR and NSFR requirements equal to each other, i.e., 𝜄1 = 𝜄2) to compare the 

changes in the interbank trading volume and in the interbank rate. We find that a ratio around 
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65% (for both LCR and NSFR requirements) would lead to the lowest interbank trading 

volume. These results are presented in Figure 3.37 Figure 3 also presents an inverted U-shaped 

relationship between interbank rates and the liquidity ratio required, which is also in line with 

the results from the simplified model in Online Appendix E. As will be explained, this 

relationship is largely due to the fact that the NSFR requirement is not binding with a lower 

liquidity ratio required and banks thus mainly consume their retained liquidity to deal with the 

short-term liquidity shortage and to satisfy the LCR requirement (which is proved to be always 

binding in our model), driving up the price of their retained liquidity. However, if the liquidity 

requirements become stricter, which makes NSFR requirement constraint binding, banks are 

of higher liquidity in both longer- and shorter-terms, which thus lowers the price of the liquidity 

in the interbank market, i.e., the interbank rate reduces. 

<Insert Figure 3 here> 

6.1.3 Probability of Bank Failure, Bank Value and Social Welfare 

The probability of bank failure decreases from 0.89% for unregulated banks to 0.00% when 

banking regulations are imposed. This result is in line with most of the literature, e.g., De 

Nicolo et al. (2014) and Hugonnier and Morellec (2017), confirming that the capital and 

liquidity requirements are effective in minimising bank failure. Bank equity value raises from 

3.49 (unregulated) to 4.03 (capital requirement) but falls to 1.97 when both capital and liquidity 

requirements are in place. The pronounced reduction in bank value when the liquidity 

requirements are added is primarily owning to the fact that banks’ dividends are lowered, and 

equity issuance is raised. Social welfare increases from 5.831 (unregulated) to 6.114 when 

banks are under capital requirement regimes, while reducing to 3.831 when both the capital 

                         
37 A detailed result is presented in the Online Appendix, Table OA2. 
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and liquidity requirements are in place. 38 This result is in line with De Nicolo et al. (2014), 

who suggest that imposing capital requirements alone seems to result in the highest value of 

social welfare while the combination of the capital and liquidity requirements would result in 

lower social welfare. Similar to De Nicolo et al. (2014), we also find a U-shaped relationship 

between social welfare and the capital requirements, i.e., social welfare is at 5.831 when no 

capital requirements are imposed, and the welfare terms raises to 6.114 when 𝜅 = 6%, but 

reduces to 6.035 when the requirement is improved to 𝜅 = 12%. However, we cannot find this 

U-shaped relationship between liquidity requirements and social welfare, i.e., social welfare 

seems to be at the optimal value when no liquidity requirement is imposed. This result implies 

that the addition of liquidity requirement to the regulatory regimes would unambiguously 

reduce social welfare. Thus, our results suggest that regulators should consider whether it is 

optimal to exchange social welfare with bank liquidity, before implementing liquidity 

requirements. 

6.1.4 Cyclical Variation Analysis 

In this subsection, we present some cyclical analyses where we report our simulation results 

according to the realisations of the exogenous shocks, i.e., credit shock 𝑍, aggregate deposit 

value 𝐷, and mass of liquidity-deficit banks 𝜆, with the aim to investigate the changes in banks’ 

behaviours among the variations in those shocks. The results are presented in Table 3. 

<Insert Table 3 here> 

From Table 3, we can see that banks’ loan holdings are pro-cyclical, i.e., the ratios of 

loans to deposits are lower when the economy is in downturns (𝑍 = 0.98), while banks’ 

                         
38 Combining this with the results of bank lending, one can see that banks under capital and liquidity requirements 

would have higher bank lending at 1.949, compared with 1.896 when banks are unregulated. However, social 

welfare of the regimes under capital and liquidity requirements is 3.831, even lower than that of unregulated banks, 

at 5.381. One main reason behind this is that the capital and liquidity requirements highly reduce bank equity 

value by boosting equity issuance and limiting dividend payments, which, based on Equation (17), lowers social 

welfare. 



 29 

liquidity holdings are counter-cyclical, in other words, the ratios of liquid assets to deposits are 

lower in the expansionary periods (𝑍 = 1.02).39 In other words, banks are more illiquid in 

economic expansions. However, adding the liquidity requirement would help to raise banks’ 

liquidity in economic expansions as banks’ ratios of liquid assets to deposits are higher in 

booms (0.087) than recessions (0.084). This novel result thus suggests that the liquidity 

requirement is more effective in economic upturns. 

Interbank rates and interbank trading volume are both higher in recessions, indicating the 

liquidity are more expensive in economic downturns. This finding is line with Acharya and 

Merrouche (2012), who find that interbank rates are higher in economic downturns. Loans are 

normally higher when banks hold larger values of deposits 𝐷 = 2.03 and banks’ liquid asset 

holdings are thus lowered as banks would prefer transforming the deposits into loans to obtain 

higher profitability from lending. In other words, banks are more illiquid when they hold higher 

value of deposits. However, adding liquidity requirements would help to remedy this trend, 

which makes liquid asset holdings higher (0.173) when deposits are at their highest levels. This 

finding indicates that liquidity requirements are effective in mitigating banks’ liquidity issues. 

Interbank rates and the trading volumes are thus higher when banks hold higher value of 

deposits, where banks have lower liquidity. When mass of liquidity-deficit banks is of higher 

value, i.e., when 𝜆 = 0. 505, which means the aggregate liquidity in the economy is lower, 

there is a reduction in loans. Interbank trading volume reduces while interbank rate rises. These 

two findings are intuitive as there are more banks suffering from liquidity shortages, thus there 

would be lower liquidity supply in the interbank market. This fact makes liquidity more 

expensive and hence raises the interbank rate. 

6.2 Model versus Data 

                         
39 As mentioned in Section 3, the aggregation deposit variation is (negatively) correlated with the systematic credit 

shocks. We thus opt for presenting the results by dividing the value of deposits to avoid the dependency of deposits 

on the credit shock. 
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We use this subsection to present the comparison of the results obtained from our simulations 

and the targets we observe from the empirical data. The comparison is presented in Table 4. 

Overall, the targets are generally matched. 

<Insert Table 4 here> 

This result thus indicates that our aims of targeting the dynamics from the observed data 

using the US market are achieved. In other words, our model generates an economy which 

matches some key dynamics of the US macro-economy. 

6.3 Sensitivity Analysis 

We use this subsection to present sensitivity analyses for some of the key variables of our 

model. For comparison, we use our baseline results when banks are under both capital and 

liquidity requirements as benchmark and compare the changes in the results against the 

benchmark. We present the results in Table 5. 

<Insert Table 5 here> 

We first raise the loan rate from 𝑎 = 0.075 to 𝑎 = 0.080. We find that this change results 

in a higher bank lending and a lower liquid asset holding, which means that with an increase 

in loan rate, bank lending become more profitable. Interbank rate is reduced as banks are in a 

better condition, thanks to the increased revenues from loans. Accordingly, social welfare 

raises to 4.72 from our baseline results (3.83). We then compare the results when the annual 

rate of matured loans rises from 𝜎 = 0.20 to 𝜎 = 0.40, which implies that loans are more 

liquid. The trend of changes is similar to an increase in the loan rate, as when loans become 

more liquid, they would be more preferred by banks with their higher liquidity, and the 

resulting social welfare would rise to 5.148. 

We then increase the loan trading cost from  𝜙𝐿 = 6  to  𝜙𝐿 = 8 , which means the 

adjustment of loans to deal with the idiosyncratic shocks is more costly. Hence, there is a slight 

increase in bank lending to 1.969 (from our baseline 1.949) as banks would reduce the trading 
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of loans to meet the idiosyncratic liquidity shortages. Interbank trading rises to 0.110, together 

with an increased interbank rate to 6.16%, which witnesses a higher demand of liquidity from 

the interbank market. Social welfare rises to 4.053, primarily thanks to the sustained bank 

lending. Lastly, we raise the equity issuance cost 𝜙𝐸 = 4 to 𝜙𝐸 = 6, which creates a situation 

where issuing equity become more costly. As a result, equity issuance ratio lowers to 1.37% 

while the net dividend pay-out ratio increases to 9.23%. This change then results in a higher 

bank lending at 1.969 and a higher value of social welfare at 4.030. 

7. Conclusions 

In this paper, we build a macro-economic model in which banks are subject to various shocks 

and rely on an interbank market to manage their idiosyncratic shocks. Banks choose an optimal 

level of loans, liquid assets, and interbank borrowing, which leads to an equilibrium of 

interbank rates and interbank trading volume. We aim to investigate the macro-prudential 

effects of Basel-style capital and liquidity requirements on banks, interbank market, and social 

welfare. We endogenise several macro-prudential forces, such as interbank rates and interbank 

trading volume, which have been less documented in the existing literature. 

We find that implementing liquidity requirements would lead to a lowered interbank rate, 

which means the liquidity requirement would help to reduce the price of liquidity within the 

interbank market. For the first time, we identify a U-shaped relationship between the interbank 

trading volume and the liquidity requirements, indicating that banks’ reliance on the interbank 

market (captured by the interbank trading volume) could be mitigated only if an appropriate 

level of liquidity is required. We also suggest that the ratio recommended in Basel III (100% 

set for the liquidity requirements) seems to violate its aim of limiting banks’ excessive reliance 

on the interbank market, and that liquidity requirement ratios (for both LCR and NSFR ratios) 

around 65% would minimise banks’ excessive reliance on the interbank market. Lastly, we 

find that imposing capital requirements alone would be nearest to the optimal level of social 
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welfare and the benefits of implementing liquidity requirements are at the cost of lowered 

social welfare. We also suggest that the current liquidity ratio required at 100% seems sub-

optimally high in terms of its impact to the interbank market and of its contribution to social 

welfare. 

Future studies could extend our model by introducing endogenous liquidity runs, while in 

our model the liquidity deposit variations are exogenous factors. Relaxing this assumption 

could better reflect the reality and help to evaluate the performance of the capital and liquidity 

requirements more comprehensively. Second, considering several heterogeneities within the 

bank system, such as systemic importance, would further improve the generality of our model. 

The analysis concerning the systemic importance would be in line with the implementation of 

the Basel III Accord, which regards Global Systemically Important Banks (G-SIBs) as a main 

concern (BCBS, 2011). 
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Table 1 

Baseline parameters 

This table presents the notation and description of parameters in the model proposed in this paper and reports their 

target or source. The value of each parameter is presented in the rightmost column. 

Notations Description Target & Source Value 

𝜌𝑍 Persistence of systematic shock AR(1) bank Inve. Ret., 84-19 0.81 

𝜎𝑍 Standard deviation of systematic shock AR(1) bank Inve. Ret., 84-19 0.00962 

𝜎𝜔 Standard deviation of idiosyncratic credit shock Bank fail. rate of 0.739%, 84-19 0.045 

𝜌𝐷 Persistence of deposits HP-detrended deposits, 84-19 0.88 

𝜎𝐷 Standard deviation of deposits HP-detrended deposits, 84-19 0.0145 

𝐷̅ Unconditional average of deposits Mean of (log) depts in tri$, 84-19 $2 

𝜃 Corr. between deposit and systematic credit shock Corr. of des and Inve. Ret., 84-19 −0.66 

𝐴 Loan rate parameter Average loan rate, 84-19 0.075 

𝛼 Diminishing return to scales De Nicolo et al. (2014) 0.90 

𝜏 Significance of vari. in mass of liquidity-deficit banks Mean. Intb./Deps. of 5.8%, 84-17 0.12 

𝜎𝜆 S.D. of vari. in mass of liquidity-deficit banks Bank failure rate of 0.739%, 84-19 0.005 

𝛽 Time discount factor Real risk-free rate of 2.5%, 84-19 0.976 

𝑟𝑑 = 𝑟𝑓 Deposit rate, risk-free rate Real risk-free rate of 2.5%, 84-19 2.5% 

𝛾0 Constant price of risk parameter Jones and Tuzel (2013) 

De Nicolo et al. (2014) 
3.22 

𝛾1 Time varying price of risk parameter Jones and Tuzel (2013) 

De Nicolo et al. (2014) 
−15.30 

𝜎 Annual percentage of matured loans De Nicolo et al. (2014) 20% 

(𝜑−, 𝜑+) Tax rates for negative and positive profits US Cor. Tax rate of 20%, 84-19 (0%, 20%) 

𝜂 Equity issuance cost Return on equity of 8.63%, 84-19 0.09 

𝑐 Bankruptcy cost Mendicino et al. (2018) 0.30 

𝜍 Recovery cost Overhead costs/assets of 3%, 96-17 0.03 

𝜐 Ratio of bank loans to deposits Ratio of Cre./Deps of 1.12, 84-19 112% 

𝜚 Deposit insurance cost Ratio of Cre./Deps of 1.12, 84-19 0.80 

(𝜙𝐿, 𝜙𝐶) Adjustment costs of loans and liquid assets Mean and S.D. of Intb. Rate of 4.13% and 
2.63%, 86-18 

(6, 2) 

(𝛷0, 𝛷1) Dividend pay-out and share repurchase Elenev et al. (2021) (6.8%, 3.8%) 

𝜙𝐸 Equity issuance cost Eqt. Iss. Ratio of 4.8%, Elenev et al. (2021) 4 

𝑚 Loan management cost Div. Ratio of 5.8%, Elenev et al. (2021) 7.8 

(ℎ𝐿 , ℎ𝐷) Liquidity ‘haircut’ on loans, deposits BCBS (2013), (2014) (0.5, 0.90) 

𝜅 Capital requirements BCBS (2011) 6% 

(𝜄1, 𝜄2) Liquidity requirements BCBS (2011) (100%, 100%) 

The notation 84-19 means that the time period range from 1984 to 2019. AR(1) represents an autoregressive process of order 

one. Inve. is investment, Ret. stands for revenue, Corr. means correlation, and Intb. represents interbank. Vari. Means variation; 

Deps. means deposits; Cre. stands for credit; and Divd. is dividend. Idio. represents idiosyncratic, S. D. is standard deviation, 

Eqt. denotes equity, Iss. is issuance, and Div. means dividends. 
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Table 2 

The impact of bank regulation 

This table presents the results of the banks under various regulation regimes. The results are obtained using the value function in Equation (15) and the parameter values in 

Table 1. The column No regulation refers to the case when no requirement regimes are in place, Capital is the scenario when only the capital requirements are imposed, and 

Capital and Liquidity is the situation when both the requirements are introduced. The parameters shown below present the cases when different ratios of the requirements are 

imposed. The results of this table are the averages across the simulated results of the time-series (1000 periods) averages of the cross-sectional averages (100 times). 

 No regulation Capital Capital and Liquidity 

  𝜅 = 6% 𝜅 = 12% 
𝜄1 = 100% 

𝜄2 = 100% 

𝜄1 = 110% 

𝜄2 = 100% 

𝜄1 = 80% 

𝜄2 = 100% 

𝜄1 = 100% 

𝜄2 = 110% 

𝜄1 = 100% 

𝜄2 = 80% 

𝜄1 = 50% 

𝜄2 = 50% 

Loans 1.896 2.177 2.158 1.949 1.948 1.949 1.946 1.950 1.952 

Liquid Assets –0.427 –0.048 0.086 0.172 0.174 0.172 0.176 0.168 0.165 

Equity Issuance Ratio –29.50% –38.90% –26.66% 4.79% 4.79% 4.77% 5.09% 4.37% 1.80% 

Pay-out Ratio 29.50% 49.50% 37.26% 5.81% 5.81% 5.83% 5.51% 6.23% 8.80% 

Interbank trading volume 0.192 0.073 0.070 0.107 0.112 0.085 0.107 0.107 0.060 

Interbank rate 20.84% 11.61% 11.25% 4.24% 0.44% 12.05% 4.24% 3.68% 12.10% 

S.D. of Interbank rate 1.32% 0.80% 0.04% 2.44% 2.36% 0.76% 2.43% 2.45% 0.18% 

Bankruptcy Prob.       0.89% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Bank Equity Value 3.494 4.034 3.982 1.971 1.970 1.970 1.970 2.107 2.291 

Social Welfare 5.831 6.114 6.035 3.831 3.830 3.831 3.819 3.977 4.158 

S.D. of Soc. Welfare 0.047 0.252 0.259 0.330 0.331 0.330 0.436 0.341 0.421 
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Table 3 

The impact of exogenous shock variations 

This table presents the results of the banks under various regulation regimes, sorted by the realisations of exogenous shocks. The results are obtained using the value function 

in Equation (15) and the parameter values in Table 1. The column No regulation refers to the case when no requirement regimes are in place, Capital is the scenario when only 

the capital requirements are imposed, and Capital and Liquidity is the situation when both the requirements are introduced. The columns shown as ‘Unconditional’ refer to the 

cases where all samples are included, while other columns show the results of the subsamples where the realisations of the respective exogenous shocks are sorted and chosen 

against the given realisations of the total sample. The results of this table are the averages across the simulated results of the time-series averages (1000 periods) of the cross-

sectional averages (100 times). 

 No regulation Capital Capital and Liquidity 

 Systematic credit shocks 𝑍 

 0.98 Unconditional 1.02 0.98 Unconditional 1.02 0.98 Unconditional 1.02 

Loans/Deposits 0.944 0.946 0.948 1.073 1.088 1.093 0.951 0.974 0.979 

Liquid Assets/Deposits –0.209 –0.211 –0.213 –0.023 –0.024 –0.025 0.084 0.086 0.087 

Interbank trading volume 19.36% 19.24% 19.13% 6.77% 7.33% 7.37% 10.65% 10.67% 10.69% 

Interbank rate 21.03% 20.84% 20.62% 13.41% 11.61% 11.12% 7.10% 4.24% 3.35% 

Social welfare 5.805 5.831 5.863 6.093 6.114 6.144 3.783 3.831 3.902 

 Aggregate deposit value 𝐷 

 1.97 Unconditional 2.03 1.97 Unconditional 2.03 1.97 Unconditional 2.03 

Loans 1.872 1.896 1.912 2.155 2.177 2.220 1.922 1.949 1.974 

Liquid Assets –0.426 –0.427 –0.428 –0.043 –0.048 –0.054 0.171 0.172 0.173 

Interbank trading volume 19.14% 19.24% 19.44% 7.24% 7.33% 7.36% 10.58% 10.67% 10.83% 

Interbank rate 20.97% 20.84% 20.56% 11.47% 11.61% 11.81% 4.17% 4.24% 4.39% 

Social welfare 5.805 5.831 5.888 6.094 6.114 6.152 3.651 3.831 3.589 

 Mass of Liquidity-deficit banks 𝜆 

 0.495 Unconditional 0.505 0.495 Unconditional 0.505 0.495 Unconditional 0.505 

Loans 1.899 1.896 1.894 2.178 2.177 2.176 1.950 1.949 1.948 

Liquid Assets –0.428 –0.427 –0.426 –0.048 –0.048 –0.048 0.173 0.172 0.171 

Interbank trading volume 19.32% 19.24% 19.16% 7.44% 7.33% 7.20% 10.75% 10.67% 10.59% 

Interbank rate 19.08% 20.84% 22.59% 11.18% 11.61% 11.75% 1.22% 4.24% 7.32% 

Social welfare 5.832 5.831 5.830 6.117 6.114 6.110 3.832 3.831 3.830 
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Table 4 

Model versus data 
This table compares the results from the model and the collected data. Unless specifically mentioned, the data is to compare the baseline results when banks are under capital 

and liquidity requirements. We mainly calibrate the model to the US economy under the regime when both the capital and liquidity requirements are imposed. Since our 

model includes three requirement regimes, i.e., No requirement, Capital requirement, and Capital and liquidity requirements, the results of these regimes show a large 

degree of variation. To make the comparison of our results across regimes more straightforward, some of the targets, as indicated in brackets, are calibrated to different 

requirement regimes. 

Description Data Model 

Bank failure rate 0.739% 0.89% (No requirement) 

Net dividend pay-out ratio 5.8% 5.81% 

Equity issuance ratio 4.8% 4.79% 

Interbank rate 4.13% 4.24% 

S.D. of Interbank rate 2.63% 2.44% 

Interbank volume to deposit ratio 5.9% 5.35% 

Bank credit to deposits 112% 109% (Capital requirement) 

Loans to deposits 85.9% 78.2% (No requirement) 

 

 

Table 5 

Sensitivity Analysis 

This table presents the results of the sensitivity analysis. The results are obtained using the value function in Equation (15), the parameter values in Table 1, and the values 

specified in the second row of the table. The result Baseline is the case when banks are under both the capital and liquidity requirements. The column Higher loan rate is the 

case when 𝑎 = 0.075 rises to 𝑎 = 0.080. Higher matured loans is the scenario when 𝜎 = 0.20 increase to 𝜎 = 0.40. Higher loan trading cost refers to the situation when 𝜙𝐿 =
6 is raised to 𝜙𝐿 = 8. Higher loan trading cost refer to the situation when 𝜙𝐿 = 6 is raised to 𝜙𝐿 = 8. Higher equity issuance cost refers to the situation when 𝜙𝐸 = 4 rises 

to 𝜙𝐸 = 6. The results of this table are the averages across the simulated results of the time-series averages (1000 periods) of the cross-sectional averages (100 times). 

 Baseline Higher loan rate Higher matured loans Higher loan trading cost Higher equity issuance cost 

  𝑎 = 0.080 𝜎 = 0.40 𝜙𝐿 = 8 𝜙𝐸 = 6 

Loans 1.949 1.996 2.047 1.969 1.969 

Liquid Assets 0.172 0.162 0.129 0.172 0.174 

Equity Issuance Ratio 4.79% –9.48% –18.79% 0.78% 1.37% 

Pay-out Ratio 5.81% 20.08% 29.39% 9.82% 9.23% 

Interbank trading volume 0.107 0.107 0.111 0.110 0.107 

Interbank rate 4.24% 3.09% –4.86% 6.16% 4.04% 

Bankruptcy Prob. 0.00% 0.00% 0.00% 0.00% 0.00% 

Social Welfare 3.831 4.719 5.148 4.053 4.030 
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(a) Interbank trading volume 

 

 

(b) Interbank rates 

Figure 1 

Interbank trading volume and interbank rate of US and Euro area 

This figure reports the collected for the interbank loans and overnight interbank rates for the US and European 

markets, for the years from 1999 to 2017. Figure 1(a) reports the interbank loans and Figure 1(b) shows the 

overnight interbank rates. The data are calibrated annually and are collected from database of Federal Reserve 

Bank of St. Louis (FRED) and European Central Bank (ECB). 
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Figure 2 

Bank’s dynamics 

Dynamics of banks in period 𝑡 , consisting of credit shock  𝑍𝑡−1 , realisation of aggregate deposit  𝑑𝑡 , 

investment choices (𝑙𝑡 , 𝑐𝑡), idiosyncratic credit shock 𝑓𝜔,𝑡+𝑣, idiosyncratic deposit value variations 𝑓𝜓,𝑡+𝑣, 

mass of liquidity-deficit banks  𝜆𝑡 , decisions for (𝑙𝑡+𝑣
𝑗

, 𝑐𝑡+𝑣
𝑗

, 𝑟𝑡+𝑣
𝑗

)  following the idiosyncratic shocks, 

bankruptcies and born of a new bank, and levy of corporate tax Ϛ(𝑦𝑡). The numbers in the figure indicate the 

order of the events. 

Time Sequences: 

①: Banks make new investment choices (𝑙𝑡, 𝑐𝑡), based on the systematic credit shock 𝑍𝑡−1 and new aggregate deposits 

value 𝑑𝑡. 

②: Idiosyncratic profit shock 𝑓𝜔,𝑡+𝑣 and idiosyncratic deposit value variation 𝑓𝜓,𝑡+𝑣 occur continuously within 𝑣 ∈ [0,1]. 

The profit shock occur randomly to banks and the deposit variation makes them a probability of 𝜆𝑡 to become liquidity-

deficit ones and a probability of 1 − 𝜆𝑡  to become liquidity-surplus banks. For each interval  𝑡 + 𝑣 , banks make 

decisions (𝑙𝑡+𝑣
𝑗

, 𝑐𝑡+𝑣
𝑗

, 𝑟𝑡+𝑣
𝑗

). Banks may default following the idiosyncratic shocks. 

③: Corporate tax is levied and systematic credit shock 𝑍𝑡 and new aggregate deposits value 𝑑𝑡+1 realise. Banks may 

default following the realisation of these shocks. 

 

 

 

Figure 3 

Interbank trading volume, interbank rate, and (LCR and NSFR) liquidity 

requirements 

This figure reports the relationship between interbank trading volume, interbank rate, and the ratios of 

liquidity requirements. 𝜄1 stands for the ratio of LCR liquidity requirements, while 𝜄2 represents the ratio of 

NSFR liquidity requirements. In this analysis, we set 𝜄1 = 𝜄2, and their value is shown in the horizontal axis. 

The vertical axis presents the corresponding interbank trading volume (left) and interbank rate (right). 
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Online Appendix 
A. Modelling the correlation coefficient 𝜽 

The simulation of the correlation coefficient 𝜃 < 0, between error terms 𝜀𝐷,𝑡  and 𝜀𝑍,𝑡 , can be 
modelled using the method of Lkhagvasuren and Galindev (2008). To simplify the terminology, 
we denote Lkhagvasuren and Galindev (2008) as L&G in the rest of this section. In the Page 13 of 
L&G, they propose that two independent AR(1) processes 𝑢1,1,𝑡  and 𝑢2,2,𝑡  can be simulated to 
represent two correlated AR(1) processes 𝑥1,𝑡 and 𝑥2,𝑡 by using following equation 

𝑥1,𝑡 = √1 − 𝜌1
2𝑢1,1,𝑡,                                           (23) 

𝑥2,𝑡 = 𝑣2,𝑡 + √1 − 𝛾2√1 − 𝜌2
2𝑢2,2,𝑡,                (24) 

where 𝑣2,𝑡 can be represented by pre-generated series 𝑢̂1,1,𝑡 using equation below 

𝑣2,𝑡 = 𝜌2𝑣2,𝑡−1 + 𝛾√1 − 𝜌2
2(𝑢̂1,1,𝑡 − 𝜌1𝑢̂1,1,𝑡−1), 

where 𝛾 represents the correlation of the error term of 𝑥1,𝑡 and 𝑥2,𝑡, 𝜌𝑖 is the persistence of 𝑢𝑖,𝑖,𝑡 
and  𝜎𝑢,𝑖,𝑖

2 = 1 (1 − 𝜌𝑖
2)⁄ . It shows that the correlated AR(1) processes can respectively be 

represented by one AR(1) process 𝑢1,1,𝑡 (for 𝑥1,𝑡) and two AR(1) processes 𝑣2,𝑡 and 𝑢2,2,𝑡 (for 𝑥2,𝑡). 
It is straightforward to show that 𝜎𝑥1

2 = 𝜎𝑥2
2 = 1 and 𝜎𝑣2

2 = 𝛾2. However, we decompose the error 
terms of the correlated AR(1) processes as follows: 

𝑦1,𝑡 = 𝜌1𝑦1,𝑡−1 + 𝜀1,𝑡,                                             (25) 

𝑦2,𝑡 = 𝜌2𝑦2,𝑡−1 + 𝛾𝜀1,𝑡 + √1 − 𝛾2𝜀2,𝑡.                            (26) 

To prove equation above is equivalent to Equation (24), we introduce 𝑍1,𝑡 and 𝑍2,𝑡 to rewrite 𝑦2,𝑡 
as 

𝑦2,𝑡 = 𝛾𝑍1,𝑡 + √1 − 𝛾2 𝑍2,𝑡 

= 𝛾(𝜌2𝑍1,𝑡−1 + 𝜀1,𝑡) + √1 − 𝛾2(𝜌2𝑍2,𝑡−1 + 𝜀2,𝑡) = 𝜌2 (𝛾𝑍1,𝑡−1 + √1 − 𝛾2𝑍2,𝑡−1) +
𝛾𝜀1,𝑡 + √1 − 𝛾2𝜀2,𝑡. 

Thus, if we decompose 𝑦2,𝑡−1 into two parts and represents it as 𝑦2,𝑡−1 = 𝛾𝑍1,𝑡−1 + √1 − 𝛾2𝑍2,𝑡−1, 
we can claim that 𝑦2,𝑡 can be represented by two AR(1) processes 𝑍1,𝑡 and 𝑍2,𝑡, with 𝜎𝑍1

2 = 𝜎𝑍2
2 =

1 (1 − 𝜌2
2)⁄ , and 𝜎𝑦𝑖

2 = 1 (1 − 𝜌𝑖
2)⁄ . To make the variances in Equations (25) and (26) equal to one, 

as in Equations (23) and (24), we rescale the above processes, which yield the following: 

𝑋1,𝑡 = √1 − 𝜌1
2(𝜌1𝑦1,𝑡−1 + 𝜀1,𝑡) = √1 − 𝜌1

2𝑦1,𝑡, 

𝑋2,𝑡 = √1 − 𝜌2
2𝑦2,𝑡 = √1 − 𝜌2

2 (𝛾𝑍1,𝑡 + √1 − 𝛾2 𝑍2,𝑡) = 𝛾√1 − 𝜌2
2𝑍1,𝑡 +

√1 − 𝛾2√1 − 𝜌2
2 𝑍2,𝑡, 

Comparing above two equations with (23), (24), we can prove that if 𝑥2,𝑡 = 𝑋2,𝑡 , 𝑢1,1,𝑡 = 𝑦1,𝑡 , 
𝑢2,2,𝑡 = 𝑍2,𝑡  and 𝑣2,𝑡 = 𝛾√1 − 𝜌2

2𝑍1,𝑡 , we can obtain  𝑥𝑖,𝑡 = 𝑋𝑖,𝑡 . Thus, this proves our 
transformation used in Equation (25), (26) is equivalent to the L&G decomposition method. Our 
proof thus completes. 

 

B. Aggregation 

To solve our model, we have made following assumptions to allow us to obtain the aggregation 
problem by investigating the problem of a representative bank 𝑖, with the application of the law of 
large numbers. These assumptions are: (i) that banks are facing with the same systematic credit 
shocks and aggregation deposit variations, and all banks’ objective is linear in the idiosyncratic 
shocks, and the idiosyncratic shocks are memoryless; (ii) that if a bank fails it is replaced by a bank 
with same amount of deposits and capital as those surviving banks. 

In addition, we have introduced several assumptions to obtain the aggregation problem of banks in 
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terms of their decisions for the idiosyncratic shocks. These assumptions are: (iii) that the shocks 
are i.i.d. and only last for one period, with economic situation unchanged, and thus the discounting 
issues play a limited role in affecting banks’ decisions; (iv) that the realisations of these shocks are 
subject to a Brownian motion and banks’ objective is unchanged across each period; (v) banks’ 
constraints at each time interval are addictive and thus the constraints still hold when we sum up 
their constraints within the period.  

The equity valuation of surviving banks is 

𝐸(𝑥𝑡 ,𝑊𝑡) = max{0, max
{𝒬𝑡,𝒬𝑡+𝑣

𝑗
}
{𝐼𝑡(𝑥𝑡,𝑊𝑡) + ∫ [∑ 𝐼𝑡+𝑣

𝑗
(𝑥𝑡,𝑊𝑡+𝑣

𝑗
)𝑗=𝑑,𝑠 ]𝑑𝑣

𝑡+1

𝑡
+

𝔼𝑡[𝑀𝑡,𝑡+1𝐸(𝑥𝑡+1,𝑊𝑡+1)]}}, 

subject to budget constraints and regulatory constraints, if any, as aforementioned. Given that those 
banks are subject to a same set of (endogenous and exogenous) state variables 𝑥𝑡, and based on 
assumptions (i) to (v), we can conclude that the surviving banks have identical objectives which 
result in same decision choices of 𝒬𝑡 for credit and aggregate deposit variation shocks and of 𝒬𝑡+𝑣

𝑗
 

for idiosyncratic shocks. Although the idiosyncratic shocks divide banks into liquidity-surplus and 
liquidity-deficit banks, which causes different wealth for each group of the banks, this can be 
resolved by investigating them separately and by relying on the assumptions that the wealth gained 
by both groups of banks can be regarded as the wealth of the whole banking system, as in 𝑊𝑡, as 
the idiosyncratic shocks are memoryless across periods. 

How about defaulting banks? Since they are replaced by new ones with same amount of deposit 
and capital as surviving banks, the replaced banks thus possess equal resources to reach 𝑊𝑡 or 𝑊𝑡+𝑣

𝑗
 

and then choose the same optimal choices 𝒬𝑡 or 𝒬𝑡+𝑣
𝑗

 as in the surviving banks. Therefore, all new 
banks will have same wealth and make the same optimal choices upon bailout. Thus, we can solve 
the problem for a representative bank, even considering the defaulting banks. 

 

C. Model Solution 

C.1 Decisions for the Idiosyncratic Shocks 

C.1.1. Optimalisation Problem for Liquidity-deficit Banks 

The optimal decision choices of the liquidity-deficit banks at time interval 𝑡 + 𝑣 can be summarised 
as  {𝐼𝑡+𝑣

𝑑 , 𝐿𝑡+𝑣
𝑑 , 𝐶𝑡+𝑣

𝑑 , 𝑅𝑡+𝑣
𝑑 } , given the realisations of  𝑥𝑡 = {𝑍𝑡−1, 𝐷𝑡, 𝜆𝑡 , 𝐿𝑡, 𝐶𝑡, 𝑓𝜔,𝑡+𝑣 , 𝑓𝜓,𝑡+𝑣} . 

Accordingly, the optimal function can be rewritten as, where we denote the cumulative value of 
idiosyncratic shocks in 𝑡 + 1 as 𝐹𝜔+𝜓,𝑡+1, 

𝐸𝑑(𝑥𝑡,𝑊𝑡+𝑣
𝑑 ) = max {0, max

{𝐼𝑡+𝑣
𝑑 ,𝐿𝑡+𝑣

𝑑 ,𝐶𝑡+𝑣
𝑑 ,𝑅𝑡+𝑣

𝑑 }
{−(1 + 𝜂)𝐼𝑡+𝑣

𝑑 + 𝔼𝑡[𝑀𝑡,𝑡+1{0, 𝐸𝑑(𝑥𝑡+1,𝑊𝑡+1
𝑑 ) +

𝐹𝜔+𝜓,𝑡+1}]}},  

subject to 

−𝐼𝑡+𝑣
𝑑 − 𝐿𝑡+𝑣

𝑑 − 𝐶𝑡+𝑣
𝑑 − 𝑞𝑡

𝑅𝑅𝑡+𝑣
𝑑 + 𝛷𝐿(𝐿𝑡+𝑣

𝑑 , 𝐿𝑡
𝑑) + 𝛷𝐶(𝐶𝑡+𝑣

𝑑 , 𝐶𝑡
𝑑) + 𝑊𝑡+𝑣−

𝑑 ≤ 𝑊𝑡+𝑣
𝑑  ,     (27) 

𝑊𝑡+1
𝑑 = [1 + (1 − 𝜑)𝜋(𝐿𝑡)𝑍𝑡](𝐿𝑡

𝑑 − 𝐿̂𝑡+1
𝑑 ) + [1 + (1 − 𝜑)𝑟𝑓](𝐶𝑡

𝑑 − 𝐶̂𝑡+1
𝑑 ) − 𝑅̂𝑡+1

𝑑 −
𝜑[(1 − 𝜏)𝑟𝑑𝐷𝑡 − (1 − 𝑞𝑡

𝑅)𝑅̂𝑡+1
𝑑 ],                                  (28) 

𝐿𝑡+𝑣
𝑑 − 𝐶𝑡+𝑣

𝑑 − 𝜚(𝐶𝑡+𝑣
𝑑 )

2
∙ 𝜒𝐶𝑡

𝑑<0 + 𝑅𝑡+𝑣
𝑑 ≤ 𝑓𝜔+𝜓,𝑡+𝑣,                       (29) 

(1 − 𝜅)𝐿𝑡+𝑣
𝑑 + 𝐶𝑡+𝑣

𝑑 + 𝑅𝑡+𝑣
𝑑 ≤ 𝑓𝜔+𝜓,𝑡+𝑣,                                 (30) 

ℎ𝑆

𝜄1𝜇𝑑
𝐿𝑡+𝑣
𝑑 +

1

𝜄1𝜇𝑑
𝐶𝑡+𝑣

𝑑 +
1

𝜇𝑑
𝑅𝑡+𝑣

𝑑 ≤ 𝑓𝜔+𝜓,𝑡+𝑣.                                  (31) 

In (27), we denote 𝑊𝑡+𝑣−
𝑑  as net wealth prior to the realisation of idiosyncratic shocks at 𝑡 + 𝑣 and 

𝑊𝑡+𝑣
𝑑 = 𝑊𝑡+𝑣−

𝑑 − 𝑓−𝜔+𝜓,𝑡+𝑣 − 𝑅𝑡+𝑣−
𝑑  as the net worth after the realisation of the shocks and the 

repayment of interbank borrowing. In (28), we denote 𝑊𝑡+1
𝑑  as their (after-tax) wealth at the end 

of 𝑡, where 𝐿̂𝑡+1
𝑑 = ∫ 𝐿𝑡+𝑣

𝑑 𝑑𝑣
1

0
 and 𝐶̂𝑡+1

𝑑 = ∫ 𝐶𝑡+𝑣
𝑑 𝑑𝑣

1

0
 are cumulative changes in the asset holding 

positions. Equation (29) is the collateral constraint as in (12) to reflect the deposit insurance fee 
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when banks’ holdings of liquid assets are negative. Equations (30) and (31) are the (applicable) 
capital and liquidity requirement constraints, as defined in (19) and (21), respectively, where we 
have modified these equations as the changes in the assets are negative. 

Using equation (27), we can eliminate 𝑅𝑡+𝑣
𝑑  to rewrite (28), (29), (30) and (31) as 

𝑊𝑡+1
𝑑 = [1 + (1 − 𝜑)𝜋(𝐿𝑡)𝑍𝑡](𝐿𝑡

𝑑 − 𝐿̂𝑡+1
𝑑 ) + [1 + (1 − 𝜑)𝑟𝑓](𝐶𝑡

𝑑 − 𝐶̂𝑡+1
𝑑 ) − (1 − 𝜑)(1 −

𝜏)𝑟𝑑𝐷𝑡 − [1 − 𝜑(1 − 𝑞𝑡
𝑅)] ∫

−𝑊𝑡+𝑣
𝑑 +𝑊𝑡+𝑣−

𝑑 +𝛷𝐿(𝐿𝑡+𝑣
𝑑 ,𝐿𝑡

𝑑)+𝛷𝐶(𝐶𝑡+𝑣
𝑑 ,𝐶𝑡

𝑑)−𝐼𝑡+𝑣
𝑑 −𝐿𝑡+𝑣

𝑑 −𝐶𝑡+𝑣
𝑑

𝑞𝑡
𝑅 𝑑𝑣

1

0
,  

𝐿𝑡+𝑣
𝑑 − 𝐶𝑡+𝑣

𝑑 − 𝜚(𝐶𝑡+𝑣
𝑑 )

2
∙ 𝜒𝐶𝑡

𝑑<0 +
−𝑊𝑡+𝑣

𝑑 +𝑊𝑡+𝑣−
𝑑 +𝛷𝐿(𝐿𝑡+𝑣

𝑑 ,𝐿𝑡
𝑑)+𝛷𝐶(𝐶𝑡+𝑣

𝑑 ,𝐶𝑡
𝑑)−𝐼𝑡+𝑣

𝑑 −𝐿𝑡+𝑣
𝑑 −𝐶𝑡+𝑣

𝑑

𝑞𝑡
𝑅 ≤

𝑓𝜔+𝜓,𝑡+𝑣,                                                 (32) 

(1 − 𝜅)𝐿𝑡+𝑣
𝑑 + 𝐶𝑡+𝑣

𝑑 +
−𝑊𝑡+𝑣

𝑑 +𝑊𝑡+𝑣−
𝑑 +𝛷𝐿(𝐿𝑡+𝑣

𝑑 ,𝐿𝑡
𝑑)+𝛷𝐶(𝐶𝑡+𝑣

𝑑 ,𝐶𝑡
𝑑)−𝐼𝑡+𝑣

𝑑 −𝐿𝑡+𝑣
𝑑 −𝐶𝑡+𝑣

𝑑

𝑞𝑡
𝑅 ≤ 𝑓𝜔+𝜓,𝑡+𝑣,     (33) 

ℎ𝑆

𝜄1𝜇𝑑
𝐿𝑡+𝑣
𝑑 +

1

𝜄1𝜇𝑑
𝐶𝑡+𝑣

𝑑 +
−𝑊𝑡+𝑣

𝑑 +𝑊𝑡+𝑣−
𝑑 +𝛷𝐿(𝐿𝑡+𝑣

𝑑 ,𝐿𝑡
𝑑)+𝛷𝐶(𝐶𝑡+𝑣

𝑑 ,𝐶𝑡
𝑑)−𝐼𝑡+𝑣

𝑑 −𝐿𝑡+𝑣
𝑑 −𝐶𝑡+𝑣

𝑑

𝜇𝑑𝑞𝑡
𝑅 ≤ 𝑓𝜔+𝜓,𝑡+𝑣.    (34) 

 

C.1.1.1 First-order Conditions 

A). Dividends/Cash Flows The FOC of 𝐸𝑡
𝑑 with respect to dividends/cash flows 𝐼𝑡+𝑣

𝑑  is 

 
1

𝑞𝑡
𝑅 𝜓𝑡+𝑣

𝑑1 +
1

𝑞𝑡
𝑅 𝜓𝑡+𝑣

𝑑2 +
1

𝜇𝑑𝑞𝑡
𝑅 𝜓𝑡+𝑣

𝑑3 − (1 + 𝜂) +
1−𝜑(1−𝑞𝑡

𝑅)

𝑞𝑡
𝑅 𝔼𝑡[𝑀𝑡,𝑡+1𝑉𝑊,𝑡+1

𝑑 ] = 0,          (35) 

where 𝜓𝑡+𝑣
𝑑1 , 𝜓𝑡+𝑣

𝑑2  and 𝜓𝑡+𝑣
𝑑3  are the Lagrange multipliers of (32), (33) and (34) respectively. We 

also denote 𝑉𝑊,𝑡+1
𝑑 = 𝜕[𝐸𝑡+1

𝑑 + 𝐹𝜓+𝜔,𝑡+1] 𝜕𝑊𝑡+1
𝑑⁄ . 

B). Loans The FOC of 𝐸𝑡 with respect to loan holdings 𝐿𝑡+𝑣
𝑑  is 

−𝜓𝑡+𝑣
𝑑1 − (1 − 𝜅)𝜓𝑡+𝑣

𝑑2 −
ℎ𝑆

𝜄1𝜇𝑑
𝜓𝑡+𝑣

𝑑3 − 𝔼𝑡 [𝑀𝑡,𝑡+1𝑉𝑊,𝑡+1
𝑑 [1 + (1 − 𝜑)𝜋(𝐿𝑡)𝑍𝑡]] =

−
1

𝑞𝑡
𝑅 {(𝜓𝑡+𝑣

𝑑1 + 𝜓𝑡+𝑣
𝑑2 +

1

𝜇𝑑
𝜓𝑡+𝑣

𝑑3 ) + [1 − 𝜑(1 − 𝑞𝑡
𝑅)]𝔼𝑡[𝑀𝑡,𝑡+1𝑉𝑊,𝑡+1

𝑑  ]} [1 − 𝛷𝐿
′ (𝐿𝑡+𝑣

𝑑 )], (36) 

where we denote 𝛷𝐿
′ (𝐿𝑡+𝑣

𝑑 ) = 𝜕𝛷𝐿
′ (𝐿𝑡+𝑣

𝑑 , 𝐿𝑡
𝑑) 𝜕𝐿𝑡+𝑣

𝑑⁄ . 

C). Liquid Assets The FOC of 𝐸𝑡 with respect to liquid assets 𝐶𝑡+𝑣
𝑑  is 

𝜓𝑡+𝑣
𝑑1 − 𝜓𝑡+𝑣

𝑑2 −
1

𝜄1𝜇𝑑
𝜓𝑡+𝑣

𝑑3 − 𝔼𝑡{𝑀𝑡,𝑡+1𝑉𝑊,𝑡+1
𝑑 [1 + (1 − 𝜑)𝑟𝑓]} = −

1

𝑞𝑡
𝑅 {(𝜓𝑡+𝑣

𝑑1 + 𝜓𝑡+𝑣
𝑑2 +

1

𝜇𝑑
𝜓𝑡+𝑣

𝑑3 ) + [1 − 𝜑(1 − 𝑞𝑡
𝑅)]𝔼𝑡[𝑀𝑡,𝑡+1𝑉𝑊,𝑡+1

𝑑  ]} [1 − 𝛷𝐶
′ (𝐶𝑡+𝑣

𝑑 )],                (37) 

where we denote 𝛷𝐶
′ (𝐶𝑡+𝑣

𝑑 ) = 𝜕𝛷𝐶(𝐶𝑡+𝑣
𝑑 , 𝐶𝑡

𝑑) 𝜕𝐶𝑡+𝑣
𝑑⁄ . 

 

C.1.1.2 Function Deductions 

We use this section to derive Euler equations to be used for simulation, based on the first-order 
conditions obtained from B.1.1.1. 

We first derive that  

𝑉𝑡
𝑑 = 𝐻𝜔+𝜓,𝑡

𝑑 𝐸𝑑(𝑥𝑡 ,𝑊𝑡
𝑑) + ∫ 𝐹𝜔+𝜓,𝑡𝑑ℱ𝜔+𝜓,𝑡

∞

−𝐸𝑑(𝑥𝑡,𝑊𝑡
𝑑)

, 

where 𝐻𝜔+𝜓,𝑡
𝑑 = 1 − ∫ 𝜂𝜔+𝜓,𝑡+𝑣

𝑑 𝑑𝑣
1

0
 represents the portion of the surviving banks at the end of 𝑡, 
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where  𝜂𝜔+𝜓,𝑡+𝑣
𝑑 = Pr[𝑓𝜔+𝜓,𝑡+𝑣

𝑑 ≥ 𝐿𝑡
𝑑 + 𝐶𝑡

𝑑 − 𝐷𝑡] , and  ℱ𝜔+𝜓,𝑡  is the c.d.f. of 𝐹𝜔+𝜓,𝑡 .By the 

application of Leibniz’s rule, differentiating the above equation with respect to 𝑊𝑡
𝑑 gives: 

𝑉𝑊,𝑡
𝑑 =

𝜕𝑉𝑡
𝑑

𝜕𝑊𝑡
𝑑 = 𝐻𝜔+𝜓,𝑡

𝑑 𝐸𝑊,𝑡
𝑑 − 𝐸𝑊,𝑡

𝑑 𝒻𝜔+𝜓,𝑡𝐸𝑡
𝑑 + 𝐸𝑊,𝑡

𝑑 𝒻𝜔+𝜓,𝑡𝐸𝑡
𝑑 = 𝐻𝜔+𝜓,𝑡

𝑑 𝐸𝑊,𝑡
𝑑 , 

where 𝒻𝜔+𝜓,𝑡 is the p.d.f. of 𝐹𝜔+𝜓,𝑡 evaluated at −𝐸𝑑(𝑥𝑡,𝑊𝑡
𝑑). 

Applying the envelope condition, we can get 

𝜕𝐸𝑑(𝑥𝑡,𝑊𝑡+𝑣
𝑑 )

𝜕𝑊𝑡+𝑣
𝑑 = 𝐸𝑊,𝑡+𝑣

𝑑 =
1

𝑞𝑡
𝑅 [𝜓𝑡+𝑣

𝑑1 + 𝜓𝑡+𝑣
𝑑2 +

1

𝜇𝑑
𝜓𝑡+𝑣

𝑑3 ] +
1−𝜑(1−𝑞𝑡

𝑅)

𝑞𝑡
𝑅 𝔼𝑡[𝑀𝑡,𝑡+1𝑉𝑊,𝑡+1

𝑑 ]. 

Combining the above equation with (35), we can obtain 

𝐸𝑊,𝑡+𝑣
𝑑 = 1 + 𝜂. 

Customising the above equation to 𝑡 and 𝑡 + 1 and inserting the customised expression into (35), 
(36) and (37) to rewrite these Euler equations as 

A). Dividends/Cash Flows 

1 = 𝜓̂𝑡+𝑣
𝑑1 + 𝜓̂𝑡+𝑣

𝑑2 + 𝜓̂𝑡+𝑣
𝑑3 + 𝑞̃𝑡

𝑅𝔼𝑡{𝑀𝑡,𝑡+1𝐻𝜔+𝜓,𝑡+1},                             (38) 

where  𝜓̂𝑡+𝑣
𝑑1 = 𝜓𝑡+𝑣

𝑑1 𝑞𝑡
𝑅(1 + 𝜂)⁄ , 𝜓̂𝑡+𝑣

𝑑2 = 𝜓𝑡+𝑣
𝑑2 𝑞𝑡

𝑅(1 + 𝜂)⁄ , 𝜓̂𝑡+𝑣
𝑑3 = 𝜓𝑡+𝑣

𝑑3 𝜇𝑑𝑞𝑡
𝑅(1 + 𝜂)⁄  

and 𝑞̃𝑡
𝑅 = 1 − 𝜑(1 − 𝑞𝑡

𝑅) 𝑞𝑡
𝑅(1 + 𝜂)⁄ . 

B). Loans 

1 − 𝛷𝐿
′ (𝐿𝑡+𝑣

𝑑 ) = 𝜓̃𝑡+𝑣
𝑑1 + 𝜓̃𝑡+𝑣

𝑑2 + 𝜓̃𝑡+𝑣
𝑑3 + 𝔼𝑡{𝑀𝑡,𝑡+1𝐻𝜔+𝜓,𝑡+1[1 + (1 − 𝜑)𝜋(𝐿𝑡+1)𝑍𝑡+1]},  (39) 

where 𝜓̃𝑡+𝑣
𝑑1 = 𝜓𝑡+𝑣

𝑑1 (1 + 𝜂)⁄ , 𝜓̃𝑡+𝑣
𝑑2 = (1 − 𝜅)𝜓𝑡+𝑣

𝑑2 (1 + 𝜂)⁄ , 𝜓̃𝑡+𝑣
𝑑3 = ℎ𝑆 𝜓𝑡+𝑣

𝑑3 𝜄1𝜇𝑑(1 + 𝜂)⁄ . 

C). Liquid Assets 

1 − 𝛷𝐶
′ (𝐶𝑡+𝑣

𝑑 ) = −𝜓𝑡+𝑣
𝑑1 + 𝜓𝑡+𝑣

𝑑2 + 𝜓𝑡+𝑣
𝑑3 + 𝔼𝑡{𝑀𝑡,𝑡+1𝐻𝜔+𝜓,𝑡+1[1 + (1 − 𝜑)𝑟𝑓]},          (40) 

where 𝜓𝑡+𝑣
𝑑1 = 𝜓𝑡+𝑣

𝑑1 (1 + 𝜂)⁄ , 𝜓𝑡+𝑣
𝑑2 = 𝜓𝑡+𝑣

𝑑2 (1 + 𝜂)⁄  and 𝜓𝑡+𝑣
𝑑2 = 𝜓𝑡+𝑣

𝑑2 𝜄1𝜇𝑑(1 + 𝜂)⁄ . 

Note that we drop the notation of  𝑑  from 𝐻𝑡
𝑑(𝜔 + 𝜓) as the banks have an equal (expected) 

probability of becoming liquidity-surplus or liquidity-deficit banks in the next period. To apply 
these FOCs to each period, we can aggregate (38), (39) and (40) as these Euler equations hold for 
each time interval and will also hold if we aggregate the intervals within the period, from 𝑡 to 𝑡 +
1. We will use the equations after the aggregation for simulations, which we will introduce later. 

 

C.1.2. Optimalisation Problem for Liquidity-surplus Banks 

The optimal decision choices of liquidity-surplus banks at time interval 𝑡 + 𝑣 can be summarised 
as {𝐼𝑡+𝑣

𝑠 , 𝐿𝑡+𝑣
𝑠 , 𝐶𝑡+𝑣

𝑠 , 𝑅𝑡+𝑣
𝑠 }, given the realisations of 𝑥𝑡 = {𝑍𝑡−1, 𝐷𝑡, 𝜆𝑡 , 𝐿𝑡, 𝐶𝑡, 𝑓𝜔,𝑡+𝑣 , 𝑓𝜓,𝑡+𝑣}, and 

the optimal function can be rewritten as, where we denote the cumulative value of idiosyncratic 
shocks in 𝑡 + 1 as 𝐹𝜔+𝜓,𝑡+1, 

𝐸𝑠(𝑥𝑡 ,𝑊𝑡+𝑣
𝑠 ) = max {0, max

{𝐼𝑡+𝑣
𝑠 ,𝐿𝑡+𝑣

𝑠 ,𝐶𝑡+𝑣
𝑠 ,𝑅𝑡+𝑣

𝑠 }
{𝐼𝑡+𝑣

𝑠 + 𝔼𝑡[𝑀𝑡,𝑡+1{𝐸
𝑠(𝑥𝑡+1,𝑊𝑡+1

𝑠 ) + 𝐹𝜔+𝜓,𝑡+1}]}},  

subject to 

𝐼𝑡+𝑣
𝑠 + 𝐿𝑡+𝑣

𝑠 + 𝐶𝑡+𝑣
𝑠 + 𝑞𝑡

𝑅𝑅𝑡+𝑣
𝑠 + 𝛷𝐿(𝐿𝑡+𝑣

𝑠 , 𝐿𝑡
𝑠) + 𝛷𝐶(𝐿𝑡+𝑣

𝑠 , 𝐶𝑡
𝑠) + 𝑊𝑡+𝑣−

𝑠 ≤ 𝑊𝑡+𝑣
𝑠 ,         (41) 

𝑊𝑡+1
𝑠 = [1 + (1 − 𝜑)𝜋(𝐿𝑡)𝑍𝑡](𝐿𝑡

𝑠 + 𝐿̂𝑡+1
𝑠 ) + [1 + (1 − 𝜑)𝑟𝑓](𝐶𝑡

𝑠 + 𝐶̂𝑡+1
𝑠 ) + {1 +
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(1 − 𝜑)(1 − 𝑞𝑡
𝑅)}[1 − 𝐻𝑡

𝑑(𝜔 + 𝜓)]𝑅̂𝑡+1
𝑠 − 𝜑(1 + 𝜏)𝑟𝑑𝐷𝑡,                               (42) 

𝐿𝑡+𝑣
𝑠 + 𝐶𝑡+𝑣

𝑠 + 𝜚(𝐶𝑡+𝑣
𝑠 )2 ∙ 𝜒𝐶𝑡

𝑠<0 + 𝑅𝑡+𝑣
𝑠 ≥ 𝑓𝜔+𝜓,𝑡+𝑣,                            (43) 

(1 − 𝜅)𝐿𝑡+𝑣
𝑠 + 𝐶𝑡+𝑣

𝑠 + 𝑅𝑡+𝑣
𝑠 ≥ 𝑓𝜔+𝜓,𝑡+𝑣,                                       (44) 

ℎ𝑆

𝜄1𝜇𝑑
𝐿𝑡+𝑣
𝑠 +

1

𝜄1𝜇𝑑
𝐶𝑡+𝑣

𝑠 +
1

𝜇𝑑
𝑅𝑡+𝑣

𝑠 ≥ 𝑓𝜔+𝜓,𝑡+𝑣.                                   (45) 

In (41), we denote  𝑊𝑡+𝑣−
𝑠  as the net wealth of these banks prior to the realisations of the 

idiosyncratic shocks at 𝑡 + 𝑣 and 𝑊𝑡+𝑣
𝑠 = 𝑊𝑡+𝑣−

𝑠 + 𝑓𝜔+𝜓,𝑡+𝑣 + [1 − 𝜂𝑡+𝑣−
𝑑 (𝜔 + 𝜓)]𝑅𝑡+𝑣−

𝑠  as the 
wealth after the realisations of the shocks and maturity of the interbank lending. In (42), we 
denote 𝑊𝑡+1

𝑠  as their (after-tax) wealth at the end of 𝑡. (43) is the collateral constraint as in (12) to 
reflect the deposit insurance fee when banks’ holdings of liquid assets are negative. (44) and (45) 
are the (applicable) capital and liquidity requirements, as defined in (19) and (21), respectively. 
Similarly, we can use (41) to eliminate 𝑅𝑡+𝑣

𝑠  and rewrite equations (42), (43) and (44) and (45) as 

𝑊𝑡+1
𝑠 = [1 + (1 − 𝜑)𝜋(𝐿𝑡)𝑍𝑡](𝐿𝑡

𝑠 + 𝐿̂𝑡+1
𝑠 ) + [1 + (1 − 𝜑)𝑟𝑓](𝐶𝑡

𝑠 + 𝐶̂𝑡+1
𝑠 ) + {1 +

(1 − 𝜑)(1 − 𝑞𝑡
𝑅)}𝐻𝑡

𝑑(𝜔 + 𝜓)∫
𝑊𝑡+𝑣

𝑠 −𝑊𝑡+𝑣−
𝑠 −𝛷𝐿(𝐿𝑡+𝑣

𝑠 ,𝐿𝑡
𝑠)−𝛷𝐶(𝐿𝑡+𝑣

𝑠 ,𝐶𝑡
𝑠)−𝐼𝑡+𝑣

𝑠 −𝐿𝑡+𝑣
𝑠 −𝐶𝑡+𝑣

𝑠

𝑞𝑡
𝑅 𝑑𝑣

1

0
−

(1 − 𝜑)(1 + 𝜏)𝑟𝑑𝐷𝑡， 

𝐿𝑡+𝑣
𝑠 + 𝐶𝑡+𝑣

𝑠 + 𝜚(𝐶𝑡+𝑣
𝑠 )2 ∙ 𝜒𝐶𝑡

𝑠<0 +
𝑊𝑡+𝑣

𝑠 −𝑊𝑡+𝑣−
𝑠 −𝛷𝐿(𝐿𝑡+𝑣

𝑠 ,𝐿𝑡
𝑠)−𝛷𝐶(𝐿𝑡+𝑣

𝑠 ,𝐶𝑡
𝑠)−𝐼𝑡+𝑣

𝑠 −𝐿𝑡+𝑣
𝑠 −𝐶𝑡+𝑣

𝑠

𝑞𝑡
𝑅 ≥ 𝑓𝜔+𝜓,𝑡+𝑣,  

(46) 

(1 − 𝜅)𝐿𝑡+𝑣
𝑠 + 𝐶𝑡+𝑣

𝑠 +
𝑊𝑡+𝑣

𝑠 −𝑊𝑡+𝑣−
𝑠 −𝛷𝐿(𝐿𝑡+𝑣

𝑠 ,𝐿𝑡
𝑠)−𝛷𝐶(𝐿𝑡+𝑣

𝑠 ,𝐶𝑡
𝑠)−𝐼𝑡+𝑣

𝑠 −𝐿𝑡+𝑣
𝑠 −𝐶𝑡+𝑣

𝑠

𝑞𝑡
𝑅 ≥ 𝑓𝜔+𝜓,𝑡+𝑣,       (47) 

ℎ𝑆

𝜄1𝜇𝑑
𝐿𝑡+𝑣
𝑠 +

1

𝜄1𝜇𝑑
𝐶𝑡+𝑣

𝑠 +
𝑊𝑡+𝑣

𝑠 −𝑊𝑡+𝑣−
𝑠 −𝛷𝐿(𝐿𝑡+𝑣

𝑠 ,𝐿𝑡
𝑠)−𝛷𝐶(𝐿𝑡+𝑣

𝑠 ,𝐶𝑡
𝑠)−𝐼𝑡+𝑣

𝑠 −𝐿𝑡+𝑣
𝑠 −𝐶𝑡+𝑣

𝑠

𝜇𝑑𝑞𝑡
𝑅 ≥ 𝑓𝜔+𝜓,𝑡+𝑣.     (48) 

 

C.1.2.1 First-order Conditions 

A). Dividends/Cash Flows The FOC of 𝐸𝑡 with respect to dividends/cash flows 𝐼𝑡+𝑣
𝑠  is 

−
1

𝑞𝑡
𝑅 𝜓𝑡+𝑣

𝑠1  −
1

𝑞𝑡
𝑅 𝜓𝑡+𝑣

𝑠2 −
1

𝜇𝑑𝑞𝑡
𝑅 𝜓𝑡+𝑣

𝑠3 + 1 −
1+(1−𝜑)(1−𝑞𝑡

𝑅)

𝑞𝑡
𝑅 𝐻𝑡

𝑑(𝜔 + 𝜓)𝔼𝑡[𝑀𝑡,𝑡+1𝑉𝑊,𝑡+1
𝑠 ] = 0,  (49) 

where  𝜓𝑡+𝑣
𝑠1 , 𝜓𝑡+𝑣

𝑠2  and 𝜓𝑡+𝑣
𝑠3  are the Lagrange multipliers of (46), (47) and (48) respectively. We 

also denote 𝑉𝑊,𝑡+1
𝑠 = 𝜕[𝐸𝑡+1

𝑠 + 𝐹𝑡+1(𝜓 + 𝜔)] 𝜕𝑊𝑡+1
𝑠⁄ . 

B). Loans The FOC of 𝐸𝑡 with respect to loan holdings 𝐿𝑡+𝑣
𝑠  is 

 𝜓𝑡+𝑣
𝑠1 + (1 − 𝜅)𝜓𝑡+𝑣

𝑠2 +
ℎ𝑆

𝜄1𝜇𝑑
𝜓𝑡+𝑣

𝑠3 +
1

𝐿𝑡
𝔼𝑡{𝑀𝑡,𝑡+1𝑉𝑊,𝑡+1

𝑠 [1 + (1 − 𝜑)𝜋(𝐿𝑡)𝑍𝑡]} =

1

𝑞𝑡
𝑅 [1 + 𝛷𝐿

′ (𝐿𝑡+𝑣
𝑠 )] {𝜓𝑡

𝑠1 + 𝜓𝑡
𝑠2 +

1

𝜇𝑑
𝜓𝑡

𝑠3 +
1+(1−𝜑)(1−𝑞𝑡

𝑅)

𝑞𝑡
𝑅 𝐻𝑡

𝑑(𝜔 + 𝜓)𝔼𝑡[𝑀𝑡,𝑡+1𝑉𝑊,𝑡+1
𝑠 ]},   (50) 

where we denote 𝛷𝐿
′ (𝐿𝑡+𝑣

𝑠 ) = 𝜕𝛷𝐿
′ (𝐿𝑡+𝑣

𝑠 , 𝐿𝑡
𝑠) 𝜕𝐿𝑡+𝑣

𝑠⁄ . 

C). Liquid Assets The FOC of 𝐸𝑡 with respect to liquid assets 𝐶𝑡+𝑣
𝑠  is 

 𝜓𝑡+𝑣
𝑠1 + 𝜓𝑡+𝑣

𝑠2 +
1

𝜄1𝜇𝑑
𝜓𝑡+𝑣

𝑠3 + 𝔼𝑡{𝑀𝑡,𝑡+1𝑉𝑊,𝑡+1
𝑠 [1 + (1 − 𝜑)𝑟𝑓]} =

1

𝑞𝑡
𝑅 [1 + 𝛷𝐶

′ (𝐿𝑡+𝑣
𝑠 )] {𝜓𝑡

𝑠1 +

𝜓𝑡
𝑠2 +

1

𝜇𝑑
𝜓𝑡

𝑠3 +
1+(1−𝜑)(1−𝑞𝑡

𝑅)

𝑞𝑡
𝑅 𝐻𝑡

𝑑(𝜔 + 𝜓)𝔼𝑡[𝑀𝑡,𝑡+1𝑉𝑊,𝑡+1
𝑠 ]},                                         (51) 

where we denote 𝛷𝐶
′ (𝐶𝑡+𝑣

𝑠 ) = 𝜕𝛷𝐶(𝐶𝑡+𝑣
𝑠 , 𝐶𝑡

𝑠) 𝜕𝐶𝑡+𝑣
𝑠⁄ . 
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C.1.2.2 Function Deductions 

We use this section to derive Euler equations to be used for simulation, based on the first-order 
conditions obtained from B.1.2.1. 

We first derive that  

𝑉𝑡
𝑠 = 𝐻𝜔+𝜓,𝑡

𝑠 𝐸𝑠(𝑥𝑡,𝑊𝑡
𝑠) + ∫ 𝐹𝜔+𝜓,𝑡𝑑ℱ𝜔+𝜓,𝑡

∞

−𝐸𝑠(𝑥𝑡,𝑊𝑡
𝑠)

, 

where 𝐻𝑡
𝑠(𝜔 + 𝜓) = 1 − ∫ 𝜂𝜔+𝜓,𝑡+𝑣

𝑠 𝑑𝑣
1

0
 represents the portion of the surviving banks at the end 

of 𝑡, where 𝜂𝑡+𝑣
𝑠 (𝜔 + 𝜓) = Pr[𝑓𝜔+𝜓,𝑡+𝑣

𝑠 ≥ 𝐿𝑡
𝑠 + 𝐶𝑡

𝑠 − 𝐷𝑡]. By the application of Leibniz’s rule, 

differentiating the above equation with respect to 𝑊𝑡
𝑠 gives: 

𝑉𝑊,𝑡
𝑠 =

𝜕𝑉𝑡
𝑠

𝜕𝑊𝑡
𝑠 = 𝐻𝜔+𝜓,𝑡

𝑠 𝐸𝑊,𝑡
𝑠 − 𝐸𝑊,𝑡

𝑠 𝒻𝜔+𝜓,𝑡𝐸𝑡
𝑠 + 𝐸𝑊,𝑡

𝑠 𝒻𝜔+𝜓,𝑡𝐸𝑡
𝑠 = 𝐻𝜔+𝜓,𝑡

𝑠 𝐸𝑊,𝑡
𝑠 , 

where 𝒻𝜔+𝜓,𝑡 is the p.d.f. of 𝐹𝜔+𝜓,𝑡 evaluated at −𝐸𝑠(𝑥𝑡 ,𝑊𝑡
𝑠). 

Applying the envelope condition, we can get 

𝜕𝐸𝑠(𝑥𝑡,𝑊𝑡+𝑣
𝑠 )

𝜕𝑊𝑡+𝑣
𝑠 = 𝐸𝑊,𝑡+𝑣

𝑠 =
1

𝑞𝑡
𝑅 [𝜓𝑡+𝑣

𝑠1 + 𝜓𝑡+𝑣
𝑠2 +

1

𝜇𝑑
𝜓𝑡+𝑣

𝑠3 ] +
1+(1−𝜑)(1−𝑞𝑡

𝑅)

𝑞𝑡
𝑅 𝐻𝑡

𝑑(𝜔 +

𝜓)𝔼𝑡[𝑀𝑡,𝑡+1𝑉𝑊,𝑡+1
𝑠 ]. 

Combining the above equation with (49) we can obtain 

𝐸𝑊,𝑡+𝑣
𝑠 = 1. 

Customising it to 𝑡 and 𝑡 + 1 and inserting the customised expression into (49), (50) and (51) to 
rewrite these Euler equations as 

A). Dividends/Cash Flows 

1 = 𝜓̂𝑡+𝑣
𝑠1 + 𝜓̂𝑡+𝑣

𝑠2 + 𝜓̂𝑡+𝑣
𝑠3 + 𝑞𝑡

𝑅𝔼𝑡{𝑀𝑡,𝑡+1𝐻𝜔+𝜓,𝑡+1},                           (52) 

where  𝜓̂𝑡+𝑣
𝑠1 = 𝜓𝑡+𝑣

𝑠1 𝑞𝑡
𝑅⁄ ,  𝜓̂𝑡+𝑣

𝑠2 = 𝜓𝑡+𝑣
𝑠2 𝑞𝑡

𝑅⁄ , 𝜓̂𝑡+𝑣
𝑠2 = 𝜓𝑡+𝑣

𝑠3 𝜇𝑑𝑞𝑡
𝑅⁄  and  𝑞𝑡

𝑅 =
1+(1−𝜑)(1−𝑞𝑡

𝑅)

𝑞𝑡
𝑅 𝐻𝑡

𝑑(𝜔 + 𝜓). 

B). Loans 

1 + 𝛷𝐿
′ (𝐿𝑡+𝑣

𝑠 ) = 𝜓̃𝑡+𝑣
𝑠1 + 𝜓̃𝑡+𝑣

𝑠2 + 𝜓̃𝑡+𝑣
𝑠3 + 𝔼𝑡{𝑀𝑡,𝑡+1𝐻𝜔+𝜓,𝑡+1[1 + (1 − 𝜑)𝜋(𝐿𝑡+1)𝑍𝑡+1]},     (53) 

where 𝜓̃𝑡+𝑣
𝑠1 = 𝜓𝑡+𝑣

𝑠2 , 𝜓̃𝑡+𝑣
𝑠2 = (1 − 𝜅)𝜓𝑡+𝑣

𝑠2  and 𝜓̃𝑡+𝑣
𝑠3 = ℎ𝑆 𝜓𝑡+𝑣

𝑠3 𝜄1𝜇𝑑⁄ . 

C). Liquid Assets 

1 + 𝛷𝐶
′ (𝐶𝑡+𝑣

𝑠 ) = 𝜓𝑡+𝑣
𝑠1 + 𝜓𝑡+𝑣

𝑠2 + 𝜓𝑡+𝑣
𝑠3 + 𝔼𝑡{𝑀𝑡,𝑡+1𝐻𝜔+𝜓,𝑡+1[1 + (1 − 𝜑)𝑟𝑓]}.             (54) 

where 𝜓𝑡+𝑣
𝑠3 = 𝜓𝑡+𝑣

𝑠3 𝜄1𝜇𝑑⁄ . 

Note that we drop the notation of  𝑠  from  𝐻𝜔+𝜓,𝑡+1
𝑠  as the banks have an equal (expected) 

probability of becoming liquidity-surplus or liquidity-deficit banks in the next period. To apply 
these FOCs to each period, we can aggregate (52), (53) and (54) as these Euler equations hold for 
each time interval and will also hold if we aggregate the intervals as a period, from 𝑡 to 𝑡 + 1. We 
will use the equations after the aggregation for simulations, which we will introduce later. 

 

C.2 Decisions for Systematic Credit Shocks and Aggregate Deposit Variations 

The calculation of these decisions will employ valuation iteration as there are only two decision 
variables {𝐿𝑡+1, 𝐶𝑡+1}. The decision problem is to maximise (15), the steps of which will be 
introduced in Online Appendix D.3. 
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D. Simulation Steps 

D.1 Discretisation 

For decisions introduced in Online Appendix C.1 and C.2, we need discretised state space 
consisting of: 

Five state variables [𝑍𝑡 , 𝐷𝑡, 𝜆𝑡 , 𝐿𝑡 , 𝐶𝑡] for decision (D1) for idiosyncratic shocks, 

Four state variables [𝑍𝑡 , 𝐷𝑡, 𝐿̃𝑡 , 𝐶̃𝑡] for decision (D2) for systematic credit shocks and aggregate 
deposit variations. 

We discretise 𝑍𝑡 (𝐷𝑡) into a 𝑁𝑍 (𝑁𝐷)-state Markov chain following Rouwenhorst (1995), which 

will result in a 𝑁𝑍 × 𝑁𝑍  (𝑁𝐷 × 𝑁𝐷) transition matrix. We also introduce 𝑁𝜆  points for 𝜆𝑡, 𝑁𝑃 

points for 𝑃𝑡 , and 𝑁𝐷  for 𝐷𝑡 . For the policy variables  [𝐿𝑡 , 𝐶𝑡], and [𝐿̃𝑡 , 𝐶̃𝑡], we assume these 

variables can take on values in a continuous and convex subset of the reals, and each of the variables 

is within [𝑆𝑙̅ , 𝑆𝑢̅]. Note that for consistence, we assign a same set of values for [𝐿̃𝑡, 𝐶̃𝑡] as [𝐿𝑡 , 𝐶𝑡], 

and we then express them as 𝐿, 𝐶, thereafter. Thus, we can rewrite the sets of the variables as 

in 𝑯𝑛 = ∏ [𝑆𝑜̅,𝑙 , 𝑆𝑜̅,𝑢]𝑜 , where 𝑆𝑜 represents 𝐿, 𝐶, respectively. Choose an appropriate number of 

grids for each endogenous variable for the simulation, which will result in  𝑯𝑛 = {𝐿𝑝}
𝑝=1

𝑁𝐿
×

{𝐶𝑞}𝑞=1

𝑁𝐶
, where 𝑁𝐿  and 𝑁𝐶  are the number of 𝐿 and 𝐶 , respectively. These grids are chosen to 

ensure they cover the ergodic distribution of the economy and to minimise simulation errors. Thus, 

the total number of 𝑯𝟏 (for D1) is 𝑁𝑠1 = 𝑁𝑍 ∙ 𝑁𝐷 ∙ 𝑁𝜆 ∙ 𝑆𝑛, where 𝑆𝑛 is the total number of 𝑯𝑛. 

Total number of 𝑯𝟐 (for D2) is 𝑁𝑠2 = 𝑁𝑍 ∙ 𝑁𝐷 ∙ 𝑆𝑛. 

 

D.2 Decisions for the Idiosyncratic Shocks 

The simulation solution for this problem is based on the global projection method, pioneered by 
Judd (1998). This method, as pointed out by Begenau and Landvoigt (2018), outperforms the 
Perturbation-based solution method in terms of a better quality of approximation for nonlinear 
dynamic models with constraints. There are two steps of the simulations, which are described as 
follows. 

STEP 1: We first aggregate equations (38), (39), (40), (52), (53) and (54), which are obtained for 
𝑡 + 𝑣 and transform the problem to the period [𝑡, 𝑡 + 1]. We can adopt the aggregation because: 1) 
all the periods 𝑣 ∈ [0,1] follow these Euler equations; 2) the expectation terms (on the right-hand 
side of the equations) are independent of the decision choices made on 𝑡 + 𝑣; and 3) the constraints 
are addictive in terms of time periods since the constraints are satisfied at every 𝑡 + 𝑣 and they 
should also satisfy the constraints aggregated for the whole period of [𝑡, 𝑡 + 1]; this additivity also 
applies to the Lagrange multipliers of these equations. 

STEP 2: Give an initial guess 𝑼̅𝐶
𝑚, where 𝑚 denotes the number of iterations and 𝑚 = 1 represents 

the first iteration. The guess  𝑼̅𝐶
𝑚  is set for each point of  𝐻𝑢 ⊆ 𝑯𝟏 , where 𝑢 = 1,2…𝑁𝑠1 . The 

variable to guess is liquidity-deficit banks’ cash flows 𝐼𝑢̅
𝑑,𝑚

. For each point of 𝐻𝑢, obtain forecast 
variables, given each possible realisation of exogenous shocks 𝑙, where 𝑖 = 1,2…𝑁𝑍 × 𝑁𝐷. This 
then results in a forecast matrix 𝑼̅𝐹

𝑚 , which each entry as 𝑓𝑢,𝑙
𝑚 = 𝑼̅𝐹

𝑚(𝐻𝑢, 𝑍𝐷𝑖), which contains 
stochastic discount factor 𝑀𝑢,𝑖 and survival indicators of banks 𝐻𝜔+𝜓,𝑢,𝑙

𝑚 , i.e., 

𝑓𝑢,𝑙
𝑚 = {𝑀𝑢,𝑖𝐻𝜔+𝜓,𝑢,𝑙

𝑚 }. 

The calculation of 𝑓𝑢,𝑙
𝑚 requires some pre-calculations which will be determined in decision D2, to 

be introduced in C.3. This calculation reduces potential repeating computation of 𝑓𝑢,𝑙
𝑚 , thereby 

reducing the time for computation. 

STEP 3: Upon obtaining matrices 𝑼̅𝐶
𝑚 and 𝑼̅𝐹

𝑚, we can use them to solve a system of nonlinear 
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equations, which will feature the equilibrium values of variables for each point of 𝑢. This step will 
result in a matrix 𝑼̅𝑃

𝑚 with each entry as the equilibrium results: 

𝑝𝑢
𝑚 = {𝐿̂𝑢

𝑑̃ , 𝐶̂𝑢
𝑑̃ , 𝐿̂𝑢

𝑠̃ , 𝐿̂𝑢
𝑑̃ , 𝑞𝑢

𝑅̃, 𝑅𝑢̃, 𝜓𝑢
𝑑1̃, 𝜓𝑢

𝑑2̃, 𝜓𝑢
𝑠1̃, 𝜓𝑢

𝑠2̃, 𝜓𝑢̃}. 

The equations for obtaining 𝑼̅𝑃
𝑚 are: 

1 = 𝜓̂𝑢
𝑑1̃ + 𝜓̂𝑢

𝑑2̃ + 𝜓̂𝑢
𝑑3̃ + 𝑞̃𝑢

𝑅̃𝔼𝑢[𝑀𝑢,𝑙𝐻𝜔+𝜓,𝑢,𝑙
𝑚 ]                                                                           (E1) 

1 − 𝛷𝐿
′ (𝐿̂𝑢

𝑑̃) = 𝜓̃𝑢
𝑑1̃ + 𝜓̃𝑢

𝑑2̃ + 𝜓̃𝑢
𝑑3̃ − 𝜓𝑢̃ + 𝔼𝑢{𝑀𝑢,𝑙𝐻𝜔+𝜓,𝑢,𝑙

𝑚 [1 + (1 − 𝜑)𝜋(𝐿𝑙)𝑍𝑙]}                (E2) 

1 − 𝛷𝐶
′ (𝐶̂𝑢

𝑑̃) = −𝜓𝑢
𝑑1̃ + 𝜓𝑢

𝑑2̃ + 𝜓𝑢
𝑑3̃ + 𝔼𝑢{𝑀𝑢,𝑙𝐻𝜔+𝜓,𝑢,𝑙

𝑚 [1 + (1 − 𝜑)𝑟𝑓]}                               (E3) 

1 = 𝜓̂𝑢
𝑠1̃ + 𝜓̂𝑢

𝑠2̃ + 𝜓̂𝑢
𝑠3̃ + 𝑞𝑢

𝑅̃𝔼𝑢[𝑀𝑢,𝑙𝐻𝜔+𝜓,𝑢,𝑙
𝑚 ]                                                                            (E4) 

1 + 𝛷𝐿
′ (𝐿̂𝑢

𝑠̃ ) = 𝜓̃𝑢
𝑠1̃ + 𝜓̃𝑢

𝑠2̃ + 𝜓̃𝑢
𝑠3̃ − 𝜓𝑢̃ + 𝔼𝑢{𝑀𝑢,𝑙𝐻𝜔+𝜓,𝑢,𝑙

𝑚 [1 + (1 − 𝜑)𝜋(𝐿𝑙)𝑍𝑙]}                 (E5) 

1 + 𝛷𝐶
′ (𝐶̂𝑢

𝑠̃) = 𝜓𝑢
𝑠1̃ + 𝜓𝑢

𝑠2̃ + 𝜓𝑢
𝑠3̃ + 𝔼𝑢{𝑀𝑢,𝑙𝐻𝜔+𝜓,𝑢,𝑙

𝑚 [1 + (1 − 𝜑)𝑟𝑓]}                                   (E6) 

𝜓𝑢
𝑑1̃ [𝜏𝜆𝑢𝐷𝑢 − 𝐿̂𝑢

𝑑̃ + 𝐶̂𝑢
𝑑̃ + 𝜚 (𝐶̂𝑢

𝑑̃)
2
∙ 𝜒𝐶𝑢

𝑑<0 − 𝑅𝑢̃] = 0,                                                             (E7) 

𝜓𝑢
𝑑2̃ [𝜏𝜆𝑢𝐷𝑢 − (1 − 𝜅)𝐿̂𝑢

𝑑̃ − 𝐶̂𝑢
𝑑̃ − 𝑅𝑢̃] = 0                                                                                 (E8) 

𝜓𝑢
𝑑3̃ [𝜏𝜆𝑢𝐷𝑢 −

ℎ𝑆

𝜄1𝜇𝑑
𝐿̂𝑢
𝑑̃ −

1

𝜄1𝜇𝑑
𝐶̂𝑢

𝑑̃ −
1

𝜇𝑑
𝑅𝑢̃] = 0                                                                           (E9) 

𝜓𝑢
𝑠1̃ [𝐿̂𝑢

𝑠̃ + 𝐶̂𝑢
𝑠̃ + 𝜚 (𝐶̂𝑢

𝑠̃)
2
∙ 𝜒𝐶𝑢

𝑠<0 + 𝑅𝑢̃ − 𝜏(1 − 𝜆𝑢)𝐷𝑢] = 0,                                                  (E10) 

𝜓𝑢
𝑠2̃ [(1 − 𝜅)𝐿̂𝑢

𝑠̃ + 𝐶̂𝑢
𝑠̃ + 𝑅𝑢̃ − 𝜏(1 − 𝜆𝑢)𝐷𝑢] = 0                                                                     (E11) 

𝜓𝑢
𝑠3̃ [

ℎ𝑆

𝜄1𝜇𝑑
𝐿̂𝑢
𝑠̃ +

1

𝜄1𝜇𝑑
𝐶̂𝑢

𝑠̃ +
1

𝜇𝑑
𝑅𝑢̃ − 𝜏(1 − 𝜆𝑢)𝐷𝑢] = 0                                                                (E12) 

𝜓𝑢̃ (𝐿̂𝑢
𝑑̃ − 𝐿̂𝑢

𝑠̃ ) = 0                                                                                                                     (E13) 

Note that the variables with a hat (∙)̃ are the variables to be determined by the solver of the group 
of equations. The above equations are aggregated version of the equations we obtained in Section 
B.1, under the assumptions given in Step 1. Thereby, the variables subscripted with 𝑢 are the 
variables after aggregation. Equation (E1) is the liquidity-deficit banks’ FOC of dividends/cash 
flows as in (38). (E2) is the FOC of these banks’ loan adjustments as in (39). (E3) is the FOC of 
their liquid asset adjustments in (40). (E4) is the liquidity-surplus banks’ FOC of dividends/cash 
flows in (52). (E5) is the FOC of the liquidity-surplus banks’ adjustments in loan in (53).  (E6) is 
the FOC of their adjustments in liquid asset in (54). (E7), (E8) and (E9) are the collateral, capital 
and liquidity requirement constraints on liquidity-deficit banks, as in (29), (30) and (31), 
respectively. (E10), (E11) and (E12) are the respective requirement constraints on liquidity-surplus 
banks, as in (43), (44) and (45). (E13) is the non-positive net loan increment constraints, which 
rules out banks’ net increase in loans as there lack in opportunities of investment in the middle of 
each period, while there exists the possibility of reduction in loans as banks can recall (i.e., liquidate) 
their loans in advance to meet the liquidity shortages. 

The above system of equations implicitly uses the budget constraints of the liquidity-surplus banks, 
presented in (7), and we can rewrite 𝑞𝑢

𝑅̃ = (1 − 𝜑) (1 − 𝑞𝑢
𝑅̃) 𝑞𝑢

𝑅̃⁄  in (E4) by expressing 𝑞𝑢
𝑅̃  as a 

function of 𝑅𝑢̃ as: 
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𝑞𝑢
𝑅̃ = 𝐻𝜔+𝜓,𝑢

𝑑 −
1

𝑅𝑢̃
[𝐼𝑢̅

𝑠 + 𝐿̂𝑢
𝑠̃ + 𝐶̂𝑢

𝑠̃ − 𝜏𝜆𝑢𝐷𝑢 + 𝛷𝐿 (𝐿̂𝑢
𝑠̃ ) + 𝛷𝐶 (𝐶̂𝑢

𝑠̃)]                 (M) 

and inserting 𝑞𝑢
𝑅̃ back to 𝑞𝑢

𝑅̃ for simulation. In equation (M), 𝛷𝐿 (𝐿̂𝑢
𝑠̃ ) =

𝜙𝐿

2𝐿𝑢
𝑠 (𝐿̂𝑢

𝑠̃ )
2
 and 𝛷𝐶 (𝐶̂𝑢

𝑠̃) =
𝜙𝐶

2𝐶𝑢
𝑠 (𝐶̂𝑢

𝑠̃)
2
 are the aggregated adjustment costs for loans (as defined in (4)) and liquid assets (as 

defined in (5)) for each point of 𝑢. Equation (M) thus ensures there are 11 equations to solve for 11 
unknowns, as listed in 𝑝𝑢

𝑚. Note that some Lagrange multipliers subscripted with 𝑑1, 𝑑2, 𝑠1, 𝑠2 are 
the functions of known variables, i.e., 𝜓𝑢

𝑑̃ , 𝜓𝑢
𝑠̃, which means the addition of these multipliers to the 

system do not raise the number of unknown variables.  

The calculation described above in Step 3 results in a 𝑁𝑠1 × 11 matrix 𝑼̅𝑃
𝑚  with each row the 

solution vector 𝑝𝑢
𝑚 for each point of 𝑢. Following the calculation, we obtain the guessed variables 

for this iteration 𝑚: 

𝐼𝑢
𝑠,𝑚+1 = 𝐼𝑢

𝑠̃,                                                                 (N) 

where 𝐼𝑢
𝑠̃ = [𝐻𝑢

𝑑(𝜔 + 𝜓) − 𝑞𝑢
𝑅̃] 𝑅𝑢̃ − 𝐿̂𝑢

𝑠̃ − 𝐶̂𝑢
𝑠̃ + 𝜏(1 − 𝜆𝑢)𝐷𝑢 − 𝛷𝐿 (𝐿̂𝑢

𝑠̃ ) − 𝛷𝐶 (𝐶̂𝑢
𝑠̃). 

Then, check the variables 𝑼̂𝐶
𝑚+1 = {𝐼𝑢

𝑑,𝑚+1}  with  𝑼̅𝐶
𝑚 = {𝐼𝑢̅

𝑑,𝑚}  for each point of  𝑢 . If  ∆𝐶=

|𝑼̂𝐶
𝑚+1 − 𝑼̅𝐶

𝑚| ≤ 𝑇𝑜𝑙𝐶 , then stop the iteration and take  𝑼̂𝐶
𝑚+1  as the approximate solution; 

otherwise, continue the iteration to  𝑚 + 1  and update  𝑼̅𝐶
𝑚+1 = 𝜚 × 𝑼̂𝐶

𝑚+1 + (1 − 𝜚) × 𝑼̅𝐶
𝑚 , 

where 𝜚 is a dampening variable set at 𝜚 = 0.8, as the initial guess for the next iteration 𝑚 + 1 and 

go back to STEP 2. We continue the procedure until the condition ∆𝐶≤ 𝑇𝑜𝑙𝐶 is satisfied. 

Accuracy of the solution. We perform two types of checks to assess the quality of our 
simulation. First, we verify that all the endogenous state variables are within the defined grid 
bounds. If the simulation hits the boundaries, we will expand the grid bounds. Second, we 
compute relative errors of (E1)-(E13) of each computed point 𝑢. Take (E1) as an example, the 
relative error is calculated as: 

𝑅𝐸𝐸1 = 1 − 𝜓̂𝑢
𝑑1 − 𝜓̂𝑢

𝑑2 − 𝜓̂𝑢
𝑑3 − 𝑞̃𝑢

𝑅𝔼𝑢{𝑀𝑢,𝑙𝐻𝜔+𝜓,𝑢,𝑙
𝑚 }.                            (O) 

These simulation errors will be small (or negligible) if the simulated path visits exactly at (or close 
to) one of the discretised grid points; however, the errors could be large if the simulated path more 
frequently visits points that are undefined, i.e., the points that are between the defined grid points. 
If the errors of some equations exceed the tolerance, we will add more points to the relevant 
endogenous variables and repeat the simulation. 

Solutions of the system of equations. We solve the system of these nonlinear equations using a 
nonlinear equation solver (MATLAB’s fsolve). Regarding the Kuhn-Tucker conditions in the 
equations, we conduct the following transformation, use (E1) as an example, to minimise the 
simulation bias originating from the slackness conditions with constraints. 

(1 + 𝜂)𝑞𝑢
𝑅̃ = 𝜓𝑢

𝑑1̃ + 𝜓𝑢
𝑑2̃ +

1

𝜇𝑑
𝜓𝑢

𝑑3̃ + (1 − 𝜑) (1 − 𝑞𝑢
𝑅̃)𝔼𝑢{𝑀𝑢,𝑙𝐻𝜔+𝜓,𝑢,𝑙

𝑚 }, 

𝜓𝑢
𝑑1̃ [𝜏𝜆𝑢𝐷𝑢 − 𝐿̂𝑢

𝑑̃ + 𝐶̂𝑢
𝑑̃ + 𝜚 (𝐶̂𝑢

𝑑̃)
2
∙ 𝜒𝐶𝑢

𝑑<0 − 𝑅𝑢̃] = 0 

𝜓𝑢
𝑑2̃ [𝜏𝜆𝑢𝐷𝑢 − (1 − 𝜅)𝐿̂𝑢

𝑑̃ − 𝐶̂𝑢
𝑑̃ − 𝑅𝑢̃] = 0, 

𝜓𝑢
𝑑3̃ [𝜏𝜆𝑢𝐷𝑢 −

ℎ𝑆

𝜄1𝜇𝑑
𝐿̂𝑢
𝑑̃ −

1

𝜄1𝜇𝑑
𝐶̂𝑢

𝑑̃ −
1

𝜇𝑑
𝑅𝑢̃] = 0. 

Define three variables  𝑘𝑡1 , 𝑘𝑡2  and  𝑘𝑡3  and three functions of these three variable, such 
that  𝜆𝑗

𝐾1,+̃ = max{0, 𝑘𝑡1}  and  𝜆𝑗
𝐾1,−̃ = max{0,−𝑘𝑡1} ; 𝜆𝑗

𝐾2,+̃ = max{0, 𝑘𝑡2}  and  𝜆𝑗
𝐾2,−̃ =

max{0,−𝑘𝑡2}; and 𝜆𝑗
𝐾3,+̃ = max{0, 𝑘𝑡3} and 𝜆𝑗

𝐾3,−̃ = max{0,−𝑘𝑡3}. Insert them to replace 𝜓𝑢
𝑑1̃, 

𝜓𝑢
𝑑2̃ and 𝜓𝑢

𝑑3̃ in the above equations to obtain: 
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(1 + 𝜂)𝑞𝑢
𝑅 = 𝜆𝑗

𝐾1,+̃ + 𝜆𝑗
𝐾2,+̃ +

1

𝜇𝑑
𝜆𝑗

𝐾3,+̃ + (1 − 𝜑) (1 − 𝑞𝑢
𝑅̃)𝔼𝑢[𝑀𝑢,𝑙𝐻𝜔+𝜓,𝑢,𝑙

𝑚 ], 

𝜏𝜆𝑢𝐷𝑢 − 𝐿̂𝑢
𝑑̃ + 𝐶̂𝑢

𝑑̃ + 𝜚 (𝐶̂𝑢
𝑑̃)

2
∙ 𝜒𝐶𝑢

𝑑<0 − 𝑅𝑢̃ − 𝜆𝑗
𝐾1,−̃ = 0,                           (P) 

𝜏𝜆𝑢𝐷𝑢 − (1 − 𝜅)𝐿̂𝑢
𝑑̃ − 𝐶̂𝑢

𝑑̃ − 𝑅𝑢̃ − 𝜆𝑗
𝐾2,−̃ = 0, 

𝜏𝜆𝑢𝐷𝑢 −
ℎ𝑆

𝜄1𝜇𝑑
𝐿̂𝑢
𝑑̃ −

1

𝜄1𝜇𝑑
𝐶̂𝑢

𝑑̃ −
1

𝜇𝑑
𝑅𝑢̃ − 𝜆𝑗

𝐾3,−̃ = 0. 

To interpret the above equations, we take 𝑘𝑡1  as an example. If  𝑘𝑡1 > 0 , then  𝜆𝑗
𝐾1,+̃ > 0 

and 𝜆𝑗
𝐾1,−̃ = 0, which means the constraint (P) is binding and thus 𝜆𝑗

𝐾1,+̃
 takes on the value of the 

Lagrange multiplier. However, if 𝑘𝑡1 < 0, then 𝜆𝑗
𝐾1,+̃ = 0 and 𝜆𝑗

𝐾1,−̃ = −𝑘𝑡1 > 0, which means 
the constraint is not binding and 𝜆𝑗

𝐾1,−̃
 can take on any value to make (P) hold. 

 

D.3 Decisions for the Systematic Credit Shocks and Aggregate Deposit Variations 

We employ value iteration method for this procedure. The tolerance for termination of value 
function iteration is set at 10−5. This calculation results in a 𝑁𝑠2 × 2 matrix 𝑸𝑚 with each row the 
solution vector [𝐿𝑢+1, 𝐶𝑢+1] for each point of 𝐻𝑢 ⊆ 𝑯𝟐, where 𝑢 = 1,2…𝑁𝑠2. 

 

D.4 Simulation Procedure 

We start the simulation by presenting an initial set of endogenous variables 𝑠0 = [𝐿0, 𝐶0] and a path 
of generated exogenous shocks [𝑍𝑡 , 𝐷𝑡, 𝜆𝑡] for 𝑇 = 𝑇𝑖𝑛𝑖 + 𝑇𝑆 periods. For each period 𝑡 within the 
path, we 1) record the calculated results from 𝑼̅𝑃

𝑚, and update the endogenous state variables using 
following equations, as in (8) and (9), respectively: 

  𝐿̃𝑡 = ∑ 𝛨𝜔+𝜓,𝑢 (𝐿𝑢
𝑗

+ 𝐿̂𝑢
𝑗=𝑠̃ 1{𝑗=𝑠} − 𝐿̂𝑢

𝑗=𝑑̃
1{𝑗=𝑑})𝑗=𝑠,𝑑 ,                            (Q1) 

𝐶̃𝑡 = ∑ 𝛨𝜔+𝜓,𝑢 (𝐶𝑢
𝑗
+ 𝐶̂𝑢

𝑗=𝑠̃
1{𝑗=𝑠} − 𝐶̂𝑢

𝑗=𝑑̃
1{𝑗=𝑑})𝑗=𝑠,𝑑 ;                           (Q2) 

2) calculate 𝑆𝑊𝑡, the value of social welfare as defined in (17); 3) use matrix 𝑸𝑚 and the calculated 
[𝐿̃𝑡, 𝐶̃𝑡], which  are given by (Q1) and (Q2) to obtain [𝐿𝑡+1, 𝐶𝑡+1]; 4) continue the simulation to 𝑡 +
1 and repeat the simulation procedure until reaching the period 𝑇. To remove the dependency of 
the initial state 𝑠0, we discard the results of the first 𝑇𝑖𝑛𝑖 periods and keep, and record, those of the 
last  𝑇𝑆  periods. We keep the same path of exogenous shocks for all tests, i.e., for different 
requirement regimes, to minimise the bias of sampling. For each test we simulate 5000 (pairs of) 
banks with 200 years. To avoid potential dependency of the results on the initial states we selected, 
we disregard the first 50 years of each series and use the last 150 years as our simulated results. 

 

D.5 Grid Configuration 

We adopt the grid configuration for both exogenous and endogenous state variables as follows: 

𝑍: (5 points) [0.9808, 0.9904, 1.0000, 1.0096, 1.0192]. This exogenous shock is discretised into 
a 5-state Markov chain, using the Rouwenhorst (1995) method, with the transition matrix: 

[
 
 
 
 
 0.6708  0.2817  0.0444  0.0031  0.0000 
0.0704  0.6930  0.2136  0.0223  0.0007
0.0074  0.1424  0.7005  0.1424  0.0073
0.0007  0.0223  0.2136  0.6930  0.0704
0.0000  0.0031  0.0444  0.2817  0.6708 ]

 
 
 
 

. 

𝐷: (3 points) [1.97, 2.00, 2.03]. This exogenous shock is discretised into a 3-state Markov chain, 
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using the Rouwenhorst (1995) method, with the transition matrix: 

[
0.8836 0.1128 0.0036
0.0564 0.8872 0.0564
0.0036 0.1128 0.8836

]. 

𝜆: (3 points) [0.495 0.500  0.505], with probability of [0.2741  0.4518 0.2741]. 

𝐿: (30 points) 

[1.80  1.85  1.90  1.91  1.92  1.93  1.94  1.95  1.96  1.97  1.98  1.99  2.00  2.01  2.02  2.05 . ..  

…    2.10  2.12  2.14  2.16  2.17  2.18  2.19  2.20  2.21  2.22  2.23  2.24  2.25  2.30]. 

𝐶: (30 points) 

[−0.550  − 0.450  − 0.400  − 0.370  − 0.360 − 0.355  − 0.350  − 0.345  − 0.330. ..  

. . .  −0.240 − 0.150  − 0.060  − 0.050 − 0.040  − 0.030  − 0.020 − 0.010  0.000  . .. 

…    0.030  0.060  0.090  0.120  0.150  0.160  0.165  0.170  0.180  0.190  0.200  0.300] 

This amounts to 40,500 points of the state grids for decision for variations in mass of liquidity-
deficit banks and 13,500 points for decision of systematic credit shocks and aggregate deposit 
variations. 

 

D.6 Errors of the calculations 

In this section, we report the errors of the calculations of the equations, for both the decisions for 
the systematic credit shocks and aggregate deposit variations and the decisions for the idiosyncratic 
shocks, to assess the accuracy of our calculations. 

 

D.6.1 Errors of the decisions of systematic credit shocks and aggregate deposit variations. 

As addressed before, the tolerance of the termination of the value function iteration is set at 10−5, 
the error of the calculation is thus controlled under that value. 

 

D.6.2 Errors of the decisions of idiosyncratic shocks. 

As we employ the policy function iteration for a system of equations, the tolerance of the iteration 
termination is set at 10−6, the default tolerance set by fsolve function of Matlab, for the whole 
system of the equations. To show a better overview of the errors of each equation within the system, 
we will report the errors of each equation, the calculation of the errors is similar to equation (O) for 
(E1) and is applicable to all other equations within the system. The (maximum) errors of each 
equation, under different regulation regimes, are reported in Table OA1. From Table OA1, one can 
see that the maximum error of the equations is 6.60e-07, which is below 1e-06. This table thus 
proves that our results are of high accuracy. 

 

E. A Simplified Version of the Model 

We simplify our model to a static model to illustrate some impacts of the liquidity requirements on 
the interbank trading activities and to verify some results obtained in Section 6. In this simplified 
model, banks are short-lived and there are two periods: 𝑡 and 𝑡 + 1. There are two banks, i.e., a 
liquidity-deficit bank and a liquidity-surplus bank. At time 𝑡, both banks’ asset value (𝐿𝑡 > 0, 𝐶𝑡 >
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0) is exogenously determined, and the value of deposits is fixed at 𝐷.40 There are two points of the 
systematic credit shocks, which realise at 𝑡 + 1 :  𝑍𝐻 > 0  with probability of  𝑝 , and  𝑍𝐿 <
(𝐷 + 𝑅𝑡

𝑗
− 𝐶𝑡+1 − 𝐿𝑡+1) 𝐿𝑡+1⁄ 41 with probability of 1 − 𝑝, where 𝑅𝑡

𝑗
 is bank 𝑗’s interbank market 

position and  𝑗 = 𝑑, 𝑠  represents the liquidity-deficit and liquidity-surplus bank, respectively. 
Idiosyncratic liquidity variations occur at the beginning of  𝑡 and realise at the value of −𝜏𝐷 and 
 𝜏𝐷, respectively. For simplicity, idiosyncratic credit shocks are zero. To ensure that the interbank 
market is active, we assume that the value of idiosyncratic deposit variations 𝜏𝐷 > 𝐶𝑡. 

We also assume that it is costly and takes longer time to adjust loans for the idiosyncratic liquidity 
variations and thus 𝑙𝑡

𝑠 = 𝑙𝑡
𝑑 = 0. Thus, banks make optimal decisions for idiosyncratic shocks, 𝑐𝑡

𝑗
 

and 𝑅𝑡
𝑗
, at the beginning of  𝑡. The discount factor is 𝛽 < 1, and 𝑟𝑡

𝑝,𝑗
> 𝑟𝑓 = 0, where 𝑟𝑡

𝑝,𝑗
 is the 

interbank rate.  There are no taxes, no asset adjustment costs (𝜙𝐿 = 𝜙𝐶 = 0 ), and no loan 
management costs (𝑚 = 0). The liquidity requirements are at 𝜄1 = 𝜄2 = 𝜄. Haircuts on deposits set 
by liquidity requirements are ℎ𝐷 = 1 − 𝐻. The liquidity requirements are assumed to be tighter 
than the capital requirements42 and thus the capital regulations are not discussed in this model. We 
also assume that issuing equity to pay for the liquidity shortage is costly (especially for liquidity-
deficit banks), which means 𝐼𝑡

𝑑 = 0.43 

 

E.1 Liquidity-Deficit Bank 

The liquidity-deficit bank chooses (𝑐𝑡
𝑑 , 𝑅𝑡

𝑑) to maximise 

 𝐼𝑡
𝑑 + 𝛽[𝐼𝑡+1

𝑑 ] = −𝐷̅ + 𝑅𝑡
𝑑 (1 + 𝑟𝑡

𝑝,𝑑
)⁄ + 𝑐𝑡

𝑑 + 𝛽{𝑝[𝑍𝐻𝜋(𝐿̅) + 𝐿̅ + 𝐶𝑡+1 − 𝑅𝑡
𝑑 − 𝐷] +

(1 − 𝑝)max[0, (1 + 𝑍𝐿)𝐿̅ + 𝐶𝑡+1 − 𝑅𝑡
𝑑 − 𝐷]},                (55) 

subject to 

(1 − 𝜄)𝐿̅ + 𝐶𝑡+1 ≥ 2ℎ𝐷,                                              (56) 

𝑐𝑡
𝑑 + 𝜄𝑅𝑡

𝑑 ≤ 𝜄𝐷̅.                                                        (57) 

where  𝐿̅ = 𝐿𝑡+1 = 2𝐿𝑡 ,  𝐶𝑡+1 = 2𝐶𝑡 + 𝑐𝑡
𝑠 − 𝑐𝑡

𝑑 , 44  and  𝐷̅ = 𝜏𝐷 . Equation (56) is the NSFR 

requirement constraint, and (57) is the LCR requirement constraint. 

A). Interbank borrowing. The first-order condition of (55) with respect to 𝑅𝑡
𝑑 is 

1 (1 + 𝑟𝑡
𝑝,𝑑

)⁄ − 𝛽𝑝 − 𝜄𝜛𝑑 = 0,                                    (58) 

where 𝜛𝑑 is the Lagrange multiplier on (57). 

B). Liquid assets. The first-order condition of (55) with respect to 𝑐𝑡
𝑑 is 

1 = 𝛽𝑝 + 𝜛1 + 𝜛𝑑,                                                (59) 

where 𝜛1 is the Lagrange multiplier on (56). 

 

E.2 Liquidity-Surplus Bank 

                         
40 This implies that the aggregate amount of loans, liquid assets and deposits is at the value of 2𝐿𝑡, 2𝐶𝑡 and 2𝐷 as there 

are two banks in the economy. This consideration affects our calculation of (56). 
41 This assumption simplifies our calculations and ensures that banks will fail if they receive the systematic credit shocks 

at the value of 𝑍𝐿. We will define 𝐿𝑡+1and 𝐶𝑡+1 for the simplified model later. 
42 This assumption is also made for simplicity as the analysis for the liquidity requirements is of our utmost interest. 
43 This assumption ensures that there are seven equations, listed in Section 6.3, to solve for seven unknowns. 
44 As in our quantitative model, and for tractability, we assume that future dividend 𝐼𝑡+1

𝑑  is based on the aggregate value 

of loans 𝐿𝑡+1, irrespective of the realisations of idiosyncratic shocks. 
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The liquidity-surplus banks choose (𝑐𝑡
𝑠, 𝑅𝑡

𝑠) to maximise 

 𝐼𝑡
𝑠 + 𝛽[𝐼𝑡+1

𝑠 ] = 𝐷̅ − 𝑅𝑡
𝑠 (1 + 𝑟𝑡

𝑝,𝑠
)⁄ − 𝑐𝑡

𝑠 + 𝛽{𝑝[𝑍𝐻𝜋(𝐿𝑡+1) + 𝐿𝑡+1 + 𝐶𝑡+1 + 𝑅𝑡
𝑠 − 𝐷] +

(1 − 𝑝)max[0, (1 + 𝑍𝐿)𝐿𝑡+1 + 𝐶𝑡+1 + 𝑅𝑡
𝑠 − 𝐷]},                (60) 

subject to (56), the NSFR requirement constraint, and 

𝑐𝑡
𝑠 + 𝜄𝑅𝑡

𝑠 ≥ 𝜄𝐷̅.                                                     (61) 

A). Interbank lending. The first-order condition of (60) with respect to 𝑅𝑡
𝑠 is 

𝛽𝑝 + 𝜄𝜛𝑠 = 1 (1 + 𝑟𝑡
𝑝,𝑠

)⁄ ,                                       (62) 

where 𝜛𝑠 is the Lagrange multiplier on (61). 

B). Liquid assets. The first-order condition of (60) with respect to 𝑐𝑡
𝑠 is 

1 = 𝛽𝑝 + 𝜛1 + 𝜛𝑠.                                                  (63) 

 

E.3 Equilibrium 

The equilibrium of this simplified model is characterised by the equilibrium 
variables {𝑐𝑡

𝑑 , 𝑐𝑡
𝑠, 𝑅𝑡 , 𝑟𝑡

𝑝
, 𝜆1, 𝜆𝑑 , 𝜆𝑠} with equations (56), (57), (58), (59), (61), (62), (63), and 𝐼𝑡

𝑑 =
0. We can eliminate 𝜛𝑑 and 𝜛𝑠 from (58) and (62), and rewrite the equations as 

1

1+𝑟𝑡
𝑝,𝑑 − (1 − 𝜄)𝛽𝑝 − 𝜄(1 − 𝜛1) = 0                                      (64) 

1 = 𝛽𝑝 + 𝜛1 + 𝜛𝑑                                                    (65) 

1

1+𝑟𝑡
𝑝,𝑠 − (1 − 𝜄)𝛽𝑝 − 𝜄(1 − 𝜛1) = 0                                     (66) 

1 = 𝛽𝑝 + 𝜛1 + 𝜛𝑠                                                   (67) 

𝜛1[(1 − 𝜄)𝐿̅ + 𝐶𝑡+1 − 2ℎ𝐷] = 0                                           (68) 

𝜛𝑑[𝜄𝐷̅ − 𝑐𝑡
𝑑 − 𝜄𝑅𝑡

𝑑] = 0                                                 (69) 

𝜛𝑠[𝑐𝑡
𝑠 + 𝜄𝑅𝑡

𝑠 − 𝜄𝐷̅] = 0                                                  (70) 

𝑅𝑡
𝑑

1+𝑟𝑡
𝑝,𝑑 + 𝑐𝑡

𝑑 = 𝐷̅                                                     (71) 

In equilibrium, 𝑟𝑡
𝑝,𝑑

= 𝑟𝑡
𝑝,𝑠

 and 𝑅𝑡
𝑠 = 𝑅𝑡

𝑑. Thus, equations (64) and (66) reduce to one equation, so 

there are seven equations in total to solve for seven unknowns. 

 

E.4 Interbank Rate and Liquidity Requirements 

Combining (64) and (66), we obtain 

1

1+𝑟𝑡
𝑝 − (1 − 𝜄)𝛽𝑝 − 𝜄(1 − 𝜛1) = 0. 

Case 1: we consider the case when 𝜛1 = 0, i.e., when (56) is not binding. This normally occurs 

when the liquidity requirements are not strict. Thus, the above equation reduces to 1 (1 + 𝑟𝑡
𝑝
)⁄ =

(1 − 𝜄)𝛽𝑝. We can see that 𝑑𝑟𝑡
𝑝

𝑑𝜄⁄ = 𝛽𝑝(1 + 𝑟𝑡
𝑝
)
2

> 0, which means 𝑟𝑡
𝑝

 is increasing in 𝜄. 

Case 2: we consider the case when 𝜛1 > 0, i.e., when (56) is binding. This normally occurs when 
the liquidity requirements are strict so that the requirement constraint is binding. The above case 
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reduces to 1 (1 + 𝑟𝑡
𝑝
)⁄ = 𝛽𝑝 + 𝜄(1 − 𝜛1 − 𝛽𝑝). In this context, there are two possibilities: 

1)  If 𝜛𝑑 = 0, i.e., when (57) is not binding, 𝜆1 = 1 − 𝛽𝑝, we can see from (65) that 𝜛1 = 1 −
𝛽𝑝. Based on (67), we can obtain 𝜆𝑠 = 0. Thus, under this circumstance, only (56) is binding, 
while (57) and (61) are not binding. Combining (57) and (61), we can obtain 𝑐𝑡

𝑠 > 𝑐𝑡
𝑑. Inserting 

this condition to (56), which is binding, we can obtain (1 − 𝜄)𝐿𝑡 + 𝐶𝑡 < ℎ𝐷. This contradicts 
the assumption that banks are subject to the NSFR requirement at the beginning of 𝑡. Thus, (57) 
must be binding. 
 

2) When (57) is binding, we can thus insert 𝑐𝑡
𝑑 = 𝜄(𝐷̅ − 𝑅𝑡

𝑑) in (55), and replace 𝑐𝑡
𝑑  with 𝑅𝑡

𝑑 , 

which reduces the optimisation problem reduce to {𝑅𝑡
𝑑}. The first-order condition of (55) with 

respect to  𝑅𝑡
𝑑  is now:  1 (1 + 𝑟𝑡

𝑝
)⁄ = 𝛽𝑝 + 𝜄(1 − 𝛽𝑝) . We can thus see that  𝑑𝑟𝑡

𝑝
𝑑𝜄⁄ =

−𝛽𝑝(1 + 𝑟𝑡
𝑝
)
2

< 0. This means 𝑟𝑡
𝑝

 is decreasing in 𝜄. 

Scenarios 1) and 2) suggest that if (56) is binding 𝑟𝑡
𝑝

 is decreasing in 𝜄. 

Combining the above two cases, we can conclude that when the liquidity requirements are low 
(when the requirement constraint is not binding) the interbank rates are increasing in the liquidity 
requirements, while when the requirements become stricter, i.e., when the constraint is binding, the 
interbank rates is decreasing in the liquidity requirements. This finding thus indicates an inverted 
U-shaped relationship between interbank rates and the liquidity requirements. 

 

E.5 Interbank Trading Volume and Liquidity Requirements 

Following (71), we can obtain 𝑅𝑡
𝑑 (1 + 𝑟𝑡

𝑝
)⁄ + 𝑐𝑡

𝑑 = 𝐷̅. Given the results from Section 6.4, there 

is only one case regarding the slackness of (57): it must be binding. Hence, we can insert 𝑐𝑡
𝑑 =

𝜄𝐷̅ − 𝜄𝑅𝑡
𝑑 into the above equation to eliminate 𝑐𝑡

𝑑, which obtains: [1 (1 + 𝑟𝑡
𝑝
)⁄ − 𝜄]𝑅𝑡

𝑑 = (1 − 𝜄)𝐷̅. 

Total differentiating this equation, we can get: 

𝑑𝑅𝑡
𝑑

𝑑𝜄
=

−(𝐷̅−𝑅𝑡
𝑑)(1+𝑟𝑡

𝑝
)+

𝑅𝑡
𝑑

1+𝑟𝑡
𝑝

𝑑𝑟𝑡
𝑝

𝑑𝜄

1−𝜄(1+𝑟𝑡
𝑝
)

 . 

The results from Section 6.4 indicate that 𝑑𝑟𝑡
𝑝

𝑑𝜄⁄ < 0 when (57) is binding, which means that the 

numerator of the above equation is negative. Accordingly, we can find that 𝑑𝑅𝑡
𝑑 𝑑𝜄⁄ < 0 when 𝜄 is 

low, i.e., when 𝜄 < 1 (1 + 𝑟𝑡
𝑝
)⁄ , and 𝑑𝑅𝑡

𝑑 𝑑𝜄⁄ > 0 when 𝜄 is high, i.e., when 𝜄 > 1 (1 + 𝑟𝑡
𝑝
)⁄ . This 

finding indicates that there exists a U-shaped relationship between interbank trading volume 𝑅𝑡
𝑑 

and the liquidity requirement ratio 𝜄. 
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F. Tables 

 

Table OA1 

Maximum errors of each equation for the decision of idiosyncratic shocks 

No. of 

Equation 

No 

Requirement 

Capital 

Requirement 

Capital and Liquidity 

Requirement 

E1 4.59e-12 4.94e-12 1.30e-10 

E2 4.37e-12 3.45e-12 1.00e-10 

E3 4.51e-12 7.63e-17 1.63e-11 

E4 3.36e-09 4.75e-07 6.60e-07 

E5 1.13e-12 3.27e-11 4.47e-11 

E6 1.67e-12 1.06e-12 2.65e-11 

E7 5.55e-17 1.57e-13 - 

E8 - 2.11e-13 1.94e-13 

E9 - - 1.64e-13 

E10 4.16e-17 2.02e-12 - 

E11 - 4.59e-13 6.29e-13 

E12 - - 2.25e-13 

E13 2.00e-13 4.33e-17 1.10e-13 

In Table OA1, e stands for the exponent sign and e-12 equals to 𝑒−12. The columns with ‘-’ represent the 

equations which are not applicable to the respective requirement regime in question. 

 

 

Table OA2 

Impacts of liquidity requirements 

This table presents the results of the banks under various levels of liquidity requirements. The results are 

obtained using the value function in Equation (15), using the parameter values in Table 1. The column 

Baseline refers to the case when liquidity requirement at 𝜄1 = 𝜄2 = 100%. The column Other Liquidity Levels 

presents the results under various levels of liquidity requirements, ranging from 𝜄1 = 𝜄2 = 0% (The scenario 

when only capital requirements are added) to 𝜄1 = 𝜄2 = 90%. The parameters shown below present the cases 

when different ratios of the liquidity requirements are imposed. The results of this table are the averages 

across the simulated results of the time-series averages of the cross-sectional averages. 

 Capital and Liquidity Other Liquidity Levels 

 𝜄1 = 100% 

𝜄2 = 100% 

𝜄1 = 0% 

𝜄2 = 0% 

𝜄1 = 10% 

𝜄2 = 10% 

𝜄1 = 30% 

𝜄2 = 30% 

𝜄1 = 50% 

𝜄2 = 50% 

𝜄1 = 55% 

𝜄2 = 55% 

Loans 1.949 2.177 1.955 1.952 1.952 1.951 

Liquid Assets 0.172 –0.048 0.162 0.162 0.165 0.168 

Interbank volume 0.107 0.073 0.073 0.061 0.060 0.059 

Interbank rate 4.24% 11.61% 8.12% 11.19% 12.10% 12.25% 

Bank Equity Value 1.971 4.034 2.501 2.360 2.291 2.271 

Social Welfare 3.831 6.114 4.374 4.230 4.158 4.141 

 – 

– 
𝜄1 = 60% 

𝜄2 = 60% 

𝜄1 = 65% 

𝜄2 = 65% 

𝜄1 = 70% 

𝜄2 = 70% 

𝜄1 = 80% 

𝜄2 = 80% 

𝜄1 = 90% 

𝜄2 = 90% 

Loans – 1.951 1.951 1.951 1.950 1.949 

Liquid Assets – 0.169 0.169 0.169 0.170 0.171 

Interbank volume – 0.053 0.046 0.059 0.086 0.099 

Interbank rate – 12.24% 12.24% 12.24% 12.04% 10.94% 
Bank Equity Value – 2.271 2.269 2.265 2.255 2.231 

Social Welfare – 4.136 4.133 4.128 4.112 4.093 

 


