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Research question

How to measure the strength of the interdependence of inflation uncertainty?

We estimate inflation uncertainty by ex post forecast errors and the interdependence of

uncertainty by a probability model.

We show a potential endogeneity bias of the probability model estimates and propose a

new empirical framework exploiting heteroskedasticity in the data.

Measuring inflation uncertainty

Inflation uncertainty is measured by ex post forecast errors from a bivariate VAR BEKK GARCH

(1,1) model using inflation of the UK and the euro area (Jan 1997-March 2016).

Ut,h = Σ1/2
t,h Σ−1/2

t|t−h
et|t−h = Σ1/2

t,h Σ−1/2
t|t−h

(πt − πt|t−h) (1)

I et|t−h: the h-period ahead forecasts erros made at time t − h.

I Σt,h and Σt|t−h: the variance-covariance matrix of et and et|t−h.

Measuring independence by a probability model: Part I

Marginal density functions

Two Piece Normal (TPN) distribution [3]

fTPN (x; σ1, σ2, µ) =

{
Aexp{−(x − µ)2/2σ2

1} if x ≤ µ

Aexp{−(x − µ)2/2σ2
2} if x > µ

(2)

where A = (
√

2π(σ1 + σ2)/2)−1.

Weighted Skew Normal (WSN) distribution [1]

U = X︸︷︷︸
baseline forecast error

+ α · Y · IY >m + β · Y · IY <k︸ ︷︷ ︸
Signal part based on revised forecast error

(3)

where X and Y are bivariate N(0, σ2) with correlation coefficient, ρ.

Figure 1. Box plot of probability integral transformation

I Minimum distance statistics, graphical diagnostics of pit’s, and goodness-of-fit tests support

the choice of WSN against TPN for both the UK and the euro area.

Measuring independence by a probability model: Part II

Conditional density function (copulas)

γ̂ = arg max
γ

T∑
t=1

ln (c(F1(U1; θ̂1), F2(U2; θ̂2); γ)) (4)

I γ: copula parameter; θ̂1, θ̂2: marginal densities estimanted by the simulated minimum distance.

I The pdf of Frank copula:

c(y1, y2; γ) = −γ(e−γ − 1)e−γ(y1+y2)

((e−γy1 − 1)(e−γy2 − 1) + (eγ − 1))2
(5)

Figure 2. Copula parameters and rank correlation: same horizon

Endogenous model of interdependence

To illustrate a potential bias, an endogenous model of interdependence is assumed as in [2].

A

[
U1
U2

]
=
[
η
ε

]
,with A =

[
1 −α

−β 1

]
and Ω =

[
V1 C12
C12 V2

]
(6)

U1 and U2: inflation uncertainty of the UK and the euro area.

η and ε: structural shocks, independent Normal distribution; Ω: var-cov matrix of [U1U2]′.
α and β: the coefficients capturing interdependence of uncertainty.

Reduced form → a potential bias if endogeneity is not properly addressed in the estimation.

U1 = 1
(1 − αβ)

(η + αε), U2 = 1
(1 − αβ)

(βη + ε) (7)

Ω = 1
(1 − αβ)2

[
α2σ2

ε + σ2
η ασ2

ε + βσ2
η

ασ2
ε + βσ2

η σ2
ε + β2σ2

η

]
(8)
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Figure 3. The estimated slope coefficients (β) of linear quantile regressions

Measuring independence by identification through heteroskedasticity

The variance-covariance matrix of the structural model:

AΩAT ==
[

· −βV1 − αV2 + C12(1 + αβ)
−βV1 − αV2 + C12(1 + αβ) ·

]
(9)

Optimization problem: the off-diagonal terms in Equation (11) need to be equal to zero.

min
α,β

f (α, β; V1, V2, C12) = −βV1 − αV2 + C12(1 + αβ) (10)

Impose additional assumptions: the parameters in A are stable over time; heteroskedasticity.

Define two regimes: RH if θ > median(θ) and RL otherwise. θ is computed using different

sample periods (p), forecast horizons (h), and rolling windows (rw).

θ = V1
V2

= m(p; h, rw) (11)

I p ∈ {1, 2, 3} with 1: pre-crisis period, 2: the Global Financial Crisis period, 3: post-crisis period.
h = 1, 2, . . . , 24 and rw = 12.

I The minimum distance estimates of α and β using V1, V2, and C12 for each regime.

Figure 4. Interdependece of inflation uncertainty: identification through heteroskedasticity

Main findings

I Crisis period:β exceeds 1 for longer term horizons → amplifying effects of the surprises in the

UK inflation on the euro area inflation.

I Pre- and post-crisis period: the range of the estimates lies [-1, 1], mostly close to zero →
interdependence is statistically insignificant.

Conclusions

Probability model The simultaneous spillover of inflation uncertainty is stronger for

uncertainty about distant future than near future.

Endogenous model The strength of the propagation of inflation uncertainty intensifies

during the GFS period while the interdependence dampens during the post-crisis period.
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