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We present a novel multiple hypothesis testing framework for selecting outperforming
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power (up to 30%) in simulations over the Barras–Scaillet–Wermers (BSW) approach.

We show that portfolios based on four new informative covariates and five well-known

ones demonstrate truly positive performance and surpass the BSW portfolios and those
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1. Introduction

Investors tend to select mutual funds based on their past records but high past alphas

might be due to luck. In order to identify the truly skilled funds, namely, the funds with

genuine positive alphas due to, for instance, possession of superior information or trading

skill, the investors should rely on a multiple hypothesis testing framework. They should

devise an approach that controls the number of false discoveries, i.e., the number of funds

that seem skilled but are truly not.

The method that has gained considerable attention in the literature and has been

successfully applied to the problem is the False Discovery Rate “plus” (FDR+) of Barras

et al. (2010) – hereafter BSW. This has originated from the False Discovery Rate (FDR)

of Benjamini and Hochberg (1995). As per its name, the FDR aims to measure the

expected proportion of false discoveries among significant ones; it soon gained popularity

due to its use in many areas of science. BSW extended one of the most popular frame-

works, that of Storey (2002), and applied to mutual funds performance. They introduced

FDR+ aiming to control for FDR in the right tail of the distribution and, based on it,

generate mutual fund portfolios with positive alphas. The simplicity of their approach

and the attractiveness of their results made it popular and led also to other applications

such as in assessing trading strategies (see Bajgrowicz and Scaillet, 2012) and hedge

funds’ risk exposures (see Patton and Ramadorai, 2013). However, recent simulation

results by Andrikogiannopoulou and Papakonstantinou (2019), AP henceforth, suggested

that the estimation of the zero-alpha proportion in BSW is upward-biased under par-

ticular settings. In their reply to the AP study, Barras et al. (2020) showed that, upon

reasonable adjustments, the bias levels can be lower. As BSW define the FDR+ based on

the estimated proportion of zero-alpha funds, the analysis of AP implies that the FDR+

is overconservative and, therefore, not powerful enough in detecting skilled funds.

In this study, we introduce an innovative approach, the functional False Discovery

Rate “plus” (fFDR+), to control for FDR in selecting skilled funds. Our method is

based on the functional False Discovery Rate (fFDR) framework of Chen et al. (2021)

– henceforth CRS – which incorporates covariates in the FDR estimation. We apply

1



fFDR+ to similar data to those of BSW and AP and benchmark our method against

FDR+ by implementing a similar set of simulations to theirs. We show that, when an

informative covariate is available, our approach detects more true positive alpha funds.

The gap in power between the two approaches depends on the distribution of the fund

alpha population and can be up to about 30% when controlling for FDR at 10%. In

our empirical tests, we find that the set of mutual funds selected as skilled by fFDR+

is usually larger and different from the one obtained by FDR+. Based on the selected

skilled funds, we build portfolios that consistently beat the one generated by the BSW

approach. As our covariates, we explore nine of which five, based on the literature, convey

information on mutual fund performance, and four inspired by asset pricing models. More

specifically, we apply the R-square of the asset pricing model (e.g., Carhart four-factor

model) as suggested by Amihud and Goyenko (2013), the Return Gap of Kacperczyk

et al. (2008), the Active Weight of Doshi et al. (2015), the Fund Size of Harvey and

Liu (2017), and the Fund Flow suggested by Zheng (1999). We also propose four new

covariates including the Sharpe ratio, the Beta and Treynor ratio based on the Capital

Asset Pricing Model and the idiosyncratic volatility of the benchmark Carhart four-factor

model (Sigma).

Our empirical results highlight the informative value of these covariates and, based on

them, we are able to construct portfolios that consistently generate truly positive alphas.

In particular, the fFDR+ portfolios with the R-square and the Beta covariates are found

to be the best with annualized alphas of 1.7%, followed by the fFDR+ portfolios with the

Active Weight, Fund Flow, Sigma, Treynor ratio, Fund Size, Sharpe Ratio and Return

Gap covariates, separately achieving annualized alphas of at least 0.77%. We note that

this profitability is persistent over our sample and strengthened over the recent period,

a finding that disagrees with part of the recent literature which suggests otherwise (i.e.,

Jones and Mo, 2021). All our fFDR+ portfolios outperform the one generated by the

BSW approach and a set of portfolios created by single- and double-sorting the covariates

under study without controlling for luck under various metrics and sub-periods. We also

consider the fFDR+ portfolio based on various ways of combining the nine covariates,
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such as the first principal component of the nine covariates (PC 1), the ordinary least

squares (OLS), the least absolute shrinkage and selection operator (LASSO) of Tibshirani

(1996), the ridge regression and the elastic net of Zou et al. (2005), and find that the

latter delivers the best performance with an annualized alpha of 1.25%.

The literature on mutual funds’ performance is rich and diverse but has two main

strands: one that tries to model the distribution of mutual funds in terms of alphas

and identify the skilled funds and managers, and another that focuses on identifying

covariates that explain mutual funds’ performance. In one of the earliest studies, Jensen

(1968) documents that the majority of active equity mutual fund managers are unable

to beat passive investment strategies net of fee. More recent research incorporates cross-

sectional information and assesses funds’ performance via a Bayesian approach with some

prior beliefs about the distribution of the fund alpha. For example, Jones and Shanken

(2005) assume that the fund alpha population has a normal distribution and use the

Gibbs sampling technique to estimate the parameters of the distribution, whereas Harvey

and Liu (2018) adopt a mixture of normals and introduce an expectation maximization

technique to estimate the weights and the parameters of the component distributions. By

implementing the FDR approach, BSW find that only 2.4% of the funds in their sample

are skilled over a five-year horizon. Their portfolios deliver a superior performance against

those based on a passive benchmark. However, the FDR+ approach is conservative in

the sense that, while it controls for FDR and detects funds with high alphas, it misses

funds with small but economically significant alphas; a point that is evidently implied

from the simulations of AP.

The other direction in the literature tries to identify skilled funds based on the ranking

of the funds’ alphas and covariates. For instance, Carhart (1997) constructs a portfolio

by sorting mutual funds according to their past performance (e.g., lagged one-year return

and three-year past four-factor model alpha). Kacperczyk et al. (2008) discover that the

Return Gap, defined as the difference between the fund’s reported return and the return

based on previous holdings, can predict the fund’s future performance. Similarly, Doshi

et al. (2015) present the Active Weight metric that conveys information about the fund’s

3



future performance and demonstrate predictability. Other researchers do multiple sorting

on variables related to funds’ performance. For example, Amihud and Goyenko (2013)

show that a fund’s R-square can predict its performance.

Our study contributes to both strands. First, we introduce fFDR+, which ben-

efits from utilizing information from covariates related to a fund’s performance, while

we control for FDR. Our approach estimates FDR as a function of an informative

variable. By designing and implementing suitable Monte Carlo simulation experiments,

we illustrate that our fFDR+ approach actually controls for FDR under both cross-

sectional independence and dependence. We also show that it has higher power than

its BSW counterpart. In our simulations, we explore different distributions for the fund

alpha population, including a discrete distribution as in BSW, a mixture of discrete and

normal distributions as in AP, a single normal distribution as in Fama and French (2010)

and Jones and Shanken (2005), and a mixture of two normals studied in Harvey and Liu

(2018). With parameter values that are aligned with the aforementioned literature, we

show that our approach controls for FDR under different settings and gains higher power

with an absolute gap up to about 30% compared to BSW.

Second, our research contributes to the covariates’ literature on mutual funds. We

introduce four new covariates based on asset pricing models, which reflect a different

aspect of the return/risk profile of the funds under study and may assist in identifying

skilled funds in the short term. We also explore the five well-known covariates that

are suggested in prior studies to explain mutual funds’ performance. Based on them

and our fFDR+, we construct portfolios that persistently produce positive alphas for

a long period from 1982 to 2019. We produce nine portfolios, one for each covariate

under study, and find differences in their informative values. Our four new covariates

perform well and outrank, in the context of our method, the portfolios based on the

traditional covariates on several metrics and sub-samples. In general, fFDR+ portfolios

consistently dominate BSW’s FDR+ portfolio in terms of generating abnormal alphas.

For example, the annualized alphas of the fFDR+ portfolios from 1982 to 2019 ranges

from 0.77% to about 1.7%, depending on the covariate, whereas this drops to 0.36% for
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the BSW counterpart. We also find that our fFDR+ portfolios utilize the information

of the covariates better than a set of single- and double-sorted covariate strategies. A

finding suggests that the relationship between luck, skill and funds’ performance with

our covariates is non-linear and that traditional portfolio approaches that do not control

of luck may be inadequate.

Finally, we move one step further and combine the nine covariates into single ones via

linear combinations with the weights obtained from a principal component analysis and

shrinkage regression methods. We find that investors might benefit from such combina-

tions as they offer lower volatility in portfolio performance. This is advantageous as, in

reality, investors do not know ex-ante what covariate is the best.

The rest of the paper is organized as follows. In Section 2, we introduce and explain

our methodology. In Section 3, we provide a description of our data. Section 4 is devoted

to our simulation experiment descriptions, whereas in Section 5 we present in detail our

simulation results. Section 6 focuses on the real empirical part of our analysis. Section 7

concludes this paper.

2. Methods for Controlling of Luck with Informative Covariate

2.1. Functional False Discovery Rate (fFDR)

We define the funds’ skill based on their net return, that is, the return net of trading

cost, fees and other expenses except loads and taxes. A fund is deemed skilled if it

distributes to investors a net return that generates a positive alpha. If the alpha is

negative (zero), the fund is said to be unskilled (zero-alpha). This definition of skill

measures the performance of funds in excess of expenses and reflects the interest of

investors.

Suppose that we are assessing m funds and each of them has a net return time series.

We also assume that there exists a covariate that conveys information about the alpha of

each fund. We introduce our notation by means of a single test for the alpha of a mutual

fund:

H0 : α = 0, H1 : α 6= 0. (1)

5



We denote by h the status of the null hypothesis, that is, h = 0 if the hypothesis α = 0

is true and h = 1 if otherwise. In addition, P is the random variable representation of

the p-value of the test, Z is the covariate which is uniformly distributed on [0, 1], and

T = (P,Z). We assume that (h|Z = z) ∼ Bernoulli(1 − π0(z)), that is, conditional on

Z = z, the fund possesses a zero alpha with probability π0(z); this can be constant if Z

does not convey any information about the probability of the fund’s alpha being zero.

What follows is based on two assumptions for P : under the true null, (P |h = 0, Z = z)

is uniformly distributed on [0, 1] regardless of the value of z; when the null hypothesis is

false, the conditional density function of (P |h = 1, Z = z) is f1(.|z).

To assess the performance of m funds in terms of α, we consider m tests like (1):

H0,i : αi = 0, H1,i : αi 6= 0, i = 1, . . . ,m, (2)

where αi is the alpha of fund i. For each i we have Ti = (Pi, Zi), and we assume that all

the pairs are independent and each of them has the same distribution as (T, h). Finally,

we denote by f(p, z) the joint density function of (P,Z). We have that

P(h = 0|T = (p, z)) =
π0(z)

f(p, z)
=: r(p, z) (3)

is the posterior probability of the null hypothesis being true given that we observe T =

(p, z).1

To control the type I error, Storey (2003) introduces the “positive false discovery rate”

pFDR = E
(
V

R

∣∣∣∣R > 0

)
, (4)

where R is the number of rejected hypotheses in m tests and V the wrongly rejected

ones. CRS show that, with a fixed set Γ in [0, 1]2, if we reject hypothesis H0,i whenever

1For more details about the role of the assumption Z ∼ Uniform(0, 1) and the derivation of (3), see
CRS.
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Ti ∈ Γ, then

pFDR(Γ) = P(h = 0|T ∈ Γ) =

∫
Γ

r(p, z)dpdz. (5)

To maximize the number of rejections, we reject the hypotheses with the smallest statistic

r(p, z). Thus, the significance region {Γθ : θ ∈ [0, 1]} is defined as

Γθ = {(p, z) ∈ [0, 1]2 : r(p, z) ≤ θ}, (6)

where a larger θ implies more rejected hypotheses. Finally, we recall from Storey (2003)

and CRS the definition of the q-value for the observed (p, z):

q(p, z) = inf
{Γτ |(p,z)∈Γτ}

pFDR(Γτ ) = pFDR(Γr(p,z)). (7)

Given a target τ ∈ [0, 1], a procedure that rejects a hypothesis if and only if its q-value

≤ τ guarantees that pFDR is controlled at τ .

Empirically, let π̂0(z) and f̂(p, z) be the estimated functions π0(z) and f(p, z), respec-

tively.2 We calculate r̂(p, z) = π̂0(z)/f̂(p, z) and estimate the q-value function as

q̂(pi, zi) =
1

Si

∑
k∈Si

r̂(pk, zk), (8)

where Si = {j|r̂(pj, zj) ≤ r̂(pi, zi)}, pi is the p-value of test i, zi = ri/m, as we are

transforming the observed value of the covariate Zi to a form that meets the assumption

Zi ∼ Uniform(0, 1), and ri is the ranking of the observed value in the set of observed

values of Z1, . . . , Zm. Then, given a target pFDR level τ ∈ [0, 1], the null hypothesis H0,i

is rejected if and only if q̂(pi, zi) ≤ τ . CRS call this procedure Functional False Discovery

Rate (fFDR).

2.2. The fFDR+: application in selecting skilled funds

By applying the fFDR methodology to mutual funds at a given target pFDR level

τ , we obtain a set that includes both significantly skilled and unskilled funds. To further

2See Appendix A for more details.
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improve mutual fund selection, we propose a fFDR-based method that selects a group

of significantly skilled funds with control of luck. In the following section, we introduce

our fFDR+ and discuss its application in a mutual fund context.

Consider a selection of R+ skilled funds including V + wrongly selected zero-alpha or

unskilled funds. We define the positive false discovery rate in those significantly skilled

funds as

pFDR+ = E
(
V +

R+

∣∣∣∣R+ > 0

)
. (9)

For m tests, let A+ be the set of hypotheses with positive estimated alpha, i.e., A+ =

{i|α̂i > 0}, where α̂i is the estimated alpha of fund i. At a given target τ of pFDR+,

by implementing the fFDR procedure to control pFDR at the target τ on the funds in

set A+, we obtain all the funds with positive estimated alphas (referred to as significant

alphas).3 Hence, the fFDR selects positive-alpha funds with control of pFDR at the

given target; we call this procedure the functional FDR “plus” (fFDR+).

Next, we highlight the differences between our and BSW’s approaches. The starting

point of both is the control of the type I error as in Benjamini and Hochberg (1995):

FDR = E
(

V

max{R, 1}

)
= E

(
V

R

∣∣∣∣R > 0

)
P(R > 0) = pFDR · P(R > 0), (10)

where the last equality follows from (4). This implies that controlling for pFDR at a

given target τ , also controls for FDR at the same target. Furthermore, for a large number

of tests, controlling for pFDR and FDR is equivalent (see Storey, 2002, 2003).

Consider the m tests (2) in the absence of the covariate Z and let ti be the test statistic

of test i. Storey (2002) assumes that t1, . . . , tm are independent and the statuses of the null

hypotheses h1, . . . , hm are independent Bernoulli random variables with P(hi = 0) = π0.

Additionally, across i, (ti|hi = 0) and (ti|hi = 1) are identically distributed. When we

3In doing so, we assume that the number of funds that are skilled but exhibit a negative estimated
alpha is negligible. This is sensible as in practice we will not select those funds anyway. In BSW, as
discussed next, having a positive estimated alpha is a necessary condition for a fund to be selected as
skilled.
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reject based on the p-values, for some λ ∈ [0, 1), π0 can be estimated by

π̂0(λ) =
#{pi|pi > λ, i = 1, . . . ,m}

(1− λ)m
(11)

where # returns the number of elements in the set; this estimate is conservative biased.4

BSW choose λ = λ∗ on the grid {0.3, 0.35, . . . , 0.7} such that the mean square error

(MSE) of π̂0(λ) is minimal.5 We set π̂0 = π̂0(λ∗).

To select skilled funds with control for the FDR, BSW define the concept FDR+ to

measure the FDR in group of funds selected as significant and positive estimated alpha

as

FDR+ = E
(

V +

max{R+, 1}

)
. (12)

With a significant threshold γ and a procedure which selects a fund with positive esti-

mated alpha whenever its p-value ≤ γ, BSW estimate FDR+ by

F̂DR
+

γ =
π̂0γ/2

R̂+/m
, (13)

where R̂+ is the empirical number of funds selected as skilled, i.e., R̂+ = #{i|pi ≤ γ, α̂i >

0}. When using this approach to determine skilled funds with controlling for FDR+ at

a given target τ , the threshold γ is raised gradually until the F̂DR
+

estimate in (13)

reaches the target τ . We refer to this procedure as FDR+.

[Insert Figure 1]

To illustrate the differences between our and BSW’s procedures, we opt for a sub-

period of five years from 2001 to 2004 and implement the FDR+ and fFDR+ to detect

positive alpha funds, with the alpha determined by the four-factor model of Carhart

4To have the estimate of π0, first, under independence, there are mπ0 funds with truly zero alpha
and their p-values have a uniform distribution in [0, 1]. Hence, we expect mπ0(1 − λ) p-values in the
set to fall in [λ, 1]. Second, this number can be conservatively approximated by #{pi|pi > λ}, thus we
have (11). With a larger λ, the estimate π̂0 is less conservative, as there are fewer p-values under the
alternative belonging to [λ, 1], but its variance is higher.

5In MSE = E(π̂0(λ)− π0)2, the unknown π0 is replaced by minλ π̂0(λ) over the λ grid.
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(1997). In this case, the R-square of the model is used as the covariate for fFDR+.6 In

Figure 1, we demonstrate how the two procedures work. Based on the p-values of all the

considered funds, the FDR+ estimates the proportion of zero-alpha funds in the whole

sample, as a first step, giving π̂0 ≈ 0.83. It then selects the positive estimated alpha

funds with smallest p-values until the estimated F̂DR
+

γ reaches a given FDR target.

For illustration, we choose the FDR target τ = 35%, so that both methods select a

substantial number of funds.7 Here, all the funds with p-value less than or equal to

γ = 0.0086 are selected by the FDR+. The threshold γ is depicted by the green dashed

line in Panel C and all the funds corresponding to the points on the left of the vertical

line are selected. By contrast, the fFDR+ considers only the set of positive estimated

alpha funds and estimates the proportion of zero-alpha funds in this set as a step function

of z (the quantiles of R-square).

In this experiment, we split the sample into five bins based on the ranking of the

covariate z; thus, π̂0(z) is a function with five “steps”. The procedure continues with

the estimation of the density function f(p, z) and of the functional q-value q(p, z). The

fFDR+ selects all the funds with estimated q-value less than or equal to 0.35: those funds

correspond to the points below the red dashed line (the q-value = 0.35 line) in Panel C.

This clearly shows that, for the same target, the fFDR+ selects significantly more funds

than FDR+ (170 versus 19). More importantly, the funds selected by the FDR+ are not

merely a subset of those selected by fFDR+. Panel D displays the distribution of the

selected funds with respect to the p-value and z. We observe that the fFDR+ assigns

more weight to some funds with smaller z (thus, smaller R-square), but the weight is

not equally distributed across the funds with the same level of z. As the rejection rule

of fFDR+ is based on the functional q-value, which is based on the estimates of π0(z)

and f(p, z), it is not possible to explain this merely by the ranking of the p-value and

the covariate z, as evidenced in Panel D: the fFDR+ selects some funds with p-values

around 0.6 while skipping many funds with a smaller p-value at roughly the same level

6The details of the funds and the calculation of the p-values are deferred to Section 6. Here, we focus
only on illustrating the differences.

7If we choose any target τ ≤ 30%, the FDR+ selects no funds.
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of z.

As shown in AP, the FDR+ relies on an over-conservative estimate of the null pro-

portion and utilizes only p-values and the estimated alphas. On the other hand, the

fFDR+ additionally uses an informative covariate about the performance of the funds

and expresses the null proportion as a function of it, while accounting for the joint dis-

tribution of the p-value and the covariate. This results in a more accurately estimated

FDR and, therefore, an increased power in detecting skilled funds. We are illustrating

the prominent power of the fFDR+ via a set of simulation studies in the next sections.

In the empirical section, we will show the actual profitability that the five covariates can

bring to investors while controlling for luck.

3. Data

We use monthly mutual fund data from January 1975 to December 2019 collected from

the CRSP database. As CRSP reports funds at the share class level, we use MFLINKS

to acquire fund data at the portfolio level. For a fund at a given point in time with

multiple share classes, we average the share classes’ net return weighted by the total

net asset (TNA) value at the beginning of the month.8 The TNA at the fund level is

estimated by the sum of the share classes’ TNA. We omit the following month return

after a missed return observation as CRSP fills this with the accumulated returns since

the last non-missing month. To obtain the holdings data of the funds, which will be

used to calculate our covariates, we merge the CRSP and Thomson/CDA databases by

utilizing MFLINKS. The holdings database provides us with stock identifiers, which we

use to link the funds’ position with the CRSP equity files. From this equity database, we

obtain information such as the price and number of shares outstanding of the stocks that

the funds hold on their reported portfolio date. We use these to calculate the return gap

and the active weight, which are described in more detail later.

We consider only funds with an investment objective belonging to the categories

8Since 1991, we use the monthly TNA of the fund’s share classes. Before 1991, most of the funds
report their TNA on a quarterly basis. For this, we follow Amihud and Goyenko (2013) to fill in the
missing TNA of each fund (at the share class level) by its most recently available one.

11



Growth, Aggressive Growth and Growth & Income. Both CRSP and CDA provide this

information; CDA is more consistent over time, hence we choose that. As the funds’

investment objective can change, we collect first all the funds in these categories. If

at some point a fund misses its investment objective, we fill this in by its prior non-

missing objective. If a fund’s objective changes, we remove those return observations

corresponding to periods when its objective does not belong to the three aforementioned

categories. To obtain a precise four-factor alpha estimate, we select only funds with at

least 60 monthly observations. Overall, we gather a sample of 2,224 funds which provides

the empirical metrics for our simulation study.9

In the empirical part, when calculating the related covariates, we additionally require

each fund to hold at least 10 stocks; this is consistent with Kacperczyk et al. (2008) and

Doshi et al. (2015) and is needed here as we use the return gap and active weight from

their studies as two of our covariates. The number of funds used when constructing our

covariate-based portfolios varies over years and will be reported in detail in the empirical

section.

4. Simulation Setup

In this section, we present the details of our simulation design consisting of the choice

of the model, the distributions of the alpha population, the data-generating process and

the metrics that we will use to gauge the performance of the methods.

4.1. The model

Following the majority of the existing literature on mutual fund performance, we use

the four-factor model of Carhart (1997) to compute the fund performance:

ri,t = αi + birm,t + sirsmb,t + hirhml,t +mirmom,t + εi,t, i = 1, . . . ,m, (14)

where ri,t is the excess net return of fund i over the risk-free rate (i.e., the one-month

Treasury bill rate), rm,t the market’s excess return on the CRSP NYSE/Amex/NASDAQ

9We thank Andrés Villegas for providing us with some datasets in the aforementioned databases.
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value-weighted market portfolio, rsmb,t the Fama–French small minus big factor, rhml,t the

high minus low factor, rmom,t the momentum factor and εi,t the noise of fund i at time t.

All factors and the one-month Treasury bill rate are obtained from French’s website.

Our simulations are designed similarly to BSW and AP in terms of the data-generating

process, in addition to accounting for an informative covariate and considering more distri-

bution types of the fund alpha population. Whereas BSW and AP focus on the estimated

proportions of the skilled, unskilled and zero-alpha funds, we consider the performance of

the FDR+ and fFDR+. More specifically, for a given fund alpha distribution, we first

generate in each iteration the true fund alpha population and a covariate that conveys

information about the alpha of each fund. Second, we simulate the Fama–French factors

and noise, which are then used to generate the net return for each fund. Subsequently,

by carrying out the regression (14) of the generated net return on the simulated Fama–

French factors, we estimate the alpha and calculate the related p-values for the tests (2).

Finally, based on these estimated alphas, p-values and the covariate, we implement the

fFDR+ and FDR+, for a given FDR target, to obtain the significantly skilled funds.

We estimate the actual false discoveries rate of the fFDR+ and check if it meets the given

target. We then compare the two methods in terms of power, defined as the expected

ratio of the number of true positive alpha funds detected to the total number of true

positive alpha funds in the population.

4.2. The distribution of fund alphas

We consider three different types for the distribution of fund alphas: a discrete, a

discrete-continuous mixture and a continuous. A covariate Z conveys information about

the alpha of each fund in the population; more specifically, a fund with Z = z has a

probability π0(z) of being zero-alpha. Also, without loss of generality, we assume that,

for non-zero alpha funds, their covariates and alphas are positively correlated.10

First, in the discrete type, we draw alphas from three mass points −α∗ < 0, 0 and

10If the correlation is negative, we use instead −Z.
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α∗ > 0 with probabilities π−, π0 and π+. Thus,

α ∼ π−δα=−α∗ + π0δα=0 + π+δα=α∗ . (15)

We consider five values for α∗ ∈ {1.5, 2, 2.5, 3, 3.5} together with six combinations of

the proportions (π+, π0, π
−) based on π+ ∈ {0.1, 0.13}, π−/π+ ∈ {1.5, 3, 6} and π0 =

1− π− − π+, i.e., a total of thirty cases.11

In the mixed discrete-continuous distribution, we draw alphas from two components

including the mass point 0 and the normal distribution N (0, σ2) with, respectively, prob-

abilities π0 ∈ (0, 1) and 1− π0. We have, therefore, that

α ∼ π0δα=0 + (1− π0)N (0, σ2). (16)

We consider five values for σ ∈ {1, 2, 3, 4, 5} and the same six π0 values as in the discrete

distribution earlier.

Finally, in the continuous case, we draw alphas from a mixture of two normal distribu-

tions N (µ1, σ
2
1) and N (µ2, σ

2
2) with, respectively, probabilities π1 ∈ [0, 1] and π2 = 1−π1,

i.e.,

α ∼ π1N (µ1, σ
2
1) + π2N (µ2, σ

2
2). (17)

When π1 and π2 are positive, we have indeed a mixture; we adopt from Harvey and

Liu (2018) π1 = 0.3 and π2 = 0.7 and, to point up the performance of our method, we

consider fifteen combinations based on (µ1, µ2) ∈ {(−2.3,−0.7), (−2,−0.5), (−2.5, 0)}

and (σ1, σ2) ∈ {(1, 0.5), (1.5, 0.6), (2, 1), (2.5, 1.25), (3, 1.5)}.12

In (17) π0 = 0, whereas in (15) and (16) π0 > 0. When π0 > 0, we study an up-

and-down shape of π0(z). Specifically, to guarantee π0(z) ∈ [0, 1] for all z, we choose

11The chosen π+ values are close to those from recent literature: π+ = 10.6% (see Harvey and Liu,
2018) and π+ = 13% (see Andrikogiannopoulou and Papakonstantinou, 2016). The ratio π−/π+ = 6 is
studied in AP. Aiming to extend the range of our study, we consider also the ratios 1.5 and 3.

12Our choices are intended to be wide enough to encompass the cases of Harvey and Liu (2018):
(π1, π2) = (0.283, 0.717), (µ1, µ2) = (−2.277,−0.685) and (σ1, σ2) = (1.513, 0.586). In Section IB of the
Internet Appendix, we additionally present results of the case π2 = 0, i.e., when the mixture becomes a
single normal distribution.
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π0(z) = min{1,max(f(z), 0)} ∈ [0, 1], where

f(z) = 3.5(z − 0.5)3 − 0.5(z − 0.5) + c (18)

and c is chosen to satisfy
∫ 1

0
π0(z)dz = π0. This way we are able to investigate the effect

of π0 on the power of the methods by varying c while keeping the shape of π0(z) roughly

unchanged.13

Suppose the distribution of alpha and the form of π0(z) are determined. We gen-

erate the covariate vector (z1, z2, . . . , zm) with each element drawn from the uniform

distribution [0, 1] and assign them to the funds satisfying the descriptions mentioned at

the beginning of this section. The noise in equation (14) is generated cross-sectionally

independent or dependent. In the former case it is drawn from a normal distribution

N (0, σ2
ε), where, as in Barras et al. (2020), σε is set equal to the median of its real-

data counterpart, that is, approximately 0.0183 for our sample. For each replication, we

implement the fFDR+ and FDR+ and compute the rate of falsely selected funds among

those classified as skilled and the rate of truly skilled funds detected. The two metrics

are averaged across 1,000 replications to obtain estimates for the actual FDR and the

power of each procedure.14

5. Simulation Results and Analysis

We set the number of funds for simulations at 2,000 which is close to our sample of

2,224 funds. We demonstrate the ability of the fFDR+ to control the FDR for balanced

panel data, where the number of observations per fund is equal to 274, under cross-

sectional independence. In the interest of space, we refer to Section IB of the Internet

Appendix for the results under cross-sectional dependence as well as the unbalanced panel

data cases. We then compare the powers of the fFDR+ and the FDR+ in controlling the

FDR at the 10% level; we extend to higher levels and highlight the differences between

13The alternative choices of a decreasing function π0(z) with f(z) = −1.5(z− 0.5)3 + c, an increasing
function π0(z) with f(z) = 1.5(z−0.5)3 +c or a constant function π0(z) = c result in some discrepancies,
without affecting, though, our main conclusions.

14We refer to Section IA of the Internet Appendix a detailed description of the simulation procedure.
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the two procedures. Finally, we study the impact of the number of funds in the sample

and the number of observations per fund on the power.

In general, the results show that the fFDR+ controls well the FDR at any given

targets. When the FDR target is set at 10%, the fFDR+ detects more positive alpha

funds than the FDR+ with a difference in power up to 30%, depending on cases and

parameters of the distributions. When we raise the FDR target to higher levels, the

difference is even higher in favour of the fFDR+. The results are consistent regardless of

the number of funds in the sample, the structure of the panel data and the dependence

of the cross-sectional error terms. In each simulation study, we analyze the relationship

between the powers of the two methods and: i) the proportion of zero-alpha funds in the

sample; ii) the magnitude and proportion of positive alpha funds in the sample.

5.1. False discovery rate control of fFDR+

For varying targets of FDR ∈ {5%, 10%, . . . , 90%}, we implement the simulation

procedure in Section 4 with balanced panel data. Figures 2, 3 and 4 exhibit our results

for the generated data under cross-sectional independence.

[Insert Figures 2–4]

In Figure 2, we show our results for the discrete distribution (15) for varying α∗.

The upper three subplots correspond to π+ = 0.1, whereas the lower three subplots to

π+ = 0.13. From left to right, the ratio π−/π+ increases from 1.5 to 6 (with the null

proportion π0 decreasing accordingly). For example, the top-left subplot exhibits the

actual FDR (vertical axis) and the given targets of FDR (horizontal axis) with the

alphas drawn from a discrete population of which 75%, 10% and 15% are, respectively,

zero-, positive- and negative-alpha funds. A point on or below the 45◦-line indicates that

the fFDR+ controls FDR well for the given level; this is the case for α∗ = 1.5 at all

the FDR targets. For α∗ = 3.5, the FDR is slightly not met for targets in the interval

(0.1, 0.8). In general, we witness slight failure of the fFDR+ to control for FDR when

α∗ is abnormally high. In the last case with smallest π0, the FDR is controlled well. In
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Figure 3, we study the case of the fund alpha population described by the mixed discrete-

continuous distribution (16). We organize our results based on the same null proportions

π0 as in Figure 2 and present these for varying σ. We observe that the FDR target is

slightly unmet only for extreme values of σ when the null proportion is very high and

this effect is also milder compared to the discrete distribution cases. Finally, in Figure 4,

we report the results for the continuous distribution (17) for varying µ or (µ1, µ2) and σ

or (σ1, σ2). We find that the fFDR+ controls FDR well at all targets.

In summary, our simulations are based on proposed fund alpha distributions from the

recent literature, from the least realistic cases, with all the skilled and unskilled funds

assumed to have the same mass alpha value, to the more realistic ones, where the alpha is

drawn from a continuous distribution, in which no fund has exact zero but rather mostly

negative alpha. Our results suggest that, for the continuous distribution, the proposed

fFDR+ approach controls well for FDR at any given target.

5.2. Power analysis

Next, we study the power of our fFDR+ approach in detecting truly positive alpha

funds, calculated as described in Section 4, and compare it with the FDR+ of BSW for

FDR control at 10%. Although the magnitude of our results varies with different targets

of FDR, our main conclusion of the power superiority of the fFDR+ remains.

[Insert Table 1]

In Table 1, we report for the discrete distribution (15). For (π+, π0, π
−) = (10, 75, 15)%

with highest π0 and smallest α∗ = 1.5, both the fFDR+ and FDR+ achieve similar

powers, i.e., 0.3% and 0.4%, respectively. This is expected in this particular case as the

number and magnitude of the true positive alphas are small, while we are controlling

for FDR at 10%.15 The superiority of the fFDR+ is more perceptible and stabler for

larger α∗. This discrepancy depends not only on the magnitude and proportion of positive

15As will be shown later, with a higher FDR target (such as 30%), the power of the fFDR+ exceeds
that of FDR+ by 6%. Considering a higher target than 10% is sensible for trading and diversification
purposes as otherwise very few or no skilled funds are selected. In the study of BSW, the estimated
FDR in the empirical application is at least 41.5% on average (depending on portfolio).
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alphas, but also on the proportion of zero alphas. This is because both procedures use the

null proportion (π0 in FDR+ and π0(z) in fFDR+) to estimate the FDR. With the same

magnitude and proportion of positive alphas, the small proportion of zero alphas implies

the higher power of both the fFDR+ and FDR+. The effect of the null proportion on

the gap of fFDR+ over FDR+ is stronger when the magnitude of positive alphas is not

too high. The gap varies by case and might even exceed 30% (when π+ = 10%, π0 = 30%

and α∗ = 2.5).16

[Insert Table 2]

Table 2 exhibits the power upshots for the case of the fund alpha population described

by the distribution mixture (16). This implies the dependence of the proportion and

magnitude of positive alphas on the proportion of the zero-alpha funds and the σ value

for non-zero alphas. We expect a higher power for both methods for a smaller zero-alpha

proportion and/or a higher value of σ. We find that the fFDR+ is more powerful than

FDR+. More specifically, for the balanced data under cross-sectional independence and

π0 = 75%, the power of the fFDR+ (FDR+) increases from 0.3% to 60.8% (0.2% to

52.2%) with increasing σ from 1 to 5. For given, say, σ = 2, the power of the fFDR+

(FDR+) increases from 15.4% to 38% (8.2% and 22%) with reducing π0. The gap is

generally evident for σ > 1 with power differences around 10% but which can also reach

up to 16%.

[Insert Table 3]

Finally, in Table 3, we study the outcome from using the mixture of normals (17) with

π1 = 0.3, π2 = 0.7 and non-positive means (µ1, µ2) to limit the likelihood of a positive

alpha. The proportion of positive alphas ranges from 6% to 41.1%. For small (σ1, σ2)

values, the positive alphas are also small in magnitude and, consequently, the power is

negligible. When (σ1, σ2) are larger than (2, 1), the power of both methods as well as

their discrepancy increase significantly and favourably for fFDR+ reaching up to 16%.

16As shown in Section IB of the Internet Appendix, the relevant reports vary slightly when the
simulated data are generated with alternative forms of π0(z) mentioned in footnote 13, with unbalanced
panel or with cross-sectional dependence, however the overall picture remains the same.
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Our analysis has shown that, when controlling for FDR at an as low level as 10%,

both the fFDR+ and FDR+ have good power for large (in magnitude) alphas. When

this happens, the gain in power of the fFDR+ over FDR+ can vary depending on

the underlying fund alpha distribution: 10% to 16% (continuous distribution) and 20%

to 30% (discrete distribution). On the other hand, when the zero-alpha proportion is

high and the proportion and magnitude of positive alphas is small, the power of both

methods reduces. Our conclusions are not affected by the data structure (balanced versus

unbalanced panel) or dependencies.

5.3. Power and FDR trade-off

In what follows, we study the impact on power when controlling for FDR at different

(higher than 10% level) targets. Our results show clear differences between the fFDR+

and FDR+ and, in support of the former, even for cases of negligible power for a 10%

target. Constructing mutual fund portfolios at higher FDR levels is sensible as otherwise

we might end up with empty portfolios. Investors have to face a trade-off between the

power in detecting skilled funds and the FDR threshold, which we discuss next.

[Insert Table 4]

We focus on cases of very low power when the FDR is controlled at 10%. For brevity,

we present in Table 4 our results for only balanced data under cross-sectional inde-

pendence and FDR targets up to 90%, noting that these are largely unchanged for

unbalanced data. In particular, for the underlying discrete fund alpha distribution, the

fFDR+ gains rapidly power with increasing FDR target, peaking at 40% in excess of

the FDR+ when the target is set at 70%. For the continuous distribution, the power of

the FDR+ changes very slowly and is persistently negligible (mixture of normals) even

for FDR controlled at 90%. On the other hand, the fFDR+ detects abundant positive

alpha funds with a power that can reach up to 46% in excess of the FDR+ (mixture of

two normal distributions with 90% target).
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5.4. Varying the number of observations and funds

Hitherto, we have assumed a sample with m = 2,000 funds, which reflects our actual

dataset for the whole period from 1975 to 2019. When constructing a portfolio, we usually

use sub-periods of five years and the number of alive funds in these sub-periods naturally

varies. In this section, we investigate the impact of varying number of observations T per

fund and the number of funds m on the power.

[Insert Table 5]

In Table 5, we present the outcomes for different underlying distributions of fund

alphas, when we control FDR at 10% target and use balanced panel data with cross-

sectional independence. We vary m from 500 to 3,000 and T from 120 months (i.e., 10

years) to 420 months (i.e., 35 years). It is evident from the reports that the power of the

fFDR+ increases at a much faster pace with increasing T . With rising m, the power of

the fFDR+ slightly decreases, whereas such is observed for the FDR+ mainly in Panel

C. This is not worrying though, as in reality we do not have a very large number of alive

funds in a given sub-period. Overall, the power of the fFDR+ in excess of the FDR+

can reach 30%.

Apparently for T = 120, both procedures have low powers. Empirically, when con-

structing a portfolio of mutual funds, we usually use in-sample sub-periods of 5 years.

In these cases, the investors might need to raise the FDR target to a higher level as ex-

plained in the previous section.17 In Table 6, we focus the spotlight on (small) m = 500

and T = 60 (i.e., 5 years). It is shown there that both methods yield an even lower

power at the FDR target of 10%. By increasing the target, the power of the fFDR+

in detecting skilled funds rises faster than that of the FDR+, especially for the discrete

and mixed normal distributions.

[Insert Table 6]

17In fact, in order to construct non-empty FDR+ portfolios based on five-year in-samples, BSW
introduce a procedure where they allow the estimate of FDR+ to be above 70% for several years.
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Concluding this section, we recollect that the simulated power of the fFDR+ in

detecting skilled funds is found to be larger than the FDR+’s. This persists for different

fund alpha distributions, balanced and unbalanced data, and cross-sectional dependence

of error terms accounted for or not. This power disparity depends on the magnitude and

proportion of positive alphas as well as the proportion of zero alpha in the population,

the number of funds in the sample, and the average number of observations per fund.

Especially when the latter is small, leading to diminished power for both procedures, we

can recover that for the fFDR+ by uplifting the FDR level. In our empirical application

of the next section, we show how the investors can benefit from this.

6. Empirical Results

6.1. Five covariates proposed in the literature

We start our empirical investigation of the fFDR+ approach by considering five

covariates that might convey information about the performance and reflect the skill of

mutual funds. They are shown to be persistent and, therefore, can predict the perfor-

mance of mutual funds. We also propose four new covariates based on asset pricing

models.

First, we study the R-square of Amihud and Goyenko (2013), which is estimated from

the Carhart four-factor model and measures the activeness of a fund. If a fund replicates

the market, the R-square will be close to one; if, instead, it is more active, it will have a

small R-square and in this case, according to the authors, funds tend to perform better.

The second covariate is the Fund Size of Harvey and Liu (2017). This takes into

account both the fund size, which is the total net assets under management (TNA) of

a fund, and the industry size, which is the total assets under management of all active

mutual funds in the sample (sum of TNA). More specifically, for fund i at time t, it is

defined as

Fund Sizei,t = ln
TNAi,t

IndustrySizet
− ln

TNAi,0∗

IndustrySize0∗
, (19)

where t = 0∗ corresponds to the time of the first TNA observation in our sample. The

Fund Size reflects the growth in scale of a fund relative to the whole active mutual fund
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market. Harvey and Liu (2017) show a significant negative relationship between Fund

Size and funds’ performance.18

The third covariate is the Return Gap of Kacperczyk et al. (2008), which is intended

to reflect the unobserved actions of the funds. Mutual funds usually disclose their port-

folio holdings and return periodically, e.g., quarterly or semi-annually. The investors are

unaware of the funds’ trading activities in the period of consecutive reports. The Return

Gap of a fund is defined as the difference between the return that is disclosed by the

fund and the return that the fund would have based on disclosure of its last portfolio

holdings. Kacperczyk et al. (2008) show that the funds’ performance can be predicted by

their past return gaps; mutual funds with higher past return gap tend to perform better

in the future.

Our fourth covariate is the Active Weight of Doshi et al. (2015), which aims to gauge

the fund’s activeness level and is given by the sum of the absolute differences of the

stock value weights and the actual weights that the fund assigns to the stocks in its

portfolio holdings. In their research, they show that funds with higher active weight tend

to perform better. To obtain meaningful values for the active weight and the return gap,

as in Kacperczyk et al. (2008) and Doshi et al. (2015), we require each mutual fund to

hold at least 10 stocks in its portfolio at any time.

The fifth covariate is the Fund Flow. The interaction of fund flow and funds’ perfor-

mance has been studied quite extensively. Zheng (1999) discovers that funds receiving

money perform better than those that lose money. The author also shows that investors

can earn abnormal returns by using small funds’ flow information. Here, we follow Bris

et al. (2007) and define Fund Flow at time t as

Fund Flowt =
TNAt − (1 + rt)TNAt−1

(1 + rt)TNAt−1

, (20)

where rt is the return of the fund in the period t− 1 to t.

18Pastor et al. (2015) and Chen et al. (2004) as well as Zhu (2018), respectively, argue that the
industry size and the fund size (proxy by the logarithm of the fund’s TNA) have a negative impact on
the funds’ performance. We use the Fund Size of Harvey and Liu (2017) as it incorporates information
of both covariates.

22



In addition to the aforementioned well-known covariates, we propose four new covari-

ates that are based on asset pricing models and are available for all funds in our sample.

These are the Sharpe ratio, the Beta and Treynor ratio obtained from the Capital Asset

Pricing Model, and the idiosyncratic volatility (Sigma) of the Carhart four-factor model.

The Sharpe and Treynor ratios are risk-adjusted performance measures of funds, whereas

the Beta and Sigma reflect systematic and idiosyncratic risk, respectively. These metrics

reveal aspects of the past mutual funds’ performance and, thus, might assist in identifying

skilled and unskilled funds. Asset pricing metrics are regularly used by wealth managers

and academics in the fields of trading, asset pricing and investors’ performance, but are

overlooked in the mutual funds literature.

6.2. The FDR+ and fFDR+ portfolios

We construct our portfolios following BSW and a rolling five-year in-sample window.

More specifically, at the end of year t, we select a group of funds to invest in year t + 1

based on historical information from the last five years (t−4 to t). In order to implement

fFDF+ and FDR+, we require the observed values of the covariates of each fund, the

estimated alpha and the p-value of each test. We execute, first, the Carhart four-factor

model over the 5-year period to estimate the alpha.

The informative value of the Return Gap, Active Weight, Fund Flow and Fund Size

on funds’ performance is persistent, i.e., the choice between using the most recent (final-

year) observations for these covariates or their average values over the whole in-sample

(five years) is of less importance, as demonstrated by our robustness check in Section IE

of the Internet Appendix.19 Although the predictability of the covariates might last for a

long horizon of up to five years, we expect their informative values to decrease with time;

hence, forming portfolios based on their recent realizations is preferred to their average

values of the whole last five years’ time. Because of this, Return Gap, Active Weight,

Fund Flow and Fund Size are calculated based on data in the final year of the in-sample

19Readers may refer to Kacperczyk et al. (2008), Doshi et al. (2015), Zheng (1999) and Harvey and
Liu (2017) for the studies of the persistence of the Return Gap, Active Weight, Fund Flow and Fund
Size, respectively. It should also be noted, that in our fFDR framework, all covariates are transformed
to uniform with only the ranking of the covariates across the funds counting.
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(i.e., we use the exposure of the fund flow in year t for the Fund Flow, the value at the

end of year t for the Fund Size, whereas for the Active Weight and the Return Gap we use

their average exposures in year t). The R-square, Sharpe Ratio, Beta, Sigma and Treynor

ratio are based on the whole five years. We calculate our p-values in a similar fashion to

BSW. For the funds that suffer from heteroskedasticity or autocorrelation, we calculate

the t-statistics based on the heteroskedasticity and autocorrelation-consistent standard

deviation estimator of Newey and West (1987). For each fund, we implement 10,000

bootstrap replications to estimate the distribution of the t-statistic and subsequently

calculate the bootstrapped p-value for the fund.20

Next, we describe the selection process of skilled funds to invest in year t+ 1 given a

FDR target τ in (0, 1). First, we recall the relevant selection process for BSW’s “FDRτ”

portfolio. For each γ on the grid {0.01, 0.02, ..., 0.6}, we calculate the F̂DR
+

γ given by

(13). Then, we find γ∗ such that F̂DR
+

γ∗ is closest to τ ; this is the significant threshold

for BSW’s portfolio, that is, all the positively estimated alpha funds in the in-sample

window with p-value ≤ γ∗ will be included in the FDRτ portfolio. This guarantees the

non-empty property of the portfolio but does not always meet the FDR target τ , thereby

F̂DR
+

γ∗ might be much higher than τ .

Second, we select skilled funds for a fFDR-based portfolio, namely, “fFDRτ”. To

establish comparable fFDRτ and FDRτ portfolios, we implement the fFDR+ (with

a particular covariate) to control pFDR+ at a target τ ∗ that reflects the FDR level

controlled by the FDRτ portfolio but has to be less than one.21 As the FDR of the

FDRτ portfolio is controlled at level F̂DR
+

γ∗ which might be greater than one or less

than τ , we set: τ ∗ = τ if F̂DR
+

γ∗ ≤ τ < 1; τ ∗ = F̂DR
+

γ∗ if τ < F̂DR
+

γ∗ < 1.22 If

20The bootstrap might result in duplicated bootstrapped p-values. For this, we use an adequate
number of replications to reduce that effect and obtain good estimates of π0(z) and f(p, z).

21If we implement the fFDR+ and FDR+ to strictly control FDR at target, say, τ = 10% or
τ = 20%, both result in empty portfolios for many years. With BSW’s FDRτ portfolios, the problem

is solved. In BSW’s study, for the FDR10% portfolio, the empirical F̂DR
+

γ∗ is always greater than 10%
with an average of 41.5%. For our data, among the thirty eight times of portfolio construction, with

target τ = 20% (10%) the F̂DR
+

γ∗ is less than τ on eight (zero) occasions and greater than one on five
occasions for both targets.

22We could have set τ∗ = F̂DR
+

γ∗ for both cases. However, it seems fairer to set τ∗ = τ if F̂DR
+

γ∗ ≤ τ
since both portfolios initially aim to control FDR at τ .
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F̂DR
+

γ∗ ≥ 1, we just select all the funds in the FDRτ portfolio.

For both the fFDRτ and FDRτ portfolios, we invest equally in the selected funds

in the following year. If a selected fund does not survive for a month during the year,

then its weights are redistributed to the remaining (surviving) funds.

As aforementioned, at the beginning of each year we select funds in a portfolio by

using the previous five consecutive years as in-sample. To be eligible for this, a fund

needs to have 60 observations in the in-sample. As the funds’ holdings data are available

from March 1980 and we need at least one year’s data to construct combined covariates,

as we discuss in the next section, we start constructing our portfolios from December

1981.

6.3. Performance comparison

In this section, we assess the portfolios’ performance based on alpha. We demonstrate

the advantage of the fFDR+ in picking skilled funds and the efficient use of the covariates’

information. We estimate the alpha evolution and the average alphas of our fFDRτ

portfolios based on the nine covariates and compare with those of the FDRτ portfolio.

We also explore the performance of fFDRτ portfolios after linearly combining the nine

covariates and using their first principal component, an ordinary least squares regression,

a least absolute shrinkage and selection operator, a ridge regression and an elastic net.23

We focus on portfolios with small FDR targets of τ = 10%. We repeat all estimations

with τ = 20% in Section ID of the Internet Appendix. Our results remain unchanged for

all exercises.

6.3.1. The alpha evolution

For each portfolio, we obtain the alpha evolution by calculating the Carhart four-

factor alpha using all the portfolio returns from January 1982 up to the end of each

month from December 1991 onwards. In addition to the aforementioned portfolios, we

construct two naive benchmark equally weighted portfolios, without control for the FDR:

23In Appendix B we provide a detailed comparison of all the fFDRτ portfolios in regard to several
trading metrics, whereas in Section IC of the Internet Appendix the performance in terms of wealth
evolution is presented.
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one that simply includes all the mutual funds in the in-sample window to be invested in

the following year; and, another that contains only those with positive estimated alphas.

We name these two portfolios Equal Weight and Equal Weight Plus.

We present all the alpha evolutions in Figure 5. It is obvious from it that the FDR10%

portfolio gains higher alphas than the equally weighted portfolio and all the fFDR10%

portfolios outperform the FDR10%. Ultimately, at the end of 2019, the fFDR10%

portfolios with the R-square and Beta covariates are found to be the best with annualized

alphas of about 1.7%, followed by the fFDR10% portfolios with the Active Weight, Fund

Flow, Sigma, Treynor ratio, Fund Size, Sharpe ratio and Return Gap covariates achieving

annualized alphas of at least 0.77%. By contrast, the FDR10%, without the use of

covariate information, winds up with a small positive alpha of 0.36%. It is noteworthy

that all fFDR10% and the FDR10% portfolios seem to rebounce in terms of performance

over the last two years of our sample.

[Insert Figure 5]

6.3.2. The average alpha

The alpha evolution in the previous section is calculated based on the portfolio re-

turns from the start of 1982 up to a time point of interest. This may represent limited

information in the case of investors with a different investment period of, say, five or ten

years. For this, in Table 7, we report the average alpha that the investors will gain if they

invest for n ∈ {5, 10, 15, 20, 30, 35, 38} consecutive years: for each portfolio, we calculate

the “n-year”alpha based on the portfolio returns over a period of 12n consecutive months,

we repeat by shifting every time one month forward, and eventually present the average

alpha. We report the fFDR10% for each covariate and the FDR10%. We note that the

last case, n = 38, corresponds to the alphas for the whole period from January 1982 to

December 2019 and are the last points in the plots in Figure 5.

[Insert Table 7]

We find that the fFDR10% portfolios outperform the FDR10% for all considered

covariates and for all n. Although these results should be interpreted with caution (some
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covariates were not known at the start of our sample, such as the Active Weight and the

Fund Size which were published in 2015 and 2017, respectively), they do indicate the

stability of our approach for different investment horizons.

6.3.3. Sub-period performance

In the alpha evolution figure 5, we note that the performance of our portfolios varies

over time. By construction, this figure contain returns which start from January 1982

and are not representative of the recent mutual fund performance. In order to investigate

the contribution of the return in different periods to the performance of the portfolios, we

split the whole period into four non-overlapping sub-periods: 1982–1991 (P1), 1992–2001

(P2), 2002–2011 (P3) and 2012–2019 (P4). We repeat the exercise for each sub-period

and present in Table 8 the average 5-year alpha and alpha of portfolios (with FDR target

τ = 10%) in the sub-period.

[Insert Table 8]

In terms of alphas and average 5-year alphas, it is clear that all the portfolios perform

well in the first two sub-periods before suffering a decline in the third sub-period. On P3,

we observe negative average 5-year alphas for the FDR10% and the fFDR10% portfolios

with Active Weight and Return Gap covariates. On the last sub-period, this decrease

continues for FDR10%, whilst all of the fFDR10% portfolios witness rebounds. We note

that all the fFDR10%, except the ones with Return Gap and Active Weight covariates,

achieve both positive alpha and average 5-year alpha in all the sub-periods. The t-statistic

columns show that most portfolios have significant positive alphas in the first sub-period.

Interestingly, for the Sharpe ratio, we witness highest reports in the last sub-period

(which is also slightly shorter), whereas the lowest ones appear in the third sub-period

which covers the global financial crisis of 2007–2008. From the realizations of the equally

weighted portfolio, that is, the portfolio that selects all the eligible funds in the in-sample

windows and invests them equally in the following year, we infer that the high Sharpe

ratio in the final sub-period partially comes from the whole mutual fund market. The

Equal Weight Plus portfolio, which invests in all funds with positive estimated alphas in
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the previous five years, is always better than the Equal Weight one. This simple screening

portfolio even outperforms the FDR10% in the last two sub-periods. The performances

of the fFDR10% portfolios, by contrast, are nuanced depending on the covariate used;

most of them beat the equally weighted one in all the sub-periods and for all the metrics

(with notable exceptions of the Active Weight and Return Gap covariates in the third

sub-period).

The implications of these results are as follows. First, we note that the R-square,

Return Gap, Active Weight, Fund Flow and Fund Size retain their predictive abilities

for mutual fund performance in recent years. From the five traditional covariates, the R-

square, Fund Size and Fund Flow still have predictive abilities even after their respective

publication dates.24 Our results disagree partly with the findings of Jones and Mo (2021)

who argue that published predictors are losing value in the recent period due to increases

in arbitrage activities. Second, we note that our four new covariates contain valuable

information on mutual funds’ performance that in recent years can surpass in some cases

the more known covariates (see, for example, the performance of the fFDR10% port-

folios in P4 with the Sigma and the Return Gap). Third, they further verify that our

approach can resolve the identification issues in mutual funds due to noise/luck where

other approaches (such as BSW) fail to.

6.4. Covariate combinations

So far, we have considered the effect from the information brought in by each sin-

gle covariate. In what follows, we explore the effect from combining the information

from the different covariates and potential consequent performance improvement. More

specifically, we create a new covariate given by the linear combination of the underlying

24Appendix C shows that three out of the five covariates still gain significant alphas in the post-
published period.
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covariates. More specifically, for each fund i at time t, we have

New Covariatet,i = c1tR-squaret,i + c2tActive Weightt,i + c3tReturn Gapt,i

+c4tFund Sizet,i + c5tFund Flowt,i + c6tSharpe Ratiot,i

+c7tTreynor Ratiot,i + c8tSigmat,i + c9tBetat,i. (21)

We consider two approaches to estimating the coefficients c1t, . . . , c9t in (21). First,

we use as our new covariate the first principal component of all nine (standardized) co-

variates. By transforming the covariates to their principal components, their information

about the performance of a fund is preserved and conveyed. We use the first principal

component as it captures most of the variation of the covariates. Second, we use a linear

model that regresses the fund returns for year k on the observed value of the covariates

in year k− 1, where k ∈ {t, t− 1, t− 2, t− 3}. Then, we predict the return for year t+ 1

based on the estimated regression model and the covariates in year t. This is equivalent

to using equation (21) with the regression’s estimated coefficients as the c1t, . . . , c9t. We

use ordinary least squares (OLS), the least absolute shrinkage and selection operator

(LASSO), ridge regression and the elastic net.25

Figure 6 exhibits the performance of the fFDRτ portfolios with the newly created

covariates in terms the alpha evolution.26 We find that the portfolio based on the covariate

obtained from the elastic net performs best amongst the combined covariates at τ = 10%.

[Insert Figure 6]

Aiming to acquire a more complete portrayal of the various covariates combinations,

we study also the portfolios’ alphas for various time lengths of investing. Table 9 shows

the average n-year alphas of the fFDR10% portfolios.

[Insert Table 9]

25For each method (except OLS), the covariates are standardized before being used in the estimation.
We use cross-validation to determine the parameters in the LASSO, ridge and elastic net methods.

26There are a few years where LASSO (two years) and the elastic net (three years) shrink all the
regression coefficients to zero. In these cases, the new covariate is equal to zero for all funds and, to
avoid an empty portfolio, we simply select all the funds in the FDRτ portfolio.
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The elastic net performs also better for all time lengths. However, this best combined

covariate does not beat the R-square and Beta under the fFDR framework. When we

partition the sample into four sub-periods, as mentioned above, Tables 8 and 10 show

that for any sub-period there is always an underlying individual covariate that beats all

the combined covariates. Nevertheless, since investors do not know which covariate will

perform best in advance, the combination of covariates is still advantageous in prediction

in practice.

[Insert Table 10]

The fact that the simple linear combinations of the covariates does not improve the

performance of the fFDR based portfolios suggests a non-linear relationship between our

covariates and the performance of mutual funds. Given this, it is interesting to compare

the performance of the portfolios formed in the fFDR framework with a traditional sort-

ing portfolio formation. If a covariate has a highly linear relation with the performance of

mutual funds, then forming a portfolio based on sorting the funds on the covariate should

be sufficient. We construct single- and double-sorting portfolios similarly to Kacperczyk

et al. (2008) and Doshi et al. (2015), and Amihud and Goyenko (2013), respectively.27

The performance in terms of alpha of those portfolios from 1982 to 2019 is presented

in Table 11. The results show that most of the sorting portfolios, except the Active

Weight and Sharpe ratio, have negative or negligible positive alphas at the end of 2019,

regardless of the assumption of linear relationship between the covariate and the funds’

performance. Obviously, sorting portfolios perform better if they are based on the correct

sign of the correlation between the underlying covariate and the funds’ performance.

[Insert Table 11]

The portfolios based on fFDR gain significant positive alphas and beat the corre-

sponding sorting portfolios. These results further validate the efficiency of our method

in exploiting the non-linear relationship of the covariates, luck and funds’ performance.

27For further details on the construction of these portfolios we refer the reader to Appendix D.
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The inability of the traditional sorting portfolios, that dominate the related literature, to

evaluate the predictive value of the covariates under study is also highlighted.28

7. Concluding Discussion

In this paper, we introduce the fFDR+, a novel multiple hypothesis testing frame-

work, that incorporates informative covariates to raise the power of detecting outperform-

ers, and apply it to mutual fund investing. First, we conduct simulation experiments to

understand how well our method performs in controlling FDR and raising power com-

pared to the FDR+ method of BSW. We then construct empirical portfolios based on

our new method and nine covariates. We study five covariates, which, based on earlier

contributions, convey information about mutual funds’ performance and propose four

new ones based on asset pricing models. We show how the admixture of control for FDR

and incorporated covariates advances the generation of positive and higher alphas than

a portfolio that controls FDR only or a portfolio based on sorting on the covariate and

the past funds’ performance.

The implications of our study are both methodological and empirical. The method-

ological literature in the field of selecting skilled mutual funds is rich and expanding.

In addition to the influential and well-cited study of BSW, other notable contributions

are due to Kosowski et al. (2006), Andrikogiannopoulou and Papakonstantinou (2016),

Harvey and Liu (2020) and Grønborg et al. (2021). All these have their merits and

the authors present several promising empirical findings. In our study we focus on the

FDR, whilst we defer an examination of their power relative to ours to future research.

Nevertheless, we ought to note three main distinguishing features of our method. First, it

allows the use of more data in the form of informative covariates, whilst the vast majority

of others are limited to funds’ past returns and their cross dependencies. Second, it is

simple to implement and computationally less intensive than some of the most recent

28As further robustness checks, in Section IF of the Internet Appendix, we demonstrate that our
findings are robust with respect to a data subset where we require a minimum of $15 million in TNA for
a fund to be considered. In Section IG of the Internet Appendix, we construct a similar set of portfolios,
namely fFDR−τ , that aim to select the unskilled funds. We see that these portfolios successfully pick
the unprofitable funds and are consistently beaten by the equally weighted portfolios.
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ones (e.g., the double bootstrap of Harvey and Liu, 2020). Third, similarly to BSW, our

work can be extended to other problems in which statistical power weighs more than

conservatism (i.e., the FDR threshold is higher), such as the selection of hedge funds and

bond funds or the assessment of trading strategies.

The empirical implications of our study are also of interest to academics and prac-

titioners. We demonstrate that the five traditional mutual fund covariates can offer

substantial profits in more recent periods. However, the relationship between these co-

variates, luck and funds’ performance is non-linear. To fully exploit them, one should

rely on powerful methods that control luck and noise. Our method ensures that. We also

introduce four new covariates and find that their performance in our context is strong

and surpasses that of traditional covariates; a finding that is expected to be of interest

to investment managers who are constantly looking for valuable covariates in portfolio

selection.

As with any methodological approach, there are caveats with our fFDR procedure.

In particular, this requires large datasets and gains higher power as the FDR threshold

increases (see Sections 5.3 and 5.4). This implies that our approach should not be applied

in problems which require a small FDR target (i.e., when the risk of a false discovery

can lead to disastrous outcomes). As in our context of mutual funds’ performance, it is

difficult to explore covariates that seem promising (see, for example, the list of covariates

studied in Jones and Mo, 2021) but with limited data availability.

We aspire that the fFDR and fFDR+ methods will become essential tools for people

confronted by multiple competing factors, funds or models. The fields of finance and

economics are extending towards big datasets and the literature is filled with predictors

that might have value in economic variables of interest. Our approach can contribute

to the evaluation of all these predictors and be a valuable arrow in the quiver of both

academics and practitioners.
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Figure 1: Comparison of FDR+ and fFDR+. The graphs show the differences between the two
procedures with respect to their null proportion estimations and their rejection rules. Panels A and B
show that π0 is estimated as a fixed number in FDR+ procedure (see (11)) but as a step function in
fFDR+ procedure (see Appendix A). Panel C shows the rejection rules of the FDR+ and fFDR+: the
former selects all the funds corresponding to the points on the left of the vertical green dashed line which
consists of all funds with positive estimated alpha and p-value less than 0.0086, whereas the latter all
the funds corresponding to the points below the horizontal red dashed line which consists of all funds
with estimated q-value (see (8)) less than 0.35. Panel D shows the distribution of the selected funds in
Panel C with respect to the p-value and the covariate z. In Panels C and D, only funds with positive
estimated alpha are shown as ultimately both methods select funds from this set. The solid green points
represent funds selected by the FDR+, whereas the red circles the funds selected by the fFDR+; the
green points with a red ring are the commonly selected funds.
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Figure 2: Performance of fFDR+ for discrete distribution of α. The graphs show the perfor-
mance of the fFDR+ in terms of FDR control when alphas are drawn from a discrete distribution. The
simulated data are balanced panels with cross-sectional independence.

Figure 3: Performance of fFDR+ for discrete and normal distribution mixture of α. The
graphs show the performance of the fFDR+ in terms of FDR control when alphas are drawn from a
mixture of discrete and normal distributions. The simulated data are balanced panels with cross-sectional
independence.
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Figure 4: Performance of fFDR+ for continuous distribution of α. The graphs show the
performance of the fFDR+ in terms of FDR control when alphas are drawn from a continuous distri-
bution which is a mixture of two normals. The simulated data are balanced panels with cross-sectional
independence.
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Figure 5: Alpha evolution of fFDR10% and FDR10% portfolios over time. The graph presents the evolution of annualized alpha of the nine
fFDR10% portfolios, the portfolio FDR10% of BSW and the two equally weighted portfolios.
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Figure 6: Alpha evolution of fFDR10% portfolios with combined covariates. The graph shows the alpha evolution of the fFDR10% portfolios with
each using a covariate obtained from either the principal component method or regression method; for the former, the covariate is the first principal component
(PC 1) of the five covariates, whereas for the latter the new covariate is a linear combination of the five underlying covariates with the weights obtained based
on one of the OLS, LASSO, Ridge and elastic net regressions.



Table 1: Power comparison for discrete distribution. The table compares the power of the
fFDR+ and FDR+ at FDR target of 10% when the alphas of 2,000 funds are drawn from a dis-
crete distribution: α ∼ π+δα=α∗ + π0δα=0 + π−δα=−α∗ with varying α∗ (annualized) and proportions
(π+, π0, π

−). The simulated data are a balanced panel with 274 observations per fund and are generated
with cross-sectional independence. All metrics are in percentages.

Power of the procedures

(π+, π0, π
−) Procedure α∗ = 1.5 α∗ = 2 α∗ = 2.5 α∗ = 3 α∗ = 3.5

(10, 75, 15)
fFDR+ 0.3 5.1 21.8 45.7 67.3

FDR+ 0.4 2.1 12.1 32.3 53.5

(10, 60, 30)
fFDR+ 1.1 10.3 33.1 58.5 77.5

FDR+ 0.4 2.3 13.8 35.9 57.4

(10, 30, 60)
fFDR+ 3.5 22.9 52.9 76.6 89.7

FDR+ 0.4 3.3 21.4 47.8 69.6

(13, 67.5, 19.5)
fFDR+ 0.8 8.8 30.1 55.1 75.1

FDR+ 0.4 3.1 17.6 39.7 60.9

(13, 48, 39)
fFDR+ 2.3 16.4 43 68.1 84.3

FDR+ 0.5 4 21.8 46.1 66.8

(13, 9, 78)
fFDR+ 6.4 34 67.6 89.2 97.5

FDR+ 0.5 6.9 37.2 69.2 88
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Table 2: Power comparison for discrete-normal distribution mixture. The table compares the
power of the fFDR+ and FDR+ at FDR target of 10% when alphas of 2,000 funds are drawn from a
discrete-normal distribution mixture: α ∼ π0δα=0 + (1 − π0)N (0, σ2) with varying σ (annualized) and
null proportion π0. The simulated data are a balanced panel with 274 observations per fund and are
generated with cross-sectional independence. All metrics are in percentages.

Power of the procedures

π0 Procedure σ = 1 σ = 2 σ = 3 σ = 4 σ = 5

75
fFDR+ 0.3 15.4 36.1 51.1 60.8

FDR+ 0.2 8.2 26.7 41.7 52.4

60
fFDR+ 1.2 21.6 42.8 57.1 66.1

FDR+ 0.2 11.4 31.5 46.6 56.9

30
fFDR+ 4 31.6 54 67.2 74.8

FDR+ 0.4 17.5 40.5 55.6 65.4

67.5
fFDR+ 0.8 18.9 40 54.5 63.7

FDR+ 0.2 9.9 29.6 44.5 55

48
fFDR+ 2.3 25.9 47.8 61.6 70.4

FDR+ 0.3 13.9 35.4 50.5 60.5

9
fFDR+ 6 37.9 60.6 73.6 80.9

FDR+ 0.5 22 47.1 62.7 72.2
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Table 3: Power comparison for mixture of two normal distributions. The table compares
the power of the fFDR+ and FDR+ at FDR target of 10% when alphas of 2,000 funds are drawn
from a mixture of two normal distributions: α ∼ 0.3N (µ1, σ

2
1) + 0.7N (µ2, σ

2
2) with varying standard

deviation pairs (σ1, σ2) (annualized) and mean pairs (µ1, µ2). The simulated data are a balanced panel
with 274 observations per fund and are generated with cross-sectional independence. All metrics are in
percentages.

Power of the procedures

(σ1, σ2)

(µ1, µ2) Procedure (1, 0.5) (1.5, 0.6) (2, 1) (2.5, 1.25) (3, 1.5)

(−2.3,−0.7)

π+ = 6 π+ = 10.4 π+ = 20.7 π+ = 25.5 π+ = 29.1

fFDR+ 0 0.3 4.5 12.9 22.5

FDR+ 0 0 0.3 1.9 7.1

(−2,−0.5)

π+ = 11.8 π+ = 16.9 π+ = 26.4 π+ = 30.5 π+ = 33.4

fFDR+ 0 0.4 5.9 15.1 24.8

FDR+ 0 0.1 0.4 2.9 9

(−2.5, 0)

π+ = 35.2 π+ = 36.4 π+ = 38.2 π+ = 39.8 π+ = 41.1

fFDR+ 0.1 0.6 8.3 17.8 27.6

FDR+ 0 0 0.6 4.2 11.4

Table 4: Power comparison for varying FDR targets. The table presents some selected cases
of low powers of the fFDR+ and FDR+ at FDR target of 10%. We consider a discrete distribution:
α ∼ 0.75δα=0 + 0.1δα=1.5 + 0.15δα=−1.5; a discrete-normal mixture: α ∼ 0.75δα=0 + 0.2N (0, 1.52); and
a two-normal mixture: α ∼ 0.3N (−2.3, 12) + 0.7N (−0.7, 0.52). The simulated data are balanced panels
with cross-sectional independence. All reports are in percentages.

Power of the procedures

FDR target

Distribution Procedure 10 20 30 40 50 60 70 80 90

Discrete
fFDR+ 0.3 2.5 8 18.1 32.3 48.5 64.3 76.3 85

FDR+ 0.4 0.9 2 3.9 7.4 14 24.7 41.5 65.1

Mixture of discrete fFDR+ 0.3 1.3 3.2 6.5 11.8 19.8 31.3 46.3 64.1

and normal FDR+ 0.2 0.4 0.7 1.1 1.7 2.7 4.9 10.4 26.5

Mixture of normals
fFDR+ 0 0.1 0.4 1.2 2.7 5.9 11.7 21.3 35.3

FDR+ 0 0 0 0.1 0.1 0.1 0.1 0.1 0.1
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Table 5: Power comparison for varying sample size and observation length. The table
compares the power of the fFDR+ and FDR+ in a balanced panel data with varying number of
observations per fund (T ) and number of funds (m). We present three cases where alphas of m funds
are drawn from i) discrete distribution: α ∼ 0.1δα=2 + 0.3δα=0 + 0.6δα=−2 (Panel A); ii) discrete-
normal mixture: α ∼ 0.3δα=0 + 0.7N (0, 22) (Panel B); and mixture of two normal distributions:
α ∼ 0.3N (−2, 22)+0.7N (−0.5, 1) (Panel C). The simulated data are balanced panels with cross-sectional
independence. All the metrics are in percentages.

Power of the procedures

m Procedure T = 120 T = 180 T = 240 T = 300 T = 360 T = 420

Panel A: Discrete distribution

500
fFDR+ 2.7 8.5 19.6 31.8 44.6 54.8

FDR+ 0.6 1.4 3 5.3 10.6 18.4

1000
fFDR+ 1.5 6 16.3 29.4 42.4 52.9

FDR+ 0.4 0.8 2.1 4.9 10.6 19.1

2000
fFDR+ 1.2 5.7 15.4 28 40.6 51.4

FDR+ 0.2 0.6 1.5 4.8 11.2 20.4

3000
fFDR+ 1.1 5.4 15 27.6 39.3 50.8

FDR+ 0.2 0.5 1.6 4.9 11.8 20.7

Panel B: Mixture of Discrete and Normal distributions

500
fFDR+ 12.4 21.3 29.1 35.2 40.5 44.9

FDR+ 2.4 7.5 14.1 20 25.3 29.8

1000
fFDR+ 11.7 21 28.1 34.7 40 44.5

FDR+ 2.1 7.8 14.1 20.1 25.2 29.7

2000
fFDR+ 11.4 20.5 28.1 34.1 39.3 43.7

FDR+ 2.2 7.9 14.2 19.9 25.1 29.7

3000
fFDR+ 11.2 20.4 27.8 33.9 39 43.6

FDR+ 2.3 8 14.1 20 25.2 29.7

Panel C: Mixture of Normal distributions

500
fFDR+ 1.3 3 5.3 8 10.9 13.4

FDR+ 0.2 0.3 0.5 0.8 1.3 1.8

1000
fFDR+ 0.9 2.4 4.8 7.6 10.1 12.8

FDR+ 0.1 0.2 0.4 0.6 1.1 1.6

2000
fFDR+ 0.7 2.2 4.5 6.9 9.6 12

FDR+ 0.1 0.1 0.3 0.5 1 1.6

3000
fFDR+ 0.7 2.2 4.3 6.8 9.3 11.9

FDR+ 0 0.1 0.2 0.4 0.9 1.5
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Table 6: Power comparison for varying FDR targets for sample with small size and small
number of observations. In this table, we consider three distributions as in Table 5 for samples con-
sisting of m = 500 funds (balanced panels with cross-sectional independence) with T = 60 observations
per fund (5 years). All reports are in percentages.

Power of the procedures

FDR target

Distribution Procedure 10 20 30 40 50 60 70 80 90

Discrete
fFDR+ 0.5 2.2 5.8 12.2 20.9 30.8 41.5 53.5 66.3

FDR+ 0.2 0.5 0.7 0.9 1.3 1.7 2.1 2.6 3.6

Mixture of discrete fFDR+ 2.4 7.4 14.4 23 32.7 42.9 53.2 63.5 68.4

and normal FDR+ 0.4 0.9 1.6 3 5.6 10.4 18.9 32.2 47.3

Mixture of normals
fFDR+ 0.2 1 2.9 6.2 11.1 18 26.7 37.5 51

FDR+ 0.1 0.1 0.2 0.3 0.4 0.5 0.8 1 1.5
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Table 7: Comparison of portfolios’ performances for varying time lengths of investing. In this table, we consider 10 portfolios including five
fFDR10% portfolios and the FDR10% portfolio of BSW. We compare the average alphas of the portfolios that are kept in periods of exactly n consecutive
years. For example, consider n = 5. For each portfolio, we calculate the alpha for the first 5 years based on the portfolios’ returns from January 1982 to December
1986. Then, we roll forward by a month and calculate the second alpha. The process is repeated and the last alpha is estimated based on the portfolios’ returns
from January 2015 to December 2019. The average of these alphas is presented in the first rows of each panel in the table.

n R-square Fund Size Active Weight Return Gap Fund Flow Sharpe Treynor Beta Sigma FDR10%

5 1.49 0.87 1.24 0.56 0.92 0.57 0.73 1.09 1.19 0.12

10 1.48 0.85 1.18 0.51 0.93 0.65 0.76 1.2 1.06 0.05

15 1.7 0.94 1.4 0.72 1.06 0.79 0.88 1.2 1.09 0.14

20 1.84 1.05 1.59 0.91 1.15 0.91 0.96 1.31 1.17 0.26

25 1.61 0.9 1.36 0.67 0.99 0.8 0.86 1.24 1.09 0.13

30 1.41 0.78 1.23 0.54 0.95 0.78 0.86 1.2 1.01 0.01

38 1.69 1.14 1.38 0.77 1.3 1.04 1.15 1.67 1.27 0.36
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Table 8: Performance of portfolios in sub-periods. The table displays the performance of the fFDR10%, FDR10% and equally weighted portfolios in
sub-periods (P1: 1982–1991, P2: 1992–2001, P3: 2002–2011 and P4: 2012–2019) in terms of the average 5-year alpha, the alpha of the whole sub-period, the
corresponding t-statistic (with use of Newey–West heteroskedasticity and autocorrelation-consistent standard error) and the annual Sharpe ratio.

Average 5-year alpha Whole sub-period alpha t-statistic Sharpe Ratio

Portfolio P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

R-square 3.18 2.37 1.29 1.97 2.74 2.74 2.14 3.21 2.81 1.64 0.71 1.59 0.65 0.7 0.26 1.37

Fund Size 2.01 1.74 0.23 1.44 1.86 2.27 0.53 3.07 2.18 1.18 -0.29 1.56 0.62 0.61 0.2 1.37

Active Weight 3.01 3.1 -0.48 1.19 2.87 3.11 -0.01 0.56 2.47 1.85 -0.54 0.53 0.65 0.74 0.19 1.17

Return Gap 2.29 0.91 -0.43 0.55 2.11 1.78 0.17 0.09 2.3 1.04 -0.3 0.09 0.6 0.61 0.2 1.12

Fund Flow 2.65 0.73 0.06 1.82 2.73 1.32 0.54 3.44 2.22 0.74 -0.06 1.77 0.66 0.62 0.22 1.42

Sharpe 1.45 0.7 0.57 1.11 1.83 0.87 0.94 2.99 1.97 0.59 0.25 1.46 0.64 0.72 0.25 1.37

Treynor 1.77 0.73 0.62 1.37 2.12 0.98 0.93 3.19 2.03 0.63 0.19 1.61 0.64 0.69 0.24 1.38

Beta 3.52 0.72 0.45 2.02 3.92 1.58 1.33 3.65 2.15 0.64 0.06 1.94 0.65 0.45 0.21 1.43

Sigma 2.19 1.66 1.6 2.36 2.07 1.66 2.03 3.63 1.88 0.91 0.84 1.93 0.59 0.64 0.29 1.38

FDR10% 2.7 0.6 -0.47 -0.35 2.23 1.2 0.09 1.63 2.01 0.83 -0.33 0.69 0.6 0.65 0.19 1.09

Equal Weight -0.45 -1.65 0.29 -1.56 -0.48 -1.28 0.2 -1.34 -1.11 -1.53 -0.36 -2.65 0.48 0.54 0.23 1.01

Equal Weight Plus 0.76 -0.96 0.26 -0.65 0.84 -1.01 0.4 -0.38 1.17 -1.12 -0.36 -0.62 0.55 0.54 0.21 1.11



Table 9: Performance of fFDR10% portfolios with combined covariates for varying time
lengths of investing. The table displays the average n-year alpha of the fFDR10% portfolios which
use covariates obtained by the first principal component (PC 1), the OLS, LASSO, Ridge and elastic
net (see descriptions in Figure 6). The average n-year alpha of each portfolio is calculated as per the
description in Table 7.

n OLS Ridge LASSO Elastic Net PC 1

5 0.78 1.02 0.8 1.2 0.76

10 0.81 1.03 0.81 1.36 0.94

15 0.91 1.07 0.89 1.5 1.17

20 1.06 1.15 1 1.67 1.31

25 0.96 1.07 0.9 1.44 1.13

30 0.94 1.05 0.89 1.32 1.02

38 0.93 1.04 0.91 1.25 1
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Table 10: Performance of portfolios in sub-periods. The table displays the performance of the fFDR10%, FDR10% and equally weighted portfolios in
sub-periods (P1: 1982–1991, P2: 1992–2001, P3: 2002–2011 and P4: 2012–2019) in terms of the average 5-year alpha, the alpha of the whole sub-period, the
corresponding t-statistic (with use of Newey–West heteroskedasticity and autocorrelation-consistent standard error) and the annual Sharpe ratio.

Average 5-year alpha Whole sub-period alpha t-statistic Sharpe Ratio

Portfolio P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

OLS 2.26 1.34 0.47 -0.1 2.26 1.15 0.99 -0.35 1.75 0.76 0.53 -0.41 0.64 0.8 0.26 1.11

Ridge 2.33 1.99 0.49 0.46 2.79 1.65 1.02 0.04 1.96 1.06 0.23 0.04 0.63 0.81 0.24 1.13

LASSO 2.65 1.16 0.49 -0.1 2.7 1.05 1.02 -0.35 1.83 0.67 0.3 -0.41 0.64 0.78 0.24 1.11

Elastic Net 2.45 2.63 0.39 -0.14 2.72 3 0.89 -0.37 1.68 1.88 0.2 -0.43 0.62 0.79 0.23 1.11

PC 1 1.69 1.48 0.62 -0.21 2 1.8 1.11 -0.47 1.75 1.19 0.56 -0.54 0.62 0.76 0.25 1.1
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Table 11: Performance comparison of portfolios based on fFDR and portfolios based on sorting on covariates (single-sorting) as well as based
on both covariates and past alpha (double-sorting). The table shows the portfolios’ Carhart four-factor alpha (annualized) for the period January 1982
to December 2019. At the end of each year, for the single-sorting 10% portfolio, funds are sorted by the covariate. Depending on whether the relationship of the
covariate and the fund performance is positive or negative, the funds in the top or bottom 10% are chosen to invest in the following year. For the double-sorting
10% portfolio, the funds chosen in the single-sorting 10% are ranked based on the past five-year alpha and then only 10% of the funds in the top are selected.
Note. As documented in the literature, the R-square and Fund Size (Fund flow, Return Gap and Active Weight) have a negative (positive) effect on the mutual
funds’ performance. The single- and double-sorting portfolios constructed based on this assumption appear italicized.

Portfolio R-square Fund Size Active Weight Return Gap Fund Flow Sharpe Treynor Beta Sigma
Panel A: Performance of fFDR10% and fFDR20% portfolios

fFDR10% 1.69 1.14 1.38 0.77 1.30 1.04 1.15 1.67 1.27
fFDR20% 1.84 1.16 1.45 0.82 1.28 1.02 1.10 1.77 1.61

Panel B: Assuming a positive effect of the covariate on performance of the fund
Single sort 10% -1.07 -0.64 -0.63 -1.46 -1.02 0.13 -0.07 -2.11 -2.40
Double sort 10% -1.03 0.03 1.43 -0.40 0.33 0.18 0.44 0.30 0.97
Single sort 20% -1.17 -0.75 -0.67 -1.15 -0.75 -0.17 -0.28 -1.80 -1.69
Double sort 20% -0.60 -0.18 1.15 -0.07 0.11 0.01 -0.10 -0.64 -0.53

Panel C: Assuming a negative effect of the covariate on performance of the fund
Single sort 10% -0.89 -0.83 -1.40 -1.45 -1.00 -1.96 -2.28 0.49 -0.50
Double sort 10% -1.72 0.30 -1.39 -0.37 0.31 1.86 0.80 0.18 0.47
Single sort 20% -0.86 -1.01 -1.14 -1.34 -1.04 -1.49 -1.49 0.21 -0.67
Double sort 20% -0.34 0.25 -1.20 0.04 -0.01 0.47 0.16 0.19 -0.03



Appendix A. Estimating π0(z) and f(p, z)

Let {(pi, zi)}mi=1 be the collection of p-value and covariate realizations of the different

funds under consideration, with {zi}mi=1 transformed in uniform distribution [0, 1] (see

Section 2.1). We create fund bins {Kb}nb=1, where Kb contains a fund i if zi ∈ ((b −

1)/n, b/n] and for each bin Kb we estimate a common π0(z) for all the funds i in the bin.

For some common λ ∈ (0, 1), we estimate the π0(z) in each bin b by

π̂0,b(λ) =
#{pi > λ, zi ∈ Kb}

(1− λ)#Kb

, b = 1, 2, . . . , n. (A.1)

We determine λ by minimizing the mean integrated square error (MISE):

MISE(λ) = bias2 + variance =

(∫ 1

0

φ(z, λ)dz − π0

)2

+

∫ 1

0

[π̂0(z, λ)− φ(z, λ)]2dz (A.2)

We estimate π0 using the smoothing spline method of Storey and Tibshirani (2003,

Remark B).29 Similarly to CRS, we calculate π̂0(zi, λ) = π̂0,b(λ) for each grid value

λ ∈ Λ = {0.4, 0.5, . . . , 0.9}, i = 1, . . . ,m and b = 1, 2, . . . , n, the π̂0(zi, λ) and, subse-

quently,
∫ 1

0
π̂0(z, λ)dz =

∑m
i=1 π̂0(zi, λ)/m. The unknown φ(z, λ) is estimated by φ̂(λ, z) =

π̂0(z,Λmin)−cλ(1−π̂0(z,Λmin)), where cλ is chosen such that
∫ 1

0
φ̂(λ, z)dz =

∫ 1

0
π̂0(λ, z)dz.

We then obtain the optimal λ∗ = arg minλ MISE(λ).

To estimate the joint density function f(p, z), CRS use a local likelihood kernel density

estimation (KDE) method with a probit transformation (Geenens, 2014). Specifically, let

Φ(t) = 1√
2π

∫ t
−∞ e

−x2/2dx and Φ−1 its inverse. Using z′i = Φ−1(zi) and p′i = Φ−1(pi), we

obtain a “pseudo-sample” {(p′i, z′i)}ni=1, i.e., we transform the variables (p, z) to (p′, z′); we

denote by f̃(p′, z′) the joint density function of (p′, z′), which CRS estimate using the local

likelihood KDE method. The bandwidth of the KDE is chosen locally via a k-Nearest-

Neighbor approach using generalized cross-validation; this step can be implemented easily

via the freely available R package locfit. The desired density function is then estimated

as f̂(p, z) = f̃(p′,z′)
φ(p′)φ(z′)

where φ(x) = 1√
2π
e−x

2/2.

29On rare occasions when the sample size m is small, the smoothing spline method does not work
adequately. In these cases, we use the bootstrap method of Barras et al. (2010, Appendix A.1).
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Additionally, f(p, z) might be non-increasing in p for each fixed z. CRS implement one

more step which modifies the f̂(p, z) so that monotonicity is ensured. In our simulations,

we use all the aforementioned techniques. In the empirical part, the monotonicity is

switched off as this property is unknown in our data. For more details, readers are

referred to CRS and their R package fFDR, Geenens (2014) as well as to the references

therein.

Appendix B. Supplementary results

Appendix B.1. A comparison of portfolios’ trading metrics

Next, we evaluate our portfolios in regard to a set of trading metrics, including the

annualized estimated alpha α̂ of the Carhart four-factor model, its bootstrap p-value and

t-statistic (with use of heteroskedasticity and autocorrelation-consistent standard error),

the annual standard deviation of the four-factor model residuals (σ̂ε), the geometric

mean return in excess of the one-month T-bill rate, the annual Sharpe ratio and the

annual Information Ratio α̂/σ̂ε. All metrics are presented in Table B.12. We find that

the fFDR10% portfolio based on the R-square covariate is the best for all considered

metrics.
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Table B.12: Comparison of performance statistics of all considered portfolios with τ = 10%.
The table compares the portfolios with regard to metrics including the annual Carhart four-factor
alpha (α̂) with its bootstrap p-value and t-statistic (with use of Newey–West heteroskedasticity and
autocorrelation-consistent standard error), the annual standard deviation of the four-factor model resid-
uals (σ̂ε), the mean return in excess of the one-month T-bill rate (expressed as percentage), the annual
Sharpe ratio and the annual Information Ratio (IR = α̂/σ̂ε).

Covariate α̂ (p-value) t-statistic σ̂ε Mean Return Sharpe Ratio IR

R-square 1.69 (0.06) 1.85 4.42 7.93 0.61 0.38

Fund Size 1.14 (0.2) 1.32 4.02 7.34 0.56 0.28

Active Weight 1.38 (0.1) 1.72 3.79 8 0.6 0.36

Return Gap 0.77 (0.34) 0.99 3.81 7.38 0.55 0.2

Fund flow 1.3 (0.14) 1.56 3.78 7.75 0.6 0.34

Sharpe 1.04 (0.2) 1.33 3.37 7.77 0.62 0.31

Treynor 1.15 (0.15) 1.45 3.49 7.65 0.6 0.33

Beta 1.67 (0.07) 1.78 4.92 7.28 0.55 0.34

Sigma 1.27 (0.26) 1.16 5.01 7.69 0.57 0.25

OLS 0.93 (0.21) 1.24 3.77 8.14 0.61 0.25

Ridge 1.04 (0.18) 1.34 3.99 8.11 0.61 0.26

LASSO 0.91 (0.22) 1.19 3.88 8.06 0.61 0.24

Elastic Net 1.25 (0.1) 1.54 3.92 7.97 0.6 0.32

PC 1 1 (0.19) 1.36 3.34 7.87 0.6 0.3

FDR10% 0.36 (0.72) 0.37 4.75 6.5 0.52 0.08

Equal Weight -0.8 (0.03) -2 1.86 6.3 0.5 -0.43

Equal Weight Plus -0.26 (0.48) -0.56 2.18 6.7 0.52 -0.12

Appendix C. Performance of fFDR10% in various periods

In this section, we present the alpha of the fFDR10% portfolios in periods before and

after the covariates were published. The first line of Table C.13 shows that all covariates

gain positive alpha for the period January 1982 to the end of the prior-published year.

The last line of the table indicates that three of the five previously known covariates still

gain significant alpha in the post-published period.
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Table C.13: Performance of fFDR10% portfolios in various periods prior- and post-
published year of the covariates. The table shows the alpha of the fFDR10% portfolio corresponding
to each covariate in specific periods, with [a, b] denoting a period extending from the beginning of year
a over to the end of year b. For instance, the first value in the R-square column, that is, 1.75, is the
alpha of the fFDR10% with R-square covariate for the period from the beginning of 1982 to the end of
2012 (i.e., n − 1 = 2012, where n = 2013 is the published year of the covariate). The middle value in
the column is the Carhart four-factor alpha of the portfolio for year n, which contains only 12 months
corresponding to 12 data points of returns.

R-square Fund Size Active Weight Return Gap Fund flow

Period n = 2013 n = 2017 n = 2015 n = 2008 n = 1999

[1982, n− 1] 1.75 0.82 1.46 1.53 1.6

[n− 10, n− 1] 1.20 -2.04 -1.27 3.00 0.35

[n− 5, n− 1] -2.11 0.11 -1.54 1.71 -0.65

[n− 4, n− 1] -1.81 -0.12 -0.76 0.62 -1.01

[n− 3, n− 1] -2.50 0.22 2.79 0.20 -1.44

[n− 2, n− 1] -2.44 0.50 3.09 0.82 -1.83

[n− 1, n− 1] -0.92 -2.1 8.00 -0.04 -0.87

[n, n] -4.77 -2.39 -3.22 2.67 -0.40

[n+ 1, n+ 1] 4.27 1.33 -1.81 2.70 20.76

[n+ 1, n+ 2] -0.21 5.45 -0.91 -0.95 6.85

[n+ 1, n+ 3] 1.45 - -0.53 -1.73 4.33

[n+ 1, n+ 4] 1.82 - -0.05 -0.81 2.36

[n+ 1, n+ 5] 3.03 - - -2.13 1.90

[n+ 1, n+ 10] - - - -0.59 2.47

[n+ 1, 2019] 3.73 5.45 -0.05 -0.3 1.31

Appendix D. The construction of sorting portfolios

Here, we describe the constructions of the single- and double-sorting portfolios which

are traditionally conducted in the literature. Specifically, the single-sorting portfolios

based on a covariate are as in Kacperczyk et al. (2008) and Doshi et al. (2015), and the

double-sorting based on a covariate and the past alpha are as in Amihud and Goyenko
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(2013).

To construct the single-sorting portfolio for each covariate, at the end of each year

from 1981, all the mutual funds are sorted into deciles (quintiles) according to the given

covariate. For the covariate that has a negative/positive relationship with the perfor-

mance of the funds, the funds in the bottom/top decile (quintile) are selected. These

form a portfolio to be invested in the following year. To form the double-sorting portfo-

lio, the funds selected in the single-sorting portfolio are again sorted into decile (quintile)

according to the past alpha. The funds in the top decile (quintile) form the portfolio

to be invested in the following year. This process is rolled forward until the end of the

sample period.

For consistency with the fFDR portfolios, we use the same type of 5-year rolling

window, i.e., each time we use the aforementioned observed covariates and the alpha and

covariates calculated based on the last five years.
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IA. Simulation execution

We summarize the simulation procedure as follows.

As a first step, we generate the covariate and alpha for each of the m funds. We

generate the covariate vector (z1, z2, . . . , zm) with each element drawn from the uniform

distribution [0, 1] and assign them to the funds. For the cases (15) or (16), we determine

c in (18) such that
∫ 1

0
π0(z)dz = π0 for a given π0 > 0. For each fund i, we draw hi from

the Bernoulli distribution with success probability 1 − π0(zi) and assign a zero alpha to

fund i with hi = 0. Finally, for the remaining funds, we draw true non-zero alphas from

the given distribution (15) or (16) and assign them such that a fund with a smaller z has

a smaller alpha. For the case (17), we draw alphas from the distribution and then assign

them to the funds; again, a fund with a smaller z has a smaller alpha.

In the second step, we simulate the return factors from a normal distribution with

parameters equal to their sample counterparts. The loadings of these factors are also

drawn from a normal distribution with parameters equal to their sample counterparts

obtained from the fund level estimation of equation (14). We consider balanced panel

data for 2, 000 funds with 274 time-series observations; the number of 2, 000 is chosen

to be close to our real sample of 2,224 funds, whereas the number of 274 periods is

the median of our sample funds’ observations. In unbalanced panel data, the number

of observations for each fund is drawn randomly with replacement from the set of the

number of observations of the funds in the real-data counterpart. Under cross-sectional

independence, the noise term εi,t is drawn from a normal distribution N (0, σ2
ε), where, as

in Barras et al. (2020), σε is set equal to the median of its real-data counterpart, that is,

approximately 0.0183 for our sample. Under cross-sectional dependence, we follow BSW

and assume that all fund residuals load on a common latent factor Gt, whereas the skilled

and unskilled funds load on the specific factors G+
t and G−t , respectively. Thus,

εi,t = γGt + γG+
t 1αi>0 + γG−t 1αi<0 + ηi,t, (A.1)

where 1αi>0 and 1αi<0 are, respectively, skilled and unskilled indicators taking the value
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1 if the fund i is skilled or unskilled, and 0 otherwise. The three latent factors Gt, G
+
t and

G−t are assumed to be mutually orthogonal and to the four risk factors and have a normal

distribution N (0, σ2
G), where, from BSW, σG is set equal to the average of the monthly

standard deviations of the three risk factors (size, book-to-market and momentum). The

coefficient γ is set equal to the average of the loading of the three risk factors of the

2,224 funds in our sample. Finally, {ηi,t}i are uncorrelated and drawn from the normal

distribution N (0, σ2
η), where ση is chosen such that σε is equated to the median of its

real-data counterpart, as in the independent case.

In the last step, we implement the fFDR+ and FDR+ and compute their perfor-

mance metrics. More specifically, based on the simulated data from the previous step,

we calculate the Carhart four-factor model alpha and the corresponding p-value for each

fund. We use the resulting p-value, the estimated alpha and the covariate as inputs to

the fFDR+ and FDR+ procedures. At a given target of FDR, we calculate for each

method a rate of falsely classified funds F̃DR
+

and a detected rate P̃ ower
+

:

F̃DR
+

=
Ṽ +

max
{
R̃+, 1

} and P̃ ower
+

=
C̃+

T̃+
, (A.2)

where R̃+ is the number of classified skilled funds and, among them, Ṽ + funds are truly

zero-alpha or unskilled funds. T̃+ is the number of truly skilled funds in the population

and, among them, C̃+ funds are classified correctly.

The previous three steps are repeated 1,000 times and we use the average F̃DR
+

and

P̃ ower
+

as estimates for the actual FDR and power.

IB. Additional simulation results

To complement Section 5 of the main manuscript, we show here the performance of the

fFDR+ in terms of FDR control and power under several settings. We first present the

performance of fFDR+, where π0(z) can take three different forms. We then show the

results corresponding to the balanced panel data under cross-sectional dependence. Next,

we present results for unbalanced panel data under both cross-sectional independence
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and dependence. Finally, to cover all distributions studied in the literature, we exhibit

simulation results for the case where alphas are drawn from a single normal distribution.

IB.1. Results for alternative forms of π0(z)

In this section, we consider three forms of π0(z), including decreasing, increasing and

being constant with respect to z. For the decreasing and increasing cases, we specify π0(z)

based on f(z) = −1.5(z − 0.5)3 + c or f(z) = 1.5(z − 0.5)3 + c. In the interest of space,

we present results for the mass distribution of alphas with balanced panel data which is

generated under cross-sectional independence. For all forms of π0(z), even when this is

constant, we conclude similarly to the case of π0(z) with an up-and-down shape presented

in the main manuscript. Results for other distributions as well as under cross-sectional

dependence convey the same message and are available upon request.
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Table I: Power comparison for discrete distribution when π0(z) is an increasing function.
The table compares the power of the fFDR+ and FDR+ at FDR target of 10% when the alphas of 2,000
funds are drawn from a discrete distribution: α ∼ π+δα=α∗ + π0δα=0 + π−δα=−α∗ with varying α∗ (an-
nualized) and proportions (π+, π0, π

−). The simulated data are a balanced panel with 274 observations
per fund and are generated with cross-sectional independence. All metrics are in percentages.

Power of the procedures

(π+, π0, π
−) Procedure α∗ = 1.5 α∗ = 2 α∗ = 2.5 α∗ = 3 α∗ = 3.5

(10, 75, 15)
fFDR+ 0.20 3.60 18.10 40.60 62.50

FDR+ 0.40 1.90 12.00 32.20 53.20

(10, 60, 30)
fFDR+ 0.70 8.00 27.90 52.20 72.60

FDR+ 0.40 2.20 13.90 36.10 57.70

(10, 30, 60)
fFDR+ 3.10 20.10 48.60 73.30 88.20

FDR+ 0.40 3.00 21.40 47.40 69.60

(13, 67.5, 19.5)
fFDR+ 0.50 7.20 26.20 49.90 71.00

FDR+ 0.40 3.10 17.60 39.50 60.70

(13, 48, 39)
fFDR+ 1.60 13.60 39.00 64.90 82.50

FDR+ 0.40 3.70 21.60 45.80 66.80

(13, 9, 78)
fFDR+ 6.30 33.20 65.10 88.90 97.10

FDR+ 0.60 7.10 37.60 69.40 88.10
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Table II: Power comparison for discrete distribution:when π0(z) is a decreasing function.
The table compares the power of the fFDR+ and FDR+ at FDR target of 10% when the alphas of 2,000
funds are drawn from a discrete distribution: α ∼ π+δα=α∗ + π0δα=0 + π−δα=−α∗ with varying α∗ (an-
nualized) and proportions (π+, π0, π

−). The simulated data are a balanced panel with 274 observations
per fund and are generated with cross-sectional independence. All metrics are in percentages.

Power of the procedures

(π+, π0, π
−) Procedure α∗ = 1.5 α∗ = 2 α∗ = 2.5 α∗ = 3 α∗ = 3.5

(10, 75, 15)
fFDR+ 1.20 10.40 31.00 55.00 74.50

FDR+ 0.40 2.00 11.80 32.00 53.20

(10, 60, 30)
fFDR+ 2.70 16.60 43.10 68.00 84.20

FDR+ 0.40 2.20 14.00 35.80 57.60

(10, 30, 60)
fFDR+ 6.50 29.20 67.70 89.30 96.10

FDR+ 0.40 3.00 21.20 47.40 69.60

(13, 67.5, 19.5)
fFDR+ 2.00 14.10 37.50 61.20 78.70

FDR+ 0.50 3.10 17.70 39.50 60.50

(13, 48, 39)
fFDR+ 4.40 24.50 54.50 77.20 89.90

FDR+ 0.40 3.60 21.60 45.60 66.80

(13, 9, 78)
fFDR+ 9.40 39.20 79.20 93.20 97.90

FDR+ 0.50 6.90 37.50 69.10 88.10
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Table III: Power comparison for discrete distribution when π0(z) is a constant function. The
table compares the power of the fFDR+ and FDR+ at FDR target of 10% when the alphas of 2,000 funds
are drawn from a discrete distribution: α ∼ π+δα=α∗ +π0δα=0 +π−δα=−α∗ with varying α∗ (annualized)
and proportions (π+, π0, π

−). The simulated data are a balanced panel with 274 observations per fund
and are generated with cross-sectional independence. All metrics are in percentages.

Power of the procedures

(π+, π0, π
−) Procedure α∗ = 1.5 α∗ = 2 α∗ = 2.5 α∗ = 3 α∗ = 3.5

(10, 75, 15)
fFDR+ 0.50 5.90 22.20 44.90 66.90

FDR+ 0.40 2.00 12.00 31.80 53.60

(10, 60, 30)
fFDR+ 1.40 12.10 35.60 60.80 78.60

FDR+ 0.40 2.20 13.80 35.90 57.40

(10, 30, 60)
fFDR+ 4.40 25.90 58.70 80.70 91.80

FDR+ 0.40 3.30 21.30 47.90 69.50

(13, 67.5, 19.5)
fFDR+ 1.10 9.80 30.20 54.70 74.40

FDR+ 0.50 3.20 17.60 39.80 60.80

(13, 48, 39)
fFDR+ 2.90 18.20 44.80 69.40 84.90

FDR+ 0.50 3.60 21.00 46.00 66.70

(13, 9, 78)
fFDR+ 8.30 37.00 73.00 91.00 97.70

FDR+ 0.60 7.10 37.50 69.40 88.20

IB.2. Results for balanced panel data under cross-sectional dependence

We start by presenting in Figures I–III the cases where the data are generated as

balanced panels under cross-sectional dependent errors. The comparisons in terms of

power between fFDR+ and FDR+ are shown in Tables IV–VIII.
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Figure I: Performance of fFDR+ for discrete distribution of α. The graphs show the perfor-
mance of the fFDR+ in terms of FDR control when alphas are drawn from a discrete distribution. The
simulated data are balanced panels with cross-sectional dependence.

Figure II: Performance of fFDR+ for discrete and normal distribution mixture of α. The
graphs show the performance of the fFDR+ in terms of FDR control when alphas are drawn from a
mixture of discrete and normal distributions. The simulated data are balanced panels with cross-sectional
dependence.
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Figure III: Performance of fFDR+ for continuous distribution of α. The graphs show the
performance of the fFDR+ in terms of FDR control when alphas are drawn from a continuous distri-
bution which is a mixture of two normals. The simulated data are balanced panels with cross-sectional
dependence.
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Table IV: Power comparison for discrete distribution. The table compares the power of the
fFDR+ and FDR+ at FDR target of 10% when the alphas of 2,000 funds are drawn from a dis-
crete distribution: α ∼ π+δα=α∗ + π0δα=0 + π−δα=−α∗ with varying α∗ (annualized) and proportions
(π+, π0, π

−). The simulated data are a balanced panel with 274 observations per fund and generated
with cross-sectional dependence. All metrics are in percentages.

Power of the procedures

(π+, π0, π
−) Procedure α∗ = 1.5 α∗ = 2 α∗ = 2.5 α∗ = 3 α∗ = 3.5

(10, 75, 15)
fFDR+ 0.8 6.1 21.3 43.6 65.5

FDR+ 0.5 2.6 12.1 30.5 51.9

(10, 60, 30)
fFDR+ 1.9 11.2 32.3 56.6 76

FDR+ 0.5 3 14.1 34.3 56

(10, 30, 60)
fFDR+ 4.6 23.1 51.5 75.4 89.1

FDR+ 0.5 4 20.7 46.6 68.8

(13, 67.5, 19.5)
fFDR+ 1.5 9.7 29 53.1 73.7

FDR+ 0.7 4.1 17 38 59.2

(13, 48, 39)
fFDR+ 3.4 17.1 41.3 66.3 83.3

FDR+ 0.6 4.6 20.7 44.4 65.3

(13, 9, 78)
fFDR+ 8.5 34.2 67.9 89 97.2

FDR+ 0.7 8.2 37.1 69.1 87.9
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Table V: Power comparison for discrete-normal distribution mixture. The table compares the
power of the fFDR+ and FDR+ at FDR target of 10% when alphas of 2,000 funds are drawn from a
discrete-normal distribution mixture: α ∼ π0δα=0+(1−π0)N (0, σ2) with varying σ (annualized) and null
proportion π0. The simulated data are a balanced panel with 274 observations per fund and generated
with cross-sectional dependence. All metrics are in percentages.

Power of the procedures

π0 Procedure σ = 1 σ = 2 σ = 3 σ = 4 σ = 5

75
fFDR+ 0.5 15.7 36.2 51.2 60.8

FDR+ 0.2 8.4 26.6 41.7 52.3

60
fFDR+ 1.6 21.5 42.8 57.1 66.3

FDR+ 0.3 11.4 31.3 46.5 56.8

30
fFDR+ 4.7 32.4 54.5 67.6 75

FDR+ 0.6 17.9 40.8 55.8 65.4

67.5
fFDR+ 1 18.7 39.4 54 63.3

FDR+ 0.2 9.8 29 44 54.5

48
fFDR+ 2.5 25.5 47.3 61.3 70.2

FDR+ 0.3 13.5 34.6 49.8 59.9

9
fFDR+ 6.7 38 60.7 73.6 80.7

FDR+ 0.7 22 46.9 62.5 72
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Table VI: Power comparison for mixture of two normal distributions. The table compares the
power of the fFDR+ and FDR+ at FDR target of 10% when alphas of 2,000 funds are drawn from a
mixture of two normal distributions: α ∼ 0.3N (µ1, σ

2
1) + 0.7N (µ2, σ

2
2) with varying standard deviation

pairs (σ1, σ2) (annualized) and mean pairs (µ1, µ2). The simulated data are a balanced panel with 274
observations per fund and generated with cross-sectional dependence. All metrics are in percentages.

Power of the procedures

(σ1, σ2)

(µ1, µ2) Procedure (1, 0.5) (1.5, 0.6) (2, 1) (2.5, 1.25) (3, 1.5)

(−2.3,−0.7)

π+ = 6 π+ = 10.4 π+ = 20.7 π+ = 25.5 π+ = 29.1

fFDR+ 0.1 0.4 5 13.6 23.3

FDR+ 0 0 0.3 2.2 7.4

(−2,−0.5)

π+ = 11.8 π+ = 16.9 π+ = 26.4 π+ = 30.5 π+ = 33.4

fFDR+ 0.1 0.6 6.5 15.8 25.5

FDR+ 0 0.1 0.5 3.2 9.1

(−2.5, 0)

π+ = 35.2 π+ = 36.4 π+ = 38.2 π+ = 39.8 π+ = 41.1

fFDR+ 0.4 1 9.2 18.6 28.3

FDR+ 0 0.1 1 4.7 11.7
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Table VII: Power comparison for varying sample size and observation length. The table
compares the power of the fFDR+ and FDR+ in a balanced panel data with varying number of
observations per fund (T ) and number of funds (m). We present three cases where alphas of m funds
are drawn from i) discrete distribution: α ∼ 0.1δα=2 + 0.3δα=0 + 0.6δα=−2 (Panel A); ii) discrete-
normal mixture: α ∼ 0.3δα=0 + 0.7N (0, 22) (Panel B); and mixture of two normal distributions: α ∼
0.3N (−2, 22)+0.7N (−0.5, 1) (Panel C). For each alpha population, we generate data with cross-sectional
dependence. All the metrics are in percentages.

Power of the procedures

m Procedure T = 120 T = 180 T = 240 T = 300 T = 360 T = 420

Panel A: Discrete distribution

500
fFDR+ 3.7 9.4 19.9 31 43.5 54.5

FDR+ 0.7 1.4 3.2 6.2 12 18.9

1000
fFDR+ 2.2 8.3 17.1 29.8 40.4 52.9

FDR+ 0.4 1.1 2.6 5.9 11.3 19.9

2000
fFDR+ 2.1 7.3 16.5 26.8 40.6 50.6

FDR+ 0.2 0.9 2.5 5.5 11.9 19.9

3000
fFDR+ 1.9 7 16 27.8 39.5 48.9

FDR+ 0.2 0.7 2.2 5.9 12.3 19.6

Panel B: Mixture of Discrete and Normal distributions

500
fFDR+ 13 22 29.2 35.8 40.6 45.5

FDR+ 3 8.1 13.8 20 25.3 29.9

1000
fFDR+ 12.5 21.2 29.1 35.1 39.8 44.2

FDR+ 2.9 8.2 14.6 20.3 24.9 29.6

2000
fFDR+ 12.1 20.9 28.4 34.9 39.4 44.3

FDR+ 2.7 8.2 14.4 20.4 25 29.8

3000
fFDR+ 11.8 20.8 28.3 34.4 39.9 43.7

FDR+ 2.7 8.3 14.4 20.1 25.6 29.6

Panel C: Mixture of Normal distributions

500
fFDR+ 1.7 3.5 6.4 8.2 11.2 14.2

FDR+ 0.2 0.3 0.6 0.9 1.4 2

1000
fFDR+ 1.2 3.2 5.6 8.6 10.8 13.3

FDR+ 0.1 0.2 0.4 0.9 1.2 1.9

2000
fFDR+ 1.1 2.8 4.9 7.6 10.1 12.8

FDR+ 0.1 0.2 0.3 0.7 1.1 2

3000
fFDR+ 1.1 2.8 5 7.6 10.3 12.6

FDR+ 0.1 0 0.3 0.6 1.2 1.9
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Table VIII: Power comparison for varying FDR targets for sample with small size and
small number of observations under cross-sectional dependence. In this table, we consider
three distributions as in Table VII for samples consisting of m = 500 funds (balanced panels) with
T = 60 observations per fund (5 years). All reports are in percentages.

Power of the procedures

FDR target

Distribution Procedure 10 20 30 40 50 60 70 80 90

Discrete
fFDR+ 0.8 3 7.3 13.6 21.9 31.4 41 51.3 63.3

FDR+ 0.3 0.5 0.8 1 1.4 1.9 2.8 4 5.9

Mixture of discrete fFDR+ 3.1 8.5 15.4 23.5 32.3 41.4 50.8 60.9 67.2

and normal FDR+ 0.4 1.2 2.7 5.2 8.6 14.5 22.3 32.5 41.3

Mixture of normals
fFDR+ 0.4 1.8 4.3 8.1 13.4 29.8 27.7 37.6 50.7

FDR+ 0.1 0.1 0.3 0.4 0.5 0.8 1.4 2.5 4.1
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IB.3. Results for unbalanced panel data

In this section, we present the performance of the fFDR+ under both cross-sectional

independence and dependence. Figures IV–VI depict the FDR control of the fFDR+,

while the power comparisons are given in Tables IX–XI.
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Figure IV: Performance of fFDR+ in terms of FDR control when alphas are drawn from the discrete
distribution with unbalanced panel data.

Panel A: Cross-sectional Independent Data

Panel B: Cross-sectional Dependent Data
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Figure V: Performance of fFDR+ in terms of FDR control when alphas are drawn from the discrete-
normal distribution mixture with unbalanced panel data.

Panel A: Cross-sectional Independent Data

Panel B: Cross-sectional Dependent Data
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Figure VI: Performance of fFDR+ in terms of FDR control when alphas are drawn from the mixture
of two normals with unbalanced panel data.

Panel A: Cross-sectional Independent Data

Panel B: Cross-sectional Dependent Data
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Table IX: Power comparison for discrete distribution. The table compares the power of the fFDR+ and FDR+ at FDR target of 10% when the alphas
of 2,000 funds are drawn from a discrete distribution: α ∼ π+δα=α∗ + π0δα=0 + π−δα=−α∗ with varying α∗ (annualized) and proportions (π+, π0, π

−). The
simulated data are an unbalanced panel with the number of observations of each fund drawn randomly with replacement from the real-data counterpart. We
study the simulated data with both cross-sectional independence (left-hand side) and cross-sectional dependence (right-hand side). All metrics are in percentages.

Power of the procedures

Cross-sectional Independence Cross-sectional Dependence

(π+, π0, π
−) Procedure α∗ = 1.5 α∗ = 2 α∗ = 2.5 α∗ = 3 α∗ = 3.5 α∗ = 1.5 α∗ = 2 α∗ = 2.5 α∗ = 3 α∗ = 3.5

(10, 75, 15)
fFDR+ 0.4 5.5 21.1 41.3 58.9 0.6 5.9 20.6 40.3 57.8

FDR+ 0.4 2.6 12.7 29.9 46.7 0.4 2.9 13 29.3 45.9

(10, 60, 30)
fFDR+ 1.1 10.3 30.6 51.8 68 1.5 10.5 29.8 50.7 66.9

FDR+ 0.5 2.9 14.6 32.6 49.9 0.5 3.2 14.3 31.9 49

(10, 30, 60)
fFDR+ 3.2 19.8 46.6 66.8 79.8 3.9 19.8 45.6 66 79.4

FDR+ 0.5 3.6 19.1 40 58.1 0.5 4 18.9 39.5 57.6

(13, 67.5, 19.5)
fFDR+ 0.9 8.9 27.7 48.5 65.1 1.2 9.2 27.1 47.5 64.1

FDR+ 0.5 3.9 17.4 35.6 52.3 0.6 4.2 17 34.9 51.5

(13, 48, 39)
fFDR+ 2.2 15.5 37.8 58.8 73.7 2.9 15.5 37.1 57.8 73

FDR+ 0.5 4.5 20.3 39.8 56.9 0.7 4.8 19.5 39 56

(13, 9, 78)
fFDR+ 6.2 27.5 60.2 78.1 88.7 7.5 29.2 60 78.4 88.9

FDR+ 0.6 6.8 29.5 54.2 72.5 0.8 7.7 30 54.7 72.8
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Table X: Power comparison for discrete-normal distribution mixture. The table compares the power of the fFDR+ and FDR+ at FDR target of
10% when alphas of 2,000 funds are drawn from a discrete-normal distribution mixture: α ∼ π0δα=0 + (1 − π0)N (0, σ2) with varying σ (annualized) and null
proportion π0. The simulated data are an unbalanced panel with the number of observations of each fund drawn randomly with replacement from the real-data
counterpart.We study the simulated data with both cross-sectional independence (left-hand side) and cross-sectional dependence (right-hand side). All metrics
are in percentages.

Power of the procedures

Cross-sectional Independence Cross-sectional Dependence

π0 Procedure σ = 1 σ = 2 σ = 3 σ = 4 σ = 5 σ = 1 σ = 2 σ = 3 σ = 4 σ = 5

75
fFDR+ 0.3 13.9 31.9 45.9 55.7 0.4 13.9 31.7 45.7 55.5

FDR+ 0.2 7.8 23.5 37.1 47.5 0.3 7.9 23.3 36.9 47.2

60
fFDR+ 1.3 19.2 38 51.8 60.9 1.3 19 37.8 51.7 60.9

FDR+ 0.3 10.4 27.8 41.9 52.2 0.3 10.3 27.6 41.7 52

30
fFDR+ 3.5 27.6 48.3 61.9 70.3 3.6 27.4 48 61.4 70.1

FDR+ 0.4 15.4 35.7 50.5 60.6 0.5 15.2 35.4 50.2 60.3

67.5
fFDR+ 0.8 16.8 35.2 48.9 58.4 0.9 16.9 35.1 49 58.5

FDR+ 0.3 9.2 25.9 39.6 49.8 0.3 9.2 25.7 39.6 49.9

48
fFDR+ 2.1 22.9 42.5 56.1 65.2 2.3 22.9 42.4 56 65.1

FDR+ 0.3 12.4 31.2 45.6 55.7 0.4 12.5 31.1 45.4 55.4

9
fFDR+ 5.3 33.3 54.9 68.2 76.7 5.6 33.5 55 68.2 76.7

FDR+ 0.6 19.1 41.6 57 67.2 0.7 19.1 41.5 57 67.2



Table XI: Power comparison for mixture of two normal distributions. The table compares the
power of the fFDR+ and FDR+ at FDR target of 10% when alphas of 2,000 funds are drawn from a
mixture of two normal distributions: α ∼ 0.3N (µ1, σ

2
1) + 0.7N (µ2, σ

2
2) with varying standard deviation

pairs (σ1, σ2) (annualized) and mean pairs (µ1, µ2). The simulated data are an unbalanced panel with the
number of observations of each fund drawn randomly with replacement from the real-data counterpart.
We study the simulated data with both cross-sectional independence (left-hand side) and cross-sectional
dependence (right-hand side). All metrics are in percentages.

Power of the procedures

Cross-sectional Independence Cross-sectional Dependence

(µ1, µ2) Procedure σ1 σ2 σ3 σ4 σ5 σ1 σ2 σ3 σ4 σ5

(−2.3,−0.7)
fFDR+ 0 0.2 3.8 11.3 19.5 0 0.3 4.2 11.7 20.1

FDR+ 0 0 0.3 1.8 6.3 0 0 0.3 2 6.4

(−2,−0.5)
fFDR+ 0 0.4 5 13 21.7 0.1 0.5 5.5 13.7 22.2

FDR+ 0 0.1 0.4 2.7 7.8 0 0.1 0.5 2.9 8.1

(−2.5, 0)
fFDR+ 0.1 0.5 7.3 15.4 24 0.3 0.8 7.8 16 24.6

FDR+ 0 0.1 0.6 3.9 9.9 0 0.1 0.9 4.2 10.3

where σ1 = (1, 0.5), σ2 = (1.5, 0.6), σ3 = (2, 1), σ4 = (2.5, 1.25), σ5 = (3, 1.5).
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IB.4. Simulation results for single normal distribution

In this section, we present the simulation results for a special case of continuous

distribution where the mixture (17) has only one component. Specifically, we consider

the case π2 = 0, α ∼ N (µ, σ2) and, based on Jones and Shanken (2005) and Fama and

French (2010), we use µ ∈ {−0.8,−0.5, 0} and σ ∈ {1, 1.5, 2, 2.5, 3}.30

Figures VII and VIII present the performance of the fFDR+ procedure when the

alphas are drawn from balanced and unbalanced panel data, respectively. It is shown

that the FDR is controlled at any given target.

Figure VII: Performance of fFDR+ in terms of FDR control when alphas are drawn from the single
normal distribution with balanced panel data.

Panel A: Cross-sectional Independent Data

Panel B: Cross-sectional Dependent Data

30Jones and Shanken (2005) assume that the fund alphas are drawn from a normal distribution and
their estimates for the mean and standard deviation are based on prior beliefs. They find that the mean is
1.3%-1.4% per annum before expenses (about 2%) and the standard deviation is 1.5%-1.8%. In addition,
Fama and French (2010) assume that the fund (gross) alpha population has a normal distribution centered
at 0.
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Figure VIII: Performance of fFDR+ in terms of FDR control when alphas are drawn from the single
normal distribution with unbalanced panel data.

Panel A: Cross-sectional Independent Data

Panel B: Cross-sectional Dependent Data

In Table XII, we focus on comparing the performance of fFDR+ and FDR+ in terms

of power. As π+ depends on both the mean µ and variance σ2 of the distribution, we need

to distinguish the value of π+ from the pairs (µ, σ). We provide in Panel A additional

information about π+, which helps us assess the impact of the magnitude of positive

alphas on the power. For instance, for π+ ≈ 40%, the power of the two procedures for

(µ, σ) = (−0.8, 3) is significantly higher than for (µ, σ) = (−0.5, 2). We observe a boost

in power for both methods with increasing σ (for given non-positive µ), resulting in larger

proportion and magnitude of positive alphas. In all the cases under consideration, the

fFDR+ dominates FDR+ in terms of power and this gap soon becomes omnipresent for

σ ≥ 1.5 reaching up to 18%.
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Table XII: Power comparison for single normal distribution. The table compares the power of
the fFDR+ and FDR+ at FDR target of 10% when alphas of 2,000 funds are drawn from a normal
distribution: α ∼ N (µ, σ2) with varying standard deviation σ (annualized) and mean µ. In Panel A the
simulated data are a balanced panel with 274 observations per fund, whereas in Panel B an unbalanced
panel with the number of observations of each fund drawn randomly with replacement from the real-data
counterpart. For each type of panel data, we generate data cross-sectional independence (left-hand side)
and with cross-sectional dependence (right-hand side). All metrics are in percentages.

Power of the procedures

Cross-sectional Independence Cross-sectional Dependence

σ σ

µ Procedure 1 1.5 2 2.5 3 1 1.5 2 2.5 3

Panel A: Balanced Data

−0.8

π+ 21.2 29.7 34.5 37.4 39.5 21.2 29.7 34.5 37.4 39.5

fFDR+ 1.6 14.1 30.5 44.4 55.1 2.1 14.9 30.9 44.7 55.4

FDR+ 0.1 1.7 12.6 27.2 40.6 0.1 2.1 12.8 27.4 40.7

−0.5

π+ 30.9 36.9 40.1 42.1 43.4 30.9 36.9 40.1 42.1 43.4

fFDR+ 3 17.6 33.8 47.3 57.7 3.8 18.3 34.5 47.8 58.1

FDR+ 0.1 3.6 16.5 31.3 44.1 0.2 4 16.7 31.5 44.3

0

π+ 50 50 50 50 50 50 50 50 50 50

fFDR+ 7.9 24.8 40.7 52.8 62.4 8.9 25.7 41.3 53.3 62.7

FDR+ 0.6 9.1 24.2 38.7 50.3 1 9.5 24.6 38.9 50.5

Panel B: Unbalanced Data

−0.8
fFDR+ 1.4 12.1 26.5 39.5 50.1 1.7 12.7 27.1 39.8 50.2

FDR+ 0.1 1.7 10.8 23.2 35.2 0.1 2 11.2 23.5 35.4

−0.5
fFDR+ 2.6 15.2 29.8 42.5 52.6 3.1 15.8 30.2 42.8 52.7

FDR+ 0.2 3.4 14.1 26.8 38.6 0.2 3.7 14.5 27.2 38.8

0
fFDR+ 6.8 21.6 36 47.8 56.9 7.4 22.4 36.4 48 57.1

FDR+ 0.6 8.1 20.8 33.6 44.5 0.9 8.5 21.2 33.9 44.6
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IC. Wealth evolution

In Figure 5 in the main manuscript, we study the alpha evolution of the portfolios

over time. However, an investor might be interested in the gain in value. Figure IX shows

the growth of 1 dollar that the investor invests in each portfolio at the beginning of 1982.

Ultimately, at the end of 2019, this amount grows to about 74 dollars if she chooses

the fFDR10% portfolio with R-square as the covariate, as opposed to just 45, 47 and

41 dollars with the FDR10%, the equal weight plus and equally weighted portfolios,

respectively. This exercise reveals the potential profitability of an investor who had the

perfect oracle in 1982 on the methods and the covariate that would be presented over the

next 30 years.

Figure IX: Evolution of wealth. The graph plots the evolution of 1 dollar invested at the beginning
of 1982 in the FDR10%, fFDR10%, Equal Weight and Equal Weight Plus portfolios.

Similarly to Figure IX, in Figure X we depict the wealth evolution of one dollar

invested in the fFDR10% portfolios based on the combined covariates. At the end

of 2019, 1 dollar grows to about 73 to 80 dollars if the investor invests in one of the

fFDR10% portfolios with the covariates obtained from OLS, LASSO, Ridge and elastic

net regressions.
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Figure X: Evolution of wealth of fFDRτ portfolios with combined covariates. The graph plots
the evolution of 1 dollar invested at the beginning of 1982 in the FDR10%, fFDR10%, Equal Weight
and Equal Weight Plus portfolios. In this graph, the fFDR10% portfolios are the ones described in
Figure 6.

ID. Results for alternative target of FDR

In this section, we repeat the exercise with the FDR target of 20%. Figures XI and

XII present the alpha evolution of the individual covariates and the combined covariates,

respectively. Tables XIII and XIV show the average n-year alpha of those portfolios.

Finally, Table XV presents the statistic metrics for all mentioned portfolios.
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Figure XI: Alpha evolution of fFDR20% and FDR20% portfolios over time. The graph presents the evolution of annualized alpha of the nine
fFDR20% portfolios, the FDR20% of BSW and the two equally weighted portfolios.
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Figure XII: Alpha evolution of fFDR20% portfolios with combined covariates. The graph shows the alpha evolution of the fFDR20% portfolios with
each using a covariate obtained from either the principal component method or regression method; for the former, the covariate is the first principal component
(PC 1) of the five covariates, whereas for the latter the new covariate is a linear combination of the five underlying covariates with the weights obtained based
on one of the OLS, LASSO, Ridge and elastic net regressions.
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Table XIII: Comparison of portfolios’ performances for varying time lengths of investing. In this table, we consider 10 portfolios including nine
fFDR20% portfolios and the FDR20% portfolio of BSW. We compare the average alphas of the portfolios that are kept in periods of exactly n consecutive
years. For example, consider n = 5. For each portfolio, we calculate the alpha for the first 5 years based on the portfolios’ returns from January 1982 to December
1986. Then, we roll forward by a month and calculate the second alpha. The process is repeated and the last alpha is estimated based on the portfolios’ returns
from January 2015 to December 2019. The average of these alphas is presented in the first row in the table.

n R-square Fund Size Active Weight Return Gap Fund flow Sharpe Treynor Beta Sigma FDR20%

5 1.6 0.8 1.23 0.61 0.89 0.58 0.65 1.15 1.4 0.41

10 1.63 0.82 1.21 0.61 0.93 0.65 0.7 1.33 1.2 0.34

15 1.84 0.92 1.46 0.82 1.06 0.79 0.83 1.34 1.22 0.41

20 1.97 1.05 1.66 1.03 1.15 0.9 0.92 1.44 1.28 0.53

25 1.75 0.9 1.42 0.78 0.99 0.79 0.82 1.37 1.18 0.42

30 1.55 0.81 1.28 0.67 0.95 0.76 0.8 1.35 1.16 0.31

38 1.84 1.16 1.45 0.82 1.28 1.02 1.1 1.77 1.61 0.67



Table XIV: Performance of fFDR20% portfolios with combined covariates for varying time
lengths of investing. The table displays the average n-year alpha of the fFDR20% portfolios which
use covariates obtained by the first principal component (PC 1), the OLS, LASSO, Ridge and elastic
net (see descriptions in Figure XII). The average n-year alpha of each portfolio is calculated as per the
description in Table XIII.

n OLS Ridge LASSO Elastic Net PC 1

5 0.76 0.99 0.66 1.15 0.76

10 0.79 0.99 0.68 1.29 0.93

15 0.88 1.02 0.75 1.42 1.15

20 1.02 1.11 0.87 1.6 1.29

25 0.92 1.02 0.77 1.38 1.12

30 0.91 1.02 0.75 1.27 1.01

38 0.92 1 0.69 1.2 0.97
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Table XV: Comparison of performance statistics of all considered portfolios with τ = 20%.
The table compares the portfolios with regard to metrics including the annual Carhart four-factor
alpha (α̂) with its bootstrap p-value and t-statistic (with use of Newey–West heteroskedasticity and
autocorrelation-consistent standard error), the annual standard deviation of the four-factor model resid-
uals (σ̂ε), the mean return in excess of the one-month T-bill rate (expressed as percentage), the annual
Sharpe ratio and the annual Information Ratio (IR = α̂/σ̂ε).

Covariate α̂ (p-value) t-statistic σ̂ε Mean Return Sharpe Ratio IR

R-square 1.84 (0.04) 2.03 4.41 8.08 0.62 0.42

Fund Size 1.16 (0.18) 1.35 4 7.37 0.56 0.29

Active Weight 1.45 (0.08) 1.81 3.7 8.06 0.6 0.39

Return Gap 0.82 (0.31) 1.05 3.77 7.43 0.55 0.22

Fund flow 1.28 (0.14) 1.54 3.76 7.76 0.59 0.34

Sharpe 1.02 (0.2) 1.31 3.37 7.77 0.61 0.3

Treynor 1.1 (0.17) 1.38 3.5 7.6 0.6 0.31

Beta 1.77 (0.05) 1.93 4.77 7.31 0.56 0.37

Sigma 1.61 (0.18) 1.44 5.02 7.91 0.59 0.32

OLS 0.92 (0.21) 1.24 3.68 8.08 0.61 0.25

Ridge 1 (0.19) 1.28 3.93 8.05 0.6 0.25

LASSO 0.69 (0.37) 0.92 3.85 7.87 0.59 0.18

Elastic Net 1.2 (0.12) 1.5 3.85 7.96 0.59 0.31

PC 1 0.97 (0.19) 1.35 3.31 7.88 0.6 0.29

FDR10% 0.67 (0.5) 0.69 4.79 6.9 0.54 0.14

Equal Weight -0.8 (0.03) -2 1.86 6.3 0.5 -0.43

Equal Weight Plus -0.26 (0.48) -0.56 2.18 6.7 0.52 -0.12

IE. Results from using an alternative proxy of covariates

In this section, we present in Figure XIII the alpha evolution of fFDR10% portfolios

where the proxy for each covariate is based on whole data in the in-sample period instead

of the data in final year as in the main manuscript. We see that the performance of the

portfolios does not vary significantly.
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Figure XIII: Alpha evolution of fFDRτ portfolios over time where the proxy for each
covariate (except the R-square) is its average realizations in the five years in-sample period.
The graph presents the evolution of annualized alpha of the nine fFDR10% portfolios (corresponding
to the nine covariates), the portfolio FDR10% of BSW and the two equally weighted portfolios.

IF. Restricted data

As supplementary to our empirical study of Section 6, we repeat here our experiments

for a data subset where a mutual fund enters the sample when its TNA reaches $15 million

(adjusted for inflation as of January 2019). This choice of threshold is consistent with

Pastor et al. (2015) and Zhu (2018). Table XVI shows the average n-year alpha for

the fFDR10% and fFDR20% portfolios based on each individual covariate. We then

present in Table XVII our results for the fFDR10% and fFDR20% portfolios based on

combinations of the covariates.
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Table XVI: Comparison of portfolios’ performances for varying time lengths of investing: restricted data. We consider 20 portfolios including
nine fFDR10% portfolios, nine fFDR20% portfolios, the FDR10% and FDR20% portfolios of BSW. We compare the average alphas of the portfolios that are
kept for periods of exactly n consecutive years. For more details, refer to Table 7 of the main manuscript.

n R-square Fund Size Active Weight Return Gap Fund flow Sharpe Treynor Beta Sigma FDR

Panel A: fFDR10% versus FDR10%

5 1.5 0.81 1.39 0.62 0.93 0.57 0.73 1.09 1.19 0.13

10 1.48 0.68 1.36 0.63 0.93 0.65 0.75 1.2 1.06 0.06

15 1.7 0.73 1.6 0.85 1.06 0.8 0.87 1.2 1.1 0.15

20 1.84 0.82 1.79 1.07 1.14 0.91 0.96 1.31 1.18 0.27

25 1.62 0.71 1.56 0.82 0.98 0.81 0.86 1.24 1.09 0.14

30 1.42 0.63 1.41 0.69 0.95 0.79 0.86 1.2 1.01 0.02

38 1.69 1.01 1.52 0.94 1.3 1.04 1.14 1.68 1.27 0.37

Panel B: fFDR20% versus FDR20%

5 1.61 0.74 1.37 0.67 0.91 0.58 0.65 1.15 1.41 0.42

10 1.63 0.67 1.37 0.72 0.96 0.65 0.7 1.33 1.2 0.35

15 1.85 0.72 1.63 0.93 1.08 0.79 0.82 1.34 1.22 0.42

20 1.98 0.82 1.83 1.16 1.17 0.91 0.92 1.44 1.28 0.54

25 1.76 0.71 1.59 0.91 1.01 0.8 0.81 1.37 1.18 0.43

30 1.56 0.66 1.43 0.8 0.98 0.77 0.8 1.35 1.16 0.32

38 1.85 1.04 1.57 0.98 1.3 1.02 1.1 1.78 1.61 0.68



Table XVII: Performance of fFDRτ portfolios with combined covariates for varying time
lengths of investing: restricted data. The table displays the average n-year alpha of the fFDR10%
(Panel A) and fFDR20% (Panel B) portfolios using the covariates given by the first principal component
(PC 1), the OLS, ridge, LASSO and elastic net (see descriptions in Figure 6 of the main manuscript).
The average n-year alpha of each portfolio is calculated as described in Table 7 of the main manuscript.

n OLS Ridge LASSO Elastic Net PC 1

Panel A: τ = 10%

5 0.76 1.02 0.84 0.94 0.78

10 0.73 1.04 0.96 0.99 0.99

15 0.82 1.09 1.08 1.07 1.22

20 0.95 1.19 1.25 1.17 1.4

25 0.83 1.07 1.1 1.03 1.19

30 0.8 1.01 1.06 0.97 1.08

38 0.79 0.97 1.07 0.96 1.05

Panel B: τ = 20%

5 0.73 1 0.68 0.96 0.77

10 0.73 1.01 0.79 1.01 0.96

15 0.81 1.06 0.93 1.08 1.2

20 0.93 1.17 1.1 1.18 1.38

25 0.82 1.05 0.95 1.04 1.17

30 0.8 1 0.89 1 1.06

38 0.77 0.96 0.88 1.01 1.02

IG. Selecting unprofitable funds with fFDR

In this section, we obtain, by analogy with the fFDRτ portfolio, a selection of un-

profitable funds. First, consider a selection of R− unskilled funds including V − wrongly

selected zero-alpha or skilled funds. We define

FDR− = E
(

V −

max{R−, 1}

)
(G.1)
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and

pFDR− = E
(
V −

R−

∣∣∣∣R− > 0

)
. (G.2)

If a fund i with p-value pi and negative estimated alpha (α̂i < 0) is selected as unskilled

fund whenever pi < γ, then FDR− is estimated by

F̂DR
−
γ =

π̂0γ/2

R̂−/m
(G.3)

where R̂− = #{i|pi < γ, α̂i < 0} and π̂0 is calculated as in equation (11) in the main

manuscript.

At a given target τ of FDR−, we form the FDR−τ (fFDR−τ) portfolio of unskilled

funds similarly to the FDRτ (fFDRτ) portfolio of skilled funds. Specifically, we establish

the FDR−τ portfolio using the same γ grid as for the FDRτ and form the fFDR−τ

portfolio by implementing the fFDR procedure (with a specific covariate) on the set of

non-positive estimated alpha funds to control pFDR− at the same level as the portfolio

FDR−τ . The following tables present the average n-year alpha of the portfolios at target

τ = 10% (Table XVIII) and their trading metrics (Table XIX). We also construct a

portfolio, namely Equal Weight Minus, which includes all funds with negative estimated

in-sample alpha invested in the following year.

34



35

Table XVIII: Comparison of portfolios’ performance for varying time lengths of investing: portfolios of unprofitable funds. We consider 11
portfolios including the equal weight minus (EW−), the FDR−10% and the fFDR−10% with the nine individual covariates. The table compares the average
alphas of portfolios that are kept in periods of exactly n consecutive years. For more details, refer to Table 7.

n R-square Fund Size Active Weight Return Gap Fund flow Sharpe Treynor Beta Sigma EW− FDR−10%

5 -3.96 -4.56 -2.85 -4.12 -3.43 -2.29 -2.16 -4.35 -4.13 -1.36 -4.77

10 -3.82 -4.37 -2.83 -3.85 -3.1 -2.05 -1.91 -4.18 -3.86 -1.24 -4.41

15 -3.59 -4.07 -2.62 -3.52 -2.86 -1.81 -1.65 -3.88 -3.62 -1.09 -4.09

20 -3.45 -3.89 -2.53 -3.33 -2.73 -1.7 -1.54 -3.72 -3.51 -1.01 -3.93

25 -3.61 -4.07 -2.73 -3.56 -2.93 -1.81 -1.66 -3.94 -3.69 -1.04 -4.17

30 -3.83 -4.29 -2.92 -3.83 -3.17 -2.05 -1.91 -4.22 -3.99 -1.1 -4.5

38 -4.12 -4.51 -3.21 -4.17 -3.74 -2.53 -2.41 -4.6 -4.31 -1.31 -4.91



Table XIX: Compe numbarison of performance statistics of all considered portfolios of
unprofitable funds with τ = 10%. The table compares the portfolios with regard to metrics including
the annual Carhart four-factor alpha (α̂) with its bootstrap p-value and t-statistic (with use of Newey–
West heteroskedasticity and autocorrelation-consistent standard error), the annual standard deviation of
the four-factor model residuals (σ̂ε), the mean return in excess of the one-month T-bill rate (expressed
as percentage), the annual Sharpe ratio and the annual Information Ratio (IR = α̂/σ̂ε).

Covariate α̂ (p-value) t-statistic σ̂ε Mean Return Sharpe Ratio IR

R-square -4.12 (< 0.01) -5.63 3.21 3.33 0.3 -1.29

Fund Size -4.51 (< 0.01) -6.26 3 2.86 0.27 -1.51

Active Weight -3.21 (< 0.01) -4.95 3.15 4.1 0.35 -1.02

Return Gap -4.17 (< 0.01) -5.89 3.32 3.2 0.29 -1.26

Fund flow -3.74 (< 0.01) -5.35 3.11 3.63 0.32 -1.2

Sharpe -2.53 (< 0.01) -4.2 2.68 4.48 0.38 -0.94

Treynor -2.41 (< 0.01) -4.04 2.68 4.68 0.39 -0.9

Beta -4.6 (< 0.01) -5.3 4.19 3.08 0.28 -1.1

Sigma -4.31 (< 0.01) -5.18 3.86 2.89 0.27 -1.12

FDR−10% -4.91 (< 0.01) -6.08 3.48 2.3 0.23 -1.41

Equal Weight -0.8 (0.03) -2 1.86 6.3 0.5 -0.43

Equal Weight Minus -1.31 (< 0.01) -3 1.98 5.9 0.48 -0.66
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