
Tackling the Volatility Paradox: Spillover Persistence and Systemic Risk

Christian Kubitza, University of Bonn christian.kubitza@uni-bonn.de

3. Low Spillover Persistence before Crises

but: Fragility \neq Low volatility How to capture fragility?

This paper: Loss dynamics

Low Spillover Persistence: Losses easily absorbed

High Spillover Persistence: Losses boost future losses

2. Defining Spillover Persistence

• Firm *i*'s contribution to the system's future risk:

 $\Delta \operatorname{CoSP}(\tau) = \mathbb{P}\left(\underbrace{-r_S(t+\tau) \ge VaR_S(q)}_{\text{system's return losses}} \mid \underbrace{-r_i(t) \ge VaR_i(q)}_{\text{firm's return losses}}\right) - q.$

• Spillover Persistence

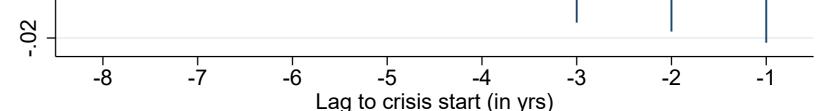


Figure: Estimated change in the likelihood of crises in year t (in percentage points) and its 95% confidence interval associated with a 1 standard deviation increase in Spillover Persistence in year t - 1, t - 2, ...Banking crises indicators are from Laeven and Valencia (2018) for 26 countries from 1989 to 2017.

 \Rightarrow Low Spillover Persistence \leftrightarrow Fragility before crises.

4. Low Spillover Persistence during Stock Market Booms

Dependent variable:	(1)	(4) e		
Sample:		Baseline		Ban & Bro
Boom	-3.671*** [-3.27]	-3.573** [-2.46]		-1.751* [-1.83]
Macro controls	\checkmark	\checkmark	\checkmark	\checkmark
Additional macro controls			\checkmark	\checkmark
Firm controls			\checkmark	\checkmark
Bank controls				\checkmark
Δ CoVaR			\checkmark	\checkmark
Firm FE	\checkmark	\checkmark	\checkmark	\checkmark
Time FE			\checkmark	\checkmark
Estimated effect of 1SD increase				
Boom	52	51	27	27
No. of obs.	7,592	7,592	7,592	1,295

= Average time lag between losses of the firm and system

"For how long do losses cascade through the system?"

$$\bar{\tau} = \frac{1}{\int_{1}^{\tau^{\max}} \Delta \text{CoSP}(\tau) \ d\tau} \int_{1}^{\tau^{\max}} \tau \times \Delta \text{CoSP}(\tau) \ d\tau$$

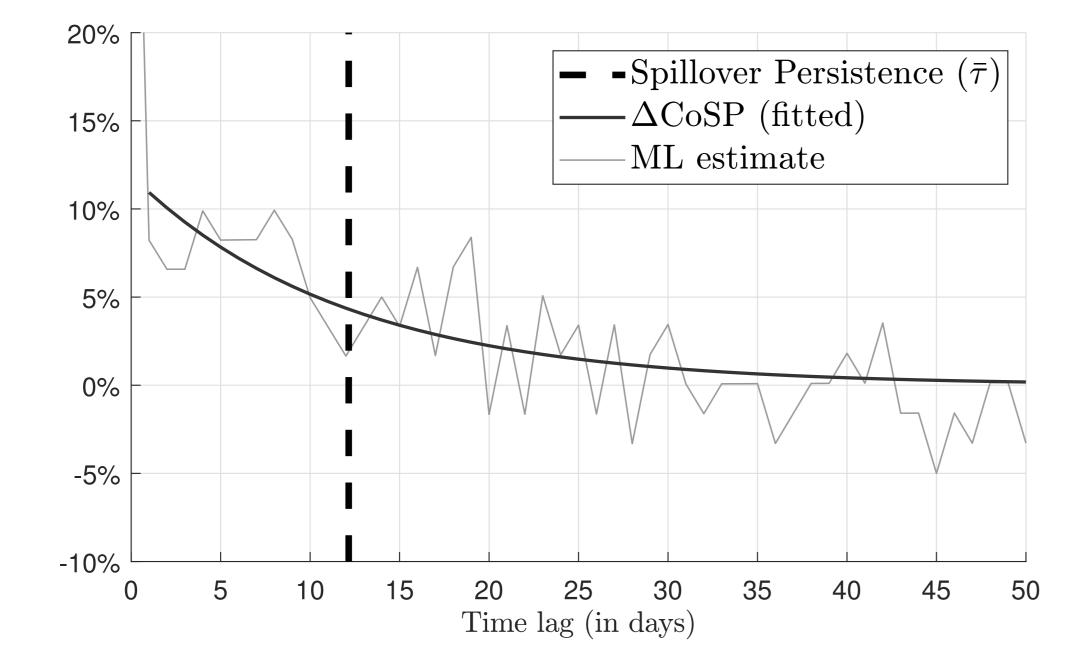


Figure: \triangle CoSP for Royal Bank of Canada for 2010-2016 with varying time lag (x-axis)..

 \Rightarrow Low Spillover Persistence \leftrightarrow Fragility during booms.

5. High Spillover Persistence during Fire Sales

Explore fire sales by US non-life insurers exposed to hurricane Katrina (Girardi et al., 2021).

Dependent variable:	(1) (2) (3) Spillover Persistence				
Sample:	US insurers All insurers				
Exposed × post-Katrina	0.749*** [4.92]	1.120*** [3.60]	0.749** [2.30]		
Insurer FE	\checkmark	\checkmark	\checkmark		
Day FE	\checkmark	\checkmark			
Country-Day FE			\checkmark		
No. of obs.	820	2,093	2,093		

 \Rightarrow High Spillover Persistence \leftrightarrow Fire sale amplification.

- Compute for >700 financial firms, >25 countries, 1989-2017, based on daily equity returns
- Important determinant: Financial constraints Tighter constraints \leftrightarrow Higher Spillover Persistence (e.g., higher TED & credit spreads)

6. Takeaways

Spillover Persistence disentangles fragility & amplification:

- Low: Loose constraints, run-up of crises, stock market booms \Rightarrow Fragility
- High: Tight constraints, during crises, fire sales \Rightarrow Amplification

 \Rightarrow Useful for policy & understanding systemic risk.

References

Brunnermeier, M. K. and Sannikov, Y. (2014). A macroeconomic model with a financial sector. American Economic Review, 104:379-421.

Girardi, G., Hanley, K. W., Nikolova, S., Pelizzon, L., and Getmansky Sherman, M. (2021). Portfolio similarity and asset liquidation in the insurance industry. *Journal of Financial Economics*, 142(1):69–96.

Laeven, L. and Valencia, F. (2018). Systemic banking crises database: An update. IMF Working Paper, 18/206.