Research question

How to measure the strength of the interdependence of inflation uncertainty?

- We estimate inflation uncertainty by *ex post* forecast errors and the interdependence of uncertainty by a probability model.
- We show a potential endogeneity bias of the probability model estimates and propose a new empirical framework exploiting heteroskedasticity in the data.

Measuring inflation uncertainty

Inflation uncertainty is measured by ex post forecast errors from a bivariate VAR BEKK GARCH (1,1) model using inflation of the UK and the euro area (Jan 1997-March 2016).

$$U_{t,h} = \Sigma_{t,h}^{1/2} \Sigma_{t|t-h}^{-1/2} e_{t|t-h} = \Sigma_{t,h}^{1/2} \Sigma_{t|t-h}^{-1/2} (\pi_t - \pi_{t|t-h})$$

- ▶ $e_{t|t-h}$: the *h*-period ahead forecasts erros made at time t-h.
- $\triangleright \Sigma_{t,h}$ and $\Sigma_{t|t-h}$: the variance-covariance matrix of e_t and $e_{t|t-h}$.

Measuring independence by a probability model: Part I

Marginal density functions

Two Piece Normal (TPN) distribution [3]

$$f_{TPN}(x;\sigma_1,\sigma_2,\mu) = \begin{cases} Aexp\{-(x-\mu)^2/2\sigma_1^2\} & \text{if } x \le \\ Aexp\{-(x-\mu)^2/2\sigma_2^2\} & \text{if } x > \end{cases}$$

where $A = (\sqrt{2\pi}(\sigma_1 + \sigma_2)/2)^{-1}$.

Weighted Skew Normal (WSN) distribution [1]

$$U = \underbrace{X}_{\text{baseline forecast error}} + \underbrace{\alpha \cdot Y \cdot I_{Y>m} + \beta \cdot Y \cdot I_{Y$$

where X and Y are bivariate $N(0, \sigma^2)$ with correlation coefficient, ρ .

Figure 1. Box plot of probability integral transformation

► Minimum distance statistics, graphical diagnostics of *pit's*, and goodness-of-fit tests support the choice of WSN against TPN for both the UK and the euro area.

The views are those of author and not of the IMF.

Measuring Interdependence of Inflation Uncertainty

Seohyun Lee

International Monetary Fund

Figure 2. Copula parameters and rank correlation: same horizon

Endogenous model of interdependence

To illustrate a potential bias, an endogenous model of interdependence is assumed as in [2]. $A\begin{bmatrix} U_1\\U_2\end{bmatrix} = \begin{bmatrix} \eta\\arepsilon\end{bmatrix}$, with $A = \begin{bmatrix} 1 & -lpha\\-eta & 1\end{bmatrix}$ and

• U_1 and U_2 : inflation uncertainty of the UK and the euro area.

• η and ε : structural shocks, independent Normal distribution; Ω : var-cov matrix of $[U_1U_2]'$. of uncertainty.

•
$$\alpha$$
 and β : the coefficients capturing interdependence of

Reduced form \rightarrow a potential bias if endogeneity is not properly addressed in the estimation.

$$U_1 = \frac{1}{(1 - \alpha\beta)} (\eta + \alpha\varepsilon), \ U_2 = \frac{1}{(1 - \alpha\beta)} (\beta\eta + \varepsilon)$$

$$(7)$$

$$1 = \left[\alpha^2 \sigma^2 + \sigma^2 - \alpha \sigma^2 + \beta \sigma^2 \right]$$

$$\Omega = \frac{1}{(1 - \alpha\beta)^2} \begin{bmatrix} \alpha^2 \sigma_{\varepsilon}^2 + \sigma_{\eta}^2 & \alpha \sigma_{\varepsilon}^2 + \beta \sigma_{\eta}^2 \\ \alpha \sigma_{\varepsilon}^2 + \beta \sigma_{\eta}^2 & \sigma_{\varepsilon}^2 + \beta^2 \sigma_{\eta}^2 \end{bmatrix}$$
(8)

Figure 3. The estimated slope coefficients (β) of linear quantile regressions

(2)

(3)

ASSA 2022 Virtual Annual Meeting

$$F_2(U_2;\hat{\theta}_2);\gamma)) \tag{4}$$

$$\frac{e^{-\gamma(y_1+y_2)}}{-1) + (e^{\gamma}-1))^2}$$
(5)

nd
$$\Omega = \begin{bmatrix} V_1 & C_{12} \\ C_{12} & V_2 \end{bmatrix}$$
 (6)

Measuring independence by identification through heteroskedasticity

The variance-covariance matrix of the structural model:

$$A\Omega A^{T} = \begin{bmatrix} \cdot & -\beta V_{1} - \alpha V_{2} + C_{12}(1 + \alpha \beta) \\ -\beta V_{1} - \alpha V_{2} + C_{12}(1 + \alpha \beta) & \cdot \end{bmatrix}$$
(9)

Optimization problem: the off-diagonal terms in Equation (11) need to be equal to zero. $\min_{\alpha,\beta} f(\alpha,\beta;V_1,V_2)$

sample periods (p), forecast horizons (h), and rolling windows (rw).

- $h = 1, 2, \ldots, 24$ and rw = 12.

Main findings

- UK inflation on the euro area inflation.
- interdependence is statistically insignificant.
- uncertainty about distant future than near future.
- Journal of Economic Forecasting, 22(1):5–18, 2019.
- [2] R. Rigobon. Contagion, spillover, and interdependence. *Economía*, 19(2):69–100, 2019.
- 189(1):64-71, 2004.

$$Y_2, C_{12}) = -\beta V_1 - \alpha V_2 + C_{12}(1 + \alpha \beta)$$
(10)

Impose additional assumptions: the parameters in A are stable over time; heteroskedasticity.

Define two regimes: RH if $\theta > median(\theta)$ and RL otherwise. θ is computed using different

$$\theta = \frac{V_1}{V_2} = m(p; h, rw) \tag{11}$$

▶ $p \in \{1, 2, 3\}$ with 1: pre-crisis period, 2: the Global Financial Crisis period, 3: post-crisis period.

 \blacktriangleright The minimum distance estimates of α and β using V_1, V_2 , and C_{12} for each regime.

Figure 4. Interdependece of inflation uncertainty: identification through heteroskedasticity

\blacktriangleright Crisis period: β exceeds 1 for longer term horizons \rightarrow amplifying effects of the surprises in the

▶ Pre- and post-crisis period: the range of the estimates lies [-1, 1], mostly close to zero \rightarrow

Conclusions

Probability model The simultaneous spillover of inflation uncertainty is stronger for

• Endogenous model The strength of the propagation of inflation uncertainty intensifies during the GFS period while the interdependence dampens during the post-crisis period.

References

[1] W. Charemza, C. Díaz, and S. Makarova. Conditional term structure of inflation forecast uncertainty: The copula approach. *Romanian*

[3] K. F. Wallis. An assessment of bank of england and national institute inflation forecast uncertainties. National Institute Economic Review,