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ABSTRACT

I characterize the dynamics of incentives in an optimal contract with investment del-
egation, moral hazard, and uncertainty about the agent’s productivity. The princi-
pal increases the agent’s incentives after good performance in order to delegate more
capital to an agent with higher perceived productivity, thus implementing a convex
pay-for-performance scheme. Moreover, the principal commits to reduce the agent’s
future incentives in order to mitigate ex-ante investment distortions. Methodolog-
ically, I provide a duality-based strategy to overcome technical challenges common
to continuous-time contracting models with state variables. I also derive a sufficient
condition to verify the validity of the first-order approach.

KEYWORDS: Dynamic contracts, managerial compensation, duality, dynamic pro-
gramming, delegated investment.

1 INTRODUCTION

In many situations, principals delegate the management of capital to agents with un-
certain productivity. For example, investors rely on fund managers with unknown skill
to invest their savings; venture capitalists finance entrepreneurs developing innovative
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products; and CEOs allocate resources to division managers with undetermined ability.
If the agent is subject to moral hazard, the principal designs an incentive contract for the
agent. As the principal learns about the agent’s productivity over time, she may dynam-
ically change the agent’s incentives and capital under management. However, models of
dynamic incentive provision with learning are difficult to solve. Therefore, although del-
egated money management is widespread in the world, the theoretical literature presents
a noticeable gap. In this paper, I fill this gap.

I make three main contributions. First, I develop a continuous-time contracting model
of money management with uncertainty about the agent’s productivity,1 and I derive a
sufficient condition for the validity of the first-order approach. Second, I uncover a novel
mechanism that generates a convex compensation scheme for the agent. This mechanism
highlights how the agent’s incentives change in response to past performance. Third,
I provide a duality-based methodology to overcome the technical challenges posed by
contracting models with state variables. This methodology can be directly applied to a
wide class of such models.

In the model, a risk-neutral principal writes a long-term contract for a risk-averse
agent with uncertain productivity. The agent operates a constant-returns-to-scale tech-
nology, but suffers a private cost of effort proportional to the capital under management.
To prevent shirking, the principal provides incentives to the agent by exposing him to
performance risk. Along the equilibrium path, the principal and the agent symmetrically
learn about the agent’s productivity by observing performance, and they share common
beliefs. However, an off-equilibrium deviation by the agent causes a persistent distortion
in the principal’s beliefs, giving the agent an information rent. Because of the agent’s
information rent, agency frictions are exacerbated: Everything else being equal, the prin-
cipal delegates a smaller amount of capital to the agent when the agent’s information rent
is larger.

The agent enjoys larger information rents when he expects larger exposures to risk
in the future. Hence, to lower the agent’s information rent, the principal commits to re-
duce the agent’s future incentives, along with delegated capital.2 Although optimal ex

1The dynamic contracting literature has been predominately applied outside the context of investment
delegation. Typical applications of the dynamic contracting theory include executive compensation (Ed-
mans et al., 2012; Garrett and Pavan, 2012; He, 2012), delegation of experimentation (Guo, 2016; Halac
et al., 2016; Hörner and Samuelson, 2013), optimal taxation (Farhi and Werning, 2013; Golosov et al., 2003;
Kocherlakota, 2005), dynamic price discrimination (Battaglini, 2005) and security design (Biais et al., 2007;
DeMarzo and Sannikov, 2006).

2Such commitment is common in models where future risk exposure exacerbates current frictions either
because of information rents (He et al., 2017; Prat and Jovanovic, 2014), or because of the agent’s precaution-
ary saving motive (Di Tella and Sannikov, 2021). However, the path of incentives differs substantially from
models with career concerns (Fama, 1980; Holmstrom, 1999) where implicit incentives from career concerns
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ante, such commitment is costly ex post for the principal. To diminish the expected cost
of commitment, the principal optimally allocates her commitment as a function of past
performance. After good performance, the principal rewards the agent with higher fu-
ture compensation, and therefore suffers higher costs if committed to reduce the agent’s
incentives and capital. As a result, the principal relaxes her commitment after good per-
formance and reinforces it after bad performance.

The model predicts the agent’s incentives increase after a history of good performance
and they decline after a history of bad performance. The result relies on the interaction
between moral hazard and learning. Because of learning, the agent’s estimated produc-
tivity increases after good performance. The principal then wants to allocate more capital
to the agent.3 However, because of moral hazard, the principal must increase the agent’s
incentives along with delegated capital in order to prevent shirking. Furthermore, af-
ter good performance, the principal also relaxes her commitment and allows herself to
provide steeper incentives and more capital to the agent.

Based on this mechanism, the model generates a convex relation between the agent’s
compensation and his cumulative performance. With a convex compensation scheme, the
agent’s compensation becomes more (less) sensitive to current performance after a history
of good (bad) performance, thus reflecting the optimal allocation of incentives described
above. The model’s mechanism, and the resulting convex incentive scheme, has been
observed empirically in various settings. Corporate executives frequently receive per-
formance bonuses in the form of company shares or stock options (Edmans et al., 2017;
Hall and Liebman, 1998); hedge fund managers earn fees on the fund’s profits and typi-
cally reinvest the fees back in the fund (Agarwal et al., 2009); entrepreneurs are granted
larger equity stakes by venture capitalists after good performance, especially when the
venture’s quality is uncertain (Kaplan and Strömberg, 2003). In all these cases, the agent’s
risk exposure increases after good performance, resulting in a convex incentive scheme.

Methodologically, I provide a general technique to feasibly solve continuous-time con-
tracting models with state variables. These models often require a solution to a differen-
tial equation with an endogenous boundary in the state space. Previous contributions
developed specialized methods that could not be directly extended outside their model.4

decline over time, but explicit incentives from short-term contracts increase (Gibbons and Murphy, 1992).
3Empirically, Graham et al. (2015) document that CEOs and CFOs allocate capital to division managers

based on the managers’ reputation and past performance.
4DeMarzo and Sannikov (2017) exploit the structure of their model to reformulate the problem in terms

of dynamically changing termination thresholds. He et al. (2017) use a guess-and-verify numerical ap-
proach that cannot be feasibly applied to differential equations in more than one dimension. Prat and
Jovanovic (2014) and Williams (2011) make parametric assumptions on the utility function and on the law
of motion of the state variable to obtain analytical solutions.
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In this paper, I use duality methods to provide a general solution strategy that applies
to a wide class of models, including those with differential equations in more than one
dimension.

In the dual problem, a new state variable, a multiplier, directly captures the commit-
ment of the principal to reduce future incentives. Besides allowing for a more transparent
representation of the dynamic allocation of commitment, the dual problem offers a key
simplification relative to the standard approach. In the dual problem, the endogenous
boundary on the agent’s information rent is replaced by an exogenous non-negativity
constraint on the multiplier. The optimal contract can then be conveniently characterized
by the solution to the dual problem after simply initializing the multiplier to zero.

RELATION TO THE LITERATURE. This paper belongs with the growing literature that
uses recursive methods to solve for optimal contracts (Phelan and Stacchetti, 2001; Phelan
and Townsend, 1991; Sannikov, 2008; Spear and Srivastava, 1987; Williams, 2009). The
model features persistent private information, similar to Battaglini (2005), Di Tella and
Sannikov (2021), Kapička (2013), Farhi and Werning (2013), Fernandes and Phelan (2000),
Pavan et al. (2014), and Williams (2011). Therefore, the first-order approach is not guar-
anteed to be valid (Battaglini and Lamba, 2019; Kocherlakota, 2004). I contribute to this
literature by providing a sufficient incentive-compatibility condition that I use to verify
the validity of the first-order approach. This condition states that, if a contract prevents
one-shot deviations and reduces the marginal value of the agent’s private information
after bad performance, the contract is incentive compatible.

I also extend the literature on dynamic contracting with learning (Bergemann and
Hege, 1998, 2005; DeMarzo and Sannikov, 2017; Halac et al., 2016; He et al., 2017; Hörner
and Samuelson, 2013; Prat and Jovanovic, 2014) by allowing for endogenous capital un-
der management. Because of the interaction of learning, moral hazard, and investment
delegation, the model generates a convex incentive scheme for the manager. As the man-
ager’s assessed productivity increases with past performance, the principal desires to
allocate more capital to him. She thus offers steeper incentives because more money is at
stake.

This mechanism for a convex incentive scheme is new. In Dittmann et al. (2010), con-
vex compensation contracts encourage the agent to take risks, whereas in Li and Tiwari
(2009), they motivate the agent to gather and use private information when forming a
portfolio of assets. In dynamic settings, Edmans and Gabaix (2011) obtain convex com-
pensation contracts when marginal costs of effort are high, whereas He et al. (2017) obtain
option-like incentives if the principal can commit to establish a negative correlation be-
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tween the agent’s incentives and marginal utility of consumption.
Finally, I develop a duality-based approach to overcome the mathematical challenges

that are common to continuous-time contracting models with state variables. This ap-
proach could be applied to models with learning, like in this paper, models with hidden
savings like the model in Di Tella and Sannikov (2021), or models with arbitrary state
variables, like the model in Williams (2011). Within the literature that uses duality meth-
ods in contracting models, my paper is therefore close in spirit to Marcet and Marimon
(2019) and Pavoni et al. (2018), who focus on discrete-time models. Other papers apply-
ing duality theory in contracting models, although for different purposes, include Miao
and Zhang (2015), Sannikov (2014), Arie (2016), Carrasco et al. (2019), Myerson (1984),
and Myerson (1985).

2 MODEL

A principal (she) writes a long-term contract for an agent (he). The principal delegates
the management of capital to the agent. However, the agent’s ability to generate returns
is uncertain, and both the principal and the agent learn about the agent’s productivity by
observing realized returns. Moreover, the agent is subject to moral hazard, because he
might secretly shirk and obtain a private benefit at the expense of the principal. Time is
continuous and starts at 0. A complete probability space (Ω, F̄, P ) with filtration (F̄t)t≥0 is
given.

2.1 PLAYERS AND TECHNOLOGY

The principal hires the agent to invest capital in a constant-returns-to-scale technology.
However, the agent’s productivity is unknown to all players, including the agent himself.
The agent’s hidden type, h ∈ {0, 1}, is a random variable on the probability space (Ω, F̄, P )

and it indicates whether the agent is unskilled (h = 0) or skilled (h = 1.) Players have a
common prior φ0 := E[h|F̄0] ∈ [0, 1]. The agent’s unknown skill constitutes the source of
uncertain productivity.5

The principal obtains capital from a competitive capital market with perfectly elastic
supply. When managed by the agent, capital produces excess returns given by

dR = (σηh−mt)dt+ σdWt,

5Uncertain productivity may be due to factors other than the agent’s skill. For example, the quality of the
underlying technology itself may be uncertain because the agent is making unconventional investments.
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where η ≥ 0 and σ ≥ 0 are known parameters, and where (Wt)t≥0 is a F̄t-adapted standard
Brownian motion on the complete probability space (Ω, F̄, P ), and it is independent of h.

Returns depend on the uncertain skill of the agent, h, and on the agent’s hidden action,
mt ≥ 0, which is positive if the agent shirks. The agent generates superior returns only
if he is skilled (h = 1). The parameter η > 0 is the signal-to-noise ratio of returns, which
measures how informative returns are regarding the agent’s productivity. If the agent
shirks to obtain a private benefit, he reduces returns for the principal at rate mt for each
unit of capital invested.

At time t, the principal invests capital Kt ≥ 0, collects the excess returns the agent
produces, dRt, and offers a compensationCt ≥ 0 to the agent. The principal is risk neutral,
and her cost of employing the agent is

E

[∫ ∞
0

e−rt(Ctdt−KtdRt)
∣∣∣F̄0

]
, (1)

where r > 0.
At time t, the agent receives compensation Ct from the principal, actively invests cap-

ital Kt, and shirks at rate mt. His lifetime utility is

E

[∫ ∞
0

e−δtu(Ct +mtλKt) dt
∣∣∣F̄0

]
, (2)

where λ ∈ (0, 1), δ ≥ r(1− ρ), and u(x) = x1−ρ

1−ρ with ρ ∈ (0, 1/2).6

If the agent shirks at rate mt, he reduces the principal’s cash-flow rate by mtKt. How-
ever, the agent obtains a private consumption benefit of only λmtKt. Shirking is therefore
inefficient because the agent destroys more value that what he obtains, and 1 − λ repre-
sents the inefficiency of shirking. Full effort coincides with mt = 0, and the consumption
value of shirking can be equivalently interpreted as the cost of effort.

2.2 CONTRACTING ENVIRONMENT AND LEARNING

Returns constitute the only source of information for the players. Players form estimates
of the agent’s productivity by observing his performance. Moreover, because return re-
alizations depend on the agent’s hidden action, the principal may reward or punish the
agent based on his performance in order to deter shirking. In this framework, players’

6The assumption that ρ < 1/2 is needed to obtain a finite solution to the model. If ρ > 1/2, the agent’s
marginal utility of consumption would decline quickly enough that the principal would find it profitable
to give infinite capital and infinite consumption to the agent and overcome the incentive problem. See also
Di Tella (2019).

6



information is generated by the history of returns. Let (Rs)0≤s≤t denote the history of re-
turns up to time t. I define Ft := {(Rs)0≤s≤t} as the smallest σ-algebra for which (Rs)0≤s≤t

is measurable, possibly augmented by the P -null sets. Thus, F0 = F̄0 and (Ft)t≥0 is the
augmented filtration generated by the history of returns.

A contract between the principal and the agent specifies the agent’s compensation and
his capital under management as a function of past performance.

DEFINITION 1 (CONTRACT). A contract C is a Ft-adapted process (Ct, Kt)t≥0.

Although the principal cannot directly control the agent’s hidden action, she under-
stands the implications of a contract on the agent’s incentives to shirk. In general, we say
that a contract C = (Ct, Kt)t≥0 is incentive compatible with the shirking process (mt)t≥0 if the
latter is the agent’s best response to contract C.

Given a contract C = (Ct, Kt)t≥0 that is incentive compatible with (mt)t≥0, players
symmetrically learn about the agent’s productivity by observing realized returns. They
therefore possess common beliefs about the agent’s skill,

φt := E[h|Ft],

starting from the common prior φ0. As players observe returns, beliefs φt evolve as

dφt = ηφt(1− φt)dW C
t , (3)

where
dW C

t :=
1

σ
[dRt − (σηφt −mt)] , (4)

is the increment of a standard Brownian motion under the measure of returns induced by
C. Lemma O.1 in the online appendix provides a formal proof of (3).

Equation (3) highlights that changes in beliefs, dφt, are positively correlated with the
agent’s performance dRt, reflecting the intuition that an agent that performs well (poorly)
is more (less) likely to be skilled. The sensitivity of beliefs to performance, ηφt(1 − φt),
quantifies the amount of information that players obtain from returns and hence the
speed of learning.

When optimally designing a contract, the principal minimizes the costs of delegation,
after taking into account the incentives that the agent receives from the contract. Formally,
an optimal contract can be defined as follows.

DEFINITION 2 (OPTIMAL CONTRACT). Given a prior φ0 and an outside option V0 for the
agent, a contract C = (Ct, Kt)t≥0 is optimal if it minimizes the principal’s cost (1), while offering
the agent an expected lifetime utility (2) at least as large as V0.
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The principal is aware the agent might shirk and gain private benefits. However,
the following lemma shows that any optimal contract is designed so that the agent is not
tempted to shirk. Therefore, when looking for an optimal contract, I can restrict the search
over the class of contracts that are incentive compatible with full effort.

LEMMA 1. Any optimal contract is incentive compatible with no shirking, that is,mt = 0 ∀t ≥ 0.

All proofs are in the appendix.
The intuition for this lemma is the following. First, by the revelation principle, we

lose no generality if we restrict attention to incentive-compatible contracts. Second, op-
timal contracts must align the agent’s incentives with the principal’s objectives. Because
shirking is inefficient, the principal designs an optimal contract that motivates the agent
to exert full effort.

2.3 INCENTIVE COMPATIBILITY AND INFORMATION RENT

Because of Lemma 1, I now focus on contracts that are incentive compatible with no shirk-
ing and, for brevity, I simply refer to them as incentive-compatible contracts. I provide a nec-
essary condition that incentive-compatible contracts must satisfy. As in static principal-
agent problems, this condition requires the agent to be exposed to some risk. Whereas
in static models, the principal exposes the agent to risk by giving him performance-
contingent pay, in a dynamic model, the principal exposes the agent to risk by adjusting
his future continuation value based on performance.

The agent’s continuation value at time t, denoted by Vt, represents the future expected
utility for an agent that does not shirk. The continuation value Vt is a function of the
continuation contract, Ct,7 and beliefs at time t, and it can be expressed as8

Vt = Ṽ (Ct, φt) := E

[∫ ∞
t

e−δ(s−t)u(Cs) ds

∣∣∣∣Ft] . (5)

Using the martingale-representation approach developed in previous literature (San-
nikov, 2008; Williams, 2009), I obtain the law of motion for the agent’s continuation value

7A continuation contract at time t, Ct, is a Fs-adapted process (Cs,Ks)s≥t.
8Given a continuation contract Ct, beliefs are a sufficient statistic for the probability measure of future

returns. To see why, write

Vt = (1− φt)E
[∫ ∞

t

e−δ(s−t)u(Cs) ds
∣∣∣h = 0

]
+ φtE

[∫ ∞
t

e−δ(s−t)u(Cs) ds
∣∣∣h = 1

]
.

The conditional expectations on the right-hand side of this equation are functions of the continuation con-
tract Ct only.
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Vt as
dVt = (δVt − u(Ct))dt+ βtdW

C
t with lim

t→∞
E
[
e−δtVt|F0

]
= 0, (6)

for some Ft-adapted process (βt)t≥0.
If βt is positive, the future utility of the agent increases with performance. Hence, βt

represents the risk exposure of the agent. Although the risk-neutral principal should fully
insure the risk-averse agent in an efficient allocation, the agent will be exposed to risk in
the optimal contract in order to mitigate the moral hazard friction. If βt > 0, the agent
suffers a loss of future utility when returns decline because of shirking. Therefore, the
agent might be deterred from shirking if his risk exposure, βt, is large enough.

As a benchmark, assume for the moment that the agent’s type, h, is known. In this
case, the principal prevents shirking by offering a contract in which the agent’s risk expo-
sure, βt, offsets the marginal consumption value of shirking. A necessary and sufficient
condition for incentive compatibility with no shirking is

u′(Ct)λσKt ≤ βt. (7)

The intuition for this condition is the following.9 If the agent shirks, he reduces returns
by mt, and hence dW C

t acquires a negative drift −mt
σ

. The agent therefore suffers a loss
of continuation value equal to βt mtσ . However, his current utility increases from u(Ct) to
u(Ct +mtλKt). Condition (7) ensures mt = 0 is the agent’s best response to this trade off;
that is, 0 = arg maxm≥0{[u(Ct +mλKt)− u(Ct)]− βt mσ }.

However, if the agent’s type is uncertain, the principal faces some additional chal-
lenges in designing an incentive-compatible contract. Suppose the agent deviates to
mt = m > 0 for a small amount of time between s and s+∆s. With learning, the agent not
only gains consumption value from the deviation, but also earns an informational advan-
tage over the principal. Unaware of the agent’s deviation, the principal updates beliefs
according to equations (3) and (4) with mt = 0 for all t. Because the correct expected
return is σηφt − m for t ∈ [s, s + ∆s], the principal’s beliefs, φt, acquire a negative drift
relative to the agent’s beliefs, φAt . Immediately after the deviation, the difference between
the agent’s and the principal’s beliefs, φAt −φt, is given by φAs+∆s−φs+∆s ≈ ηφs(1−φs)mσ ∆s.

This difference in beliefs is persistent and causes persistent distortions in the provision
of incentives. Following a deviation, the agent will always be more optimistic than the
principal; that is, φAt > φt for all t > s + ∆s. The agent is not only more optimistic, but
also aware of possessing correct beliefs. By having more accurate and optimistic beliefs,

9A proof can be found in Di Tella (2019) and Di Tella and Sannikov (2021).
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the agent earns an information rent over the principal.10

To see how the agent earns an information rent, consider equation (6). If φAt > φt,
shocks dW C := 1

σ
[dRt − σηφtdt] have a positive drift equal to η(φAt − φt)dt > 0 based on

the agent’s information. Therefore, the agent’s continuation value acquires an additional
drift equal to βtη(φAt − φt)dt. This additional drift captures the surprise the agent expects
the principal to receive. Suppose that after a (hidden) deviation, the principal promises
the agent a continuation value Vs+∆s. The future expected utility of the agent, conditional
on not shirking is the future, is larger than Vs+∆s by an amount equal to

E

[∫ ∞
s+∆s

e−δ(t−s−∆s)βtη(φAt − φt)dt
∣∣∣Fs+∆s

]
.

This additional future utility constitutes the information rent the agent acquired after the
deviation.

This reasoning suggests that when players are learning, an incentive-compatible con-
tract should provide risk exposure βt large enough to offset the agent’s marginal utility of
shirking, as well as the marginal information rent that he could earn.

THEOREM 1 (NECESSARY CONDITION). If C = (Ct, Kt)t≥0 is incentive compatible with no
shirking, then

u′(Ct)Ktλσ ≤ βt − ηξt, (8)

where ξt follows

dξt = (δξt − βtηφt(1− φt))dt+ ωtdW
C
t with lim

t→∞
E
[
e−δtξt|F0

]
= 0 (9)

for some Ft-adapted process (ωt)t≥0.

Similar to (7), condition (8) highlights that, everything else being equal, the principal
has to increase the agent’s risk exposure βt to increase the amount of delegated capital Kt

in an incentive-compatible contract. Thus, because the agent is risk averse, delegation is
costly. In the optimal contract, the principal will therefore trade off the costs and benefits
of delegation when deciding the level of investment and the agent’s risk exposure.

The term ηξt in (8), which is missing in (7), accounts for the marginal information rent
that the agent acquires after an instantaneous deviation. Solving (9), we can express the
information rent ξt as the present value of the agent’s future risk exposure and speed of

10Intuitively, a skilled agent who is believed to be unskilled is better off than an agent who is actually
unskilled. The skilled agent can expect to surprise the principal in the future thanks to his superior skill.
The truly unskilled agent cannot expect to surprise anyone.
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learning; specifically,

ξt = E

[∫ ∞
t

e−δ(s−t)βsηφs(1− φs) ds
∣∣∣∣Ft] , (10)

which is a positive quantity in any incentive-compatible contract, by Lemma O.2 in the
online appendix.

Theorem 1 thus also implies that because of the agent’s information rent, investment
distortions are exacerbated relative to a model with perfect information. The larger the
information rent, the lower the amount of capital that can be delegated to the agent for
a given compensation Ct and risk exposure βt. By reducing the amount of capital under
the agent’s management, the principal foregoes profitable investment opportunities.

Therefore, from an ex-ante perspective, the principal prefers to lower the agent’s in-
formation rent. To do so, she has to commit to reduce the agent’s future risk exposures,
(βt)t≥0, because of (10). However, the principal may be tempted to re-negotiate the con-
tract and increase risk exposure ex post. Consequently, to achieve ex-ante optimality, the
principal must fully commit to the terms of an initial contract.

To offer an interpretation of (8), consider expression (5). Let ∂φṼ (Ct, φt) measure the
marginal change in the continuation value due to a marginal change in beliefs while keep-
ing the continuation contract fixed. Lemma O.2 in the online appendix shows that

ξt = φt(1− φt)∂φṼ (Ct, φt). (11)

From equation (6), we know the risk exposure βt corresponds to the total volatility of
the continuation value Vt. Combining (3) and (11), we see ηξt = ηφt(1 − φt)∂φV (Ct, φt)

represents the volatility of the continuation value driven by changes in beliefs. Therefore,
we can interpret the quantity

βt − ηξt = βt − ηφt(1− φt)∂φV (Ct, φt)

as the volatility of the agent’s continuation value driven by changes in the continuation
contract while keeping beliefs fixed.

Therefore, equation (8) states that to provide incentives to the agent, the principal
cannot rely on changes in beliefs to punish him for bad performance. Although changes
in beliefs do affect the volatility of the continuation value along the equilibrium path, they
cannot be exploited to prevent off-equilibrium deviations. In fact, following a deviation
mt, the agent’s true expected future utility declines by (βt−ηξt)mtσ , and not by βt mtσ , as the
principal incorrectly thinks. Therefore, in an incentive-compatible contract, the quantity
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βt − ηξt is what matters for incentive provision, and must be such that

0 = arg max
m≥0

u(Ct +mλKt)− u(Ct)︸ ︷︷ ︸
benefit of shirking

− (βt − ηξt)
m

σ
.︸ ︷︷ ︸

cost of shirking

In other words, the incentive-compatibility condition asserts that to prevent shirking, the
principal must adjust the continuation contract so that, keeping beliefs constant, the risk
exposure of the agent exceeds the private benefit of shirking.

2.4 SUFFICIENT INCENTIVE-COMPATIBILITY CONDITION

Theorem 1 offers a condition that prevents the agent from engaging in an instantaneous,
“one-shot”, deviation. Although this condition is necessary for incentive compatibility,
alone it does not guarantee incentive compatibility. With learning, any hidden shirk-
ing will cause a persistent wedge between the agent’s and principal’s beliefs. Given this
wedge, the agent’s best response to the contract may still involve a dynamic shirking
strategy even if (8) holds. Next, I provide a sufficient condition that ensures that no shirk-
ing is the agent’s best response to a contract.

Previous literature has long recognized the challenge that state variables, such as be-
liefs, pose in the design of an optimal contract. The common approach is to solve for
an optimal contract by imposing the necessary condition (8) only. This approach is often
referred to as the relaxed-problem approach. Then, one should verify whether the con-
tract so obtained satisfies a sufficient incentive-compatibility condition. This strategy is
the one undertaken by He (2012) and Di Tella and Sannikov (2021) for private savings,
by Prat and Jovanovic (2014), DeMarzo and Sannikov (2017), He et al. (2017), and Cister-
nas (2018) for learning, and Williams (2011) for generic state variables. I take the same
approach and use the following theorem to verify whether the solution to the relaxed
problem is actually incentive compatible.

THEOREM 2 (SUFFICIENT CONDITION). If a contract C = (Ct, Kt)t≥0 is such that (8) and

ωt − η(1− 2φt)ξt ≥ 0 (12)

hold for all t ≥ 0, then the contract is incentive compatible with no shirking.

To interpret the sufficient condition for incentive compatibility, it is useful to refer to
the proof of this theorem in the appendix, where I show ωt − η(1− 2φt)ξt is proportional
to the volatility of ∂φṼ (Ct, φt). Theorem 2 therefore states that if a contract prevents “one-
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shot” deviations thanks to (8), and it reduces the marginal value of beliefs after a negative
shock thanks to (12), then the contract is incentive compatible with no shirking.

This result has an intuitive appeal. If the contract lowers the marginal value of the
agent’s beliefs ∂φṼ (Ct, φt) after a bad shock, then, following a deviation, the agent would
experience a decline not only in his continuation value, but also in his information rent.
The agent loses part of the option to “impress” the principal in the future, thus lowering
the value of his informational advantage.

Equation (12) is likely to hold in an optimal contract. Looking at equation (10), we see
ξt depends on future risk exposures (βs)s≥t. After a positive shock, the agent’s estimated
productivity increases by (3). Hence, the principal may want to increase future capital
under managementKt, to take advantage of increased expected returns. By the incentive-
compatibility condition (8), the principal will then have to increase the agent’s future risk
exposure as well. We therefore have reasonable economic motivations to expect that in
the optimal contract, ξt increases after good performance (or at least it does not decline
too much), in such a way that condition (12) is satisfied.

3 OPTIMAL CONTRACT AND DUALITY

To solve for the optimal contract, I proceed as follows. First, I define the relaxed opti-
mal contract, in which the principal minimizes costs subject to the necessary incentive-
compatibility condition (8). Then, I introduce the dual problem and establish its relation
to the relaxed optimal contract. Finally, I provide a verification result to characterize
the relaxed optimal contract using the Hamilton-Jacobi-Bellman (HJB) equation associ-
ated with the dual problem, and to verify whether the contract is an optimal (incentive-
compatible) contract.

3.1 THE RELAXED PROBLEM

I adopt a first-order approach and solve for a contract that minimizes the cost for the
principal within the class of contracts satisfying (8). This is the so-called relaxed optimal
contract.

DEFINITION 3 (RELAXED OPTIMAL CONTRACT). Given the prior φ0 and the agent’s outside
option V0, a relaxed optimal contract is a contract that minimizes the cost for the principal (1)
subject to the necessary incentive-compatibility condition (8) and subject to delivering expected
lifetime utility V0 to the agent if he does not shirk.
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Because (8) is a necessary but not sufficient condition for the agent not to shirk, the cost
of a relaxed optimal contract provides a lower bound for the cost of an optimal contract.
Although I only impose the necessary condition (8) in a relaxed optimal contract, I use
the result in Theorem 2 to numerically verify whether the relaxed optimal contract is
fully incentive compatible with no shirking. In this case, the relaxed optimal contract is
an optimal contract.

The principal fully commits to the contract she offers.11 Because of this commitment,
the agent’s continuation value Vt and information rent ξt are recursive state variables of
the contract-design problem. At every point in time, the (forward-looking) continuation
value and information rent of the agent are determined by past promises of the principal,
and the continuation contract should be optimal given these promises.

For a given information rent ξ0 at time 0, consider the following cost-minimization
problem for the principal:

J∗(V0, ξ0, φ0) = inf
C

E

[∫ ∞
0

e−rt
(
Ct − ηφt

Cρ
t

λ
(βt − ηξt)

)
dt

∣∣∣∣F0

]
s.t. Ct ≥ 0, βt ≥ ηξt

(6), (9), and (3) with mt = 0 ∀t ≥ 0.

(13)

I restrict my attention to admissible contracts, as in Di Tella and Sannikov (2021). These
are contracts in the form C = (Ct, Kt)t≥0 such that

E

[∫ ∞
0

e−rt(|Ct|+ |Kt|+ |βt|) dt
∣∣∣F0

]
<∞, (14)

thus ensuring the principal’s objective function (1) is well defined and that a strong solu-
tion to the stochastic differential equation in (6) exists starting from a given V0.

In this formulation, the principal’s objective function already incorporates the neces-
sary incentive-compatibility constraint (8) as an equality. Because expected returns are
always positive, the principal optimally increases the level of assets under management
as much as the incentive-compatibility constraint permits. Therefore, (8) is always bind-
ing. Hence, going forward, a contract C could equivalently specify compensation and
capital, (Ct, Kt)t≥0, or compensation and risk exposure, (Ct, βt)t≥0.

The constraints Ct ≥ 0 and βt ≥ ηξt impose the non-negativity of consumption and
capital, whereas the constraints (6) and (9) represent promise-keeping constraints on the

11With full commitment, the principal implements an allocation that yields the best outcome given the
frictions of the model. In the supplemental material, I focus on contracts with limited commitment, and I
highlight which results hold independently of the commitment assumption.
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agent’ continuation value and information rent. Finally, (3) with mt = 0 is the law of
motion of beliefs under Bayesian learning and no shirking.

Therefore, a solution to problem (13) is a relaxed optimal contract if ξ0 is an optimal
choice of the principal. In fact, according to Definition 3, the initial outside option of the
agent, V0, and the initial beliefs, φ0, are exogenously given. However, the definition im-
poses no constraints on the initial information rent of the agent ξ0. Therefore, the principal
chooses the initial information rent to minimize costs; that is,

ξ0 = arg min
ξ≥0

J∗(V0, ξ, φ0). (15)

In choosing the initial information rent for the agent, the principal faces a trade-off.
By choosing a small information rent ξ0, the principal reduces the ex-ante distortions in
the allocation of capital captured by the incentive-compatibility condition (8). However,
to deliver a small information rent, the principal must commit to limit the agent’s risk
exposure in the future, as expression (10) indicates. In the extreme case in which the
information rent ξ0 is set to zero, the principal would have to immediately “retire” the
agent, that is, offer a safe contract with no risk exposure for the agent and no capital
under management.

Normally, to solve for a relaxed optimal contract, one would then proceed in two steps.
First, one would solve problem (13) using dynamic programming methods. Second, one
would solve for ξ0 using (15). Unfortunately in the current situation, this approach is not
feasible, either analytically or numerically. In the optimal contract, the information rent
at any time t ≥ 0, ξt, is bounded from above by a function of Vt and φt.12 For values of
information rent above the upper bound, admissible optimal contracts might not exist.
To solve for the optimal contract, we need to know the bound of the agent’s information
rent. However, this bound is endogenous to the contract; therefore, to derive this bound,
we need to know the optimal contract.13

To overcome this challenge, I introduce the dual problem of (13), derive its properties,
and show the dual problem offers an efficient and intuitive way to characterize the relaxed
optimal contract.

12This function is implicitly defined as argminξ J
∗(Vt, ξ, φt), and equation (20) provides a formal state-

ment.
13Information rents in contracting models tend to be bounded, and similar bounds are obtained in De-

Marzo and Sannikov (2017), Di Tella and Sannikov (2021), and He et al. (2017).
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3.2 THE DUAL PROBLEM

To define the dual formulation of (13), I introduce a new state variable that directly cap-
tures the principal’s commitment to reduce the agent’s risk exposure. As discussed in
section 2.3, the principal has to commit to reduce the agent’s future risk exposure in order
to lower the agent’s ex-ante information rent. In the dual problem, a positive multiplier,
Yt, replaces the information rent, ξt, as a state variable. The multiplier Yt measures the
principal’s commitment at time t: The larger the multiplier Yt, the more binding the com-
mitment to reduce the agent’s risk exposure, βt.

For a given initial value of the multiplier at time 0, Y0 ≥ 0, let the multiplier evolve
according to

dYt = (r − δ)Ytdt+ φt
η2

λ
Cρ
t dt+ ηdUt, (16)

where (Ut)t≥0 is a right-continuous, non-decreasing process with left limits and with U0 =

0.
Then, consider the following problem:

G∗(V0, Y0, φ0) = inf
(Ct,βt)t≥0

sup
(Ut)t≥0∈I

E

[∫ ∞
0

e−rt
{(

Ct − ηφt
βt
λ
Cρ
t + Ytβtηφt(1− φt)

)
dt− βtdUt

} ∣∣∣∣F0

]
s.t. Ct ≥ 0, βt ≥ 0

(6), (16), and (3) with mt = 0 ∀t ≥ 0,

(17)
where I is the set of right-continuous, non-decreasing processes with left limits and start-
ing at 0. I call (17) the dual problem, as opposed to problem (13), which I call the primal
problem, hereafter.

When looking for a solution to (17), I focus on admissible contracts for the dual prob-
lem, which are characterized by (14) and

E

[∫ ∞
0

e−rt|Ytβtηφt(1− φt)| dt
∣∣∣F0

]
<∞.

The dual problem in (17) has an intuitive appeal. First, consider the term Ct−ηφt βtλ C
ρ
t ,

which represents the flow cost of a principal who writes a contract with no information-
rent problem. We can think of this hypothetical situation as one in which the hidden
action mt is observable but not contractible. In this case, the incentive-compatibility con-
dition is the same as in (7) because shirking does not induce any belief distortion or any
information rent for the agent.

Second, consider the term Ytβtηφt(1 − φt), which represents a flow cost of risk expo-
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sure βt. In the dual formulation, this flow cost captures the principal’s commitment to
reduce the agent’s risk exposure in order to lower ex-ante information rents. The larger
Ytηφt(1 − φt), the more binding the commitment of the principal at time t. In this sense,
the multiplier Yt measures the commitment of the principal to reduce risk exposures.
Also note commitment becomes more binding when the speed of learning, ηφt(1 − φt),
increases. When returns are more informative, the information-rent distortions are more
severe as (10) indicates; hence, the principal needs to further reduce risk exposures to
honor her commitment to the information rent she initially promised.

Finally, the process (Ut)t≥0 introduces possibly non-continuous changes in the multi-
plier and in the flow cost. This process serves the same function as the constraint on the
non-negativity of capital, βt ≥ ηξt, in the primal problem. As I show in equation (A.3) in
the proof of Theorem 3, a positive penalty dUt > 0 materializes whenever βt < ηξt, where
ξt is the information rent implied by the dual contract at time t. Therefore, any contract
(Ct, βt)t≥0 that is optimal for the dual problem will be such that βt ≥ ηξt for all t, in order
to avoid an unbounded penalty when this inequality is violated.

3.3 THE RELATION BETWEEN THE DUAL AND PRIMAL PROBLEM

The dual problem (17) offers a major simplification relative to the primal problem (13).
To begin with, in the dual problem (17), a backward-looking state variable, the multiplier
Yt, replaces the forward-looking information rent ξt. Moreover, in the dual problem, the
multiplier is subject to an exogenous lower bound, Yt ≥ 0, whereas the information rent
in the primal problem is subject to an endogenous upper bound.

Importantly, as the following theorem shows, the primal and the dual problems are
closely connected, and a relaxed optimal contract can be derived as a solution to the dual
problem when Y0 is initialized to zero.

THEOREM 3 (DUALITY RELATIONS). The following holds:

(I) G∗(V, Y, φ) is an increasing and concave function of Y . It is differentiable in Y for Y 6= 0.

(II) Let Y0 ≥ 0. Then, the dual cost function is related to the primal cost function by

G∗(V0, Y0, φ0) = inf
ξ′≥0
{J∗(V0, ξ

′, φ0) + Y0ξ
′}. (18)

Any contract solving the dual problem (17) delivers information rent G∗Y +(V0, Y0, φ0) to the
agent.14 Moreover, if a contract C solves the primal problem (13) with ξ0 = G∗Y +(V0, Y0, φ0),
then it also solves the dual problem (17).

14I use G∗Y +(V, Y, φ) to denote the right derivative of G∗(V, Y, φ) with respect to Y .
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(III) Let ξ0 ≤ G∗Y +(V0, 0, φ0). Then, the primal cost function is related to the dual cost function
by

J∗(V0, ξ0, φ0) = sup
Y ′≥0
{G∗(V,0 Y ′, φ0)− Y ′ξ0}. (19)

If a contract C solves the dual problem (17) with Y0 = −J∗ξ (V0, ξ0, φ0), then it also solves
the primal problem (13).

(IV) A contract is a relaxed optimal contract given outside option V0 and beliefs φ0 if an only if it
is the solution to the dual problem (17) with Y0 = 0. The cost of a relaxed optimal contract
for the principal is G∗(V0, 0, φ0) if the agent does not shirk.

Whereas part (I) of Theorem 3 establishes properties of the dual cost function, parts
(II) and (III) establish the crucial connections between the primal and the dual problem.
Given an initial multiplier Y0 ≥ 0, an optimal contract for the dual problem can obtained
as a solution to the primal problem after initializing ξ0 = G∗Y +(V0, Y0, φ0). Similarly, given
an initial information rent ξ0 ≤ G∗Y +(V0, 0, φ0), an optimal contract for the primal problem
can be obtained as a solution to the dual problem after initializing Y0 = −J∗ξ (V0, ξ0, φ0).
Part (IV) builds on parts (II) and (III) to conclude one can obtain the relaxed optimal
contract as a solution to the dual problem when the multiplier is initialized to 0.

Moreover, based on Theorem 3, we obtain a dynamic bound on the information rent
in a relaxed optimal contract. Let ξt be the information rent implied by a relaxed optimal
contract at time t. Then,

ξt = GY +(Vt, Yt, φt) ≤ GY +(Vt, 0, φt) = arg min
ξ′
J∗(Vt, ξ

′, φt). (20)

By Theorem 3(IV) and equation (16), in any relaxed optimal contract the multiplier starts
at zero and remains positive thereafter, that is Yt ≥ 0 for all t ≥ 0. Using the result in The-
orem 3(II), we therefore have ξt = GY +(Vt, Yt, φt), where GY +(Vt, Yt, φt) ≤ GY +(Vt, 0, φt)

by concavity of G∗(V, ·, φ). Finally, combining parts (II) and (IV) of Theorem 3, we ob-
tain that GY +(Vt, 0, φt) is the initial information rent of any relaxed optimal contract for
outside option Vt and beliefs φt. Such information rent, according to (15), is equal to
arg minξ′ J

∗(Vt, ξ
′, φt).

Equation (20) provides a formal upper bound to the information rent in a relaxed
optimal contract. Moreover, it offers a better intuition for why the dual problem (17)
is numerically more tractable than the primal problem (13). In the dual problem, one
can initialize Y0 to a constant (zero). Then, the exogenous bound Yt ≥ 0 is mechanically
satisfied given the law of motion of Y , (16). By contrast, in the primal problem, one
should initialize the information rent to a value that is a priori not known. Moreover, the
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endogenous bound on the information rent is satisfied only when control variables are
suitably chosen, causing standard numerical methods to fail.

3.4 CHANGE OF VARIABLES AND INCENTIVES

Thanks to the homotheticity of the agent’s utility function and the linearity of the tech-
nology, I simplify the problem with a change of variables. I define the promised value
vt := ((1 − ρ)Vt)

1
1−ρ , which is the consumption equivalent of the agent’s continuation

value. I also consider a scaled version of the multiplier, yt := v−ρt Yt. I can then express the
dual cost function as15

G∗(V0, Y0, φ0) = v0g
∗(y0, φ0). (21)

Throughout the paper, I impose restrictions on parameters to ensure that g∗(0, φ) is posi-
tive for all φ0 ∈ [0, 1].16

I then define the agent’s incentives β̂t := βt
(1−ρ)Vt

, compensation ratio ct := Ct
vt

, and capital
ratio kt := Kt

vt
. Given a contract (Ct, βt)t≥0 that solves the dual problem (17), the laws of

motion of the promised value vt and multiplier yt are thus given by

dvt
vt

=

(
δ

1− ρ
− c1−ρ

t

1− ρ
+

1

2
ρβ̂2

t

)
dt+ β̂tdW

C
t (22)

and

dyt = φt
η2

λ
cρtdt+ yt

(
r − δ

1− ρ
+ ρ

c1−ρ
t

1− ρ
+

1

2
ρβ̂2

t

)
dt− ytρβ̂tdW C

t , (23)

where I omitted the increasing process (Ut)t≥0 because, as discussed earlier, Ut = 0 for all
t ≥ 0 for any contract that solves (17).

The quantity β̂t offers an easy-to-interpret measure of the agent’s incentives at time t.
Because the promised value vt is expressed in units of consumption,17 β̂t represents the
percentage change of the agent’s continuation value, measured in units of consumption,
for a one-standard deviation return. In this formulation, the (scaled) multiplier yt mea-
sures the principal’s commitment to limit incentives β̂t. In fact, the principal’s flow cost
in the dual problem can be written as vt[ct − η

λ
φtβ̂tc

ρ
t + ytβ̂tηφt(1− φt)].

15I provide a formal proof in Lemma O.3 in the online appendix.
16Similar to Di Tella and Sannikov (2021), a sufficient condition for a positive dual cost function is (O.4) in

Lemma O.6 in the online appendix. Note that, when g∗(0, φ0) is positive, the agent’s participation constraint
binds. That is, the principal does not provide continuation value larger than the agent’s outside option, V0.
If she did, costs would increase. When g∗(0, φ) is negative, an optimal contract does not exist, since the
principal could obtain infinite profits by promising an infinite continuation value to the agent.

17The promised value vt can be interpreted as the level of constant consumption from t to∞ that would
deliver continuation value Vt/δ to the agent.
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Although compensation and capital are linear in the promised value because of the
homogeneity and linearity assumptions, we should in general expect a positive relation
between the compensation, capital, and promised value with a risk-averse agent. In fact,
the principal increases current compensation when the agent’s promised value is larger
because of the agent’s desire to smooth consumption over time. As for capital, the mo-
tivation relies on the agent’s decreasing absolute risk aversion. With a larger promised
value, the agent tolerates larger risk exposures. The principal thus optimally takes ad-
vantage of the agent’s higher risk tolerance to increase capital under management while
still satisfying (8).18

3.5 THE HJB EQUATION AND VERIFICATION

To conclude this section, I provide a verification theorem. Thanks to this theorem, I can
solve problem (17) using a dynamic-programming approach.

Consider the following partial differential equation for y ≥ 0 and φ ∈ [0, 1]:

rg(y, φ) = inf
c≥0,β̂≥ηgy+ (y,φ)

{
c− ηφβ̂ c

ρ

λ
+ yβ̂ηφ(1− φ) + g(y, φ)

(
δ

1− ρ
− c1−ρ

1− ρ
+

1

2
ρβ̂2

)
+ gy(y, φ)

[
φ
η2

λ
cρ + y

(
r − δ

1− ρ
+ ρ

c1−ρ

1− ρ
+

1

2
ρβ̂2

)]
− ρyβ̂2gy(y, φ) + β̂ηφ(1− φ)gφ(y, φ)

+
1

2
(yρβ̂)2gyy(y, φ) +

1

2
η2φ2(1− φ)2gφφ(y, φ)− ρyβ̂ηφ(1− φ)gyφ(y, φ)

}
.

(24)
This is the HJB equation associated with the dual problem (17).

Note that instead of including a penalizing process (Ut)t≥0, I introduce a lower bound
on β̂ related to the marginal cost of y. Unlike the limited-commitment model of Miao and
Zhang (2015), here the increasing process (Ut)t≥0 penalizes the principal for a choice of
a control variable, namely, β̂. In Miao and Zhang (2015), an increasing process penalizes
the principal based on the value of the state variable. Whereas Miao and Zhang (2015) can
characterize the optimal contract in terms of reflective barriers and a variation inequality,
their approach is not valid in this situation. However, I show shortly that under standard
regularity conditions, a solution to (24) provides a valid solution to the dual problem.

18An analogous result holds in the dynamic contracting models in Biais et al. (2010) and DeMarzo and
Fishman (2007). These papers show investments (and disinvestments) at firm level depend on the agent’s
promised value. Similar to my model, when the agent has a larger promised value, the principal can more
easily incentivize him to exert effort in a larger firm.
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To provide an intuitive justification for the constraint on β̂ in the HJB equation (24),
consider two observations. First, as discussed above, in any contract (Ct, βt)t≥0 that solves
the dual problem (17), we have βt ≥ ηξt to avoid the penalty dUt. Second, according
to equation (20), in such a contract the agent’s information rent ξt coincides with the
marginal cost of commitment G∗Y +(Vt, Yt, φt). Therefore, βt ≥ ηG∗Y +(Vt, Yt, φt). Because
of (21), we have β̂t ≥ ηg∗y+(yt, φt). Theorem 4 formalizes this intuition.

Starting from the HJB equation (24), I associate a contract CR(v0,y0,φ0) = (CR
t , K

R
t )t≥0

with its policy functions, c(y, φ) and β̂(y, φ), which are the minimizers in (24). Contract
CR(v0,y0,φ0) is a contract for whichCR

t := vtc(yt, φt),KR
t := vtk(yt, φt) with k(y, φ) := (β̂(y, φ)−

ηgy+(y, φ)) c(y,φ)ρ

λσ
, and where vt, yt, and φt evolve as in (22), (23), and (3) for some initial v0,

y0, and φ0, and with ct = c(yt, φt), β̂t = β̂(yt, φt), and mt = 0 for all t ≥ 0. The following
theorem verifies whether this contract is optimal.

THEOREM 4 (VERIFICATION). Let g : R+ × [0, 1] → R be a twice-differentiable solution of
(24), such that g(y, φ) is increasing and concave in y and 0 < j1 ≤ g ≤ j0 for some constants
j1 and j0. Let CR(v0,0,φ0) be the contract generated by the policy functions of (24) with y0 = 0 and

v0 = ((1 − ρ)V0)
1

1−ρ . Assume an M > 0 exists such that |c(y, φ)| + |β̂(y, φ)| < M for all y ≥ 0

and φ ∈ [0, 1]. If CR(v0,0,φ0) is admissible, the following holds:

(I) The agent obtains lifetime utility v1−ρ0

1−ρ = V0 from contract CR(v0,0,φ0) if he does not shirk.

(II) CR(v0,0,φ0) is a relaxed optimal contract whose cost is ((1− ρ)V0)
1

1−ρ g(0, φ0) if the agent does
not shirk.

(III) Suppose the following condition is satisfied for all y ≥ 0 and φ ∈ [0, 1]:

[(1−ρ)gy+(y, φ)−ρygyy(y, φ)]β̂(y, φ)+gy+φ(y, φ)ηφ(1−φ)−η(1−2φ)gy+(y, φ) ≥ 0. (25)

Then CR(v0,0,φ0) is incentive compatible with no shirking, and hence, it is an optimal contract.

Thanks to parts (I) and (II) of Theorem 4, I can solve for a relaxed optimal contract
by solving the HJB equation associated with the dual problem. Part (III) combines the
results from Theorem 2 and equation (20) to establish a sufficient condition for the relaxed
optimal contract CR(v0,0,φ0) to be incentive compatible and hence to be the optimal contract
according to Definition 2. Equation (25) is equivalent to (12) when ξt = vtgy+(yt, φt), which
is the case for the relaxed optimal contract CR(v0,0,φ0). In particular, the left-hand side of (25)
coincides with the quantity (ωt − η(1− 2φt)ξt)/v

1−ρ
t .

In the next section, I rely on Theorem 4 to numerically solve for an optimal contract
using the HJB equation (24). I then discuss the implications of the optimal contract for the
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(a) Sufficient condition (b) Drift of y

Figure 1: Verification of condition (25) and drift of the multiplier y in the optimal contract. Figure (a) plots
the left-hand side of equation (25) as a function of the multiplier y and beliefs φ. Figure (b) plots the drift
of equation (23) as a function of the multiplier y and beliefs φ. Results are shown for three values of the
multiplier y. The parameters are r = 0.02, δ = 0.05, ρ = 1/3, λ = 0.95, ση = 0.02, and σ = 0.18.

dynamics of the agent’s incentives.

4 RESULTS AND DYNAMIC TRADE-OFFS

I numerically solve the HJB equation (24), and I verify the numerical solution satisfies
the conditions of Theorem 4. In particular, the numerical solution is twice differentiable,
increasing and concave in y, and bounded between two positive constants (Figure O.1(a)
in the online appendix provides an illustration.) Moreover, it satisfies (25). As an illus-
tration, Figure 1(a) plots the left-hand side of (25) for three values of the multiplier y,
showing (25) is satisfied for these values. The same result holds on the entire state space.
See Figure O.1(b) in the online appendix for an illustration.

Thanks to the dual formulation of the contract-design problem, I can characterize the
dynamics of the principal’s commitment through the dynamics of the multiplier y. Key
features of the optimal contract, such as the long-run path of incentives, depend on the
dynamics of the principal’s commitment.

In equation (23), we immediately observe yt has a negative loading on the shocks
dW C

t , indicating the principal relaxes (reinforces) her commitment after good (bad) per-
formance. After good performance, the agent is rewarded with higher promised value
vt. The principal thus optimally relaxes her commitment in order to be more “uncon-
strained” in the future, when larger compensation is due to the agent. As a result, the
principal optimally establishes a negative correlation between changes in her commit-
ment and changes in the agent’s promised value.

Moreover, on average, the principal tightens her commitment over time. In Figure
1(b) and Figure O.1(c) in the online appendix, we observe the drift of yt is positive, indi-
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cating the multiplier y tends to increase over time. This feature is common in dynamic
contracting models in which future risk exposures distort the agent’s current incentives
(Di Tella and Sannikov, 2021; He et al., 2017; Prat and Jovanovic, 2014).

Next, I study how the agent’s incentives, β̂(yt, φt), change with the agent performance.
To study the relation between performance and compensation, I define the pay-perfor-
mance sensitivity as the percentage change in compensation for a 1% return. Because in
the optimal contract, compensation takes the form CR

t = vtc(yt, φt), the pay-performance
sensitivity can be written as

εC(yt, φt) :=
dCR

t /C
R
t

dRt

=
1

σ

(
β̂(yt, φt) +

σc(yt, φt)

c(yt, φt)

)
, (26)

where σc(yt, φt) is the volatility of c(yt, φt). Because εC(y, φ) directly depends on the
agent’s incentives β̂(y, φ), the pay-performance sensitivity reflects the strength of the
agent’s incentives.

4.1 PERFORMANCE AND INCENTIVES IN THE OPTIMAL CONTRACT

I now study changes in the agent’s incentives, β̂(yt, φt), triggered by the agent’s perfor-
mance. In the optimal contract, incentives are functions of two state variables: beliefs φt
and the multiplier yt. Figure 2(a) shows how incentives vary for all values of beliefs φ and
for three values of the multiplier y. Figure O.1(d) in the online appendix shows incentives
for a continuum of values for the multiplier.

We immediately notice incentives increase with beliefs and decline with the multiplier.
This result is robust across all the numerical solutions that I obtained under a variety of
parameters. Moreover, by comparing Figures 2(a) and 2(b), we also observe the capital
ratio k(y, φ) follows a similar pattern.

To explain these results, recall that in contract CR(v0,0,φt), capital under management is
given by KR

t = vtk(yt, φt), where

k(y, φ) =
β̂(y, φ)− ηgy+(y, φ)

λσ
. (27)

This expression corresponds to the incentive-compatibility condition (8), holding as an
equality in the optimal contract CR(v0,0,φ0), after using the results in Theorems 3 and 4.
Incentives, β̂(y, φ), and the capital ratio, k(y, φ), are intimately connected by this incentive-
compatibility condition. In fact, the primary purpose of giving incentives to the agent is
to delegate capital while preventing shirking.
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(a) Incentives (b) Capital ratio

(c) Pay-performance sensitivity (d) Compensation ratio

Figure 2: Incentives, β̂(y, φ), capital ratio, k(y, φ), pay-performance sensitivity, εC(y, φ), and compensation
ratio, c(y, φ), in the optimal contract as functions of the multiplier y and beliefs φ. Results are shown for
three values of the multiplier y. The parameters are r = 0.02, δ = 0.05, ρ = 1/3, λ = 0.95, ση = 0.02, and
σ = 0.18.

To study the trade-offs the principal faces when choosing incentives β̂(y, φ), consider
the first-order condition for incentives in (24) for an interior minimizer:

λ−1ηφc(y, φ)ρ︸ ︷︷ ︸
A: Benefit from IC

−ηφ(1− φ)gφ(y, φ)︸ ︷︷ ︸
B: Benefit from Cov(V,φ)

= yηφ(1− φ)︸ ︷︷ ︸
C: Cost from commitment

+

ρβ̂(y, φ)
[
g(y, φ)− ygy(y, φ) + y2ρgyy(y, φ)

]
− ρyηφ(1− φ)gyφ(y, φ)︸ ︷︷ ︸

D: Cost from risk aversion

.

On the one hand, the principal benefits from higher incentives because, by the in-
centive-compatibility condition (27), they allow more capital to be delegated to the agent,
thus increasing current expected cash flows. Term A captures this marginal benefit. More-
over, with higher incentives, the principal increases the covariance between promised
value and beliefs, thus promising larger (lower) compensation when the agent’s expected
productivity is higher (lower.) The marginal benefit of such covariance is measured by
term B.

On the other hand, the principal suffers costs from higher incentives because of her
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commitment and because of the agent’s risk aversion. In the optimal contract, the princi-
pal commits to reduce the agent’s future incentives in order to lower ex-ante information
rents. In the dual formulation, the commitment of the principal is captured by the multi-
plier y, which imposes an ex-post marginal penalty for incentives equal to term C. More-
over, the risk-averse agent requires larger future compensation when exposed to more
risk, generating the marginal cost of incentives in by term D. Note this term is zero if the
agent is risk neutral and ρ = 0.

The principal sets the agent’s incentives after optimally trading off marginal benefits
and marginal costs. When beliefs increase (decline), expected productivity increases (de-
cline), along with the marginal benefit of investment delegation. When the multiplier
declines (increases), the commitment of the principal is less (more) binding, and the ex-
post penalty for incentives is smaller (larger.) Hence, incentives β̂ increase with beliefs
and decline with the multiplier.

As a result, incentives increase after good performance and decline after bad perfor-
mance. After good performance, the expected productivity of the agent increases and the
principal relaxes her commitment. The principal thus increases the agent’s incentives in
order to take advantage of higher expected returns and lower commitment. I summarize
this observation in the following prediction.

PREDICTION. Incentives increase (decline) after good (bad) performance; that is,

dβ̂t
dRt

≥ 0.

For this prediction, both learning and moral hazard play a key role, even in the ab-
sence of commitment. Without moral hazard, the principal would fully insure the agent,
and incentives would be zero. With moral hazard but no learning, the agent’s produc-
tivity would be known and constant. The agent’s incentives would be increasing in the
agent’s productivity, but they would be constant over time.19 With learning and moral
hazard, incentives change with performance. Because of learning, the agent’s expected
productivity increases after good performance, and the principal thus wants to allocate
more capital k(yt, φt) to the agent. Because of moral hazard and the incentive compatibil-
ity condition (27), the principal has to increase the agent’s incentives, β̂(y, φ), along with
capital in order to preventing shirking.

19See the discussion in section S.2 of the supplemental material. Even in the absence of learning, the
principal wants to allocate more capital to more productive agents. To prevent shirking, more productive
agents are thus offered steeper incentive contracts.
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(a) Performance and compensation (b) Performance and capital

Figure 3: Relation between cumulative performance, change in compensation, and change in capital under
management. The curves represent the change in log-compensation (Figure (a)) and log-capital (Figure
(b)) as functions of cumulative performance. Curves are shifted to represent changes relative to an agent
that has a zero cumulative performance. Performance, change in compensation, and change in capital are
computed while assuming that returns are realized uniformly over time during the course of one year.
Figures are drawn for initial beliefs φ0 = 0.5 and initial multiplier y0 = 0. The parameters are r = 0.02,
δ = 0.05, ρ = 1/3, λ = 0.95, ση = 0.02, and σ = 0.18.

CONVEX AND BACK-LOADED COMPENSATION. As Figure 2(c) illustrates, the pay-
performance sensitivity εC(y, φ), defined in (26), increases with beliefs φ and declines with
the multiplier y, similar to incentives β̂(y, φ). Consequently, agents with better (worse)
past performance face steeper (flatter) performance-based compensation schemes.

Because of this mechanism, the change in log-compensation appears convex in cumu-
lative performance, as Figure 3(a) illustrates. As the agent keeps performing well, incen-
tives become increasingly steeper and compensation becomes increasingly more sensitive
to performance, thus generating a convex compensation scheme for the agent.

When beliefs converge to either zero or one, the agent’s compensation scheme con-
verges to a linear one, where log-compensation increases linearly with performance. Fig-
ure O.2 in the online appendix provides an illustration. As beliefs converge to zero or
one, their volatility, ηφt(1− φt), converges to zero. Hence, players stop updating their be-
liefs based on performance and the marginal cost of commitment, ytηφt(1− φt), vanishes.
This situation resembles a model with moral hazard but without learning, such as the
model in section S.2 of the supplemental material, where the pay-performance sensitivity
is constant.

However, even in the limit with no learning, the steepness of the compensation scheme
still depends on the agent’s perceived productivity. With an optimal contract for moral
hazard, the principal offers steep incentives to an agent with high perceived productivity
in order to delegate a substantial amount of capital while preventing shirking. Agents
with low perceived productivity, on the other hand, face flat compensation schemes be-
cause the principal delegates less capital to them and provides more insurance.
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After good performance, the principal also back-loads the performance-based com-
pensation of the agent. Figure 2(d) shows the compensation ratio c(y, φ) declines with
beliefs and increases with the multiplier. Hence, the compensation ratio declines after
good performance, thus indicating the principal increases future promised consumption
more than current compensation.

To understand why the principal back-loads the agent’s performance-based compen-
sation, consider the dynamic trade-off captured by the first-order condition for the com-
pensation ratio c(y, φ):

1︸︷︷︸
A: direct cost

= λ−1ηφ(β̂(y, φ)− ηgy(y, φ))ρc(y, φ)ρ−1︸ ︷︷ ︸
B: benefit from IC

+ (g(y, φ)− ρygy(y, φ))c(y, φ)−ρ︸ ︷︷ ︸
C: benefit from lower V

.

Compensation is a direct cost for the principal, with unit marginal cost (term A).
However, compensation is also beneficial for the principal because, first, it relaxes the
incentive-compatibility constraint, thus allowing more investment delegation (term B);
second, it allows the agent’s continuation value to be reduced, thus reducing future com-
pensation costs (term C).

When expected productivity increases or the principal relaxes her commitment, the
trade-off tilts in favor of a lower c(y, φ). With higher expected productivity and weaker
commitment, the principal enjoys a larger marginal benefit of relaxing the incentive-
compatibility constraint in term B. However, she also can deliver any given continuation
value more cheaply, thus lowering the marginal benefit in term C. Because ρ < 1/2, the
second effect dominates the first, and the compensation ratio declines.

CAPITAL FLOWS. Figure 3(b) shows that, similar to compensation, capital under man-
agement increases with performance. In the optimal contract, capital under management,
Kt = vtk(yt, φt), increases with the agent’s promised value and with the capital ratio. As
discussed above, the capital ratio k(yt, φt) increases with past performance because the
principal wants to delegate more capital when the agent is perceived to be more produc-
tive and when commitment is less binding. The promised value increases with perfor-
mance in order to deter shirking. Therefore, the total amount of capital under manage-
ment also increases in performance.

INCENTIVES IN THE LONG RUN Over time, the principal tends to be increasingly com-
mitted to reduce the agent’s incentives. This increasing commitment is reflected in a
positive drift of the multiplier y. Because incentives β̂(y, φ) decline when the multiplier y
increases, incentives tend to decline over time.
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(a) Incentives over time (b) Average incentives by type

Figure 4: Incentives, β̂(yt, φt), over time for φ0 = 0.5. Figure (a) shows the unconditional distribution of
incentives at each point in time. Figure (b) shows the average incentives conditional on the agent’s type.
The distributions are obtained from a sample of 10,000 independent simulations in which the fraction of
skilled agents is equal to the prior φ0. The parameters are r = 0.02, δ = 0.05, ρ = 1/3, λ = 0.95, ση = 0.02,
and σ = 0.18.

Figure 4(a) shows the unconditional distribution of incentives over time for the entire
sample. Here, we observe incentives tend to decline over time. To study the distribution
of incentives over time, I generate 10,000 simulated histories of 50 years. In the simula-
tions, the initial prior is φ0 = 0.5. Half of the paths are simulated using h = 1, whereas the
remaining half is simulated using h = 0. Figure O.3 in the online appendix plots the dis-
tribution of incentives over time for different priors (and hence different shares of skilled
agents in the 10,000 simulations), namely, φ0 = 0.1 and φ0 = 0.9.

One should expect a declining path of incentives when future risk exposures exacer-
bate current moral-hazard frictions. The connection between future risk exposures and
current frictions may be introduced by the agent’s information rent in models with learn-
ing, as in my model, He et al. (2017), and Prat and Jovanovic (2014), or by agent’s pre-
cautionary saving motive in models with private savings, as in Di Tella and Sannikov
(2021). Similar to Di Tella and Sannikov (2021), in my model the principal also restricts
future access to capital to mitigate ex-ante frictions. In fact, both here and in Di Tella
and Sannikov (2021), capital and risk exposures are crucially connected by a necessary
incentive-compatibility condition.

Although incentives decline on average, agents experience different paths of incen-
tives depending on their history of performance and their hidden type. Figure 4(b) shows
average incentives for the two types of agents starting from prior φ0 = 0.5. In the figure,
expected incentives increase slowly over time for skilled agents, and decline steeply for
unskilled agents. Suppose an agent is skilled. By Girsanov’s theorem, beliefs acquire a
positive drifts because of the agent’s high expected performance. For analogous reasons,
the multiplier acquires a negative term in its drift. Thus, if players’ beliefs are pessimistic
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enough, the skilled agent’s superior performance might offset the principal’s increasing
commitment , causing an upward trend in incentives to be observed.20 By contrast, un-
skilled agents experience a declining path of expected incentives because of the combined
effect of poor performance and increasing commitment.

Full commitment by the principal is crucial for a declining path of incentives to be
observed. Ex post, the principal is tempted to renegotiate the contract and relax her
commitment by “resetting” y to zero. In the supplemental material, I study contracts
in which the principal cannot fully commit, as in the “commitment and renegotiation”
model of Laffont and Tirole (1990). In this case, no declining path of expected incentives
is observed.

5 CONCLUSIONS

In this paper, I study how a principal delegates the management of capital to an agent
with uncertain productivity. The principal dynamically learns about the agent’s produc-
tivity and allocates her commitment based on past performance. As a result, the agent’s
incentives and capital under management also change in response to past performance.

The model highlights the dynamic nature of incentives, compensation, and capital un-
der management. In particular, the model predicts that, after a history of good (bad) per-
formance, the agent’s incentives increase (decline.) The agent’s incentives are reflected in
his pay-performance sensitivity. As the pay-performance sensitivity increases (declines)
after a history of good (bad) performance, the agent’s compensation scheme appears con-
vex in cumulative performance.

I also make a methodological contribution to overcome the mathematical and com-
putational challenges of the model. These challenges regularly appear in continuous-
time contracting models with state variables. Such models often involve an endogenous
boundary in the state space of the optimal contract. Thanks to the dual formulation of
the contract-design problem, I sidestep the computation of the endogenous boundary.
This methodology can be readily applied to a large class of continuous-time contracting
models with state variables.

20Figure O.3(d) in the online appendix shows that, when φ0 = 0.9, incentives tend to decline even con-
ditional on h = 1. When the principal already expects large returns because of optimistic beliefs, even a
skilled agent may fail to produce good enough returns to offset the principal’s increasing commitment.
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A PROOFS

A.A PROOF OF LEMMA 1

I proceed by contradiction. Assume C is an optimal contract and that it is incentive com-
patible with a shirking process (mt)t≥0 such that E

[∫∞
0 e−rtmtKt dt

]
> 0.

Because the contract is Ft-adapted, the time-t allocation (Ct, Kt) and shirking action
mt in equilibrium can be expressed as functions of the history of returns up to time t,
(Rs)0≤s≤t. That is, Ct = Ct((Rs)0≤s≤t), Kt = Kt((Rs)0≤s≤t), and mt = mt((Rs)0≤s≤t), for
some functions Ct, Kt, and mt.

Now consider an alternative contract Ĉ = (Ĉt, K̂t)t≥0. This contract is designed in the
following way. If the history of returns up to time t is (Rs)0≤s≤t, Ĉ specifies capital at time
t equal to

K̂t := Kt

((
Rs −

∫ s

0

m̂i di

)
0≤s≤t

)
, with m̂t := mt

((
Rs −

∫ s

0

m̂i di

)
0≤s≤t

)
.

Contract Ĉ then specifies consumption as

Ĉt = Ct

((
Rs −

∫ s

0

m̂i di

)
0≤s≤t

)
+ λm̂tK̂t.

Suppose the agent’s best response to contract Ĉ is the shirking process (m′t)t≥0. After
any history up to time t, with contract Ĉ, the agent receives capital equal to the amount
he would have received if he had chosen a shirking strategy (ms + m′s)0≤s≤t under the
original contract C. Similarly, he receives compensation equal to the combined amount
of compensation and private benefits he would have enjoyed if he had chosen a shirking
strategy (ms +m′s)0≤s≤t under the original contract C. In particular,

E(m′s)0≤s≤t [u(Ĉt)|F0] = E(ms+m′s)0≤s≤t [u(Ct + λmtKt)|F0],

where I explicitly express the dependence of the probability measure of returns on the
shirking process.

The best response of the agent to contract Ĉ thus solves the following problem:

max
(m′t)t≥0

E(m′t)t≥0

[∫ ∞
0

e−δtu(Ĉt) dt

∣∣∣∣F0

]
= max

(m′t)t≥0

E(mt+m′t)t≥0

[∫ ∞
0

e−δtu(Ct + λmtKt) dt

∣∣∣∣F0

]
.

Because (mt)t≥0 is the best response of the agent to contract C, the right-hand side is max-
imized by m′t = 0 for all t ≥ 0. Hence, no shirking is the agent’s best response to contract
Ĉ.

Note that with the new contract Ĉ, the agent receives the same lifetime utility as in
contract C. However, the costs for the principal change by E

[∫∞
0 e−rt (λ− 1)mtKt dt

]
< 0,

because she pays λmtKt as an additional compensation at time t, but enjoys an additional
cash flow mtKt by preventing shirking. Because the principal bears lower costs with
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contract Ĉ, the assumption that C is an optimal contract is contradicted.

A.B PROOF OF THEOREM 1

I use the stochastic maximum principle (Yong and Zhou, 1999, Chapter 3 and references
therein) to derive necessary conditions for incentive compatibility, as in Williams (2011)
and DeMarzo and Sannikov (2017).

Instead of working with posterior beliefs φt as a state variable, it is convenient to work
with the log-likelihood ratio

xt :=
η

σ

∫ t

0

(dRs +msds)−
1

2
η2t.

By Girsanov’s theorem, ext represents the ratio between the likelihood that the path
(Rs)0≤s≤t is generated by a skilled agent (h = 1) and the likelihood that the same path
is generated by an unskilled agent (h = 0.) That is, ext = E[h|Ft]

1−E[h|Ft] .
We can then express beliefs as a function of the log-likelihood ratio,

φt = ψ(xt) :=
φ0e

xt

1− φ0 + φ0ext
.

Let C be an incentive-compatible contract with no shirking, and let P C be the probabil-
ity measure for which W C

t is a standard Brownian motion. Consider an arbitrary shirking
process (mt)t≥0. Let xt be the principal’s log-likelihood ratio and let xt + ∆x

t be the agent’s
log-likelihood ratio. The laws of motion of xt and ∆x

t are given by

dxt =

(
ψ(xt)−

1

2

)
η2dt+ ηdW C

t

d∆x
t =

mt

σ
ηdt.

Let Pm be a measure for which Wm
t := W C

t −
∫ t

0
ms
σ
ds is a standard Brownian motion.

The continuation value of the agent, given C and (mt)t≥0, can be written as

E

[∫ ∞
0

Γmt e
−δtu(Ct +mtλKt) dt

∣∣∣F0

]
,

where Γm := dPm

dPC is a density process representing the change of measure for the path of
returns induced by the shirking strategy (mt)t≥0. By Girsanov’s theorem, Γm evolves as

dΓmt =
(
−mt

σ
+ η(ψ(xt + ∆x

t )− ψ(xt))
)

ΓtdW
C
t .

Consider the following Hamiltonian,

H(Γ, x,∆x;m;B, ξ) := Γu(C +mλK) +
(
−m
σ

+ η(ψ(x+ ∆x)− ψ(x))
)

ΓB +
m

σ
ηξ,
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If mt = 0 is optimal for all t, the stochastic maximum principle (Williams, 2011; Yong
and Zhou, 1999) implies that m = 0 must maximize the Hamiltonian above with Γm = 1,
∆x = 0, and with (Vt,Bt)t≥0 and (ξt, ωt)t≥0 solving the following backward stochastic
differential equations (BSDEs):

dVt = (δVt −HΓ(1, xt, 0; 0;Bt, ξt))dt+ BtdW
C
t

dξt = (δξt −Hx(1, xt, 0; 0;Bt, ξt))dt+ ωtdW
C
t ,

with limit conditions limT→∞E[e−δTVT |F0] = 0 and limT→∞E[e−δT ξT |F0] = 0 (Konlack
Socgnia and Menoukeu-Pamen, 2015).

We must therefore have

u′(Ct)λKt ≤
Bt

σ
− ηξt

σ
dVt = (δVt − u(Ct))dt+ BtdW

C
t

dξt = (δξt − Btηφt(1− φt))dt+ ωtdW
C
t ,

Solving the BDSE for Vt, we obtain

Vt = E

[∫ ∞
t

e−δ(s−t)u(Cs) ds

∣∣∣∣Ft] ,
Hence, Vt = Vt and Bt = βt, which concludes the proof.

A.C PROOF OF THEOREM 2

Define ζt := ξt
φ1(1−φt) , which, by Ito’s lemma, evolves as

dζt =
(
δζt − ηβt + η2φt(1− φt)ζt − η(1− 2φt)ωζt

)
dt+ ωζtdW

C
t ,

where
ωζt :=

ωt − ξt(1− 2φt)η

φt(1− φt)
.

Let φAt be the agent’s posterior at time t after a deviation (ms)0≤s≤t, while φt is the
principal’s. Because ms ≥ 0, φAt ≥ φt. I want to show that if the conditions of the theorem
are satisfied, then Vt + (φAt −φt)ζt is an upper bound on the agent’s future expected utility
at time t. Because φA0 = φ0, this upper bound proves the agent has no (strictly) better
strategy than choosing mt = 0 for all t ≥ 0 and receive the continuation value V0.

Consider an arbitrary deviation up to time t and let

St :=

∫ t

0

e−δsu(Cs +msλKs) ds+ e−δt
(
Vt + (φAt − φt)ζt

)
.
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It suffices to show St is a supermartingale because in this case,

St ≥ E[ST |Ft] = E

[∫ T

0

e−δsu(Cs +msλKs) ds+ e−δT (VT + (φAT − φT )ζT )

∣∣∣∣Ft] ,
which would then imply

Vt + (φAt − φt)ζt ≥ E

[∫ ∞
t

e−δ(s−t)u(Cs +msλKs) ds

∣∣∣∣Ft] ∀t ≥ 0,

because Vu, φAu − φu, and ζu are positive.
To show St is a supermartingale, it is sufficient to prove the drift of dSt is non-positive.

Using Ito’s lemma, and after some algebra, the drift of dSt simplifies to

e−δt
[
u(Ct +mtλKt)− u(Ct)− βt

mt

σ
+ ηφt(1− φt)ζt

mt

σ
− (φAt − φt)ωζt

mt

σ

]
.

Recall ξt = φt(1− φt)ζt. By (8), (12), and the concavity of U(·),

u′(Ct +mtλKt)−
βt − ηφt(1− φt)ζt

σ
− (φAt − φt)

ωζt
σ
≤ 0 ∀mt ≥ 0

Hence, the drift is maximized for mt = 0. For mt = 0, the drift of dSt is zero, and it is
negative for mt > 0. Therefore, for an arbitrary deviation (mt)t≥0, St is a supermartingale,
thus concluding the proof.

A.D PROOF OF THEOREM 3

NOTATION. Before proceeding to the proof, I introduce some useful notation. I use
P(V,ξ,φ) to denote the set of admissible contracts that solve the primal problem (13) for
(V0, ξ0, φ0) = (V, ξ, φ). I call such contracts optimal primal contracts. I use D(V,Y,φ) to denote
the set of admissible contracts that solve the dual problem (17) for (V0, Y0, φ0) = (V, Y, φ).
I call such contracts optimal dual contracts.

Let C = (Ct, βt)t≥0 be an arbitrary admissible contract that delivers expected lifetime
utility V (if the agent does not shirk) and information rent ξ. I use J(V, ξ, φ|C) to denote
the value of the objective function of primal problem (13) when the principal chooses
contract C. Similarly, I use G(V, Y, φ|C) to denote value of the objective function of the
dual problem (17) when the principal chooses contract C. In particular, if CP ∈ P(V,ξ,φ) and
CD ∈ D(V,Y,φ), we must have J∗(V, ξ, φ) = J

(
V, ξ, φ|CP

)
and G∗(V, Y, φ) = G

(
V, Y, φ|CD

)
.

Given a contract C = (Ct, βt)t≥0, I denote with ξ̃(C, φ) the information rent implied by
the contract C when beliefs are φ; that is,

ξ̃(C, φ) = E

[∫ ∞
0

e−δtβtηφt(1− φt) dt
∣∣∣∣F0

]
, with φ0 = φ.

Before proving the theorem, I provide a preliminary lemma. The proof of the lemma is
informative about the relation between the primal and dual problem; thus, I provide it
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here.

LEMMA A.1. Consider an admissible contract C and a process (Ut)t≥0 ∈ I. Let ξt := ξ̃(Ct, φt),
where Ct is the continuation contract of C at time t. Then,

E

[∫ ∞
0

e−rtYtβtηφt(1− φt) dt
∣∣∣∣F0

]
= Y0ξ̃(C, φ0) + E

[∫ ∞
0

e−rt
(
η2φt

ηξt
λ
Cρ
t dt+ ηξtdUt

) ∣∣∣∣F0

]
.

(A.1)
Moreover, if C ∈ D(V0,Y0,φ0), it must satisfy βt ≥ ξt for all t ≥ 0.

Proof. Consider an admissible contract C = (Ct, βt)t≥0 and let Ỹt := e(δ−r)tYt. For a finite
T > 0, we can use integration by parts to obtain

E

[∫ T

0

e−rtYtβtηφt(1− φt) dt
∣∣∣∣F0

]
= E

[∫ T

0

e−δt
(
Ỹtβtηφt(1− φt)

)
dt

∣∣∣∣F0

]
= −E

{[
Ỹt

∫ T

t

e−δsβsηφs(1− φs) ds
]T

0

+

∫ T

0

(∫ T

t

e−δsβsηφs(1− φs) ds
)
dỸt

∣∣∣∣F0

}

= Ỹ0E

[∫ T

0

e−δsβsηφs(1− φs) ds
∣∣∣∣F0

]
+ E

[∫ T

0

e−δt
(∫ T

t

e−δ(s−t)βsηφs(1− φs) ds
)
dỸt

∣∣∣∣F0

]
= Ỹ0E

[∫ T

0

e−δsβsηφs(1− φs) ds
∣∣∣∣F0

]
+ E

[∫ T

0

e−rt
(∫ T

t

e−δ(s−t)βsηφs(1− φs) ds
)(

η2

λ
φtC

ρ
t dt+ ηdUt

) ∣∣∣∣F0

]
.

(A.2)
By definition of admissible contract, E

[ ∫∞
0 e−rt |Ytβtηφt(1− φt)| dt

∣∣F0

]
< ∞. Hence, by

the monotone convergence theorem and the law of iterated expectations, we can conclude

E

[∫ ∞
0

e−rtYtβtηφt(1− φt) dt
∣∣∣∣F0

]
= lim

T→∞
E

[∫ T

0

e−rt (Ytβtηφt(1− φt)) dt
∣∣∣∣F0

]
= Ỹ0ξ̃(C, φ0) + E

[∫ ∞
0

e−rt
(
η2φt

ξt
λ
Cρ
t dt+ ηξtdUt

) ∣∣∣∣F0

]
.

Because Ỹ0 = Y0, this proves the first part of the lemma.
To prove the last part, I use (A.1) to rewrite the objective function in (17) as

G(V0, Y0, φ0|C) =

sup
(Ut)t≥0∈I

E

[∫ ∞
0

e−rt
{(

Ct −
ηφt
λ

(βt − ηξt)Cρ
t

)
dt− (βt − ηξt)dUt

}]
+ Y0ξ̃(C, φ). (A.3)

Because dUt can be arbitrarily large, if C is an optimal dual contract, it must satisfy βt−ηξt ≥ 0
for all t.

PROOF OF THEOREM 3(I). Consider Y 0 and Y 1 such that Y 0 ≤ Y 1. To prove G∗(V, ·, φ)
is increasing, consider C1 ∈ D(V,Y1,φ) and note

G∗(V, Y 0, φ) ≤ G
(
V, Y 0, φ|C1

)
= G∗(V, Y 1, φ) + (Y 0 − Y 1)ξ̃

(
C1, φ

)
≤ G∗(V, Y 1, φ),
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where the equality follows from equation (A.3).
To prove G∗(V, ·, φ) is concave, define Y ν := νY 0 + (1 − ν)Y 1 for ν ∈ [0, 1]. Let Cν ∈

D(V,Y ν ,φ). Then,

νG∗(V, Y 0, φ) + (1− ν)G∗(V, Y 1, φ)

≤ νG
(
V, Y 0, φ|Cν

)
+ (1− ν)G

(
V, Y 1, φ|Cν

)
= G∗(V, Y ν , φ),

where the last equality follows from equation (A.3).
Finally, I prove G∗(V, Y, φ) is differentiable in Y for Y 6= 0 in Lemma O.5 of the online

appendix. I delegate this proof to the online appendix because it is a purely technical
proof involving lengthy arguments based on viscosity solution concepts.21

PROOF OF THEOREM 3(II). I begin by proving equation (18). Let C be an admissible
contract that satisfies (8) and βt ≥ ηξ̃(Ct, φt) for all t ≥ 0 and that delivers continuation
value V0 and information rent ξ0 to the agent. Then,

J(V0, ξ0, φ0|C) = E

[∫ ∞
0

e−rt
(
Ct − ηφt

βt − ηξt
λ

Cρ
t

)
dt
∣∣∣F0

]
= G(V, Y, φ|C) + E

[∫ ∞
0

e−rt
η2φt
λ

ξtC
ρ
t dt
∣∣∣F0

]
− E

[∫ ∞
0

e−rtYtβtηφt(1− φt) dt
∣∣∣F0

]
= G(V0, Y0, φ0|C)− Y0ξ0,

(A.4)
where the last equality follows from Lemma A.1 and the fact that when βt ≥ ηξ̃(Ct, φt)
for all t ≥ 0, the supremum in (A.3) is achieved by a process (UC

t )t≥0 ∈ I such that (βt −
ηξt)dU

C
t = 0 for all t ≥ 0.

Consider CP ∈ P(V,ξ,φ) and CD ∈ D(V,Y,φ). Using (A.4), we have

J∗(V, ξ, φ) + Y ξ = J
(
V, ξ, φ|CP

)
+ Y ξ = G

(
V, Y, φ|CP

)
≥ G∗(V, Y, φ) (A.5)

and

J∗
(
V, ξ̃

(
CD, φ

)
, φ
)
≤ J

(
V, ξ̃

(
CD, φ

)
, φ|CD

)
= G∗(V, Y, φ)− Y ξ̃

(
CD, φ

)
. (A.6)

Equation (18) follows directly from (A.5) and (A.6). In particular, the infimum in (18) is
achieved by ξ = ξ̃

(
CD, φ

)
; that is,

ξ̃
(
CD, φ

)
∈ arg inf

ξ≥0
{J∗(V, ξ, φ) + Y ξ}. (A.7)

Next, I show that, for any optimal dual contract CD ∈ D(V,Y,φ), ξ̃
(
CD, φ

)
= G∗Y +(V, Y, φ).

21See Crandall et al. (1992) and Pham (2009) for the notion of viscosity solution of a partial differential
equation.
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Let CD ∈ D(V,Y,φ). Using (A.5) and (A.6), we obtain

G∗(V, Y, φ) = J∗
(
V, ξ̃

(
CD, φ

)
, φ
)

+ Y ξ̃
(
CD, φ

)
G∗(V, Y + ε, φ) ≤ J∗

(
V, ξ̃

(
CD, φ

)
, φ
)

+ (Y + ε)ξ̃
(
CD, φ

)
.

Together, they imply

G∗(V, Y + |ε|, φ)−G∗(V, Y, φ)

|ε|
≤ ξ̃

(
CD, φ

)
if ε > 0

G∗(V, Y, φ)−G∗(V, Y − |ε|, φ)

|ε|
≥ ξ̃

(
CD, φ

)
if ε < 0.

For Y > 0, the function G∗ is differentiable in Y , and hence, the left and right derivatives
with respect to Y exist and coincide. For Y ≥ 0, the right derivatives exist because of the
concavity of G∗(V, ·, φ). After taking limits for ε→ 0+ and ε→ 0−, we obtain

ξ̃
(
CD, φ

)
= G∗Y (V, Y, φ) for Y > 0 (A.8)

and
ξ̃
(
CD, φ

)
≥ G∗Y +(V, 0, φ) for Y = 0.

I then prove ξ̃
(
CD, φ

)
= G∗Y +(V, 0, φ) when CD ∈ D(V,0,φ).22 For n > 0, define τn :=

sup{t ∈ (0, 1/n] : φt = φ0}. By the Blumenthal Zero-One Law, τn > t exists because φt−φ0

changes sign infinitely many times in any time interval [0, 1/n] (Karatzas and Shreve,
1998, Chapter 2.7.C). By Lemma O.3 in the online appendix, G∗(V0, Y0, φ0) = v0g

∗(y0, φ0)

for a function g∗ where vt := ((1 − ρ)Vt)
1

1−ρ and yt := v−ρt Yt. The function g∗ inherits
some of the properties of G∗. In particular, g∗(y, φ) is increasing and concave in y and
differentiable in y for y 6= 0 with G∗Y +(V, Y, φ) = (1− ρ)V g∗y+(y, φ).

For any CD ∈ D(V0,0,φ0), let CDt be its continuation contract at time t. Then,

ξ̃(CD, φ0) = E

[∫ τn

0

e−δtβtηφt(1− φt) dt
∣∣∣F0

]
+ E

[
e−δτn ξ̃(CDτn , φ0)|F0

]
= E

[∫ τn

0

e−δtβtηφt(1− φt) dt
∣∣∣F0

]
+ E

[
e−δτn(1− ρ)Vτng

∗
y(yτn , φ0)|F0

]
≤ E

[∫ τn

0

e−δtβtηφt(1− φt) dt
∣∣∣F0

]
+ (1− ρ)g∗y+(0, φ0)E

[
e−δτnVτn|F0

]
.

The first equality is because of (10). The second equality is because, by Bellman’s optimal-
ity principle, CDτn ∈ D(Vτn ,Yτn ,φτn ) and because, with Yτn > 0 by (16), equation (A.8) implies
ξ̃
(
CDτn , φ0

)
= G∗Y +(Vτn , Yτn , φ0) = (1 − ρ)Vτng

∗
y+(yτn , φ0). The final inequality follows from

yτn > 0 and the concavity of g∗(·, φ).
Taking the limit for n → ∞, the first expectation in the right-hand side converges to

22Note G∗Y +(V, 0, φ) is finite because of the global concavity of G∗(V, ·, φ).
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zero by the monotone convergence theorem. As for the second expectation, we have

V0 = E

[∫ τn

0

e−δt
C1−ρ
t

1− ρ
dt
∣∣∣F0

]
+ E

[
e−δτnVτn|F0

]
.

Taking the limit for n→∞ in this expression, E
[ ∫ τn

0 e−δt
C1−ρ
t

1−ρ dt
∣∣F0

]
→ 0 by the monotone

convergence theorem. Hence, E[e−δτnVτn|F0]→ V0.
Therefore, for any CD ∈ D(V0,0,φ0),

ξ̃
(
CD, φ0

)
≤ (1− ρ)V0g

∗
y+(0, φ0) = G∗Y +(V0, 0, φ0).

Because V0 and φ0 were arbitrary and because, from the previous results, ξ̃
(
CD, φ

)
≥

G∗Y +(V, 0, φ) when CD ∈ D(V,0,φ), we conclude ξ̃
(
CD, φ

)
= G∗Y +(V, 0, φ) for any CD ∈ D(V,0,φ).

To conclude the proof, it remains to show that, given ξ′ = ξ̃
(
CD, φ

)
= G∗Y +(V, Y, φ), if

CP ∈ P(V,ξ′,φ), then CP ∈ D(V,Y,φ). To show it, I combine (A.5) and (A.6) to obtain

J∗(V, ξ′, φ) + Y ξ′ = G
(
V, Y, φ|CP

)
≥ G∗(V, Y, φ) ≥ J∗(V, ξ′, φ) + Y ξ′,

which thus implies G
(
V, Y, φ|CP

)
= G∗(V, Y, φ), and that CP ∈ D(V,Y,φ).

PROOF OF THEOREM 3(III). Consider ξ ≤ G∗Y+(V, 0, φ) and let Ȳ ∈
arg supY ′≥0{G∗(V, Y ′, φ) − Y ′ξ}. Because G∗(V, ·, φ) is concave and differentiable for
Y > 0, we have G∗Y +(V, Ȳ, φ) = ξ. Therefore, given information rent ξ ≤ G∗Y+(V, 0, φ), any
optimal dual contract C̄D ∈ D(V,Ȳ,φ) delivers information rent ξ. Then,

J
(
V, ξ, φ|C̄D

)
≥ J∗(V, ξ, φ) ≥ G∗(V, Ȳ, φ)− Ȳ ξ = G∗(V, Ȳ, φ)− Ȳ ξ̃

(
C̄D, φ

)
= J

(
V, ξ, φ|C̄D

)
,

where the first inequality follows because C̄D cannot be strictly better than the optimal
(primal) contract, and the second inequality follows from (A.5). The subsequent equality
is because ξ̃

(
C̄D, φ

)
= G∗Y +(V, Ȳ, φ) = ξ, and the last equality is a consequence of (A.4).

Because the first and the last terms coincide, we conclude J∗(V, ξ, φ) = J
(
V, ξ, φ|C̄D

)
;

that is, C̄D ∈ P(V,ξ,φ). Because of this observation and (A.5), we therefore have
J∗(V, ξ, φ) = supY≥0{G∗(V, Y ′, φ) − Y ′ξ}, where the supremum is achieved by Ȳ such
that G∗Y +(V, Ȳ, φ) = ξ. By the envelope theorem (Milgrom and Segal, 2002), Ȳ =
−J∗ξ (V, ξ, φ).

PROOF OF THEOREM 3(IV). Consider CD0 ∈ D(V,0,φ). By equation (A.6), G∗(V, 0, φ) ≥
J∗
(
V, ξ̃

(
CD0 , φ

)
, φ
)
. Moreover by (A.5), we also have G∗(V, 0, φ) ≤ J(V, ξ, φ) for any ξ.

Therefore,
J∗
(
V, ξ̃(CD0 , φ), φ

)
≤ J(V, ξ, φ) for any ξ,
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proving ξ̃
(
CD0 , φ

)
is a global minimizer of J(V, ξ, φ) with respect to ξ. Hence, any CP ∈

P(V,ξ̃(CD0 ,φ),φ) is a relaxed optimal contract whose cost is

J∗
(
V, ξ̃(CD0 , φ), φ

)
= G∗(V, 0, φ),

by (A.5) and (A.6). Note also that, by Theorem 3(II), ξ̃
(
CD0 , φ

)
= G∗Y +(V, 0, ξ) for any CD0 ∈

D(V,0,φ).
Combining the results from part (II) and the proof of part (III) of this theorem, we have

C ∈ P(V,ξ̃(CD0 ,φ),φ) if and only if C ∈ D(V,0,φ). Thus, any optimal dual contract CD0 ∈ D(V,0,φ) is a
relaxed optimal contract. However, there might be multiple minimizers of J∗(V, ξ, φ) with
respect to ξ. That is, there could be a relaxed optimal contract C such that C /∈ P(V,ξ̃(CD0 ,φ),φ).
I rule out this possibility by showing ξ̃

(
CD0 , φ

)
is the unique minimizer of J∗(V, ξ, φ) with

respect to ξ.
I proceed by contradiction. Suppose CP

′′ and ξ′′ 6= ξ̃
(
CD0 , φ

)
exist such that CP

′′ ∈
P(V,ξ′′,φ) and J∗(V, ξ′′, φ) = J∗

(
V, ξ̃

(
CD0 , φ

)
, φ
)
. Using (A.5), we have

J∗
(
V, ξ̃

(
CD0 , φ

)
, φ
)

= J∗(V, ξ′′, φ) = J
(
V, ξ′′, φ|CP ′′

)
= G

(
V, 0, φ|CP ′′

)
≥ G∗(V, 0, φ).

Because J∗
(
V, ξ̃

(
CD0 , φ

)
, φ
)

= G∗(V, 0, φ), the inequality above holds as an equality and
CP
′′ ∈ D(V,0,φ). By assumption, CP ′′ delivers information rent ξ′′ 6= ξ̃

(
CD0 , φ

)
= GY +(V, 0, φ).

However, by Theorem 3(II), any optimal dual contract C ∈ D(V,0,φ) delivers information
rent GY +(V, 0, φ), thus creating a contradiction.

Therefore, for any CD0 ∈ D(V,0,φ), ξ̃
(
CD0 , φ

)
= GY +(V, 0, φ) is the unique minimizer of

J∗(V, ·, φ). Hence, if C is a relaxed optimal contract, C ∈ P(V,ξ̃(CD0 ,φ),φ), thus concluding the
proof.

A.E PROOF OF THEOREM 4

PROOF OF THEOREM 4(I). To begin with, I show c(y, φ) is uniformly bounded away
from zero for all y ≥ 0 and φ ∈ [0, 1]. Consider (24) and the first-order condition for
c(y, φ):

1− A(y, φ)c(y, φ)ρ−1 − (g(y, φ)− ρygy(y, φ))c(y, φ)−ρ ≥ 0, (A.9)

where A(y, φ) := ηφ β̂(y,φ)−ηgy(y,φ)
λ

ρ ≥ 0.
Note

g(y, φ)− ρygy(y, φ) ≥ g(y, φ)− ygy(y, φ) ≥ g(0, φ) ≥ j1 > 0,

where the first inequality is because ρ < 1 and ygy(y, φ) ≥ 0, the second is because g(·, φ) is
concave, and the third is because g ≥ j1. Furthermore, note that c(y, φ) is interior because,
as c(y, φ) → 0 the left-hand side in (A.9) tends to −∞. Moreover, as c(y, φ) → ∞, the
left-hand side of (A.9) tends to 1. Hence, 0 < c(y, φ) < ∞ and (A.9) holds as an equality.
Together, these observations also imply 1− A(y, φ)c(y, φ)ρ−1 > 0.
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Therefore,

c(y, φ) = (1− A(y, φ)c(y, φ)ρ−1)−
1
ρ (g(y, φ)− ρygy(y, φ))

1
ρ ≥ j

1
ρ

1 > 0,

proving c(y, φ) is uniformly bounded away from zero.
Next, I show that for any t ≥ 0, the contract CR(v0,y0,φ0) provides continuation value v1−ρt

1−ρ
to the agent if he does not shirk.

Consider the variable Dt =
v1−ρt

1−ρ . By Ito’s lemma,

dDt = (1− ρ)Dt

(
δ

1− ρ
− c(yt, φt)

1−ρ

1− ρ

)
dt+ (1− ρ)Dtβ̂(yt, φt)dW

C
t .

Consider a localizing sequence of stopping times (τn)∞n=0 such that τn →∞ as n→∞.
Then, using the Dynkin’s formula (Øksendal, 2003, Chapter 7.4) and taking the limit for
n→∞, we have

Dt = E

[∫ ∞
t

e−δ(s−t)
(CR

s )1−ρ

1− ρ
ds
∣∣∣Ft]+ lim

n→∞
E[e−δ(τn−t)Dτn|Ft],

by the monotone convergence theorem.
To show limn→∞ E[e−δ(τn−t)Dτn|Ft] = 0, consider

e−δ(τn−t)Dτn = Dt exp

{∫ τn

t

(
−c(ys, φs)1−ρ − 1

2
(1− ρ)2β̂(ys, φs)

2

)
ds+

∫ τn

t

(1− ρ)β̂(ys, φs) dW
C
s

}
≤ Dt exp

{∫ τn

t

(
−j

1−ρ
ρ

1 − 1

2
(1− ρ)2β̂(ys, φs)

2

)
ds+

∫ τn

t

(1− ρ)β̂(ys, φs) dW
C
s

}
.

The random variable e
∫ τn
t − 1

2
(1−ρ)2β̂(ys,φs)2 ds+

∫ τn
t (1−ρ)β̂(ys,φs) dWC

s satisfies the Novikov con-
dition because β̂(y, φ) is uniformly bounded. Hence, it is a martingale and
E
[
e
∫ τn
t − 1

2
(1−ρ)2β̂(ys,φs)2 ds+

∫ τn
t (1−ρ)β̂(ys,φs) dWC

s
∣∣Ft] = 1. Therefore, using also Dτn ≥ 0,

0 ≤ E[e−δ(τn−t)Dτn|Ft] ≤ Dte
−j

1−ρ
ρ

1 (τn−t),

and, thus, limn→∞ E[e−δ(τn−t)Dτn|Ft] = 0.
We therefore conclude

v1−ρ
t

1− ρ
= Dt = E

[∫ ∞
t

e−δ(s−t)
(CR

s )1−ρ

1− ρ
ds
∣∣∣Ft] ,

proving v1−ρt

1−ρ is the agent’s continuation value at time t if the agent does not shirk.

PROOF OF THEOREM 4(II). I begin by proving vtg(yt, φt) ≤ G∗(Vt, Yt, φt). To do so,
consider an optimal dual contract C = (Ct, βt)t≥0 that delivers continuation value V0 =
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v1−ρ0

1−ρ to the agent. Define

A[g; (y, φ); c, β̂] := g(y, φ)

(
−r +

δ

1− ρ
− c1−ρ

1− ρ
+

1

2
ρβ̂2

)
+ gy(y, φ)

[
−φη

2

λ
cρ + y

(
r − δ

1− ρ
+ ρ

c1−ρ

1− ρ
+

1

2
ρβ̂2

)]
− gy(y, φ)yρβ̂2 + gφ(y, φ)ηφ(1− φ)β̂

+
1

2
gyy(y, φ)(yρβ̂)2 +

1

2
gφφ(y, φ)η2φ2(1− φ)2 − gyφ(y, φ)yρβ̂ηφ(1− φ).

Let ct := Ct/vt and β̂t := βt/v
1−ρ
t . For a process U := (Ut)t≥0 ∈ I, the multiplier

yUt := v−ρt Yt evolves as

dyUt = φt
η2

λ
cρtdt+ yt

(
r − δ

1− ρ
+ ρ

c1−ρ
t

1− ρ
+

1

2
ρβ̂2

t

)
dt− ytρβ̂tdW C

t + ηv−ρt dUt.

Consider also a process U c := (U c
t )t≥0 ∈ I with dU c

t = Itdt, where It ≥ 0 is such that[
ct −

η

λ
φtβ̂tc

ρ + ytβ̂tηφt(1− φt)
]

+ A[g; (yt, φt); ct, β̂t]− (β̂t − ηgy+(yt, φt))It ≥ 0. (A.10)

Note such It exists because if β̂t ≥ ηgy+(yt, φt), It = 0 satisfies this condition by (24). If, on
the other hand, 0 ≤ β̂t < ηgy+(yt, φt), a large enough It will satisfy this condition.

Consider a localizing sequence of stopping times (τn)∞n=0 such that τn →∞ as n→∞.
Then, by the Dynkin’s formula,

E[e−rτnvτng(y
Uc

τn , φτn)|F0]− v0g(y0, φ0) = E

[∫ τn

0

e−rtvt
{
A[g; (yU

c

t , φt); ct, β̂t] + ηgy(y
Uc

t , φt)It
}
dt
∣∣∣F0

]
.

Using inequality (A.10) and the differentiability of g(·, φ) inside the domain, we obtain

v0g(y0, φ0) ≤ E

[∫ τn

0

e−rtvt
(
ct −

η

λ
φtβ̂tc

ρ + yU
c

t β̂tηφt(1− φt)− β̂tIt
)
dt
∣∣∣F0

]
+ E[e−rτnvτng(yU

c

τn , φτn)|F0]

≤ sup
(Ut)t≥0∈I

E

[∫ τn

0

e−rt
{(
Ct −

η

λ
φtβtC

ρ
t + Ytβtηφt(1− φt)

)
dt− βtdUt

} ∣∣∣F0

]
+ sup

(Ut)t≥0∈I
E[e−rτnvτng(yUτn , φτn)|F0].

(A.11)
First, I show limn→∞ E[e−rτnvτng(yUτn , φτn)|F0] = 0 for any (Ut)t≥0 ∈ I. Define j∗0 :=

g∗(0, 0). By Theorem 3 and equation (21), vτnj∗0 ≥ 0 is the cost of the cheapest (admissible)
contract that delivers continuation value v1−ρτn

1−ρ to the agent without any investment.23 I

23Recall that throughout the paper, I assume parameters are such that g∗(0, φ) > 0 for all φ ∈ [0, 1].
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then proceed as in Di Tella and Sannikov (2021) by noting

E

[∫ ∞
0

e−rt|Ct|
]
≥ E

[∫ ∞
0

e−rtCt

]
≥ E

[∫ τn

0

e−rtCt + e−rτnvτnj
∗
0

]
.

Because of the admissibility condition (14) and because vτn ≥ 0, I apply the dom-
inated convergence theorem and conclude limn→∞ E[e−rτnvτn|F0] = 0. Because 0 ≤
E[e−rτnvτng(yUτn , φτn)|F0] ≤ j0E[e−rτnvτn|F0], then limn→∞ E[e−rτnvτng(yUτn , φτn)|F0] = 0.

Because C = (Ct, Kt)t≥0 is assumed to be an optimal dual contract, by Lemma
(A.1), βt ≥ ηξ̃(Ct, φt). Moreover, for any τn, ξ̃(Ct, φt) ≥ ξ̃T (Ct, φt, τn) :=
E
[∫ τn
t e−δ(s−t)βsηφs(1− φs) ds|Ft

]
. Using equation (A.2) in the proof of Lemma (A.1), we

therefore have

sup
(Ut)t≥0∈I

E

[∫ τn

0

e−rt
{(
Ct −

η

λ
φtβtC

ρ
t + Ytβtηφt(1− φt)

)
dt− βtdUt

} ∣∣∣F0

]
= sup

(Ut)t≥0∈I
E

[∫ τn

0

e−rt
{(

Ct −
ηφt
λ

(βt − ηξ̃T (Ct, φt, τn))Cρ
t

)
dt− (βt − ηξ̃T (Ct, φt, τn))dUt

}]
+ Y ξ̃T (C, φ0, τn)

= E

[∫ τn

0

e−rt
{(

Ct −
ηφt
λ

(βt − ηξ̃T (Ct, φt, τn))Cρ
t

)
dt

}]
+ Y0ξ̃

T (C, φ0, τn)

= E

[∫ τn

0

e−rt
(
Ct −

η

λ
φtβtC

ρ
t + Ytβtηφt(1− φt)

)
dt
∣∣∣F0

]
.

Taking the limit as n→∞ in (A.11) and applying the dominated convergence theorem,
we obtain

v0g(y0, φ0) ≤ E

[∫ ∞
0

e−rt
(
Ct −

η

λ
φtβtC

ρ
t + Ytβtηφt(1− φt)

)
dt
∣∣∣F0

]
= G∗(V, Y, φ).

Next, I show v0g(y0, φ0) ≥ G∗(V0, Y0, φ0). To prove this inequality, note

vtA[g; (yt− , φt); c(yt− , φt), β̂(yt− , φt)]dt

+ vt

(
c(yt− , φt)− ηφβ̂(yt− , φt)

c(yt− , φt)
ρ

λ
+ yt− β̂(yt− , φt)ηφt(1− φt)

)
dt

− v1−ρ
t β̂(yt− , φt)dUt + vt

[
g(yt− + v−ρt ηdUt, φt)− g(yt− , φt)

]
= −v1−ρ

t β̂(yt− , φt)dUt + vt
[
g(yt− + v−ρt ηdUt, φt)− g(yt− , φt)

]
≤ −v1−ρ

t [β̂(yt− , φt)− ηgy+(yt− , φt)]dUt

≤ 0,

(A.12)

with equality if dUt = 0. The equality follows because of the definition of c(y, φ) and
β̂(y, φ) and the HJB equation (24). The first inequality follows from the concavity of g
with respect to y. The last inequality follows because β̂(yt− , φt) ≥ ηgy+(yt− , φt).
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Therefore,

v0g(y0, φ0)− E[e−rτnvτng(yτn , φτn)|F0]

= E

[ ∫ τn

0

e−rt
[
− vtA[g; (yt− , φt); c(yt− , φt), β̂(yt− , φt)]dt− vt(g(yt− + v−ρt ηdUt, φt)− g(yt− , φt))

]∣∣∣F0

]
≥ E

[ ∫ τn

0

e−rt
[
vt

(
c(yt− , φt)− ηφtβ̂(yt− , φt)

c(yt− , φt)
ρ

λ
+ yt− β̂(yt− , φt)ηφt(1− φt)

)
dt− v1−ρ

t β̂(yt− , φt)dUt

]∣∣∣F0

]
,

with equality if dUt = 0 for all t.
Taking the limit for n→∞ and using limn→∞ E[erτnvτng(yτn , φτn)|F0] = 0, we obtain

v0g(y0, φ0) ≥ E

[∫ ∞
0

e−rt
[
vt

(
c(yt− , φt)− ηφtβ̂(yt− , φt)

c(yt− , φt)
ρ

λ
+ yt− β̂(yt− , φt)ηφt(1− φt)

)
dt− v1−ρ

t β̂(yt− , φt)dUt

] ∣∣∣F0

]
,

with equality if dUt = 0 for all t.
Therefore, we conclude

v0g(y0, φ0) = E

[∫ ∞
0

e−rtvt

(
c(yt− , φt)− ηφtβ̂(yt− , φt)

c(yt− , φt)
ρ

λ
+ yt− β̂(yt− , φt)ηφt(1− φt)

)
dt
∣∣∣F0

]
= sup

(Ut)t≥0∈I
E

[ ∫ ∞
0

e−rt
{
vt

(
c(yt− , φt)− ηφtβ̂(yt− , φt)

c(yt− , φt)
ρ

λ
+ yt− β̂(yt− , φt)ηφt(1− φt)

)
dt− v1−ρ

t β̂(yt, φt)dUt

}∣∣∣F0

]
= sup

(U)t≥0∈I
E

[ ∫ ∞
0

e−rt
{(

CR
t − ηφtβRt

(CR
t )

ρ

λ
+ Ytβ

R
t ηφt(1− φt)

)
dt− βRt dUt

}∣∣∣F0

]
.

Because the contract CR(v0,y0,φ0) delivers utility V0 =
v1−ρ0

1−ρ to the agent, we conclude
v0g(y0, φ0) ≥ G∗(V0, Y0, φ0).

Combining the results so far, we therefore have

G∗(V0, Y0, φ0) = v0g(y0, φ0) = E

[∫ ∞
0

e−rtvt

(
c(yt, φt)− ηφtβ̂(yt, φt)

c(yt, φt)
ρ

λ
− ytβ̂(yt, φt)ηφt(1− φt)

)
dt
∣∣∣F0

]
.

Hence, the contract CR(v0,y0,φ0) represents a solution to the dual problem. Because the re-
laxed optimal contract coincides with the solution to the dual problem when Y0 = 0, we
conclude CR(v0,0,φ0) is a relaxed optimal contract.

PROOF OF THEOREM 4(III). Because CR(v0,0,φ0) is a relaxed optimal contract, the cost
v0g(y0, φ0) provides a lower bound for the principal’s cost function in an optimal con-
tract. Hence, if the contract CR(v0,0,φ0) is incentive compatible, it is also an optimal contract.
I use Theorem 2 to verify whether CR(v0,0,φ0) is incentive compatible. Because condition (8)
holds by construction in a relaxed optimal contract, it remains to verify whether (12) is
satisfied.

By Theorem 3 and Theorem 4(II), the agent’s information rent at time t with contract
CR(v0,0,φ0) is given by ξt = G∗Y +(Vt, Yt, φt) = v1−ρ

t gy+(yt, φt). I then use Ito’s lemma and
express the volatility of the agent’s information rent, ωt, as

ωt = (1− ρ)v1−ρ
t gy+(yt, φt)β̂(yt, φt)− ρv1−ρ

t ytgyy(yt, φt)β̂(yt, φt) + v1−ρ
t gy+φ(yt, φt)ηφt(1− φt).
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With contract CR(v0,0,φ0), condition (12) is thus equivalent to

v1−ρ
t

{
[(1− ρ)gy+(yt, φt)− ρytgyy(yt, φt)] β̂(yt, φt) + gy+φ(yt, φt)ηφt(1− φt)− η(1− 2φt)gy+(yt, φt)

}
≥ 0.

After dividing by v1−ρ
t , I obtain (25). If (25) holds, the relaxed optimal contract CR(v0,0,φ0)

satisfies (12) and it is therefore an optimal contract.
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